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Abstract: We consider a natural extension of the Petitot–Citti–Sarti model of the primary visual cortex.
In the extended model, the curvature of contours is taken into account. The occluded contours are
completed via sub-Riemannian geodesics in the four-dimensional space M of positions, orientations,
and curvatures. Here, M = R2 × SO(2)×R models the configuration space of neurons of the visual
cortex. We study the problem of sub-Riemannian geodesics on M via methods of geometric control
theory. We prove complete controllability of the system and the existence of optimal controls. By
application of the Pontryagin maximum principle, we derive a Hamiltonian system that describes
the geodesics. We obtain the explicit parametrization of abnormal extremals. In the normal case, we
provide three functionally independent first integrals. Numerical simulations indicate the existence
of one more first integral that results in Liouville integrability of the system.

Keywords: model of vision; visual cortex; sub-Riemannian geometry; geodesics; curvature; optimal
control problem; integrability.

1. Introduction

The principles of biological visual systems are of great interest among researchers in
many fields of science. An important problem is the development and study of realistic
mathematical models describing a certain stage of visual signal processing. In this paper,
we perform a study of a mathematical model that describes a mechanism of visual signal
processing by the primary visual cortex of the human brain.

Human vision is a complex process that has not yet been fully understood. Perception
of visual information starts in the eye. A ray of light hits the retina and causes the activation
of light-sensitive receptors. The retina is a part of the brain hierarchically organized in
several layers. The first layer consists of light-sensitive receptors. In the next layers of the
retina, bipolar and ganglion cells are contained. Here, the primary processing of the visual
signal takes place. Furthermore, the visual signal arrives through the optic nerve to the
lateral geniculate nucleus (LGN) of the thalamus. Afterward, the signal is transmitted to
the visual cortex of the brain.

The mechanism of visual signal processing by neurons of the retina and LGN have
been extensively studied. The scale-space theory [1] proposed a mathematical model
for this stage. This theory was inspired by the properties of the Gaussian kernel and its
derivatives as regularized differential operators as well as solutions to the linear diffusion
equation. The receptive fields of bipolar and ganglion cells as well as LGN neurons are
well approximated by filter profiles based on the Gaussian kernel and Gaussian derivatives.
Their work is modeled by the action of the filter to the input signal. Mathematically, this
operation is defined as the convolution of two functions.

After LGN, the signal is transmitted to the visual cortex of the brain. Physiological
research indicates that the visual cortex is composed of multiple layers. The research by
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Hubel and Wiesel [2] has made significant progress in understanding the principles of the
primary visual cortex V1. In particular, they found that the receptive fields of V1 neurons
are elongated rather than rounded. The cells of V1 are capable of detecting segments of
contours with different orientations from the whole image. Mathematically, the work of V1
cells can be understood as a lift of a 2D input image to the extended space of positions and
orientations SE(2) = R2 × SO(2).

The mathematical model of V1 as a sub-Riemannian structure on the Heisenberg group
was proposed by J. Petitot [3]. Then, this model was refined by G. Citti and A. Sarti [4] as a
sub-Riemannian structure on the Lie group SE(2) = R2 × SO(2). Here, SE(2) models the
configuration space of neurons V1, which can be understood as the space of positions R2

and orientations SO(2). According to this model, the process of completion of occluded
contours occurs by minimizing the excitation energy of neurons that perceive visual infor-
mation in the areas of the observed scene that are occluded. This process can be interpreted
as the action of the hypoelliptic diffusion operator studied in [5–7]. The resulting curves are
sub-Riemannian length minimizers in SE(2). Their exact parameterization was obtained
in [8]. Such curves are used for image inpainting [9] and for the explanation of some visual
illusions [10].

The principles of biological visual systems are actively used in computer vision. Based
on these principles, effective methods of image processing are created: enhancement,
segmentation, inpainting, and feature detection. For example, in [11], the authors describe
an approach that is based on lifting an image into the extended space of positions and
orientations. After such lifting, the sub-Riemannian length minimizers are used to detect
the salient lines [12–14]. This approach is actively used in medical image processing.

The experimental data [15] (see also [16]) suggest that not only detectors of orientation
but also detectors of curvature exist in V1. In this paper, we consider the mathematical
model of the visual cortex ([17], p. 57) [18] that is obtained by extension of the classical
Petitot–Citti–Sarti model. The extension is performed by taking into account the curvature
of contours of the observed image. This leads to a sub-Riemannian structure in the four-
manifold M = R2 × SO(2)×R, where the fourth component means the curvature. In the
four-dimensional model of the visual cortex, a partially occluded contour is completed
via the planar projection of a sub-Riemannian length-minimizer in M that satisfies the
boundary conditions (position, orientation, and curvature) obtained from the boundary of
the occluded region. See Figure 1.

In [18], the authors show that the 4D model allows for better perceptual grouping and
completion of complex images than the classical 3D model. They consider the completion of
images via minimal surfaces in the 4D model. In this paper, we study the related problem of
finding length-minimizers of the associated sub-Riemannian manifold. In analogy with [9],
knowledge of length-minimizers provides a method for the completion of isophotes of
corrupted images. Such a method is an alternative to the minimal surface method, proposed
in [18], where the linearized Euler–Lagrange equation is used to compute the surface. Such
a linearization provides an approximation for the geodesic flow. We expect that the usage of
the precise length-minimizers will provide a more accurate method for image completion
since it does not involve linearization.

In this article, we consider the problem of sub-Riemannian geodesics in the space
M of positions, orientations, and curvatures. We formulate the problem as an optimal
control problem in Section 2. In Section 3, we prove complete controllability of the system
and the existence of optimal controls. Then, in Section 4, we apply a necessary optimality
condition—the Pontryagin maximum principle (PMP)—and examine the Hamiltonian
system of PMP. We obtain explicit parametrization of abnormal extremals and provide a
numerical investigation resulting in the Liouville integrability of the normal Hamiltonian
system of PMP. In conclusion, we summarize the main results.

Note that the question of integrability of the geodesic flow in M is important both
for theory and for applications. Liouville integrability ensures the absence of undesirable
chaotic behavior. It guarantees that the trajectories of the system remain close to each other
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under a small perturbation of the initial value. This property is highly important for the
stability of numerical schemes of integration. Note that integrability is a rare phenomenon.
In the common case, a system of ODE is not integrable. In [19], the authors show that, even
in the simplest case of Carnot groups, the sub-Riemannian geodesic flow is not integrable
already in dimension 8 (and consequently in higher dimensions).

Figure 1. In the four-dimensional model of the visual cortex, an occluded contour is completed
via the planar projection of a sub-Riemannian length-minimizer in the space R2 × SO(2) × R =

M 3 (x, y, θ, k) of positions, orientations, and curvatures. In the left column, we show an example
of the image with partially occluded contours and the complete image. In the right column, we
show a trajectory that satisfies the given boundary conditions. The curvature is visualized as its
reciprocal—the radius of the osculating circle.

2. Optimal Control Problem

We consider the following control system:
ẋ = u1 cos θ,
ẏ = u1 sin θ,
θ̇ = u1k,
k̇ = u2,

(x, y, θ, k) = q ∈ SE(2)×R = M,

(u1, u2) ∈ R2.
(1)

For the trajectory corresponding to the control (u1(t), u2(t)), t ∈ [0, T], T > 0, we
define a cost functional—the sub-Riemannian length of this trajectory:

l =
T∫

0

√
u2

1(t) + u2
2(t) dt. (2)

We study the problem of finding a Lipschitzian curve γ : [0, T] → M—that is a
trajectory of system (1), satisfying the given boundary conditions

γ(0) = q0, γ(T) = q1, qi ∈ M, (3)

and having the minimal sub-Riemannian length l(γ)→ min.

Remark 1. It is easy to check that system (1) is invariant under parallel translations and rotations
in the plane (x, y). Due to this, without loss of generality, we can reduce the problem for an arbitrary
q0 = (x0, y0, θ0, k0) to the case q0 = (0, 0, 0, k0).
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3. Complete Controllability of the System

The first question that arises when studying problems (1)–(3) is the existence of an
admissible trajectory connecting boundary conditions (3). If for any q0, q1 ∈ M the answer
is positive, then the control system is called completely controllable. Let us investigate the
controllability of system (1) using the technique of geometric control theory [20].

System (1) has the following form:

γ̇ = u1X1 + u2X2, (4)

where the vector fields near the controls are given by

X1 =


cos θ

sin θ

k
0

, X2 =


0
0
0
1

.

We investigate the controllability using Chow–Rashevskii theorem. In our case, it
suffices to check that the rank condition is satisfied. To do this, we calculate the following
Lie brackets of the fields Xi:

X3 = [X1, X2] =


0
0
−1
0

, X4 = [X1, X3] =


− sin θ

cos θ

0
0

.

For the matrix composed of the vector fields X1, . . . , X4 we have

det


cos θ 0 0 − sin θ
sin θ 0 0 cos θ

k 0 −1 0
0 1 0 0

 ≡ 1. (5)

We conclude that the rank of the matrix is four, so the vector fields Xi are linearly
independent. Therefore, they define a basis of the tangent space Tq M at every point q.
Thus, we see that all of the conditions of the Chow–Rashevskii theorem are satisfied and
we obtain the following result.

Theorem 1. The control system (1) is completely controllable.

Remark 2. Since the values ui are unbounded, condition (4) is equivalent to γ̇ ∈ 4γ =
span(X1(γ), X2(γ)), where the family of planes 4 is called the distribution. Due to condition
(5), the growth vector of the distribution4 equals (2, 3, 4). Such systems are called structures of
Engel type.

Furthermore, a question of the existence of optimal trajectories arises: does there
always exist an admissible trajectory satisfying conditions (3), on which the functional (2)
reaches its minimum value? For our problems (1)–(3), the answer is positive. The existence
of optimal trajectories is guaranteed by the Filippov theorem [20,21].
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4. Pontryagin Maximum Principle

Before proceeding to the examination of extremal trajectories, let us reduce the problem
under consideration to a simpler one. By virtue of Cauchy–Schwarz inequality, the original
problem is equivalent to the problem of minimizing the action functional

J =
T∫

0

u2
1(t) + u2

2(t)
2

dt→ min . (6)

Apply to problems (1), (3), (6) a necessary condition of optimality—Pontryagin maxi-
mum principle (PMP)—we introduce the Pontryagin function:

hν
u = 〈p,

2

∑
i=1

uiXi〉+ ν/2
2

∑
i=1

u2
i , p ∈ T∗M, ν ≤ 0.

PMP states that, if (u(t), q(t)), t ∈ [0, T], is an optimal process, then the following
conditions hold:

1. Hamiltonian system ṗ = −∂hν
u

∂q
, q̇ =

∂hν
u

∂p
;

2. Maximum condition hν
u(t)(p(t), q(t)) = max

u∈R2
hν

u(p(t), q(t));

3. Nontriviality condition (p(t), ν) 6= (0, 0) ∀t ∈ [0, T].

Denote hi = 〈p, Xi〉. The Pontryagin function takes the form

hν
u = u1h1 + u2h2 + ν/2

(
u2

1 + u2
2

)
.

In the formulation of PMP, without loss of generality, it suffices to consider two cases:
ν = 0, the abnormal case, and ν = −1, the normal case. Next, we consider both cases
in detail.

4.1. Abnormal Case ν = 0.

The Pontryagin function is h0
u = u1h1 + u2h2. This is a linear function, unbounded

when h2
1 + h2

2 6= 0. Thus, the maximum condition is satisfied if and only if h1 = h2 ≡ 0.
The maximized Hamiltonian in this case is H = max

u∈R2
h0

u = 0.

Let a, b, c, d ∈ R be the components of the covector p in canonical Darboux coordinates.

They change by the law ṗi = − ∂h0
u

∂qi
.

The Hamiltonian system of PMP has the form
ẋ = u1 cos θ,
ẏ = u1 sin θ,
θ̇ = u1k,
k̇ = u2,


ȧ = 0,
ḃ = 0,
ċ = −u1(−a sin θ + b cos θ),
ḋ = −u1 c.

(7)

The condition h1 = h2 ≡ 0 implies{
a cos θ + b sin θ + ck ≡ 0,
d ≡ 0.

(8)

By virtue of system (7), the second identity implies ḋ = −u1 c ≡ 0, while differentia-
tion of the first identity implies u2 c ≡ 0. Thus, we have

(u2
1 + u2

2)c
2 ≡ 0. (9)
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Since every admissible curve of positive length is a Lipschitz reparameterization of an
arclength parameterized admissible one (see ([22], Lemma 3.16)), one can chose the natural
parameterization u2

1 + u2
2 = 1 for every trajectory of system (1) that is not a fixed point.

Thus, identity (9) is equivalent to c ≡ 0 on the intervals of time where the trajectory is not a
fixed point.

The identity c ≡ 0 implies ċ ≡ 0. From the third equation of system (7), it follows
that u1(−a sin θ + b cos θ) ≡ 0. On the other hand, the first identity of system (8) takes the
form a cos θ + b sin θ ≡ 0. Thus, we have u2

1(a2 + b2) ≡ 0. Note that, if a2 + b2 = 0, then
a = b = c = d = 0, which contradicts the nontriviality condition in PMP. Thus, the case
u1 ≡ 0 remains to be considered.

In this case, the covector p is constant and nonzero. We obtain that the abnormal
extremals have the form γ(t) = (0, 0, 0, k0 + U(t)), where U(t) =

∫ t
0 u2(τ)dτ, and u2(t) is

any real-valued L∞(0, T) function. It is easy to see that the trajectory is not optimal if u2
changes its sign. This holds since, when u2 changes its sign, the trajectory is followed
in opposite directions. Choosing the natural parameterization u2

1 + u2
2 = 1 on optimal

trajectories, we obtain u2 = ±1. This results in the optimal trajectory γ(t) = (0, 0, 0, k0 ± t).
Thus, we obtain the following result.

Theorem 2. The abnormal extremal trajectories in problems (1)–(3) have the form γ(t) =

(0, 0, 0, k0 +
∫ t

0 u2(τ)dτ), where u2(t) is any real-valued L∞(0, T) function. Naturally parameter-
ized abnormal optimal trajectories have the form γ(t) = (0, 0, 0, k0 ± t).

4.2. Normal Case ν = −1

The Pontryagin function h−1
u takes the form h−1

u = u1h1 + u2h2 −
(
u2

1 + u2
2
)
/2. The

maximum condition gives the expression for the extremal controls:

∂h−1
u

∂ui
= hi − ui = 0 ⇒ ui = hi.

The maximized Hamiltonian H = max
u∈R2

h−1
u takes the form

H =
h2

1 + h2
2

2
.

By definition hi = 〈p, Xi〉, i = 1, . . . , 4 we have
h1 = a cos θ + b sin θ + ck,
h2 = d,
h3 = −c,
h4 = −a sin θ + b cos θ.

⇔


a = (h1 + kh3) cos θ − h4 sin θ,
b = h4 cos θ + (h1 + kh3) sin θ,
c = −h3,
d = h2.

The Hamiltonian system in canonical coordinates has the form
ẋ = (a cos θ + b sin θ + ck) cos θ,
ẏ = (a cos θ + b sin θ + ck) sin θ,
θ̇ = k(a cos θ + b sin θ + ck),
k̇ = d,


ȧ = 0,
ḃ = 0,
ċ = −(b cos θ − a sin θ)(kc + a cos θ + b sin θ),
ḋ = −c(ck + a cos θ + b sin θ).

We rewrite this system in the coordinates hi:
ẋ = h1 cos θ,
ẏ = h1 sin θ,
θ̇ = h1k,
k̇ = h2,


ḣ1 = −h2h3,
ḣ2 = h1h3,
ḣ3 = h1h4,
ḣ4 = −kh1(kh3 + h1).

(10)
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By choosing the natural parameterization u2
1 + u2

2 = 1 on the extremal trajectories, one
fixes the level surface of the Hamiltonian H = (h2

1 + h2
2)/2 = 1/2. A polar angle α ∈ S1 is

introduce into the plane (h1, h2):

h1 = cos α, h2 = sin α.

By rewriting Hamiltonian system (10) we obtain the following result.

Theorem 3. The naturally parameterized normal extremal trajectories in problems (1)–(3) are
solutions to the system

ẋ = cos α cos θ,
ẏ = cos α sin θ,
θ̇ = k cos α,
k̇ = sin α,


α̇ = h3,
ḣ3 = h4 cos α,
ḣ4 = −k cos α(kh3 + cos α).

(11)

The question of the existence of an analytic expression for extremal trajectories arises:
is the Hamiltonian system integrable? To prove the Liouville integrability of system (10),
it suffices to find four functionally independent first integrals in involution. One such
integral is the Hamiltonian H, and two more first integrals a and b follow directly from the
representation of the Hamiltonian system in canonical coordinates. These three integrals
are functionally independent and are in involution. The existence of the remaining first
integral is under investigation.

Numerical experiments have been carried out, indicating the presence of the fourth
integral. To this end, we consider the four-dimensional system, which is decoupled from
the rest of the variables: 

α̇ = h3,
ḣ3 = h4 cos α,
ḣ4 = −k cos α(kh3 + cos α),
k̇ = sin α.

(12)

Numerical Simulations

The existence of the first integral of system (12) was studied using the Poincare map.
The method consists of three steps. In the first step, one needs to find a periodic trajectory
of the system. The second step consists of the construction of a manifold transversal to the
flow of the system in a neighborhood of a point of the periodic trajectory. In the third step,
small perturbations of the initial point are considered and the corresponding trajectories are
computed numerically until they intersect the transversal submanifold several times (N times).
Such points are called orbits of the Poincare map. If the dynamics exhibit chaotic behavior,
the trajectories strongly diverge under a small perturbation of the initial point and the orbits
form a set of points chaotically distributed in the transversal submanifold. In the case of an
integrable system, an orbit forms a set of points lying in a submanifold of a smaller dimension
in the transversal manifold. Next, we perform this method for system (12).

Step 1.

There exists a one-parameter family of periodic trajectories

α(t) =
π

2
+ t h3(0), h3(t) = h3(0), h4(t) = 0, k(t) =

sin(t h3(0))
h3(0)

,

obtained by changing the initial value h3(0). In this case, the period is T = | 2π
h3(0)
|. With such

initial values, the point (h3, h4) = (h3(0), 0) is fixed. For the next steps, we choose a periodic
trajectory passing through the initial point α(0) = π

2 , h3(0) = 1, h4(0) = 0, k(0) = 0.
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Step 2.

It can be checked that the hyperspace k = 0 is transversal to the periodic trajectory at
the initial point. Indeed, the tangent vector to the periodic trajectory at the initial point is
(0, 0, 0, 1), which is orthogonal to the hyperspace k = 0.

Step 3.

New initial points were chosen from a small neighborhood of the initial point of the
periodic trajectory. The trajectories departing from these points were computed. Points of
intersections of every such trajectory with the transversal hyperspace were computed (for
the first time, the second time, . . ., the N-th time).

In Figure 2, the orbits of the Poincare map in the space (α, h3, h4) are shown. The red
dot corresponds to the orbit of a periodic trajectory with initial value α(0) = π

2 , h3(0) = 1,
h4(0) = 0. For the rest of the trajectories, the following parameters were used. For the
orange trajectory, α(0) = 1.56, h3(0) = 0.94, h4(0) = 0.02. For the green trajectory,
α(0) = 1.55, h3(0) = 1.06, h4(0) = 0.05. For the black trajectory, α(0) = 1.6, h3(0) = 1.14,
h4(0) = 0.02. For the blue trajectory, α(0) = 1.58, h3(0) = 1.24, h4(0) = 0.01. The number
of iterations of the Poincare map for all trajectories was chosen as N = 1000.

Figure 2. Orbits of the Poincare map in the space (α, h3, h4) are formed by intersection points of the
transversal hyperspace k = 0 with trajectories close to the periodic one (red dot). Different orbits are
depicted in different colors. Starting points are indicated for each trajectory.

The trajectories were computed by numerical integration (NDSolve in Wolfram Math-
ematica). The instances when the trajectory intersects the transversal hyperspace were
determined using the numerical solution (FindRoot) of the equation k(t) = 0 along the
given trajectory with initial approximation t = | 2π

h3(0)
| at each iteration i = 1, . . . , N.

It is remarkable that the points of the Poincare map fill continuous closed curves. This
indicates that, for a small perturbation of the initial conditions, the trajectories remain
close over a long time interval. This situation arises when the system is integrable (at least
in some domain). Thus, the presented numerical experiments indicate the presence of a
fourth independent first integral, which results in Liouville integrability of the Hamiltonian
system (11).

5. Conclusions

In this paper, we consider the problem of sub-Riemannian geodesics in the four-
dimensional manifold M = R2 × SO(2)× R. This problem arises when modelling the
mechanism of occluded contours completion in the extended model of the visual cortex by
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J. Petitot, G. Citti, and A. Sarti. The extension of the classical 3D model is performed by
taking the curvature of the contours into account.

The following main results are obtained in the article. Complete controllability of
the system and existence of optimal controls are proven. The Hamiltonian system of
PMP is derived. The explicit parametrization of abnormal trajectories is found. In the
normal case, three functionally independent first integrals are found. A hypothesis is
formulated, confirmed by numerical experiments: the normal Hamiltonian system of PMP
is Liouville integrable.

Integrability is an important property of the model. This property indicates the
adequateness of the model (the visual signal is processed in a deterministic way). It
ensures the stability of numerical methods of integration, which appear in brain-inspired
image processing algorithms (such as image enchantment, inpainting, and salient curve
extraction).
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