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Abstract

We consider a natural extension of the Petitot-Citti-Sarti model of

the primary visual cortex. In the extended model, curvature of con-

tours is taking into account. The occluded contours are completed via

sub-Riemannian geodesics in the four-dimensional space M of positions,

orientations, and curvatures. Here, M = R2 × SO(2) × R models the

con�guration space of neurons of the visual cortex. We study the prob-

lem of sub-Riemannian geodesics on M via methods of geometric control

theory. We prove complete controllability of the system and existence

of optimal controls. By application of Pontryagin maximum principle,

we derive a Hamiltonian system that describes the geodesics. We obtain

explicit parametrization of abnormal extremals. In the normal case, we

provide three functionally independent �rst integrals. Numerical simula-

tions indicate existence of one more �rst integral that results in Liouville

integrability of the system.

Keywords: model of vision, visual cortex, sub-Riemannian geometry, geodesics,

curvature, optimal control problem, integrability.

1 Introduction

The principles of biological visual systems are of great interest among researchers
in many �elds of science. One of the important directions is development and
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study of realistic mathematical models describing a certain stage of visual sig-
nal processing. In this paper, we consider the mathematical model of the visual
cortex that was introduced and developed in [1, 2, 3]. Such a model is ob-
tained by extension of the classical Petitot-Citti-Sarti model, which represents
the primary visual cortex V1 as a sub-Riemannian structure on the Lie group
SE(2) = R2×SO(2). Here SE(2) models the con�guration space of neurons V1,
which can be understood as the space of positions R2 and orientations SO(2).
The extension is performed by taking into account the curvature of contours of
observed image. This leads to a sub-Riemannian structure in the 4-manifold
M = R2 × SO(2) × R, where the fourth component means the curvature. In
the four-dimensional model of the visual cortex a partially occluded contour is
completed via the planar projection of a sub-Riemannian length-minimizer in
M that satis�es the boundary conditions (position, orientation and curvature)
obtained from the boundary of occluded region. See Fig. 1.

Interest in such models also comes from applications. The principles of
biological visual systems are actively used in computer vision. Based on these
principles, e�ective methods of image processing are created: enhancement,
segmentation, inpainting, feature detection. For example, in [4], the aurhors
describe an approach that is based on lifting an image into the expanded space
of positions and orientations. After such lifting, the sub-Riemannian length
minimizers are used to detect the salient lines [5, 6, 7]. This approach is actively
used in medical image processing.

The mathematical model of V1 as a sub-Riemannian structure in the space
of positions and orientations was proposed by J. Petitot [8]. Then this model
was re�ned by G. Citti and A. Sarti [9]. According to this model, the process of
completion of occluded contours occurs by minimizing the excitation energy of
neurons that perceive visual information in the areas of the observed scene that
are occluded. This process can be interpreted as the action of the hypoellip-
tic di�usion operator studied in [10]. The resulting curves are sub-Riemannian
length minimizers. Such curves are used for image inpainting [11] and for ex-
planation of some visual illusions [12].

In this article, we consider the problem of sub-Riemannian geodesics in the
spaceM of positions, orientations and curvatures. We formulate the problem as
an optimal control problem in Section 2. In Section 3, we prove complete con-
trollability of the system and existence of optimal controls. Then, in Section 4,
we apply a necessary optimality condition � Pontryagin maximum principle
(PMP), and examine the Hamiltonian system of PMP. In conclusion, we sum-
marize the main results.
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Figure 1: In the four-dimensional model of the visual cortex an occluded contour
is completed via the planar projection of a sub-Riemannian length-minimizer
in the space R2 × SO(2) × R = M 3 (x, y, θ, k) of positions, orientations and
curvatures. In the left column we show an example of the image with partially
occluded contours and the complete image. In the right column we show a
trajectory that satis�es given boundary conditions. The curvature is visualized
as its reciprocal � the radius of the osculating circle.

2 Optimal control problem

We consider the following control system:
ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ = u1k,

k̇ = u2,

(x, y, θ, k) = q ∈ SE(2)× R = M,

(u1, u2) ∈ R2.
(1)

For the trajectory corresponding to the control (u1(t), u2(t)), t ∈ [0, T ], T > 0,
we de�ne a cost functional � the sub-Riemannian length of this trajectory:

l =

T∫
0

√
u21(t) + u22(t) dt. (2)

We study the problem of �nding a Lipschitzian curve γ : [0, T ] → M � that is
a trajectory of system (1), satisfying the given boundary conditions

γ(0) = q0, γ(T ) = q1, qi ∈M, (3)

and having the minimal sub-Riemannian length l(γ)→ min.
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Remark 1 It is easy to check that system (1) is invariant under parallel trans-
lations and rotations in the plane (x, y). Because of this, without loss of gener-
ality, we can reduce the problem for an arbitrary q0 = (x0, y0, θ0, k0) to the case

q0 = (0, 0, 0, k0).

3 Complete controllability of the system

The �rst question that arises when studying problem (1)�(3) is existence of an
admissible trajectory connecting boundary conditions (3). If for any q0, q1 ∈M
the answer is positive, then the control system is called completely controllable.
Let us investigate controllability of system (1), using the technique of geometric
control theory [13].

System (1) has the following form:

γ̇ = u1X1 + u2X2,

where the vector �elds near the controls are given by

X1 =


cos θ

sin θ

k

0

 , X2 =


0

0

0

1

 .

We investigate controllability using Chow�Rashevskii theorem. In our case,
it su�ces to check that the rank condition is satis�ed. To do this, we calculate
the following Lie brackets of the �elds Xi:

X3 = [X1, X2] =


0

0

−1

0

 , X4 = [X1, X3] =


− sin θ

cos θ

0

0

 .

For the matrix composed of the vector �elds X1, . . . , X4 we have

det


cos θ 0 0 − sin θ
sin θ 0 0 cos θ
k 0 −1 0
0 1 0 0

 ≡ 1. (4)

We conclude that the rank of the matrix is four, so the vector �elds Xi are
linearly independent. So, they de�ne a basis of the tangent space TqM at every
point q. Thus, wee see that all the conditions of the Chow�Rashevskii theorem
are satis�ed and we obtain the following result.

Theorem 1 Control system (1) is completely controllable.
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Remark 2 Since ui are unbounded, condition (3) is equivalent to γ̇ ∈ ∆γ =
span(X1(γ), X2(γ)), where the family of planes ∆ is called the distribution. Due

to condition (4), the growth vector of the distribution ∆ equals (2, 3, 4). Such

systems are called structures of Engel type.

Further, a question of existence of optimal trajectories arises: does there
always exist an admissible trajectory satisfying conditions (3), on which the
functional (2) reaches its minimum value? For our problem (1)�(3) the an-
swer is positive. Existence of optimal trajectories is guaranteed by Filippov
theorem [13, 14].

4 Pontryagin maximum principle

Before proceeding to examination of extremal trajectories, let us reduce the
problem under consideration to a simpler one. By virtue of Cauchy-Schwarz
inequality, the original problem is equivalent to the problem of minimizing the
action functional

J =

T∫
0

u21(t) + u22(t)

2
dt→ min . (5)

Apply to problem (1), (3), (5) a necessary condition of optimality � Pon-
tryagin maximum principle (PMP). We introduce the Pontryagin function

hνu = 〈p,
2∑
i=1

uiXi〉+ ν/2

2∑
i=1

u2i , p ∈ T ∗M, ν ≤ 0.

PMP states that if (u(t), q(t)), t ∈ [0, T ], is an optimal process, then the follow-
ing conditions hold:

1. Hamiltonian system ṗ = −∂h
ν
u

∂q
, q̇ =

∂hνu
∂p

;

2. Maximum condition hνu(t)(p(t), q(t)) = max
u∈R2

hνu(p(t), q(t));

3. Nontriviality condition (p(t), ν) 6= (0, 0) ∀t ∈ [0, T ].

Denote hi = 〈p,Xi〉. The Pontryagin function takes the form

hνu = u1h1 + u2h2 + ν/2
(
u21 + u22

)
.

In formulation of PMP, without loss of generality, it su�ces to consider two
cases: ν = 0 � abnormal case and ν = −1 � normal case. Next, we will consider
both cases in detail.
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4.1 Abnormal case ν = 0.

The Pontryagin function is h0u = u1h1 + u2h2. This is a linear function un-
bounded when h21 + h22 6= 0. Thus, the maximum condition is satis�ed if and
only if h1 = h2 ≡ 0. The maximized Hamiltonian in this case isH = max

u∈R2
h0u = 0.

Let a, b, c, d ∈ R be the components of the covector p in canonical Darboux

coordinates. They are changing by the law ṗi = −∂h
0
u

∂qi
.

The Hamiltonian system of PMP has the form
ẋ = u1 cos θ,

ẏ = u1 sin θ,

θ̇ = u1k,

k̇ = u2,


ȧ = 0,

ḃ = 0,

ċ = −u1(−a sin θ + b cos θ),

ḋ = −u1 c.

(6)

The condition h1 = h2 ≡ 0 implies{
a cos θ + b sin θ + ck ≡ 0,

d ≡ 0.
(7)

By virtue of system (6), the second identity implies ḋ = −u1 c ≡ 0, while
di�erentiation of the �rst identity implies u2 c ≡ 0. Thus, we have

(u21 + u22)c2 ≡ 0. (8)

Since every admissible curve of positive length is a Lipschitz reparameteri-
zation of an arclength parameterized admissible one, see [15, Lemma 3.16], one
can chose the natural parameterization u21 + u22 = 1 for every trajectory of sys-
tem (1) that is not a �xed point. Thus, identity (8) is equivalent to c ≡ 0 on
the intervals of time where the trajectory is not a �xed point.

The identity c ≡ 0 implies ċ ≡ 0. From the third equation of system (6)
it follows u1(−a sin θ + b cos θ) ≡ 0. On the other hand, the �rst identity of
system (7) takes the form a cos θ + b sin θ ≡ 0. Thus, we have u21(a2 + b2) ≡ 0.
Note, that if a2 + b2 = 0 then a = b = c = d = 0, which contradicts the
nontriviality condition in PMP. Thus, it remains to consider the case u1 ≡ 0.

In this case, the covector p is constant and nonzero. We obtain that the
abnormal extremals have the form γ(t) = (0, 0, 0, k0 + U(t)), where U(t) =∫ t
0
u2(τ)dτ , and u2(t) is any real-valued L∞(0, T ) function. It is easy to see

that the trajectory is not optimal, if u2 changes its sign. This holds since when
u2 changes its sign, the trajectory is followed in opposite directions. Choosing
the natural parameterization u21 + u22 = 1 on optimal trajectories, we obtain
u2 = ±1, that results to the optimal trajectory γ(t) = (0, 0, 0, k0± t). Thus, we
obtain the following result.

Theorem 2 Abnormal extremal trajectories in problem (1)�(3) have the form

γ(t) = (0, 0, 0, k0+
∫ t
0
u2(τ)dτ), where u2(t) is any real-valued L∞(0, T ) function.

Naturally parameterized abnormal optimal trajectories have the form γ(t) =
(0, 0, 0, k0 ± t).
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4.2 Normal case ν = −1.
The Pontryagin function h−1u takes the form h−1u = u1h1 + u2h2−

(
u21 + u22

)
/2.

The maximum condition gives the expression for the extremal controls:

∂h−1u
∂ui

= hi − ui = 0 ⇒ ui = hi.

The maximized Hamiltonian H = max
u∈R2

h−1u takes the form

H =
h21 + h22

2
.

By de�nition hi = 〈p,Xi〉, i = 1, . . . , 4 we have
h1 = a cos θ + b sin θ + ck,

h2 = d,

h3 = −c,
h4 = −a sin θ + b cos θ.

⇔


a = (h1 + kh3) cos θ − h4 sin θ,

b = h4 cos θ + (h1 + kh3) sin θ,

c = −h3,
d = h2.

The Hamiltonian system in canonical coordinates has the form
ẋ = (a cos θ + b sin θ + ck) cos θ,

ẏ = (a cos θ + b sin θ + ck) sin θ,

θ̇ = k(a cos θ + b sin θ + ck),

k̇ = d,


ȧ = 0,

ḃ = 0,

ċ = −(b cos θ − a sin θ)(kc+ a cos θ + b sin θ),

ḋ = −c(ck + a cos θ + b sin θ).

Rewrite this system in the coordinates hi:
ẋ = h1 cos θ,

ẏ = h1 sin θ,

θ̇ = h1k,

k̇ = h2,


ḣ1 = −h2h3,
ḣ2 = h1h3,

ḣ3 = h1h4,

ḣ4 = −kh1(kh3 + h1).

(9)

By choosing the natural parameterization u21 + u22 = 1 on the extremal trajec-
tories one �xes the level surface of the Hamiltonian H = (h21 + h22)/2 = 1/2.
Introduce in the plane (h1, h2) a polar angle α ∈ S1:

h1 = cosα, h2 = sinα.

By rewriting Hamiltonian system (9) we get the following result.

Theorem 3 Naturally parameterized normal extremal trajectories in problem (1)�
(3) are solutions to the system

ẋ = cosα cos θ,

ẏ = cosα sin θ,

θ̇ = k cosα,

k̇ = sinα,


α̇ = h3,

ḣ3 = h4 cosα,

ḣ4 = −k cosα(kh3 + cosα).

(10)
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The question of existence of analytic expression for extremal trajectories
arises: is the Hamiltonian system integrable? To prove Liouville integrability
of system (9) it su�ces to �nd four functionally independent �rst integrals in
involution. One such integral is the Hamiltonian H, two more �rst integrals
a and b follow directly from the representation of the Hamiltonian system in
canonical coordinates. These three integrals are functionally independent and
are in involution. The existence of the remainig �rst integral is questionable.

Numerical experiments have been carried out indicating the presence of the
fourth integral. To this end, we consider the four-dimensional system, which is
decoupled from the rest of the variables:

α̇ = h3,

ḣ3 = h4 cosα,

ḣ4 = −k cosα(kh3 + cosα),

k̇ = sinα.

(11)

Existence of the �rst integral of this system has been studied using Poincare
map. For this, a periodic trajectory was found. Such a trajectory is given by
the initial value α(0) = π

2 , h3(0) = 1, h4(0) = 0, k(0) = 0. More precisely, a
one-parameter family of periodic trajectories was found

α(t) =
π

2
+ t h3(0), h3(t) = h3(0), h4(t) = 0, k(t) =

sin(t h3(0))

h3(0)
,

obtained by changing the initial value h3(0). In this case, the period is T =
| 2π
h3(0)

|. With such initial values, the point (h3, h4) = (h3(0), 0) is �xed.

The hyperspace k = 0, which is transversal to the periodic trajectory, was
chosen. The Poincare map was constructed as follows. Initial values were cho-
sen from a small neighborhood of initial values of the periodic trajectory. The
trajectories departing from these initial values were computed. Points of inter-
sections of every such trajectory with the transversal hyperspace were computed
(for the �rst time, the second time, . . ., the N -th time).

In Fig. 2 the orbits of the Poincare map in the space (α, h3, h4) are shown.
The red dot corresponds to the orbit of a periodic trajectory with initial value
α(0) = π

2 , h3(0) = 1, h4(0) = 0. For the rest of the trajectories, the following
parameters were used. For the orange trajectory: α(0) = 1.56, h3(0) = 0.94,
h4(0) = 0.02. For the green trajectory: α(0) = 1.55, h3(0) = 1.06, h4(0) = 0.05.
For the black trajectory: α(0) = 1.6, h3(0) = 1.14, h4(0) = 0.02. For the blue
trajectory: α(0) = 1.58, h3(0) = 1.24, h4(0) = 0.01. The number of iterations
of the Poincare map for all trajectories was chosen N = 1000.

The trajectories were computed by numerical integration (NDSolve in Wol-
fram Mathematica). The instances when the trajectory intersects the transver-
sal hyperspace were determined using the numerical solution (FindRoot) of
the equation k(t) = 0 along the given trajectory with initial approximation
t = | 2π

h3(0)
| at each iteration i = 1, . . . , N .

It is remarkable that the points of the Poincare map �ll continuous closed
curves. This indicates that for a small perturbation of the initial conditions, the
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Figure 2: Orbits of the Poincare map in the space (α, h3, h4) are formed by
intersection points of the transversal hyperspace k = 0 with trajectories close
to the periodic one (red dot). Di�erent orbits are depicted in di�erent colors.
Starting points are indicated for each trajectory.

trajectories remain close over a long time interval. This situation arises when
the system is integrable (at least in some domain).

Thus, the presented numerical experiments indicate the presence of a fourth
independent �rst integral, which results to Liouville integrability of the Hamil-
tonian system (10).

5 Conclusion

In this paper, we consider the problem of sub-Riemannian geodesics in the four-
dimensional manifoldM = R2×SO(2)×R. This problem arises when modelling
the mechanism of occluded contours completion in the extended model of the
visual cortex by J. Petitot, G. Citti, and A. Sarti. The extension of the classical
3D model is performed by taking the curvature of the contours into account.

The following main results are obtained in the article. Complete controllabil-
ity of the system and existence of optimal controls are proved. The Hamiltonian
system of PMP is derived. The explicit parametrization of abnormal trajecto-
ries is found. In the normal case, three functionally independent �rst integrals
are found. A hypothesis is formulated, con�rmed by numerical experiments,
that the normal Hamiltonian system of PMP is Liouville integrable.

The authors are grateful to Prof. Yu.L. Sachkov for many fruitful suggestions
and valuable comments on the work.
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