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Abstract. We study a time minimization problem for a model of a car
that can move forward on a plane and turn in place. Trajectories of this
system are used in image processing for the detection of salient lines. The
problem is a modification of a well-known sub-Riemannian problem in
the roto-translation group, where one of the controls is restricted to be
non-negative. The problem is of interest in geometric control theory as a
model example in which the set of admissible controls contains zero on the
boundary. We apply a necessary optimality condition—Pontryagin max-
imum principle to obtain a Hamiltonian system for normal extremals. By
analyzing the Hamiltonian system we show a technique to obtain a single
explicit formula for extremal controls. We derive the extremal controls
and express the extremal trajectories in quadratures.
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1 Introduction

Consider a model of an idealized car moving on a plane, see Fig. 1. The car
has two parallel wheels, equidistant from the axle of the wheelset. Both wheels
have independent drives that can rotate forward and backward so that the cor-
responding rolling of the wheels occurs without slipping. The configuration of
the system is described by the triple q = (x, y, θ) ∈ M = R

2 × S1, where
(x, y) ∈ R

2 is the central point, and θ ∈ S1 is the orientation angle of the car.
Note that the configuration space M forms the Lie group of roto-translations
SE(2) � M = R

2 × S1.
From the driver’s point of view, the car has two controls: the accelerator u1

and the steering wheel u2. Consider the configuration e = (0, 0, 0), which cor-
responds to the car located in the origin and oriented along the positive direc-
tion of abscissa. An infinitesimal translation is generated by the vector ∂x and
rotation—by ∂θ. They are possible motions controlled by u1 and u2 respectively.
The remaining direction ∂y is forbidden since the immediate motion of the car
in direction perpendicular to its wheels is not possible. Thus, the dynamics of
the car in the origin is given by ẋ = u1, ẏ = 0, θ̇ = u2.
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Fig. 1. Left: classical model of a car that can move forward and backward and rotate in
place. Its trajectory represents a cusp when the car switches the direction of movement
to opposite. Arcs of the trajectory where the car is moving forward/backward are
depicted in green/red correspondingly. Right: control u1 is responsible for translations
and u2 for rotations of the car. For the Duits car motion backward is forbidden u1 ≥ 0.
(Color figure online)

Fig. 2. Set of admissible controls for various models of a car moving on a plane.

The origin e is unit element of the group SE(2). Any other element q ∈ SE(2)
is generated by left multiplication Lqe = q · e. Dynamics in a configuration q is

q̇ = u1X1(q) + u2X2(q), (1)

where the vector fields Xi are obtained via push-forward of left multiplication
X1(q) = Lq∗∂x, X2 = Lq∗∂θ, and the forbidden direction is X3(q) = Lq∗∂y:

X1(q) = cos θ ∂x + sin θ ∂y, X2(q) = ∂θ, X3(q) = sin θ ∂x − cos θ ∂y.

Various sets of admissible controls U � (u1, u2) lead to different models of
the car, see [1]. e.g., see Fig. 2, the time minimization problem for

– u1 = 1, |u2| ≤ κ, κ > 0 leads to Dubins car [2];
– |u1| = 1, |u2| ≤ κ, κ > 0 leads to Reeds-Shepp car [3];
– u2

1 + u2
2 ≤ 1 leads to the model of a car, which trajectories are given by

sub-Riemannian length minimizes, studied by Sachkov [4];
– u1 ≥ 0, u2

1 + u2
2 ≤ 1 leads to the model of a car moving forward and turning

in place, proposed by Duits et al. [5].
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System (1) appears in robotics as a model of a car-like robot. The system
also arises in the modelling of the human visual system and image process-
ing. A mathematical model of the primary visual cortex of the brain as a sub-
Riemannian structure in the space of positions and orientations is developed
by Petitot [6], Citti and Sarti [7]. According to this model, contour completion
occurs by minimizing the excitation energy of neurons responsible for the area
of the visual field, where the contour is hidden from observation.

The principles of biological visual systems are actively used in computer
vision. Based on these principles, effective methods of image processing are cre-
ated, e.g.: image reconstruction [8,9], detection of salient lines in images [10].

In particular, the problem of salient curves detection arises in the analysis of
medical images of the human retina when searching for blood vessels. In [10], the
set of admissible controls is the disk u2

1 +u2
2 ≤ 1. A disadvantage of this model is

the presence of cusps, see Fig. 2. Such curves are not desirable for vessel tracking.
To eliminate this drawback, the restriction of the set of admissible control to a
half-disc was proposed in [5]. The results of vessel tracking via the minimal paths
in this model, which we call the Duits car, can be found in [11].

The problem of optimal trajectories of the Duits car with a given external
cost is studied in [5]. In particular, the authors develop a numerical method
for finding optimal trajectories using Fast-Marching algorithm [12]. They also
study the special case of uniform external cost, which we consider in this paper,
and formulate a statement that cusp points are replaced by so-called key points,
which are points of in-place rotations, see [5, Theorem 3].

In this paper, we study the time-minimization problem for the Duits car. By
direct application of Pontryagin maximum principle (PMP) and analysis of the
Hamiltonian system of PMP, we show a formal proof of the statement regarding
the replacement of cusps by key points. We also present a technique of obtaining
the explicit form of extremal controls by reducing the system to the second-order
ODE and solving it in Jacobi elliptic functions.

The problem under consideration is of interest in geometric control the-
ory [13], as a model example of an optimal control problem in which zero control
is located on the boundary of the set of admissible controls. A general app-
roach [14] to similar problems is based on convex trigonometry. The approach
covers the class of optimal control problems with two-dimensional control belong-
ing to an arbitrary convex compact set containing zero in its interior. However,
this approach does not admit immediate generalization to the case when zero
lies on the boundary. For systems of this type, the development of new methods
is required. This article examines in detail a particular case of such a system.

2 Problem Formulation

We consider the following control system:
⎧
⎨

⎩

ẋ = u1 cos θ,
ẏ = u1 sin θ,

θ̇ = u2,

(x, y, θ) = q ∈ SE(2) = M,
u2

1 + u2
2 ≤ 1, u1 ≥ 0.

(2)
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We study a time minimization problem, where for given boundary conditions
q0, q1 ∈ M, one aims to find the controls u1(t), u2(t) ∈ L∞([0, T ], R), such that
the corresponding trajectory γ : [0, T ] → M transfers the system from the initial
state q0 to the final state q1 by the minimal time:

γ(0) = q0, γ(T ) = q1, T → min . (3)

System (2) is invariant under action of SE(2). Thus, w.l.o.g., we set q0 = (0, 0, 0).

3 Pontryagin Maximum Principle

It can be shown that, in non-trivial case, problem on the half-disc is equivalent
to the problem on the arc u2

1 + u2
2 = 1. Denote u = u2, then u1 =

√
1 − u2.

A necessary optimality condition is given by PMP [13]. Denote hi = 〈λ,Xi〉,
λ ∈ T ∗

M. It can be shown that abnormal extremals are given by in-place rota-
tions ẋ = ẏ = 0. Application of PMP in normal case gives the expression of
extremal control u = h2 and leads to the Hamiltonian system

⎧
⎨

⎩

ẋ =
√

1 − h2
2 cos θ,

ẏ =
√

1 − h2
2 sin θ,

θ̇ = h2,

⎧
⎨

⎩

ḣ1 = −h2h3,

ḣ2 =
√

1 − h2
2h3,

ḣ3 = h2h1,

(4)

with the (maximized) Hamiltonian

H = 1 =
{ |h2|, for h1 ≤ 0,√

h2
1 + h2

2, for h1 > 0,
(5)

The subsystem for state variables x, y, θ is called the horizontal part, and
the subsystem for conjugate variables h1, h2, h3 is called the vertical part of
the Hamiltonian system. An extremal control is determined by a solution of the
vertical part, while an extremal trajectory is a solution to the horizontal part.

The vertical part has the first integrals: the Hamiltonian H and the Casimir

E = h2
1 + h2

3. (6)

Remark 1. Casimir functions are universal conservation laws on Lie groups. Con-
nected joint level surfaces of all Casimir functions are coadjoint orbits (see [15]).

In Fig. 3 we show variants of the mutual arrangement of the level surface of
the Hamiltonian H = 1, which consists of two half-planes glued with half of the
cylinder, and the level surface of the Casimir E ≥ 0, which is a cylinder. In Fig. 4
we show the phase portrait on the surface H = 1.

Depending on the sign of h1, we have two different dynamics. When h1

switches its sign, the dynamics switches from one to another. We denote by
t0 ∈ {t00 = 0, t10, t

2
0, . . .} the instance of time when the switching occurs. Note,

that at the instances t0 the extremal trajectory (x(t), y(t), θ(t)) intersects the
so-called ‘cusp-surface’ in SE(2), analytically computed and analysed in [16].
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Fig. 3. Level surfaces of the Hamiltonian H (in green) and the Casimir E (in red). The
intersection line is highlighted in yellow. Left: E < 1. Center: E = 1. Right: E > 1.
(Color figure online)

Fig. 4. Phase portrait on the level surface H = 1 of the Hamiltonian.

3.1 The Case h1 < 0.

Due to (5), we have h2 = h20 = ±1. Denote s2 = h2. We study the system
⎧
⎨

⎩

ẋ = 0, x(t0) = x0,
ẏ = 0, y(t0) = y0,

θ̇ = s2, θ(t0) = θ0,

{
ḣ1 = −s2h3, h1(t0) = h10,

ḣ3 = s2h1, h3(t0) = h30.
(7)

We immediately see that solutions to the horizontal part (extremal trajecto-
ries) are rotations around the fixed point (x0, y0) with constant speed s2 = ±1.

Solutions to the vertical part are given by arcs of the circles. The motion is
clockwise, when s2 = −1, and counterclockwise, when s2 = 1:

h1(t)=h10 cos(t−t0)−s2 h30 sin(t−t0), h3(t)=h30 cos(t−t0)+s2 h10 sin(t−t0).

It remains to find the first instance of time t1 > t0, at which the dynamics
switches. That is the moment when the condition h1 < 0 ceases to be met:

t1 − t0 = arg (−s2h30 − ih10) ∈ (0, π]. (8)
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6 A. Mashtakov

Note that in the case t0 > 0, that is, when at least one switch has already
occurred, the formula (8) is reduced to t1 − t0 = π.

3.2 The Case h1 > 0

By (5) we have h1 =
√

1 − h2
2. The Hamiltonian system of PMP has the form

⎧
⎨

⎩

ẋ = h1 cos θ, x(t0) = x0,
ẏ = h1 sin θ, y(t0) = y0,

θ̇ = h2, θ(t0) = θ0,

⎧
⎨

⎩

ḣ1 = −h2h3, h1(t0) = h10,

ḣ2 = h1h3, h2(t0) = h20,

ḣ3 = h2h1, h3(t0) = h30.

(9)

This system is a model example in geometric control theory [13]. An explicit solu-
tion in Jacobi elliptic functions was obtained in [4], where the authors reduced
the vertical part to the equation of mathematical pendulum. The solution is
given by different formulas in different areas of the phase portrait. The specific
form is determined by the nature of the movement of the pendulum: oscillation,
rotation, movement along the separatrix, stable or unstable equilibrium.

We propose another technique that leads to an explicit parameterization of
the solutions by a single formula. First, we derive the ODE on the function h2.
Then we find its explicit solution. Finally, we express the remaining components
h1, h3 in terms of the already found function h2 and initial conditions.

Denote M = E − 2. By virtue of (9), we have

ḧ2 + Mh2 + 2h3
2 = 0, (10)

with initial conditions h2(t0) = h20 =: a, ḣ2(t0) = h10h30 =: b.
An explicit solution of this Cauchy problem, see [18, Appendix A], is given

by
h2(t) = scn

(
t−t0

k + sF (α, k), k
)
, k = 1√

E
,

α = arg
(
s a + i s

√
1 − a2

) ∈ (−π, π], s = −sign(b),

where F denotes the elliptic integral of the first kind in the Legendre form, and
cn denotes the elliptic cosine [17].

Next, we express h1 and h3 via h2 and initial conditions.
Since h2 ∈ C(R) is bounded, there exists an integral

H2(t) =

t∫

t0

h2(τ)d τ = s arccos
(

dn
(

t − t0
k

+ sF (α, k), k
)) ∣

∣
∣
∣
∣

τ=t

τ=t0

,

where dn denotes the delta amplitude [17].
It can be shown that the Cauchy problem on (h1, h3) has a unique solution

h1(t) = h10 cos H2(t)−h30 sin H2(t), h3(t) = h30 cos H2(t)+h10 sin H2(t). (11)

The extremal trajectories are found by integration of the horizontal part:

x(t) = x0+

t∫

t0

h1(τ) cos θ(τ) dτ, y(t) = y0+

t∫

t0

h1(τ) sin θ(τ) dτ, θ(t) = θ0+H2(t).
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4 Extremal Controls and Trajectories

We summarize the previous section by formulating the following theorem

Theorem 1. The extremal control u(t) in problem (2)–(3) is determined by the
parameters h20 ∈ [−1, 1], h10 ∈ (−∞, 0] ∪

{√
1 − h2

20

}
, h30 ∈ R.

Let s1 = sign(h10) and σ = s1+1
2 . The function u(t) is defined on time intervals

formed by splitting the ray t ≥ 0 by instances t0 ∈ {0 = t00, t
1
0, t

2
0, t

3
0, . . .} as

u(t) =
{

u
(
ti−σ
0

) ∈ {−1, 1}, for t ∈ [ti−σ+s1
0 , ti−σ+s1+1

0 ),
scn

(
t−t0

k + sF (α, k), k
)
, for t ∈ [ti−σ

0 , ti−σ+1
0 ),

(12)

where i ∈ {2n − 1 | n ∈ N},
k = 1√

h2
10+h2

30

, s = −sign(h30), α = arg
(
s h20 + i s

√
1 − h2

20

)
.

The corresponding extremal trajectory has the form θ(t) =
t∫

0

u(τ) dτ ,

x(t) =
t∫

0

√
1 − u2(τ) cos θ(τ) dτ, y(t) =

t∫

0

√
1 − u2(τ) sin θ(τ) dτ.

Proof relies on the expression of the extremal controls u1 =
√

1 − u2,
u2 = h2 = u, which follows from maximum condition of PMP, see Sect. 3.
The index i together with the parameters s1 and σ specify the dynamics on
the corresponding time interval. The dynamics switches, when h1 changes its
sign. Explicit formula (12) for the extremal control is obtained in Sect. 3.1 and
Sect. 3.2. The extremal trajectory is obtained by integration of the horizontal
part of (4).

Fig. 5. Projection to the plane (x, y) of two different extremal trajectories. The gray
arrow indicates the orientation angle θ at the instances of time t ∈ {0, 0.5, 1, . . . , 20}.
Left: h0

1 = 0.5, h0
2 =

√
3/2, h0

3 = 1 Right: h0
1 = 0.5, h0

2 =
√

3/2, h0
3 = 0.7.
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8 A. Mashtakov

By analyzing the solution, we note that there is a relation between the
extremal trajectories of the Duits car and the sub-Riemannian geodesics in
SE(2). Projection to the plane (x, y) of the trajectories in two models coin-
cide, while the dynamics of the orientation angle θ differs: in Duits model, the
angle θ uniformly increases/decreases by π radians at a cusp point. See Fig. 5.
Note that an optimal motion of the Duits car can not have internal in-place
rotations, see [5]. The in-place rotations may occur at the initial and the final
time intervals.
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