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1. INTRODUCTION

Let G be a connected three-dimensional unimodular Lie group, and let L be the Lie algebra of
left-invariant vector fields on G. A left-invariant sub-Riemannian (SR) structure on G is defined
as a left-invariant rank 2 subbundle Δ of the tangent bundle TG, Δ + [Δ,Δ] = TG, equipped
with a left-invariant inner product g on Δ [1]. An SR structure can be defined with the use of an
orthonormal frame f1, f2 ∈ L,

Δq = span(f1(q), f2(q)), g(fi(q), fj(q)) = δij , i, j = 1, 2, (1)

where q ∈ G and δij is the Kronecker delta.
Finding minimizers for SR structures is the main problem of SR geometry, which is studied in

the present paper. An SR minimizer is defined as a Lipschitz curve q : [0, t1] → G such that
q̇(t) ∈ Δq(t) for almost all t ∈ [0, t1] and the curve length

l(q(·)) =

t1∫

0

√
g(q̇(t), q̇(t)) dt

is minimal on the set of all such curves joining two given points q(0) = q0 and q(t1) = q1. An SR
geodesic is defined as a curve on G whose sufficiently small arcs are SR minimizers.

In other words, an SR minimizer is a solution of the optimal control problem [2]

q̇ = u1f1(q) + u2f2(q), q ∈ G, (u1, u2) ∈ R
2, (2)

q(0) = q0, q(t1) = q1, (3)

l =

t1∫

0

√
u2

1 + u2
2 dt → min . (4)

The most efficient approach to the problem of finding SR minimizers is based on optimal control
theory and consists of the following stages [2].

1. Proof of the existence of SR minimizers. (In problems of SR geometry in the general case, this
stage is a standard consequence of the Rashevsky–Chow theorem and the Filippov theorem [2].)
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2. Parametrization of SR geodesics with the use of the Pontryagin maximum principle [3, p. 164].
3. Choice of SR minimizers among SR geodesics with the use of second-order optimality condi-

tions and a detailed analysis of the structure of the family of SR geodesics.
Note that the search of a parametrization of SR geodesics can be a nontrivial problem for

left-invariant SR structures on Lie groups.
One can ask whether such a parametrization is theoretically possible in some natural sense; this is

the question concerning the integrability of the system of ordinary differential equations (ODE)
that defines the SR geodesics. An example of a six-dimensional Lie group with a nonintegrable
system of ODE for the SR geodesics can be found in [4].

The aim of the present paper is to construct a complete system of first integrals for left-invariant
SR structures of elliptic type (see below) on the Lie group SL2(R) (that is, the special linear group
of degree two over the field of real numbers). The Lie group SL2(R) is defined as the group of linear
area-preserving transformations of the plane R

2. Throughout the following, we mean the group over
the field R of real numbers and use the notation SL(2) = SL2(R). Left-invariant SR structures
on three-dimensional Lie groups were classified in [5] to within local isometries; in accordance
with the results of that paper, two families of nonequivalent SR structures can be defined on the
group SL(2). The difference is determined by the restriction of the Killing form to the distribution.
(It can be positive definite or indefinite.) We say that a structure of elliptic type SLe(2) is defined
on the group SL(2) in the first case and a structure of hyperbolic type SLh(2), in the second case.

In the present paper, we show that the Hamiltonian system of the Pontryagin maximum principle
(the system of ODE for the SR geodesics) is Liouville integrable for left-invariant SR structures of
elliptic type SLe(2).

2. SR STRUCTURES AND PONTRYAGIN MAXIMUM PRINCIPLE

Left-invariant contact SR structures on three-dimensional Lie groups were classified in [5] to
within local isometries. In particular, it was shown that if G is a unimodular group, i.e., if its Lie
algebra is one of the Lie algebras h3, so(3), sl(2), se(2), and sh(2), then there exists an orthonormal
frame of the form (1) such that L = span(f0, f1, f2) and the commutation relations

[f2, f1] = f0, (5)
[f1, f0] = (χ + κ)f2, (6)
[f2, f0] = (χ − κ)f1 (7)

hold for some constants χ ≥ 0 and κ ∈ R.
By [2], the SR geodesics parametrized by the arc length for contact left-invariant structures on

Lie groups are the projections q(t) = π(λ(t)), π : T ∗G → G, of trajectories of the Hamiltonian
system λ̇ = �H(λ), λ ∈ T ∗G, where the Hamiltonian function has the form

H(λ) = (h2
1(λ) + h2

2(λ))/2, hi(λ) = 〈λ, fi(q)〉, q = π(λ).

Here the Hamiltonian vector field �H on the cotangent bundle T ∗G is given by the equation

σλ(· , �H) = dλH, λ ∈ T ∗G,

where σ = ds and sλ = λ ◦ π∗.
In the present paper, we study the problem of Liouville integrability of the Hamiltonian vector

field �H.
By virtue of relations (5)–(7), we have the following relations for the Poisson brackets:

{H,h1} = h2{h2, h1} = h2h0,

{H,h2} = h1{h1, h2} = −h1h0,

{H,h0} = h1{h1, h0} + h2{h2, h0} = 2χh1h2.
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Therefore, the Hamiltonian system with Hamiltonian function H has the form

ḣ1 = h2h0, (8)

ḣ2 = −h1h0, (9)

ḣ0 = 2χh1h2, (10)
q̇ = h1f1 + h2f2. (11)

It is well known that the Hamiltonian function H is a first integral of the Hamiltonian system
(8)–(11). In the polar coordinates h1 = r cos θ, h2 = r sin θ, the vertical subsystem of the Hamilto-
nian system (8)–(11) (for the adjoint variables hi) acquires the form

ṙ = 0, θ̇ = −h0, ḣ0 = χr2 sin(2θ).

By performing yet another change of variables γ = 2θ, c = −2h0, we obtain the classical system
describing the mathematical pendulum,

ṙ = 0, γ̇ = c, ċ = −2χr2 sin γ.

It is well known that this system has a first integral, namely, the total energy of the pendulum,

E = c2/2 − 2χr2 cos γ = 2h2
0 − 2χ(h2

1 − h2
2). (12)

To prove the Liouville integrability of the Hamiltonian system, one should construct a complete
system of first integrals, i.e., indicate three functionally independent first integrals in involution
[6, p. 121]. In this section, we have shown that the Hamiltonian system (8)–(11) has two left-
invariant first integrals, the Hamiltonian function H and the total energy E of the pendulum.
The lacking third first integral for the Hamiltonian system (8)–(11) can be constructed on the basis
of right-invariant vector fields on the group.

3. LIE GROUP SL(2). SR STRUCTURES OF ELLIPTIC TYPE SLe(2)

In the most frequently used representation, the Lie group SL(2) and its Lie algebra sl(2) are
given by the 2 × 2 matrices [7, p. 13 of the Russian translation]

SL(2) = {X ∈ R
2×2| detX = 1}, (13)

sl(2) = {A ∈ R
2×2| tr A = 0} = span(E11 − E22, E12, E21), (14)

where Eij stands for the matrix whose unique nonzero entry is at position (i, j) and is equal to
unity.

In what follows, we use a different representation of the group SL(2); more precisely, we define
an element of the group by a 3 × 3 matrix of the form

SL(2) =

⎧⎪⎨
⎪⎩G =

⎛
⎜⎝

G11 G12 0

G21 G22 0

0 0 1

⎞
⎟⎠ | detG = 1

⎫⎪⎬
⎪⎭. (15)

For the Lie algebra sl(2), we use the basis

sl(2) =

⎧⎪⎨
⎪⎩A =

⎛
⎜⎝

A11 A12 0

A21 A22 0

0 0 0

⎞
⎟⎠ |A11 + A22 = 0

⎫⎪⎬
⎪⎭ = span(A1, A2, A3), (16)

A1 = E12 + E21, A2 = E11 − E22, A3 = E12 − E21, (17)
[A2, A1] = 2A3, [A1, A3] = −2A2, [A2, A3] = 2A1. (18)
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For the parametrization of the group SL(2) with the use of three parameters ν, α, and ϕ, we use
the factorization

SL(2) � G =

⎛
⎜⎝

G11 G12 0

G21 G22 0

0 0 1

⎞
⎟⎠ = A(α)N(ν)K(ϕ),

A(α) =

⎛
⎜⎝

eα 0 0

0 e−α 0

0 0 1

⎞
⎟⎠, N(ν) =

⎛
⎜⎝

cosh ν sinh ν 0

sinh ν cosh ν 0

0 0 1

⎞
⎟⎠, K(ϕ) =

⎛
⎜⎝

cos ϕ sin ϕ 0

− sin ϕ cos ϕ 0

0 0 1

⎞
⎟⎠,

where v ∈ R, α ∈ R, and ϕ ∈ S1. The explicit expressions for Gij are as follows:

G11 = eα(cos ϕ cosh ν − sin ϕ sinh ν), G12 = eα(sin ϕ cosh ν + cos ϕ sinh ν),
G21 = e−α(− sin ϕ cosh ν + cos ϕ sinh ν), G22 = e−α(cos ϕ cosh ν + sin ϕ sinh ν).

Set q = (ν, α, ϕ)T . We use the following isomorphism of sets:

SL(2) ∼= Rν × Rα × Sϕ, G =

⎛
⎜⎝

G11 G12 0

G21 G22 0

0 0 1

⎞
⎟⎠ ∼

⎛
⎜⎝

ν

α

ϕ

⎞
⎟⎠ = q.

The canonical frame for sub-Riemannian structures of elliptic type SLe(2) is defined as follows:

f1 =
1
2
GA1, f2 =

ξ

2
GA2, f0 =

ξ

2
GA3, G ∈ SL(2), ξ > 1, (19)

[f1, f0] = −f2, [f2, f0] = ξ2f1, [f2, f1] = f0. (20)

Here and in the following, we proceed from the two parameters (χ, κ) introduced in [5] to a single
parameter ξ by using the relations χ = (−1 + ξ2)/2 and κ = (−1− ξ2)/2. The explicit expressions
for f1, f2, and f0 are as follows:

f1 =
1
2

⎛
⎜⎝

G12 G11 0

G22 G21 0

0 0 0

⎞
⎟⎠, f2 =

ξ

2

⎛
⎜⎝

G11 −G12 0

G21 −G22 0

0 0 0

⎞
⎟⎠, f0 =

ξ

2

⎛
⎜⎝

−G12 G11 0

−G22 G21 0

0 0 0

⎞
⎟⎠.

Next, consider the optimal control problem

Ġ = u1f1 + u2f2, G ∈ SL(2), (u1, u2) ∈ R
2, (21)

G(0) = Id, G(t1) = G1, (22)

l =

t1∫

0

u2
1 + u2

2

2
dt → min . (23)

Note that the integral (23) in the considered problem differs from the original one (4) by the
absence of the root in the integrand. By using the Cauchy–Schwarz inequality, one can show that
these problems are equivalent (see [1, p. 6]). Note also that, by virtue of the left invariance of
the problem, one can fix the initial condition at the unit of the group, G(0) = Id, without loss
of generality.

In problem (21)–(23), we use the Pontryagin maximum principle, which is a necessary optimality
condition. In the next section, we write out the Hamiltonian system of the Pontryagin maximum
principle via left-invariant Hamiltonians linear on the fibers of the cotangent bundle, and then we
prove the Liouville integrability of the resulting system.
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4. INTEGRABILITY OF SR STRUCTURES OF ELLIPTIC TYPE SLe(2)

In this section, we study problem (21)–(23), where the left-invariant vector fields fi are given
by formulas (19) and (20).

Consider a smooth curve q(·) = (ν(·), α(·), ϕ(·))T ∈ C∞(R → Rν × Rα × S1
ϕ) issuing from

the point {ν = 0, α = 0, ϕ = 0}. In Section 3, we have parametrized the group SL(2) by
three parameters (ν, α, ϕ). The smooth curve q(·) determines a smooth curve G(·) on SL(2) given
by the one-parameter family of matrices G(t) = {G(ν(t), α(t), ϕ(t))| t ∈ R} smoothly depending
on the parameter t and satisfying the condition G(0) = Id. The velocity vector of the curve G(t)
can be represented as

Ġ =
∂G

∂ν
ν̇ +

∂G

∂α
α̇ +

∂G

∂ϕ
ϕ̇.

By combining the coefficients multiplying
∂G

∂ν
,

∂G

∂α
, and

∂G

∂ϕ
, one can represent the control sys-

tem (21) in the vector form

q̇ =

⎛
⎜⎝

ν̇

α̇

ϕ̇

⎞
⎟⎠ =

⎛
⎜⎝

cos(2ϕ)

sin(2ϕ)/ cosh(2ν)

− sin(2ϕ) tanh(2ν)

⎞
⎟⎠ u1

2
+

⎛
⎜⎝

− sin(2ϕ)

cos(2ϕ)/ cosh(2ν)

− cos(2ϕ) tanh(2ν)

⎞
⎟⎠ ξu2

2
.

In a similar way, one can obtain the correspondence between left-invariant vector fields Xi ∼ fi

(i = {1, 2, 0}) in the matrix and vector form,

f1 =
1
2
GA1 ∼ 1

2

⎛
⎜⎝

cos(2ϕ)

sin(2ϕ)/ cosh(2ν)

− sin(2ϕ) tanh(2ν)

⎞
⎟⎠ = X1, f2 =

ξ

2
GA2 ∼ ξ

2

⎛
⎜⎝

− sin(2ϕ)

cos(2ϕ)/ cosh(2ν)

− cos(2ϕ) tanh(2ν)

⎞
⎟⎠ = X2,

f0 =
ξ

2
GA3 ∼ ξ

2

⎛
⎜⎝

0

0

1

⎞
⎟⎠ = X0.

The right-invariant vector fields Yi = −AiG can be expressed as follows:

−1
2
A1G =

1
2

⎛
⎜⎝
−G21 −G22 0

−G11 −G12 0

0 0 0

⎞
⎟⎠ ∼ 1

2

⎛
⎜⎝

− cosh(2α)

sinh(2α) tanh(2ν)

sinh(2α)/ cosh(2ν)

⎞
⎟⎠ = Y1,

−ξ

2
A2G =

ξ

2

⎛
⎜⎝
−G11 −G12 0

G21 G22 0

0 0 0

⎞
⎟⎠ ∼ ξ

2

⎛
⎜⎝

0

−1

0

⎞
⎟⎠ = Y2,

−ξ

2
A3G =

ξ

2

⎛
⎜⎝
−G21 −G22 0

G11 G12 0

0 0 0

⎞
⎟⎠ ∼ ξ

2

⎛
⎜⎝

sinh(2α)

− cosh(2α) tanh(2ν)

− cosh(2α)/ cosh(2ν)

⎞
⎟⎠ = Y0.

By λ = (λ1, λ2, λ3) ∈ T ∗
q (SL(2)) we denote an element of the cotangent space of the group SL(2)

at the point q. We rewrite the left-invariant Hamiltonians hi(λ, q) = 〈λ,Xi(q)〉, which are linear
on the fibers of the cotangent bundle T ∗(SL(2)), in the form

h1 =
1
2

(
λ1 cos(2ϕ) +

(λ2 − λ3 sinh(2ν))
cosh(2ν)

sin(2ϕ)
)

,

h2 =
ξ

2

(
−λ1 sin(2ϕ) +

(λ2 − λ3 sinh(2ν))
cosh(2ν)

cos(2ϕ)
)

, h0 =
ξλ3

2
.
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In a similar way, the right-invariant Hamiltonians gi(λ) = 〈λ, Yi〉 can be represented as

g1 =
1
2

(
−λ1 cosh(2α) +

(λ3 + λ2 sinh(2ν))
cosh(2ν)

sinh(2α)
)

, g2 = −ξλ2

2
,

g0 = −ξ

2

(
−λ1 sinh(2α) +

(λ3 + λ2 sinh(2ν))
cosh(2ν)

cosh(2α)
)

.

Note that the mapping Ω : (λ1, λ2, λ3) → (h1, h2, h0) is nonsingular and the right-invariant Hamil-
tonians gi can be expressed via hi. In what follows, we use only the coordinates hi but do not
present a explicit expression of gi via hi, because it is quite cumbersome.

The Hamiltonian system (8)–(11) for SR structures of elliptic type SLe(2) acquires the form

ḣ1 = h2h0, ḣ2 = −h1h0, ḣ0 = (−1 + ξ2)h1h2,

ν̇ =
1
2
(h1 cos(2ϕ) − ξh2 sin(2ϕ)),

α̇ =
1
2

h1 sin(2ϕ) + ξh2 cos(2ϕ)
cosh(2ν)

,

ϕ̇ =
1
2
(−h1 sin(2ϕ) − ξh2 cos(2ϕ)) tanh(2ν).

(24)

Theorem. The Hamiltonian system (24) of the Pontryagin maximum principle for sub-Rieman-
nian structures of elliptic type on the Lie group SL(2) is Liouville integrable.

Proof. We should indicate three functionally independent first integrals in involution for the
Hamiltonian system (24).

Since the left translations on a group commute with the right ones, it follows that the right-
invariant Hamiltonians gi are first integrals of the left-invariant Hamiltonian system (24). We have
thereby obtained three first integrals of the Hamiltonian system in question.

As was mentioned in Section 1, the vertical subsystem in (24) for the dual variables hi is
independent of the state variables (ν, α, ϕ) and can be reduced to the equation of the mathematical
pendulum. The Hamiltonian function

H = (h2
1 + h2

2)/2

and the total energy
E = 2h2

0 − (ξ2 − 1)(h2
1 − h2

2)
of the pendulum are first integrals of system (24). Let us take one of the right-invariant Hamilto-
nians gi and show that we have obtained a complete set of first integrals. To this end, one should
show that these three first integrals are functionally independent and are in involution. To be
definite, we take g2, because this integral has the simplest form,

g2 = −(h2 cos(2ϕ) + h1ξ sin(2ϕ)) cosh(2ν) − h3 sinh(2ν).

The right-invariant Hamiltonian g2 is Poisson commuting with the left-invariant first integrals H
and E; i.e.,

{H,E} = {H, g2} = {E, g2} = 0.
It follows that the three integrals are in involution. It remains to show that they are functionally
independent. To this end, it suffices to show that their gradients ∇H, ∇E, and ∇g2 are linearly
independent on an open dense set U ⊆ T ∗SL(2). Since the functions H, E, and g2 are analytic,
it follows that this condition is satisfied provided that there exists at least one point at which the
gradients ∇H, ∇E, and ∇g2 are linearly independent. Let us write out the Jacobian matrix

J =

⎛
⎜⎝

∇H

∇E

∇g2

⎞
⎟⎠ =

⎛
⎜⎜⎜⎝

h1 h2 0 0 0 0

−2(−1 + ξ2)h1 2(−1 + ξ2)h2 4h0 0 0 0

−ξ cosh(2ν) sin(2ϕ) − cosh(2ν) cos(2ϕ) sinh(2ν)
∂g2

∂ν

∂g2

∂α

∂g2

∂ϕ

⎞
⎟⎟⎟⎠.
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By J̃ we denote the third-order minor of the matrix J consisting of the first three columns. The con-
dition

J̃ = 4h0 cosh(2ν)(h1 cos(2ϕ) − h2ξ sin(2ϕ)) − 4h1h2(−1 + ξ2) sinh(2ν) �≡ 0

implies that the matrix J has rank 3 at least at one point. The proof of the theorem is complete.
We have thereby shown that the Hamilton system (24) for SR structures of elliptic type SLe(2)

is Liouville integrable, and the Liouville integrability of SR structures of hyperbolic type SLh(2)
can be proved in a similar way.
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