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We consider a sub-Riemannian problem on the group of motions of three-dimensional space.
Such a problem is encountered in the analysis of 3D images as well as in describing the motion of
a solid body in a fluid. Mathematically, this problem reduces to solving a Hamiltonian system the
vertical part of which is a system of six differential equations with unknown functions u1, . . . , u6.
The optimality consideration arising from the Pontryagin maximum principle implies that the
last component of the vector control u, denoted by u6, must be constant. In the problem of the
motion of a solid body in a fluid, this means that the fluid flow has a unique velocity potential,
i.e., is vortex-free. The case (u6 = 0), which is the most important for applications and at the
same time the simplest, was rigorously studied by the authors in 2017. There, a solution to the
system was found in explicit form. Namely, the extremal controls u1, . . . , u5 were expressed in
terms of elliptic functions. Now we consider the general case: u6 is an arbitrary constant. In
this case, we obtain a solution to the system in an operator form. Although the explicit form
of the extremal controls does not follow directly from these formulas (their calculation requires
the inversion of some nontrivial operator), it allows us to construct an approximate analytical
solution for a small parameter u6. Computer simulation shows a good agreement between the
constructed analytical approximations and the solutions computed via numerical integration of
the system.
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1. Introduction

In the mathematical formalization of control problems for aircraft and floating robots, a sub-
Riemannian (SR) problem arises on the Lie group SE3 of Euclidean motions of three-dimensional
space [1, 2]. SR problems also occur in studies related to image processing. For example, the
SR problem in SE3 appeared in [3], where the authors aim to detect the nerve fibers and blood
vessels in three-dimensional MRI (magnetic resonance imaging) images of the human brain.

The SR problem on the Lie group SE3 of Euclidean motions of space R3 can be seen as
follows. By given two orthonormal frames N0 = {v10 , v20 , v30} and N1 = {v11 , v21 , v31} attached,
respectively, at two given points q0 = (x0, y0, z0) and q1 = (x1, y1, z1) in space R3, the goal is to
find the optimal motion of R3 that transfers q0 to q1 such that the frame N0 is transferred to the
frame N1. The frame can move forward or backward along one of the vectors chosen in the frame
and simultaneously rotate around the remaining two (of three) vectors. The required motion
should be optimal in the sense of minimal length in the space SE3

∼= R3 × SO3. See Fig. 1.

Fig. 1. Statement of the Sub-Riemannian Problem on SE3.

Equivalently, the problem is to find a Lipschitzian curve γ : [0, t1] → SE3 such that

γ̇ = u3A3 + u4A4 + u5A5, (1.1)

γ(0) = e, γ(t1) = g,

l(γ) =

t1∫
0

√
ξ2u23 + u24 + u25 dt→ min,

where Ai are left-invariant vector fields on the group SE3, the controls u3, u4, u5 are real-valued
L∞(0, t1) functions, the terminal time t1 > 0 is free, e is the identity transformation of R3, g is
a given element of SE3 and ξ > 0 is a parameter that balances the influence of translation and
rotations in R3 on the length of the corresponding trajectory.

Investigation of this problem was initiated in [7, 12], where in particular it was shown that
due to the scaling homothety, see [7, Remark 5], the general case ξ > 0 reduces to the case ξ = 1
by linear change of variables. Further in the article, we assume ξ = 1 without loss of generality.

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2020, 16(1), 195–208



Asymptotics of Extremal Controls in SR-Problem on SE(3) 197

The necessary condition of optimality is given by the Pontryagin maximum principle (PMP).
Application of PMP to our problem gives an expression of extremal controls in terms of momenta
(conjugate variables). Namely, the extremal controls u3, u4, u5 coincide with three certain mo-
menta, see [7, Section 3.1]. We denote the remaining three momenta by u1, u2 and u6. Further,
being a little informal, we call the extremal control the entire vector u = (u1, u2, u3, u4, u5, u6)
of the momenta. Application of PMP leads to a Hamiltonian system, the horizontal part of
which is given by system (1.1) and determines SR geodesics, and the vertical part (on extremal
controls) has the following form [7, Eq. (3.5)]:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

u̇1 = −u3u5,
u̇2 = u3u4,

u̇3 = u1u5 − u2u4,

u̇4 = u2u3 − u5u6,

u̇5 = u4u6 − u1u3,

u̇6 = 0.

(1.2)

Finding a parameterization of SR geodesics is a nontrivial problem. First, a natural
question arises as to the theoretical possibility of such parameterization in some reasonable
sense — the question of integrability of the Hamiltonian system, see, e.g., [4–6]. It was shown
in [7, Theorem 2] that (1.1)–(1.2) is Liouville integrable, since it has a complete set of function-
ally independent first integrals in involution. This article is devoted to the study of the vertical
part (1.2). It is known that the vertical part has the following first integrals: u6, the Hamiltonian

H = 1
2

(u23 + u24 + u25) and two Casimir functions W = u1u4 + u2u5 + u3u6, C = u21 + u22 + u23.

The system of equations (1.2) describes the motion of a solid body in a fluid [8]. In the
general case, equations of motion were obtained and studied by G. Kirchhoff [9]. If we consider
the mechanical body–fluid system [10] and denote by γ = (u1, u2, u3) the impulse of this system,

by M = (u4, u5, u6) the angular momentum, and by H =
u23 + u24 + u25

2
the Hamiltonian which is

the kinetic energy of the system, then the Kirchhoff equation⎧⎪⎨⎪⎩
Ṁ = M × ∂H

∂M
+ γ × ∂H

∂γ
,

γ̇ = γ × ∂H

∂M

(1.3)

takes the form (1.2).
Such a system of equations was studied by G.-H. Halphen [11], where, based on the knowl-

edge of the first integrals, the author explicitly parameterized the two components of the impulse
of the body–fluid system (in our notation u1 and u2) by Weierstrass elliptic functions and derived
a differential equation on the remaining component u3. Note that the above-mentioned equation
describes the squared derivative u̇23, and even if solutions to the equation are found, one faces the
problem of choosing the sign of the derivative when passing through critical points. In addition,
the author provides explicit expressions for some rational function of u3 and for the components
u4, u5 of the angular momentum under the assumption that u3 is known. Thus, in [11], the au-
thor obtained explicit formulas for individual components of the extremal control in Weierstrass
elliptic functions. In the present work, we also present no explicit formulas of all components
of the extremal control in the general case, however, we will derive a solution to the problem
in operator form. The formulas obtained will allow us to construct an approximate analytical
solution for small u6.
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In the initial work [7], the problem was studied for u6 = 0 under the assumption that there
are no cusp points on the spacial projections of the geodesics, which is equivalent to u3 �= 0. The
assumption u6 = 0 results in the minimum length among all possible trajectories connecting
the boundary conditions (q0, N0) and (q1, Rv11 ,αN1), where Rv11 ,α denotes the rotation by the

angle α ∈ S1 around the vector v11 , see Fig. 1. In our previous work [12], we obtained explicit
expressions for the extremal control (solution to system (1.2)) without any restrictions on the
cusp points, but under the assumption u6 = 0. Such trajectories (with u6 = 0) are the most
demanded for applications in image processing, see [7, Theorem 1]. However, in the theoretical
aspect, the case u6 �= 0 is of great interest as a general case of the model problem.

In this paper, we study the general case when the parameter u6 is arbitrary. Based on the
analysis of the Hamiltonian system of PMP, in Section 2 we find expressions of the extremal
controls in operator form. Further, in Section 3 we study asymptotics of the extremal controls
for u6 → 0. The numerical simulations in Section 4 show a high accuracy of the formulas
obtained.

2. Expression of the extremal controls

In this section, we derive from system (1.2) the expression of the extremal controls u1, u2,
u4, u5 via u3 in operator form. Let us introduce the functions

v1 = u1 + u5, v2 = u2 + u4, v4 = u4 − u2, v5 = u5 − u1. (2.1)

In this notation, the first, second, fourth, and fifth equations of system (1.2) are rewritten as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

v̇1 = −u3v1 + (v2 + v4)
u6
2
,

v̇2 = u3v2 − (v1 + v5)
u6
2
,

v̇4 = −u3v4 − (v1 + v5)
u6
2
,

v̇5 = u3v5 + (v2 + v4)
u6
2
.

(2.2)

From the equation u̇6 = 0 it is clear that u6 is a constant. The further plan is to obtain the
expressions of the functions u1, u2, u4, u5 in terms of u3 by substituting them into the equation

u̇3 = u1u5 − u2u4 (2.3)

and find u3 from it, and then all the other extremal controls.
Let a function U be given by

U(t) =

t∫
0

u3(τ)dτ, (2.4)

and let us assume that v1(t) has the following form:

v1(t) = A(t)e−U(t). (2.5)

To simplify notation in the further computations, we will often omit the dependence on t.
Using (2.5) and system (2.2), we get

v̇1 = Ȧe−U − u3Ae−U = Ȧe−U − u3v1,
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v̇1 + u3v1 = (v2 + v4)
u6
2

= Ȧe−U ⇒ Ȧ = u6

(
v2 + v4

2

)
eU .

Integrating the last equation, we find the function A(t):

A(t) = A(0) + u6

t∫
0

v2(τ) + v4(τ)

2
eU(τ)dτ.

Combining (2.4) and (2.5), we obtain A(0) = v1(0). Therefore, we have

v1(t) = v1(0)e−U(t) + u6e−U(t)

t∫
0

v2(τ) + v4(τ)

2
eU(τ)dτ. (2.6)

Similarly, we obtain the expression for v5(t):

v5(t) = v5(0)eU(t) + u6e
U(t)

t∫
0

v2(τ) + v4(τ)

2
e−U(τ)dτ. (2.7)

Summing (2.6) and (2.7), we get the equality

v1(t) + v5(t) = v1(0)e−U(t) + v5(0)eU(t) + u6

t∫
0

(v2(τ) + v4(τ))ch(U(t) − U(τ))dτ. (2.8)

Further, we note that the second and third equations are related in the same way as the first
and fourth equations in system (2.2), and differ only in sign. Therefore, we have the following
expressions for v2(t), v4(t) and their sum:

v2(t) = v2(0)eU(t) − u6e
U(t)

t∫
0

v1(τ) + v5(τ)

2
e−U(τ)dτ, (2.9)

v4(t) = v4(0)e−U(t) − u6e−U(t)

t∫
0

v1(τ) + v5(τ)

2
eU(τ)dτ, (2.10)

v2(t) + v4(t) = v2(0)eU(t) + v4(0)e−U(t) − u6

t∫
0

(v1(τ) + v5(τ))ch(U(t) − U(τ))dτ. (2.11)

Substituting expressions (2.8) and (2.11) into (2.1), we see that the extremal controls u4(t)
and u5(t) satisfy the system⎧⎪⎪⎨⎪⎪⎩

u4(t) =
u2(0) + u4(0)

2
eU(t) +

u4(0) − u2(0)

2
e−U(t) − u6

t∫
0

u5(τ)ch(U(t) − U(τ))dτ,

u5(t) =
u1(0) + u5(0)

2
e−U(t) +

u5(0) − u1(0)

2
eU(t) + u6

t∫
0

u4(τ)ch(U(t) − U(τ))dτ.

(2.12)
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Let

G(t) =
u2(0) + u4(0)

2
eU(t) +

u4(0) − u2(0)

2
e−U(t),

F (t) =
u1(0) + u5(0)

2
e−U(t) +

u5(0) − u1(0)

2
eU(t).

Let us introduce the operator

L[f ] =

t∫
0

f(τ)ch(U(t) − U(τ))dτ.

In this notation, system (2.12) takes the form{
u4(t) = G(t) − u6L[u5],

u5(t) = F (t) + u6L[u4].
(2.13)

The first equation of system (2.13) and linearity of the operator L imply the equality

L[u4] = L[G] − u26L
2[u5].

Substituting this expression into the second equation of system (2.13), we find

u5 = F + u6L[G] − u26L
2[u5].

In operator form, this equation is equivalent to the following:

(I + u26L
2)[u5] = F + u6L[G], (2.14)

where I is the identity operator.

Now, using (2.14), we get the exact expression for the extremal control u5:

u5 = (I + u26L
2)−1
[
F + u6L [G]

]
. (2.15)

In the same manner, we can express u4:

L[u5] = L[F ] + u6L
2[u4],

u4 = G− u6L[F ] − u26L
2[u4],

(I + u26L
2)[u4] = G− u6L[F ].

Thus we get the exact expression for the extremal control u4:

u4 = (I + u26L
2)−1
[
G− u6L[F ]

]
. (2.16)

Let us substantiate the correctness of representations (2.15), (2.16). The operator L is well
defined in all spaces L[0, a], a > 0, of Lebesgue integrable functions f on the interval [0, a] with
standard norm

‖f‖L[0,a] :=

a∫
0

|f(τ)|dτ.
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It belongs to the class of integral operators of the form

A[f ](t) =

t∫
0

f(τ)K(τ, t)dτ

with continuous and symmetric kernel K. As is well known from the course of functional
analysis [13], the norms

‖A‖BL := sup
‖f‖L[0,a]�1

‖Af‖L[0,a]

of the powers of such operators rapidly tend to zero:

‖An‖BL = O

(
Cn

n!

)
, n→ ∞,

where C is a constant determined by the kernel K.
Therefore, the operator I − kA is invertible for any k ∈ R, and the inverse operator can be

written in the form of a series (I − kA)−1 =
∞∑
n=0

knAn, converging by the operator norm in the

space of linear operators, acting from L[0, a] to L[0, a]. In our case, we have

(I + u26L
2)−1 =

∞∑
n=0

(−1)nu2n6 L
2n = I − u26L

2 + u46L
4 − u66L

6 + . . . .

Similarly, we can express u1(t), u2(t). Using (2.1), (2.6), (2.7), (2.9), (2.10), we have

u1(t) =
v1(t) − v5(t)

2
=

1

2
v1(0)e−U(t) − 1

2
v5(0)eU(t) +

u6
2

t∫
0

(v2(τ) + v4(τ))
eU(τ)−U(t) − eU(t)−U(τ)

2
dτ,

u2(t) =
v2(t) − v4(t)

2
=

1

2
v2(0)eU(t) − 1

2
v4(0)e−U(t) −

u6
2

t∫
0

(v1(τ) + v5(τ))
eU(τ)−U(t) − eU(t)−U(τ)

2
dτ.

Simplifying these expressions, we get

u1(t) =
u1(0) + u5(0)

2
e−U(t) − u5(0) − u1(0)

2
eU(t) − u6

t∫
0

u4(τ)sh(U(t) − U(τ))dτ,

u2(t) =
u2(0) + u4(0)

2
eU(t) − u4(0) − u2(0)

2
e−U(t) − u6

t∫
0

u5(τ)sh(U(t) − U(τ))dτ.

(2.17)

Let

F1(t) =
u1(0) + u5(0)

2
e−U(t) − u5(0) − u1(0)

2
eU(t),

G1(t) =
u2(0) + u4(0)

2
eU(t) − u4(0) − u2(0)

2
e−U(t).

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2020, 16(1), 195–208



202 A.P.Mashtakov, A.Yu.Popov

Let us introduce the operator

M [f ] =

t∫
0

f(τ)sh(U(t) − U(τ))dτ.

In this notation, Eqs. (2.17) take the form{
u1(t) = F1(t) − u6M [u4],

u2(t) = G1(t) − u6M [u5].
(2.18)

Note that the operators L and M commute and the following relations hold:

M [u4] = (I + u26L
2)−1
[
M [G] − u6ML[F ]

]
,

M [u5] = (I + u26L
2)−1
[
M [F ] + u6ML[G]

]
.

Finally, substituting the expressions obtained for u1, u2, u4, u5 into Eq. (2.3), we get
a Cauchy problem with the second-order integro-differential operator equation for the remaining
unknown function U(t):

Ü(t) = u1(t)u5(t) − u2(t)u4(t), U(0) = 0, U̇(0) = u3(0). (2.19)

Summing up, we obtain the following theorem.

Theorem 1. Extremal controls in the sub-Riemannian problem on the group of motions
of three-dimensional Euclidean space have the form

u1(t) = F1 − u6(I + u26L
2)−1
[
M [G] − u6ML[F ]

]
,

u2(t) = G1 − u6(I + u26L
2)−1
[
M [F ] + u6ML[G]

]
,

u3(t) = U̇(t),

u4(t) = (I + u26L
2)−1
[
G− u6L[F ]

]
,

u5(t) = (I + u26L
2)−1
[
F + u6L[G]

]
,

where

F1 = F1(t) =
u1(0) + u5(0)

2
e−U(t) − u5(0) − u1(0)

2
eU(t),

G1 = G1(t) =
u2(0) + u4(0)

2
eU(t) − u4(0) − u2(0)

2
e−U(t),

F = F (t) =
u1(0) + u5(0)

2
e−U(t) +

u5(0) − u1(0)

2
eU(t),

G = G(t) =
u2(0) + u4(0)

2
eU(t) +

u4(0) − u2(0)

2
e−U(t),

L[f ] = L[f ](t) =

t∫
0

f(τ)ch(U(t) − U(τ))dτ,

M [f ] = M [f ](t) =

t∫
0

f(τ)sh(U(t) − U(τ))dτ,

and the function U(t) satisfies the Cauchy problem

Ü(t) = u1(t)u5(t) − u2(t)u4(t), U(0) = 0, U̇(0) = u3(0).
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3. Asymptotics of extremal controls near u6 = 0

Let us consider the case when the parameter u6 is close to zero. We aim to obtain the
asymptotics of the formulas in Theorem 1. Using (2.15), (2.16) and (2.18), we find

u1 = F1 − u6M [G] +O(u26),

u2 = G1 − u6M [F ] +O(u26),

u4 = G− u6L[F ] +O(u26),

u5 = F + u6L[G] +O(u26).

(3.1)

Up to O(u26), the expression u1u5 − u2u4 is approximately equal to

(F1 − u6M [G]) (F + u6M [F ]) − (G1 − u6M [F ]) (G− u6L[F ])

≈ F1F + u6 (F1L[G] − FM [G]) −GG1 + u6 (G1L[F ] +GM [F ]),

and, up to O(u26), Eq. (2.19) takes the form

Ü = F1F −GG1 + u6 (F1L[G] − FM [G] +G1L[F ] +GM [F ]) . (3.2)

Let

α =
u2(0) + u4(0)

2
, β =

u4(0) − u2(0)

2
, α̃ =

u1(0) + u5(0)

2
, β̃ =

u5(0) − u1(0)

2
.

Then, by definition of G, F , G1 and F1, we have

G(t) = αeU(t) + βe−U(t), F (t) = α̃e−U(t) + β̃eU(t),

G1(t) = αeU(t) − βe−U(t), F1(t) = α̃e−U(t) − β̃eU(t),

Hence, we find that the main term of the right-hand side of Eq. (3.2) is equal to

FF1 −GG1 = Ae−2U −Be2U ,

where A = α̃2 + β2, B = β̃2 + α2.
Next, let us compute the operators L[G], L[F ], M [G], M [F ]:

L[G](t) =
t

2
G(t) +

α

2
e−U(t)

t∫
0

e2U(τ)dτ +
β

2
eU(t)

t∫
0

e−2U(τ)dτ,

M [G](t) =
t

2
G1(t) − α

2
e−U(t)

t∫
0

e2U(τ)dτ +
β

2
eU(t)

t∫
0

e−2U(τ)dτ,

L[F ](t) =
t

2
F (t) +

α̃

2
eU(t)

t∫
0

e−2U(τ)dτ +
β̃

2
e−U(t)

t∫
0

e2U(τ)dτ,

M [F ](t) =
t

2
F1(t) +

α̃

2
eU(t)

t∫
0

e−2U(τ)dτ − β̃

2
e−U(t)

t∫
0

e2U(τ)dτ.
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Therefore, the coefficient in front of u6 on the right-hand side of (3.2) is expressed as follows:

F1(t)L[G](t) − F (t)M [G](t) +G1(t)L[F ](t) +G(t)M [F ](t) =

(αα̃− ββ̃)

⎛⎝t+ 2

t∫
0

ch(2(U(t) − U(τ)))dτ

⎞⎠−t
(
αβ̃ e2U(t) + α̃β e−2U(t)

)
.

Summing up, we obtain the following statement.

Theorem 2. Let u6 be close to zero. The extremal controls in the sub-Riemannian problem
on the group of motions of three-dimensional Euclidean space are approximately expressed up
to O(u26) as follows:

u1(t) = F1(t) − u6M [G](t),

u2(t) = G1(t) − u6M [F ](t),

u3(t) = U̇(t),

u4(t) = G(t) − u6L[F ](t),

u5(t) = F (t) + u6L[G](t),

where
F1(t) = α̃ e−U(t) − β̃ eU(t), G1(t) = α eU(t) − β e−U(t),

F (t) = α̃ e−U(t) + β̃eU(t), G(t) = α eU(t) + β e−U(t),

L[f ](t) =

t∫
0

f(τ) ch(U(t) − U(τ))dτ,

M [f ](t) =

t∫
0

f(τ) sh(U(t) − U(τ))dτ,

α =
u2(0) + u4(0)

2
, β =

u4(0) − u2(0)

2
,

α̃ =
u1(0) + u5(0)

2
, β̃ =

u5(0) − u1(0)

2

and the function U(t) satisfies the Cauchy problem⎧⎨⎩Ü(t) = f0(U(t)) + u6

(
tf1(U(t)) + k

t∫
0

ch(2U(t) − 2U(τ))dτ

)
,

U(0) = 0, U̇(0) = u3(0),

(3.3)

where k = αα̃ − ββ̃,

f0(U) =
(
α̃2 + β2

)
e−2U − (β̃2 + α2)e2U , (3.4)

f1(U) = k − αβ̃e2U − α̃βe−2U . (3.5)

When numerically solving the Cauchy problem for the integro-differential equation (3.3),
some difficulties arise; an ordinary differential equation is preferable for the numerical methods.
In this regard, we prove the following theorem.
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Theorem 3. Any solution to the integro-differential equation (3.3) satisfies the fourth-
order ordinary differential equation

U̇U (4) =
...
UÜ + 4Ü U̇3 − u6Üf1(U) − 4u6ktU̇

3 + 2u6f
′
1(U)U̇2. (3.6)

Proof. Consider the function in (3.3)

Y (t) =

t∫
0

ch(2U(t) − 2U(τ))dτ

and compute its first- and second-order derivatives by t:

Ẏ (t) = 1 + 2U̇ (t)

t∫
0

sh(2U(t) − 2U(τ))dτ,

Ÿ (t) = 2

(
Ü(t)

t∫
0

sh(2U(t) − 2U(τ))dτ + U̇(t)
d

dt

( t∫
0

sh(2U(t) − 2U(τ))dτ

))

= Ü(t)
Ẏ (t) − 1

U̇(t)
+ 4U̇2(t)Y (t). (3.7)

Using (3.3), we have

u6kY (t) = Ü(t) − f0(U(t)) − u6tf1(U(t)). (3.8)

Differentiating equality (3.8) by t, we get

u6kẎ (t) =
...
U (t) − U̇(t)f ′0(U(t)) − u6f1(U(t)) − u6tU̇(t)f ′1(U(t)), (3.9)

u6kŸ (t) = U (4)(t) − Ü(t)f ′0(U(t)) − U̇2(t)f ′′0 (U(t)) − 2u6U̇(t)f ′1(U(t)) − (3.10)

− u6tU̇
2(t)f ′′1 (U(t)) − u6tÜ(t)f ′1(U(t)).

Substituting expressions (3.7) of Ÿ via Ẏ , U̇ , Ü into the left-hand side of (3.10), we obtain the
following equation:

u6kÜ(t)

U̇(t)

(
Ẏ (t) − 1

)
+ 4u6kU̇

2(t)Y (t) = U (4)(t) − Ü(t)f ′0(U(t)) − U̇2(t)f ′′0 (U(t)) −

− 2u6U̇(t)f ′1(U(t)) − u6tU̇
2(t)f ′′1 (U(t)) − u6tÜ(t)f ′1(U(t)).

(3.11)

Let us express Ẏ and Y on the left-hand side of Eq. (3.11) in terms of the function U and its
derivatives according to relations (3.8) and (3.9). Omitting the argument t of the function U
for simplicity of notation, we obtain the equation

U (4) =

...
UÜ

U̇
+ Ü

(
4U̇2 − u6

f1(U)

U̇

)
+ 2U6U̇f

′
1(U) +

+ U̇2
(
f ′′0 (U) + u6tf

′′
1 (U) − 4f0(U) − 4u6tf1(U)

)
.

(3.12)

This equation can be simplified due to the identities

f ′′0 (U) ≡ 4f0(U), f ′′1 (U) = 4(f1(U) − k).

Applying these identities to (3.12) and multiplying both sides of (3.12) by U̇ , we obtain Eq. (3.6).
The theorem is proved. �
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Fig. 2. Comparison of the graphs of the extremal controls u1, u2, u3, u4, u5 (by rows) for u6 ∈ {0.1, 0.5, 1}
(by columns) in the sub-Riemannian problem on SE3, computed by the approximate formulas in Theo-
rem 2 (dashed lines) and by integrating system (1.2), which determines the exact solutions (solid lines).
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4. Numerical simulations

In this section, we present the results of numerical simulations evaluating the accuracy of
the approximation for the solutions of system (1.2) by the expressions in Theorem 2.

In Fig. 2, we compare the graphs of the extremal controls with their approximate expressions
in Theorem 2 with initial values u1(0) = 0.2, u2(0) = 0.7, u3(0) = 0.3, u4(0) = 1.5, u5(0) = 1
for u6 ∈ {0.1, 0.5, 1}. One can observe that, as expected, the asymptotic formulas in Theorem 2
are local. That is, they give a good approximation for a sufficiently short period of time t ∈ [0, T ],
and the accuracy of the approximation increases when the value of |u6| decreases.

The numerical simulations are performed using Wolfram Mathematica. To solve the system
of differential equations (1.2), we use the function NDSolve with standard options. The complete
Wolfram Demonstration is available at: http://control.botik.ru/?page_id=2754.

5. Conclusion

In this paper, we study the problem of finding the extremal controls in the sub-Riemannian
problem on the group of motions of three-dimensional Euclidean space SE3. Here, we consider
the problem near u6 = 0 and generalize the results of [7, 12]. The main contributions are

• in Theorem 1, we present the solution in operator form for u6 ∈ R;

• in Theorem 2, we derive the asymptotic formulas for the extremal controls in the case
when |u6| is small;

• in Theorem 3, we reduce the integro-differential equation for the extremal control u3 to
the ordinary differential equation.

The practical applicability of the formulas obtained has been justified by the results of numerical
simulations in Section 4, where we have confirmed that the solutions to the approximate system
in Theorem 2 are close to the solutions found by integration of the original system (1.2) for
small values of the parameter |u6| on a sufficiently small time interval.

The authors thank Prof. A. V. Tsiganov for pointing out the mechanical interpretation of
the problem and for insightful correspondence.
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