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Sub-Riemannian Geometry in Image Processing and
Modeling of the Human Visual System

A.P. Mashtakov

This paper summarizes results of a sequence of works related to usage of sub-Riemannian
(SR) geometry in image processing and modeling of the human visual system. In recent research
in psychology of vision (J. Petitot, G. Citti, A.Sarti) it was shown that SR geodesics appear as
natural curves that model a mechanism of the primary visual cortex V1 of a human brain for
completion of contours that are partially corrupted or hidden from observation. We extend the
model to include data adaptivity via a suitable external cost in the SR metric. We show that
data adaptive SR geodesics are useful in real image analysis applications and provide a refined
model of V1 that takes into account the presence of a visual stimulus.
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1. Introduction

This paper is devoted to usage of sub-Riemannian (SR) geometry in image processing and
modeling of the human visual system. It summarizes the results of joint works [1-5]. In recent
research in psychology of vision [6, 7] it was shown that SR geodesics appear as natural curves
that model a mechanism of the primary visual cortex V1 of a human brain for completion of
contours that are partially corrupted or hidden from observation, see Fig. 1.
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Source: [1] Bekkers et al., 2015

Fig. 1. In order to process the visual signal, the primary visual cortex V1 lifts the image from the retinal
plane (z,y) € R? to the extended space of positions and orientations (z,y,6) € R? x S, where crossing
structures are disentangled. If part of the contour is hidden from observation, the gap is restored via
a SR geodesic, which follows the curvilinear structure along the gap better than a Riemannian geodesic.

Understanding of mechanisms of vision of mammals has been an attracting topic for many
researchers in recent years. The investigation of Hubel and Wiesel (Nobel Prize in Physiology or
Medicine, 1981) has produced a strong progress in understanding of the functional architecture
of the primary visual cortex V1. Hubel and Wiesel have realized that specific neurons in the
visual areas of the cerebral cortex are connected to certain areas of the visual field of the
retina. They performed an experiment showing that the neurons in different areas of the visual
cortex react to various orientations at the same position in the visual field. It was understood
that, for efficient image processing, the brain stores the image not as a sequence of points, but
as a sequence of strokes (points and directions tangential to the contour). Thus, a contact
structure in the extended space of positions and orientations over the retina naturally appears
in the modeling of V1.

Therefore, Petitot [6], Citti and Sarti [7] suggested modeling V1 by a SR contact structure
on Lie groups Hz and SEs. In their model, the retina is represented by a real plane, and SR
geodesics arise naturally as the curves that minimize the energy expended to create a connection
between the excited neurons.

The paper has the following structure. In Section 2, we explain the basic concepts of SR
geometry and present a method to compute SR minimizers for 2-bracket generating SR structures
on 3D and 6D Lie groups. Then, in Section 3, we show how they provide brain inspired methods
in computer vision. We discuss how considering SR structures on 2D and 3D images (or more
precisely, on their lift to the extended space of positions and directions) helps to detect some
features, e.g., salient curves in images. We consider several particular examples: tracking of
blood vessels in planar and spherical images of human retina, and tracking of neural fibers in
MRI images of the human brain. Afterwards, in Section 4 we show how a proper choice of the
external cost in SR metric based on a response of simple cells to the visual stimulus provides
a model for geometrical optical illusions.

2. A brief tour of SR geometry on Lie Groups

Sub-Riemannian geometry is a rapidly developing domain of mathematics at the cross-
roads of differential geometry, PDEs, optimal control and calculus of variations, metric analysis,
Lie groups and Lie algebras theory, and other important domains, with rich applications to
mechanics, robotics, neurophysiology and vision, etc [9].
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Let G be a connected n-dimensional Lie group with unit element e, and L the Lie algebra
of left-invariant vector fields on G. A SR structure on G is a left-invariant subbundle A C TG,
dimAl, = d for all g € G, endowed with an inner product G in A. In this paper, we choose
d = 2,3 and consider a 2-bracket generating SR structures A + [A; A] = T'G. In such a way, we
consider n = 3, 6-dimensional Lie groups G.

A Lipschitzian curve v:(0,T]— G is called horizontal if ¥(t) € A, () for a.e. t€[0,T].

A SR minimizer is a horizontal curve that has a minimum length

() =/ G(3(t),~(t)) dt — min
0

among all horizontal curves connecting the same end points.
A SR structure can be defined by an orthonormal frame X;,..., X, € L:
A:span(Xl,...,Xd), Q(Xi,Xj):éij, i,j:1,...,d. (21)

Then a SR minimizer connecting e and g is a solution to the optimal control problem

d T
v = ZWX@', v0)=¢e€, Y(T)=y9g, lv) = / \Ju?+ ...+ uZdt — min, (2.2)
=1 0

where g € G and u;(+) are real-valued L* functions, which are called the controls.
By the Rashevskii — Chow and Filippov theorems, there always exists a SR minimizer con-
necting e and g. Thus, one has a well-defined SR distance map

d(e,g) = min {I(y) | v € Lip ([0, T],G), 7(0) = &,7(T) = g, 4(t) € Ay } -

A SR geodesic is a curve in GG whose sufficiently short arcs are SR minimizers. A classical
approach to computing SR geodesics is based on Pontryagin’s maximum principle (PMP) [10, 11].
Application of PMP to the problem (2.2) leads to the Hamiltonian system AN=H (M) that

describes any geodesic via the initial value \g = A(0). Here, A € T*G is the momentum
covector, and H ()\) is the Hamiltonian vector field with the Hamiltonian H()). Parametrization
of the geodesics by arclength implies H () = %

Thus, according to the classical approach, SR geodesics are found as solutions to the Hamil-
tonian system of PMP. The next step is to select SR minimizers among SR geodesics via second-
order optimality conditions, which is the most difficult step. It is known (see, e.g., [9, 10]) that
sufficiently short arcs of SR geodesics are SR minimizers (optimal trajectories). It is also known
that in general a geodesic loses its optimality after a cut point. The corresponding instance of
time is called cut time, and the set of all cut points forms the so-called cut locus. Note that
the structure of cut locus for the SR structures on Lie groups is known only in some special
cases [12].

A useful tool for studying SR geodesics on a Lie group G is the exponential map', which
maps an initial momentum Ay and a time ¢ to the end point of the corresponding geodesic
(i.e., the exponential map integrates the Hamiltonian system of PMP):

exp: T,G xR — G, (Ao, t) — y(t). (2.3)

!Not to be confused with the exponential map from Lie algebra to Lie group.
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The wavefront consists of end points of all the geodesics of the same length T

WEF(T) = {exp()\o, T)

1
Ao € T:G, H()\Q) = 5} (2.4)
The outer surface of the wavefront forms a sub-Riemannian sphere, which is a set of endpoints
in G equidistant from e:

S(T) = {exp(/\o,T) ‘ Xo € TG, H(Ao) = %,twt(xo) > T} _ {g ca ’ d(e, g) = T},

where t.,:(A\g) denotes the cut time for the geodesic with the initial momentum \g.

The classical approach for computation of SR minimizers via the Hamiltonian formalism is
a powerful method that gives an exact expression for the SR distance and SR minimizers. Note
that, due to the absence of knowledge about cut locus, the classical approach is applicable only
in some special simplest cases. On the other hand, in applications, numerical solution is usually
enough. Another approach, which we call the PDE approach, has been presented in [1]. It leads
to an efficient numerical scheme to compute SR minimizers and consists in the following steps:

e Derivation of the Hamilton — Jacobi—Bellman (HJB) system, which describes propagation
of the wavefront WF(t) for ¢t € [0,7] ;

e Computation of the SR distance map as a viscosity solution of the HJB system;
e Finding the SR minimizers by the steepest descent on the distance function.

The advantage of the PDE approach is that it allows extension to non-uniform external
cost C in SR metric

d
Gly = C*(g) Zwi\g ®w'ly, forall g € G,
i=1
where w’ € T*G are basis left-invariant one-forms, dual to X;: (w’, X;) = d;;.
Expressing the HJB system in eikonal form leads to the following theorem:

Theorem 1. Let W(g) be a viscosity solution of the eikonal system

i(xi\g (W) = C2(g), for g # e,
W(e) = 0.

Then
e W(g) =d(e,g) is the SR distance map;
e S, ={9g€G|W(g) =t} are SR-spheres S(t) of radius t;

o SR-minimizer y(t) connecting e to g is given by y(t) = (W(g) — t), where v,(t) is found
by integration for t € [0, V(g)]

() = —ur(®)Xal,, @) — - —ua(t) Xal,, iy, w(0) =g,
X; w
where u;(t) = %, 1=1,...,d.
Vo
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2.1. Riemannian approximation and fast marching

One of the most efficient methods to compute geodesics in the Euclidean setting is fast
marching, introduced by Sethian in [13]. It has been extended to the case of highly anisotropic
Riemannian metric by Mirebeau [14]. Later on, this method was adapted for computation of SR
minimizers (or more precisely, their Riemannian approximation) by Sanguinetti et al. in [15].

The usage of fast marching for computation of SR minimizers relies on Riemannian ap-
proximation of SR structure on G. In [16] convergence of the Riemannian distance to the SR
distance was shown via the limiting procedure for the Riemannian metric

d n
. . 1 . .
2
Glg=C9) | Dwly@wly+ 5 D wly@wly |, forallgeg,
=1 Jj=d+1
as € — 0.

3. Detection of salient curves in images

In this section, we show that data adaptive SR minimizers are useful in real image analysis
applications and help to detect some features, e.g., salient curves in images. In computer vision,
it is common to extract salient curves in images via data-driven minimal paths or geodesics [18].
The minimizing geodesic is defined as the curve that minimizes the length functional, which
is typically weighted by a cost function with high values at image locations with low curve
saliency. As an illustration, see Fig. 2, where we consider medical image analysis application —
automatic extraction of the vascular retinal tree on images. It is helpful for early detection of
many diseases, such as diabetic retinopathy, glaucoma, atherosclerosis, etc. (see, e.g., [17]).

Another set of geodesic methods, inspired by the psychology of vision, was developed
in [6, 7]. The combination of such contour perception models with data adaptive geodesic meth-
ods has been presented in [1]. There, a computational framework for tracking of salient curves
via globally optimal data adaptive sub-Riemannian geodesics on the Euclidean motion group
SE, has been presented. In [1] the framework was used for tracking of retinal vessels in flat
images of retina, see Fig. 3, left.

Source Pq.iipt
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Image of Human Retina Distance from Source Point Vessel Tracking via Geodesic

Fig. 2. Geodesic methods are used for detection of salient lines on images, e.g., detection of vessels in
images of human retina. They are based on computation of the distance map from a source point and
on the consequent steepest descent on the distance map from a sink point. The resulting data adaptive
geodesic accurately follows the vessel location.
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Source: [1] Bekkers et al., 2015 Source: [4] Mashtakov et al., 2017 Source: [8] Tax et al., 2014
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Fig. 3. Data adaptive SR minimizers in real image analysis applications: in Lie groups SE2 and SOz they
are used for tracking of blood vessels in flat and spherical images of human retina; in SE3 they are used
for tracking of neural fibers in MRI images of a human brain.

In [4] we show that optical retinal images are mostly acquired by flat cameras and, as
a result, distortion appears. Such distortion could lead to questionable (distorted) geometrical
features (vessel curvature, thickness, etc.) that are used as biomarkers for different diseases. We
show that the distortion that appears near the boundary of a flat image can play a significant
role in the quantitative analysis of the vascular structure and its curvature. In this work we
extend the framework [1] for tracking of vessels in spherical images of the retina with reduced
distortion. This requires a SR structure in the group SOz acting transitively on the 2-sphere S2.
See Fig. 3, middle.

Finally, we note that, in the same way as for 2D images, extraction of salient curves in 3D
images results in tracking via SR geodesics in SE3, see Fig. 3, right. In [2, 3] we study the SR
problem in SE3. In particular, we derive an explicit expression for extremal controls in a special
case, which appears in applications, and derive the explicit formulas for SR geodesics before the
first cusp point in their spatial projection.

4. Modeling of geometrical optical illusions

Geometrical-optical illusions (GOIs) have been discovered in the 19th century. They are
defined as situations in which there is an awareness of a mismatch of geometrical properties
between an item in the object space and its associated perception. These illusions induce a mis-
judgment of the geometrical properties of the visual stimulus, due to the perceptual difference
between the features of the presented stimulus and its associated perceptual representation.

In [5], we propose a mathematical model for GOIs based on the functional architecture
of V1. This neuro-mathematical model allows one to interpret at a neural level the origin of
GOIs. The main idea is to adapt the model [7] for the functional geometry of V1 for perceptual
completion. We extend the model to include data adaptivity via a suitable external cost in the
SR metric. We show that data adaptive SR geodesics provide a refined model of V1 that takes
into account the presence of a visual stimulus. We also postulate that illusory contours arise as
geodesics in this new connectivity metric between two given sets. It requires adapting the fast
marching algorithm, initially introduced as a tool for computing geodesics with fixed two-point
boundary conditions.
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We develop the idea that the SR metric is modulated by the output of the simple cells
in V1, induced by the presence of a visual stimulus: cells already activated by the output are
more sensitive to cortical propagation. In this way we define the external cost C(g) in accordance
with the output of simple cells modeled by Gabor filters.

See Fig. 4 for the result of modeling for the round Poggendorff illusion.

Source: [5] Franceschiello et al., 2019

Fig. 4. Round Poggendorff illusion. The parallel lines that obscure parts of a circle break the circle off
so that its pieces do not appear to fit together. Fixing the intersection point of a circle and the right
parallel line as a departing point for illusory contour, the end point is located somewhere on the indicated
segment of the left line. A data adaptive SR minimizer among the family of SR minimizers with terminal
set models the illusory contour.

5. Conclusion

In this paper, we have summarized results of a sequence of works related to usage of sub-
Riemannian (SR) geometry in image processing and modeling of the human visual system. We
extend the model [7] to include data adaptivity via a suitable external cost in the SR metric. We
show that data adaptive SR geodesics are useful in real image analysis applications and provide
a refined model of V1 that takes into account the presence of a visual stimulus suitable for the
explanation of phenomena of geometrical optical illusions.
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