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INTRODUCTION

We study a sub-Riemannian(SR) problem on the Lie group SE3

of rigid body motions in R3. Solution curves have applications
in image processing (tracking of neural fibers and blood ves-
sels in DW-MRI images of human brain); and in robotics (mo-
tion planing problem for an aircraft, moving forward/backward).

It can be seen as a problem of optimal motion of a rigid
body with nonintegrable constraints. By given two orthonormal
frames N0 = {v1

0, v
2
0, v

3
0}, N1 = {v1

1, v
2
1, v

3
1} attached respectively

at two given points q0 = (x0, y0, z0), q1 = (x1, y1, z1) in R3, we
aim to find an optimal motion that transfers q0 to q1 such that
the frame N0 is transferred to the frame N1. The frame can
move forward or backward along one of the vector chosen in
the frame and rotate simultaneously via the remaining two (of
three) prescribed axes. The required motion should be optimal
in the sense of minimal length in the space SE3 ' R3 o SO3.

GROUP OF RIGID BODY MOTIONS IN 3D

Group element:

g = (x,R) ∈ SE3 = R3 o SO3.

Group operations:

g1g2 = (x1,R1)(x2,R2)

= (x1 + R1x2,R1R2),

g−1 = (−RTx,RT),

where x = (x, y, z) ∈ R3,

R =

 1 0 0
0 cos θ − sin θ
0 sin θ cos θ

 cos β 0 sin β
0 1 0

− sin β 0 cos β

 cosα − sinα 0
sinα cosα 0

0 0 1

 ,

with the angles α ∈ (−π, π], β ∈ [−π
2,

π
2 ], θ ∈ (−π, π].

LEFT-INVARIANT VECTOR FIELDS

Lie algebra: se3 = Te SE3 = span(A1, . . . ,A6)

Left shift on the group: Lgh = gh,

Left-invariant vector fields: Ai|g = (Lg)∗Ai,

Dual one forms: ωi ∈ T∗ SE3, 〈ωi,Aj〉 = δij.

SUB-RIEMANNIAN PROBLEM IN SE3

Left-invariant distribution: ∆ = span(A3,A4,A5) ⊂ T SE3

Metric tensor: Gξ = ξ2ω3 ⊗ ω3 + ω4 ⊗ ω4 + ω5 ⊗ ω5 on ∆

A constant ξ > 0 balancing spatial and angular displacement

SR-distance: Inf among Lipschitzian curves γ : [0,T ]→ SE3

d(e, g) = inf

{
T∫
0

√
Gξ(γ̇(t), γ̇(t)) d t

∣∣∣ γ̇(t) ∈ ∆|γ(t),
γ(0) = e,
γ(T) = g

}
.

SR-minimizers are solutions to the optimal control problem

Pmec : Boundary conditions: γ(0) = e, γ(T) = g,

Control system: γ̇(t) = u3(t)A3|γ(t) + u4(t)A4|γ(t) + u5(t)A5|γ(t)

Cost functional:
1
2

∫ T

0
ξ2u3(t)2 + u4(t)2 + u5(t)2 d t→min .

I Complete controllability
(Chow-Rashevski)

I Existence of minimizers
(Filippov theorem)

I No abnormal extremals:
dim [∆,∆] = dim (SE3)

I Minimizers are analytic
I Scaling homothety: ξ = 1

Control system in coordinates:

ẋ = u3 sin β,

ẏ = −u3 cos β sin θ,

ż = u3 cos β cos θ,

θ̇ = sec β(u4 cosα− u5 sinα),

β̇ = u4 sinα + u5 cosα,

α̇ = −(u4 cosα− u5 sinα) tan β.

PONTRYAGIN MAXIMUM PRINCIPLE

Left Invariant Hamiltonians: λi = 〈p,Ai〉
p = p1 dx + p2 dy + p3 dz + p4 dθ + p5 dβ + p6 dα ∈ T∗ SE3

Control dependent Hamiltonian:
Hu = u3λ3 + u4λ4 + u5λ5 − 1

2

(
(u3)2 + (u4)2 + (u5)2

)
Maximality Condition: u3 = λ3, u4 = λ4, u5 = λ5

The (maximized) Hamiltonian: H = 1
2

(
λ2

3 + λ2
4 + λ2

5

)
The Hamiltonian system (via Poisson brackets λ̇i = {H, λi}):

λ̇1 = −λ3λ5,

λ̇2 = λ3λ4,

λ̇3 = λ1λ5 − λ2λ4,

λ̇4 = λ2λ3 − λ5λ6,

λ̇5 = λ4λ6 − λ1λ3,

λ̇6 = 0,



ẋ = λ3 sin β,

ẏ = −λ3 cos β sin θ,

ż = λ3 cos β cos θ,

θ̇ = sec β(λ4 cosα− λ5 sinα),

β̇ = λ4 sinα + λ5 cosα,

α̇ = −(λ4 cosα− λ5 sinα) tan β,

LIOUVILLE INTEGRABILITY

First integrals the Hamiltonian system:
I The Hamiltonian H = 1

2

(
λ2

3 + λ2
4 + λ2

5

)
I Left-invariant basis Hamiltonian λ6

I Casimirs W = −λ1λ4 − λ2λ5 − λ3λ6, C = λ2
1 + λ2

2 + λ2
3

I Right-invariant Hamiltonians ρi = 〈λ,Yi〉, Yi right invariant v.f.
Complete system of first Integrals: (H, λ6, W, ρ1, ρ2, ρ3)

Theorem. The Hamiltonian system is Liouville integrable.

EXTREMAL CONTROLS FOR λ6 = 0

Theorem. Suppose λ6(0) = 0; then
λ4, λ5 are expressed via U(t) =

∫ t
0 λ3(τ ) d τ and initial values

λ4(t) =
λ2(0) + λ4(0)

2
exp (U (t))− λ2(0)− λ4(0)

2
exp (−U (t)) ,

λ5(t) =
λ1(0) + λ5(0)

2
exp (−U (t))− λ1(0)− λ5(0)

2
exp (U (t)) .

λ3 is expressed via initial values depending on several cases.
For λ1(0) = ±λ5(0), λ2(0) = ∓λ4(0), we have

λ3(t) =
(b + λ3(0)) e±bt− (b− λ3(0)) e∓bt(

1 + λ3(0)
b

)
e±bt +

(
1− λ3(0)

b

)
e∓bt

, b =

√√√√ 5∑
i=3

λ2
i (0)

U(t) = − ln

(
1
2

[(
1 +

λ3(0)

b

)
e±bt +

(
1− λ3(0)

b

)
e∓bt
])

,

Otherwise, we have λ3(t) = −P
2 sn (ψt, k),

U(t) =
1
2

ln

(
A
B

+
P2

2B

(
cn2 (ψt, k) +

1
k

cn (ψt, k) dn (ψt, k)

))
,

A=(λ1(0)+λ5(0))2+(λ2(0)−λ4(0))2 ,B=(λ1(0)−λ5(0))2+(λ2(0)+λ4(0))2

P =

√
4λ2

3 (0) +
(√

A−
√

B
)2
,Q =

√
4λ2

3 (0) +
(√

A +
√

B
)2

ψt = F (p0, k) + Q
2 t, k = P

Q, p0 =

− arcsin
(

2λ3(0)
P

)
, if B ≥ A,

π + arcsin
(

2λ3(0)
P

)
, if B < A.

SHORTEST PATH ON R3 × S2

Original problem that comes from processing of 3D images:

Pcurve : Given: x1, x2 ∈ R3, n1,n2 ∈ S2

To find: x ∈ C∞([0,L],R3), s.t. x(0) = x0, x(L) = x1 ∈ R3,
x′(0) = n0, x′(L) = n1 ∈ S2

and E(x) :=
∫ L

0

√
1 + κ2(s) d s→ min, with κ(s) = ‖x′′(s)‖.

RELATION BETWEEN Pcurve AND Pmec

We define the quotient SE3 /{0} × SO2 and the distance on it:
dR3×S2((0,ez), (y1,n1)) = min

α∈[0,2π)
d(e, (y1,Rn1)hα)

Pquot Let (y1,n1) ∈ R3 × S2. Find (x(t),n(t)) = γ(t)� (0,ez),
with γ is minimizer of Pmec under boundary conditions
γ(0) = (0, I) and γ(T) = (y1,Rn1Rez,α), where both T ≥ 0 and
α ∈ [0, 2π) are free variables in the optimization process.

Theorem. If g1 = (x1,R1) ∈ SE3 is chosen s.t. corresponding
minimizer γ of Pmec satisfies u3(t) > 0, t ∈ (0,T), then γ can
be parameterized by spatial arclengths and its spatialprojec-
tion does not exhibit a cusp. If moreover g1 is chosen s.t. γ
has λ6 = 0 then this yields required minimum choice of α,
and γ(t) provides the minimizer (x(t),n(t)) of Pquot.
Under these two requirements the spatial projection x(·) of
γ(·) = (x(·),R(·)) coincides with a minimizer of Pcurve.

GEOMETRIC PROPERTIES OF GEODESICS

Corollary. Curvature and torsion in Pcurve: κ =

√
1−λ2

3
λ3

, τ = W
λ2

4+λ2
5
.

∀s ∈ [0, smax] torsion is bounded |W| ≤ |τ (s)| ≤ 2|W|√
(1−C2)2+4W2+1−C2

Corollary. The cuspless spatial projections of SR geodesics
of Pmec (i.e. geodesics of Pcurve) are planar iff W = 0.

Corollary. Given admissible coplanar end conditions for Pcurve,
the unique cuspless geodesic connecting them is planar.

Corollary. All cuspless SR geodesics in SE3 with λ6 = 0 and∑3
i=1 λ

2
i (0) 6= 0 stay in the upper half space z ≥ 0.

RESULTS

For the SR problem in SE3 (Pmec) we derive the Hamiltonian
system of PMP, prove Liouville integrability and find explicit ex-
pression for extremal controls in the case λ6 = 0.
We establish a relation between problems Pmec and Pcurve, ap-
peared in imaging applications. We provide explicit expres-
sions for solution curves of Pcurve, evaluate the first cusp time
and study admissible boundary conditions reachable by cus-
pless geodesics. We also study geometrical properties of the
solution curves: bounds on torsion, planarity conditions, sym-
metries. Numerical investigation shows absence of conjugate
points on cuspless geodesics.
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