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Symmetries and Parameterization
of Abnormal Extremals in the Sub-Riemannian
Problem with the Growth Vector (2,3,5,8)

Yu. L. Sachkov, E.F.Sachkova

The left-invariant sub-Riemannian problem with the growth vector (2,3,5,8) is consid-
ered. A two-parameter group of infinitesimal symmetries consisting of rotations and dilations
is described. The abnormal geodesic flow is factorized modulo the group of symmetries. A pa-
rameterization of the vertical part of abnormal geodesic flow is obtained.
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1. Problem statement

Let L be the free nilpotent Lie algebra with 2 generators of step 4. There exists a basis

L = span(X3, ..., Xs) in which the product table in L reads as follows:
(X1, Xo| = X5, [X1, X5] = X4, [Xo, X3] = X, (1.1)
(X1, X4] = X6, [Xo, X4] = [X1, X5] = X7, [X2, X5] = Xs. (1.2)

Let G be the connected simply connected Lie group with the Lie algebra L. Consider the left-
invariant sub-Riemannian structure [1, 2] on G defined by (X;, Xs) as an orthonormal frame.
The corresponding optimal control problem reads as follows:

i =u1 X1 (z) +usXo(z), z€G, u=(up,u) € R? (1.3)
z(0) =x9=1d, z(t1) = =1, (1.4)
t1
1
J = 5 /(u% + u3) dt — min . (1.5)
0
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A symmetric model of this problem is the following one [4]:

GRS, (1.6)
x,= 0 _m 0 wite} 0 mej 0 23 0 (L.7)
8x1 2 6333 2 635'5 4 6337 6 8$8
Xpo Dm0 at+ad 0 ab 0 ate 0 L9
8332 2 (9.%‘3 2 (9.%‘4 6 8336 4 8337' ‘

In this paper we continue the study of abnormal extremals in problem (1.3)—(1.5) started
in [3, 5]. Notice that the normal geodesic flow in problem (1.3)—(1.5) is not Liouville inte-
grable [6].

Denote by D the distribution spanned by the vector fields X, X5, and by g the inner product
in D determined by (X1, X2) as an orthonormal frame. Then (D,g) is the sub-Riemannian
structure given by (X7, X3) as an orthonormal frame.

This work has the following structure. In Section 2 we describe some infinitesimal sym-
metries of the sub-Riemannian structure (D, g) and the distribution D — rotation Xy and
dilation Y. In Section 3 we lift these symmetries to the cotangent bundle 7*G. In Section 4
we describe the action of these lifted symmetries on the Hamiltonian system for abnormal ex-
tremals. In particular, we show that initial conditions for abnormal extremals can be factorized
via the rotations to a fundamental domain {h7; = 0}. In Section 5, we give an explicit parame-
terization of rotations. In Section 6 we present an explicit parameterization of the vertical part
of abnormal extremals with initial conditions in the fundamental domain {h7; = 0}. Finally,
in Section 7 we conclude on final parametrization of abnormal extremals for arbitrary initial
conditions.

2. Infinitesimal symmetries of (D, g) and D

Definition 1. A wvector field V' € Vec G is called an infinitesimal symmetry of a distribu-
tion D if its flow eV preserves D, i.e., etV D = D.

A wvector field V€ Vec G is called an infinitesimal symmetry of a sub-Riemannian struc-
ture (D, g) if its flow preserves both the distribution D and the inner product g, i.e., eVD=D
and (V) g = g.

The Lie algebras of symmetries of a distribution D (a sub-Riemannian structure (D, g))
will be denoted by Sym(D) (respectively Sym(D, g)).

Symmetries of distributions and sub-Riemannian structures may be computed via the fol-
lowing

Proposition [7]. Let X € Vec(G).
(1) X € Sym(D) iff ad X (D) C D, or, equivalently, ad X € gl(D,) for all x € G, i.e.,
2
[X, Xz] = Z ainj, ajj € COO(G)
ij=1
(2) X € Sym(D,g) iff ad X € so(Dy) for all x € G, i.e.,

2
(X, Xi] =) aXj,  aj=—ay, a;€C>(G).
i,j=1
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Theorem 1.

(1) There exists a vector field Y € Sym(D) such that
[Ya Xl] = _X17 [Y7 XQ] - _X27 Y(O) = 0.

In model (1.6)—(1.8) this vector field reads

0 0 0 0 0 0 0 0
Y =21— 2 3 3 4 4 4
0wy 0wy 0wy 0w 0 S 0me  omr T Gy
(2) There ezists a vector field Xy € Sym(D, g) such that
[Xo, X1] = =X, [Xo, Xo] = X3, Xo(0) =0.
In model (1.6)—(1.8) this vector field reads
0 3} 0 0 0
Xo = —Tom— + 01— — P 4+ Q- + R,
0T Ty T omy 0wy T MOzs | o +an7 M
@i _ o
24 8 7
S 976 — 2
Q 12 15+ 2%6 — 28,
2,2 4
Lixy | Iy
R = 3 + Y + x7
(3) The vector fields Y and Xy commute: [Y, Xo] = 0.
Proof. Follows from Theorem 2 [4]. O

The product table given by Egs. (1.1), (1.2) yields the following statement.

Corollary 1.
(1) The symmetry Y has the following Lie brackets with the basis vector fields in Lie algebra L:

[K X3] = _2X37 [Yv X4] = _3X4a [K X5] = _3X57
Y, Xg] = —4Xs, [V, X7] = —4X7, [V, Xg] = —4Xs.

(2) The symmetry Xo has the following Lie brackets with the basis vector fields in Lie algebra L:

(X0, X3] =0, [Xo,Xy]=—-X5, [Xo,X5]= Xy,
[Xo, Xe] =2X7, [Xo,X7] = Xs — X6, [Xo,Xs] =—-2X7.

3. Lift of symmetries to T*G
Introduce Hamiltonians linear on fibers and corresponding to the vector fields X;, Y:

h(N) =\ X(2)),  i=0,...,8,
hy(\) = (WY (2)), =), AeT*G,
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where m: T*G — G is the canonical projection. Consider the corresponding Hamiltonian vector
fields on TG
hz(/\), 1=20,...,8, hy()\), AeTrG.

The vertical part of these vector fields reads in the coordinates (hi, ..., hg) as follows: the
rotation EO

hi = —hg, hg=hy, h3=0,
hy = —hs, hs = hy,

he = —2h7, g =he—hs, hs=2hs, (3.1)

the dilation ﬁy

hy = —hy, hy=—hy, h3=—2h3,
hy = —3hy4, hs = —3hs,

he = —4hg, hy = —4hy, hg = —4hs.
The phase flow of rotations is visible via the Casimir A = hghg — h%: we have
EoA = ﬁo(h@ + hg) =0.

The vertical part of the field Ho is tangent to the closed curves {A = const, hg + hg = const},
thus it is periodic. An explicit parameterization of the flow of ODE (3.1) is given in Section 7.

4. Canonical abnormal flow and its symmetries

We described in [5] the structure of abnormal extremals for the sub-Riemannian struc-
ture (D, g) in terms of the Casimir A and an integral of abnormal extremals I = hgh? —
— 2h7hyhs + hﬁh%.

In the (asymptotic) case A < 0, I = 0 projections of abnormal extremals to the plane
(ha, hs) are straight lines or broken lines.

In the complementary (main) case A > 0 or I # 0 projections of abnormal extremals to the
plane (hy, hy) are first- or second-order curves (straight lines, ellipses, hyperbolas, parabolas). In
this case extremals are reparameterization of trajectories of the canonical Hamiltonian system

A= —hshy + hahy, M€ (AD)T, (4.1)

where (A%)+ = {\ € T*G | h1(\) = ha(A) = h3(A\) = 0}. The vertical part of system (4.1) reads
as follows:

hy=hy=hs =0, (4.2)
h h h- —h
‘4 _c 4 7 c— 7 6 ’ (4.3)
hs hs hs —hr

hg = hy = hg = 0. (4.4)

Following [5], we call system (4.2)—(4.4) the canonical system for abnormal extremals.
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The symmetries l_iO and hy act on the canonical abnormal Hamiltonian vector field
A = —hshy + hghgy defined by system (4.1) as follows:

[ho, A] = 0, (4.5)
[hy, A] = —4A. (4.6)

We get from the Lie brackets (4.5), (4.6) the following statement.

Proposition 1. For any t,s,r € R we have
e”T o es’;o = esgo o etg, (4.7)
eth o erhy = erhy o et,’z, t' = telr. (4.8)
Consequently, we can find the vertical part of canonical abnormal extremals as follows:
e“f(x\o) — e=5ho g g—Thy (Xt/), Ny = e Ao esho o e”EY(/\O), = te'r. (4.9)

For r = 0 we get:
) = e (N), A= oeo()). (4.10)

It is obvious from (3.1) that the space R%G,h% hy factorizes by the flow of the rotation ho to
the half-plane {(hg, h7,hg) € R3 | hy =0, hg — hg = 0}. Thus, we can take in (4.10)

XOGQ:{hlthZhg,:O, h7y =0, h6—h820}.

We call the previous set the fundamental domain of the rotation l_io.

5. Explicit parameterization of rotations

Denote x = (hg, h7, hg) € R%&h?’hs. Then ODE (3.1) defines in R}%g,h%hg a linear system

0-2 0
x=Bx, B=[10 —-1]. (5.1)
02 0

System (5.1) has the solutions x(s) = eB*x?, explicitly
he(s) = %((hg + h2) + (hQ — h2) cos 25 — 2hY sin 2s),
hz(s) = %((hg — h3)sin 2s + 2h9 cos 2s), (5.2)
hs(s) = %((hg + hQ) — (hQ — h2) cos 25 4 2hY sin 2s).

In the coordinates

h he — hs
N 1
71 — % \/§h7
h3 he + hg
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we have

hi(s) = % sin(2s + o), (5.3)
hi(s) = hg’,
hEO \/ih;(]

where p? = (hg?)? + 2(h2°)?2, cos g = , sinpg =
that the flow of ODE (5.1) defines motion along ellipses

. It is visible from formulas (5.3)

{h} = const, 2(h%)? 4 (hi)? = const} = {A = const, hg + hg = const}.
Consequently, the fundamental set of rotation is

F={xy = (h6,0,hs) | he > hs}. (5.4)

6. Solution to the canonical system (4.3), (4.4)
in the fundamental case hy = 0

In this section we consider the case hy = 0 and describe a solution to the canonical sys-
tem (4.3), (4.4) with an initial condition (ha, hs, hg, b7, hg)(0) = (h$, h2, he, 0, hs).

If h7 =0, then A = hghg. Denote 6 = /|A|.
6.1. Elliptic case A > 0
6.1.1. Subcase I # 0

In this case the fundamental set of rotation is

F:{XfZ(hﬁ,O,hg)’h62h8>0 and hg > hg,hg < 0, hg <0}.

Then system (4.3) has solution for parameters x ¢ as follows:

hy(t) hg —h@hg cos ot acos(0t + ) 6.1)
= 1 — ) , )
hs(t) hg  hshj 5 sin 6t bsin(dt + @)
where
I I
-] b=
a h8 9 h6 5

hsh heh?
cos p = hg/a — 4. sin p = —2 5 — hg/b, p € (—m, ).
a
6.1.2. Subcase I = 0
If I =0, then system (4.3) has solutions

h4EO, h5EO

6.2. The hyperbolic case A < 0
In this case the fundamental set of rotation is

F = {Xf = (h@,o, hg) | h@ > O, hg < 0}.
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6.2.1. The nonasymptotic subcase I # 0

In this subcase the initial point does not belong to eigenspaces of the matrix C"

0 __ 0 10 k‘(\/@v—\/@)a
VkeR h —(h4,h5)7é{ b/ T, /T, (6.2)

|h2| |. For hyperbolic x; it is easy to

he
hg

Introduce the next value: o = sign | |k} —

prove that Thg > 0 if ¢ = 1 and [hg > 0 if ¢ = —1. Introduce the next parameters for
fundamental set of rotation in hyperbolic case:

[ 1 b / 1
a=\/0o— =4/—0—.
hs’ he

1. Let 0 = 1. Then system (4.3) has solution for parameters x; as follows:

<h4(t)> (hg —h6hg> ch ot (signhgach(ét—signhga)> 63)

hs(t) hY  hghl % sh 6t — sign hJbsh(6t — sign hja)
where . )
hg|h heh
o= Wflfa= "0 g —pgp =S R
2. Let o =—-1.

Then system (4.3) has solution for parameters y s as follows:

<h4(t)> B (hg —h6hg> ch ot B (— sign ha sh(dt — sign hgﬁ)) (6.4)

hs(t) RS  hgh % sh 6t sign hb ch (5t — sign hf)
where
h \hol hgh?
150/ _ 6lN5 b p0, _ 8hy

6.2.2. The asymptotic subcase I =0

In this case the initial point belongs to eigenspaces of the matrix C, and we have an equality
in (6.2).
hs

Introduce the parameter p = ol In the upper case (6.2) we have
6

ha(t) = h§e®,  hs(t) = —hipe™,

and in the lower case (6.2) we have

hO
ha(t) = ?5@*“, hs(t) = h9eo.
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6.3. The parabolic case A =0
6.3.1. Subcase C # 0

In this case the fundamental set of rotation is
F ={xy = (hs,0,hg) | h¢ > 0,hg = 0and hg = 0, hg < 0}.
1. Let Ch® £ 0. If hg # 0, then
ha(t) = hehdt + hY, hs(t) = h.

If hg # 0, then
hy(t) = B, hs(t) = hghQt + he.

2. Let Ch® = 0. If hg # 0, then
hy(t) = hY,  hs(t) = 0.

If hg # 0, then

6.3.2. Subcase C =0

‘We have

7. Conclusion on parameterization of extremals

On the basis of results of the previous sections, we can get a parameterlzatlon of abnormal
extremals (4.10), with explicit parameterization of X for the case Mg € Q C {h7 = 0} given in

Section 6, and explicit parameterization of the flow %P0 as follows:
<h4(s) ) B <COSS —sins) <h2>
hs(s) | \ sins coss he )’
hg(s) = ((h + h2) + (A2 — h2) cos 25 — 2h9 sin 2s),
hz(s) = 5((118 — h) sin 25 + 219 cos 2s),
hs(s) = %((hg + h) — (A3 — h2) cos 25 4 2hY sin 2s).

An explicit parameterization of abnormal extremal trajectories will be performed similarly
in a forthcoming paper.
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