Symmetries and Parameterization of Abnormal Extremals in the Sub-Riemannian Problem with the Growth Vector (2, 3, 5, 8)

Yu. L. Sachkov, E. F. Sachkova

The left-invariant sub-Riemannian problem with the growth vector $(2,3,5,8)$ is considered. A two-parameter group of infinitesimal symmetries consisting of rotations and dilations is described. The abnormal geodesic flow is factorized modulo the group of symmetries. A parameterization of the vertical part of abnormal geodesic flow is obtained.

Keywords: sub-Riemannian geometry, abnormal extremals, symmetries

1. Problem statement

Let L be the free nilpotent Lie algebra with 2 generators of step 4 . There exists a basis $L=\operatorname{span}\left(X_{1}, \ldots, X_{8}\right)$ in which the product table in L reads as follows:

$$
\begin{align*}
& {\left[X_{1}, X_{2}\right]=X_{3}, \quad\left[X_{1}, X_{3}\right]=X_{4}, \quad\left[X_{2}, X_{3}\right]=X_{5}} \tag{1.1}\\
& {\left[X_{1}, X_{4}\right]=X_{6}, \quad\left[X_{2}, X_{4}\right]=\left[X_{1}, X_{5}\right]=X_{7}, \quad\left[X_{2}, X_{5}\right]=X_{8}} \tag{1.2}
\end{align*}
$$

Let G be the connected simply connected Lie group with the Lie algebra L. Consider the leftinvariant sub-Riemannian structure $[1,2]$ on G defined by $\left(X_{1}, X_{2}\right)$ as an orthonormal frame. The corresponding optimal control problem reads as follows:

$$
\begin{gather*}
\dot{x}=u_{1} X_{1}(x)+u_{2} X_{2}(x), \quad x \in G, u=\left(u_{1}, u_{2}\right) \in \mathbb{R}^{2} \tag{1.3}\\
x(0)=x_{0}=\mathrm{Id}, \quad x\left(t_{1}\right)=x_{1} \tag{1.4}\\
J=\frac{1}{2} \int_{0}^{t_{1}}\left(u_{1}^{2}+u_{2}^{2}\right) d t \rightarrow \min \tag{1.5}
\end{gather*}
$$

Received May 30, 2019
Accepted October 01, 2019

Abstract

The work of Yu. L. Sachkov and E.F. Sachkova was supported by the Russian Science Foundation under grant 17-11-01387 and performed at the Ailamazyan Program Systems Institute of the Russian Academy of Sciences.

Yury L. Sachkov
yusachkov@gmail.com
Elena F. Sachkova
efsachkova@mail.ru
Ailamazyan Program Systems Institute of RAS
Pereslavl-Zalessky, Yaroslavl Region, 152020 Russia
\qquad RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(4), 577-585

A symmetric model of this problem is the following one [4]:

$$
\begin{gather*}
G \cong \mathbb{R}_{x_{1} \ldots x_{8}}^{8} \tag{1.6}\\
X_{1}=\frac{\partial}{\partial x_{1}}-\frac{x_{2}}{2} \frac{\partial}{\partial x_{3}}-\frac{x_{1}^{2}+x_{2}^{2}}{2} \frac{\partial}{\partial x_{5}}-\frac{x_{1} x_{2}^{2}}{4} \frac{\partial}{\partial x_{7}}-\frac{x_{2}^{3}}{6} \frac{\partial}{\partial x_{8}} \tag{1.7}\\
X_{2}=\frac{\partial}{\partial x_{2}}+\frac{x_{1}}{2} \frac{\partial}{\partial x_{3}}+\frac{x_{1}^{2}+x_{2}^{2}}{2} \frac{\partial}{\partial x_{4}}+\frac{x_{1}^{3}}{6} \frac{\partial}{\partial x_{6}}+\frac{x_{1}^{2} x_{2}}{4} \frac{\partial}{\partial x_{7}} \tag{1.8}
\end{gather*}
$$

In this paper we continue the study of abnormal extremals in problem (1.3)-(1.5) started in $[3,5]$. Notice that the normal geodesic flow in problem (1.3)-(1.5) is not Liouville integrable [6].

Denote by D the distribution spanned by the vector fields X_{1}, X_{2}, and by g the inner product in D determined by $\left(X_{1}, X_{2}\right)$ as an orthonormal frame. Then (D, g) is the sub-Riemannian structure given by $\left(X_{1}, X_{2}\right)$ as an orthonormal frame.

This work has the following structure. In Section 2 we describe some infinitesimal symmetries of the sub-Riemannian structure (D, g) and the distribution $D-$ rotation X_{0} and dilation Y. In Section 3 we lift these symmetries to the cotangent bundle $T^{*} G$. In Section 4 we describe the action of these lifted symmetries on the Hamiltonian system for abnormal extremals. In particular, we show that initial conditions for abnormal extremals can be factorized via the rotations to a fundamental domain $\left\{h_{7}=0\right\}$. In Section 5, we give an explicit parameterization of rotations. In Section 6 we present an explicit parameterization of the vertical part of abnormal extremals with initial conditions in the fundamental domain $\left\{h_{7}=0\right\}$. Finally, in Section 7 we conclude on final parametrization of abnormal extremals for arbitrary initial conditions.

2. Infinitesimal symmetries of (D, g) and D

Definition 1. A vector field $V \in \operatorname{Vec} G$ is called an infinitesimal symmetry of a distribution D if its flow $e^{t V}$ preserves D, i.e., $e_{*}^{t V} D=D$.

A vector field $V \in \operatorname{Vec} G$ is called an infinitesimal symmetry of a sub-Riemannian structure (D, g) if its flow preserves both the distribution D and the inner product g, i.e., $e_{*}^{t V} D=D$ and $\left(e^{t V}\right)^{*} g=g$.

The Lie algebras of symmetries of a distribution D (a sub-Riemannian structure (D, g)) will be denoted by $\operatorname{Sym}(D)$ (respectively $\operatorname{Sym}(D, g)$).

Symmetries of distributions and sub-Riemannian structures may be computed via the following

Proposition [7]. Let $X \in \operatorname{Vec}(G)$.
(1) $X \in \operatorname{Sym}(D)$ iff $\operatorname{ad} X(D) \subset D$, or, equivalently, $\operatorname{ad} X \in g l\left(D_{x}\right)$ for all $x \in G$, i.e.,

$$
\left[X, X_{i}\right]=\sum_{i, j=1}^{2} a_{i j} X_{j}, \quad a_{i j} \in C^{\infty}(G)
$$

(2) $X \in \operatorname{Sym}(D, g)$ iff ad $X \in \operatorname{so}\left(D_{x}\right)$ for all $x \in G$, i.e.,

$$
\left[X, X_{i}\right]=\sum_{i, j=1}^{2} a_{i j} X_{j}, \quad a_{j i}=-a_{i j}, \quad a_{i j} \in C^{\infty}(G)
$$

Theorem 1.

(1) There exists a vector field $Y \in \operatorname{Sym}(D)$ such that

$$
\left[Y, X_{1}\right]=-X_{1}, \quad\left[Y, X_{2}\right]=-X_{2}, \quad Y(0)=0
$$

In model (1.6)-(1.8) this vector field reads

$$
Y=x_{1} \frac{\partial}{\partial x_{1}}+x_{2} \frac{\partial}{\partial x_{2}}+2 x_{3} \frac{\partial}{\partial x_{3}}+3 x_{4} \frac{\partial}{\partial x_{4}}+3 x_{5} \frac{\partial}{\partial x_{5}}+4 x_{6} \frac{\partial}{\partial x_{6}}+4 x_{7} \frac{\partial}{\partial x_{7}}+4 x_{8} \frac{\partial}{\partial x_{8}}
$$

(2) There exists a vector field $X_{0} \in \operatorname{Sym}(D, g)$ such that

$$
\left[X_{0}, X_{1}\right]=-X_{2}, \quad\left[X_{0}, X_{2}\right]=X_{1}, \quad X_{0}(0)=0
$$

In model (1.6)-(1.8) this vector field reads

$$
\begin{aligned}
X_{0} & =-x_{2} \frac{\partial}{\partial x_{1}}+x_{1} \frac{\partial}{\partial x_{2}}-x_{5} \frac{\partial}{\partial x_{4}}+x_{4} \frac{\partial}{\partial x_{5}}+P \frac{\partial}{\partial x_{6}}+Q \frac{\partial}{\partial x_{7}}+R \frac{\partial}{\partial x_{8}} \\
P & =\frac{x_{1}^{4}}{24}-\frac{x_{1}^{2} x_{2}^{2}}{8}-x_{7} \\
Q & =-\frac{x_{1} x_{2}^{3}}{12}-\frac{x_{1}^{3} x_{2}}{12}+2 x_{6}-2 x_{8} \\
R & =-\frac{x_{1}^{2} x_{2}^{2}}{8}+\frac{x_{2}^{4}}{24}+x_{7}
\end{aligned}
$$

(3) The vector fields Y and X_{0} commute: $\left[Y, X_{0}\right]=0$.

Proof. Follows from Theorem 2 [4].
The product table given by Eqs. (1.1), (1.2) yields the following statement.

Corollary 1.

(1) The symmetry Y has the following Lie brackets with the basis vector fields in Lie algebra L:

$$
\begin{array}{ll}
{\left[Y, X_{3}\right]=-2 X_{3},} & {\left[Y, X_{4}\right]=-3 X_{4},} \\
{\left[Y, X_{6}\right]=-4 X_{6},} & \left.\left[Y, X_{7}\right]=-4 X_{7}\right] \\
{\left[Y, X_{8}\right]=-4 X_{8}}
\end{array}
$$

(2) The symmetry X_{0} has the following Lie brackets with the basis vector fields in Lie algebra L:

$$
\begin{aligned}
& {\left[X_{0}, X_{3}\right]=0, \quad\left[X_{0}, X_{4}\right]=-X_{5}, \quad\left[X_{0}, X_{5}\right]=X_{4}} \\
& {\left[X_{0}, X_{6}\right]=2 X_{7}, \quad\left[X_{0}, X_{7}\right]=X_{8}-X_{6}, \quad\left[X_{0}, X_{8}\right]=-2 X_{7}}
\end{aligned}
$$

3. Lift of symmetries to $T^{*} G$

Introduce Hamiltonians linear on fibers and corresponding to the vector fields X_{i}, Y :

$$
\begin{array}{ll}
h_{i}(\lambda)=\left\langle\lambda, X_{i}(x)\right\rangle, & i=0, \ldots, 8, \\
h_{Y}(\lambda)=\langle\lambda, Y(x)\rangle, & x=\pi(\lambda), \quad \lambda \in T^{*} G
\end{array}
$$

where $\pi: T^{*} G \rightarrow G$ is the canonical projection. Consider the corresponding Hamiltonian vector fields on $T^{*} G$

$$
\vec{h}_{i}(\lambda), \quad i=0, \ldots, 8, \quad \vec{h}_{Y}(\lambda), \quad \lambda \in T^{*} G
$$

The vertical part of these vector fields reads in the coordinates $\left(h_{1}, \ldots, h_{8}\right)$ as follows: the rotation \vec{h}_{0}

$$
\begin{array}{ll}
\dot{h}_{1}=-h_{2}, & \dot{h}_{2}=h_{1}, \quad \dot{h}_{3}=0, \\
\dot{h}_{4}=-h_{5}, & \dot{h}_{5}=h_{4}, \\
\dot{h}_{6}=-2 h_{7}, & \dot{h}_{7}=h_{6}-h_{8}, \quad \dot{h}_{8}=2 h_{7}, \tag{3.1}
\end{array}
$$

the dilation \vec{h}_{Y}

$$
\begin{aligned}
& \dot{h}_{1}=-h_{1}, \quad \dot{h}_{2}=-h_{2}, \quad \dot{h}_{3}=-2 h_{3}, \\
& \dot{h}_{4}=-3 h_{4}, \quad \dot{h}_{5}=-3 h_{5}, \\
& \dot{h}_{6}=-4 h_{6}, \quad \dot{h}_{7}=-4 h_{7}, \quad \dot{h}_{8}=-4 h_{8} .
\end{aligned}
$$

The phase flow of rotations is visible via the Casimir $\Delta=h_{6} h_{8}-h_{7}^{2}$: we have

$$
\vec{h}_{0} \Delta=\vec{h}_{0}\left(h_{6}+h_{8}\right)=0 .
$$

The vertical part of the field \vec{h}_{0} is tangent to the closed curves $\left\{\Delta=\right.$ const, $h_{6}+h_{8}=$ const $\}$, thus it is periodic. An explicit parameterization of the flow of ODE (3.1) is given in Section 7.

4. Canonical abnormal flow and its symmetries

We described in [5] the structure of abnormal extremals for the sub-Riemannian structure (D, g) in terms of the Casimir Δ and an integral of abnormal extremals $I=h_{8} h_{4}^{2}-$ $-2 h_{7} h_{4} h_{5}+h_{6} h_{5}^{2}$.

In the (asymptotic) case $\Delta<0, I=0$ projections of abnormal extremals to the plane $\left(h_{4}, h_{5}\right)$ are straight lines or broken lines.

In the complementary (main) case $\Delta \geqslant 0$ or $I \neq 0$ projections of abnormal extremals to the plane (h_{4}, h_{5}) are first- or second-order curves (straight lines, ellipses, hyperbolas, parabolas). In this case extremals are reparameterization of trajectories of the canonical Hamiltonian system

$$
\begin{equation*}
\dot{\lambda}=-h_{5} \vec{h}_{1}+h_{4} \vec{h}_{2}, \quad \lambda \in\left(\Delta^{2}\right)^{\perp} \tag{4.1}
\end{equation*}
$$

where $\left(\Delta^{2}\right)^{\perp}=\left\{\lambda \in T^{*} G \mid h_{1}(\lambda)=h_{2}(\lambda)=h_{3}(\lambda)=0\right\}$. The vertical part of system (4.1) reads as follows:

$$
\begin{align*}
& h_{1}=h_{2}=h_{3}=0, \tag{4.2}\\
& \binom{\dot{h}_{4}}{\dot{h}_{5}}=C\binom{h_{4}}{h_{5}}, \quad C=\left(\begin{array}{cc}
h_{7}-h_{6} \\
h_{8} & -h_{7}
\end{array}\right), \tag{4.3}\\
& \dot{h}_{6}=\dot{h}_{7}=\dot{h}_{8}=0 . \tag{4.4}
\end{align*}
$$

Following [5], we call system (4.2)-(4.4) the canonical system for abnormal extremals.
\qquad

The symmetries \vec{h}_{0} and \vec{h}_{Y} act on the canonical abnormal Hamiltonian vector field $\vec{A}=-h_{5} \vec{h}_{1}+h_{4} \vec{h}_{2}$ defined by system (4.1) as follows:

$$
\begin{align*}
& {\left[\vec{h}_{0}, \vec{A}\right]=0} \tag{4.5}\\
& {\left[\vec{h}_{Y}, \vec{A}\right]=-4 \vec{A}} \tag{4.6}
\end{align*}
$$

We get from the Lie brackets (4.5), (4.6) the following statement.
Proposition 1. For any $t, s, r \in \mathbb{R}$ we have

$$
\begin{align*}
& e^{t \vec{A}} \circ e^{s \vec{h}_{0}}=e^{s \vec{h}_{0}} \circ e^{t \vec{A}}, \tag{4.7}\\
& e^{t \vec{A}} \circ e^{r \vec{h}_{Y}}=e^{r \vec{h}_{Y}} \circ e^{t^{\prime} \vec{A}}, \quad t^{\prime}=t e^{4 r} \tag{4.8}
\end{align*}
$$

Consequently, we can find the vertical part of canonical abnormal extremals as follows:

$$
\begin{equation*}
e^{t \vec{A}}\left(\lambda_{0}\right)=e^{-s \vec{h}_{0}} \circ e^{-r \vec{h}_{Y}}\left(\widetilde{\lambda}_{t^{\prime}}\right), \quad \widetilde{\lambda}_{t^{\prime}}=e^{t^{\prime} \vec{A}} \circ e^{s \vec{h}_{0}} \circ e^{r \vec{h}_{Y}}\left(\lambda_{0}\right), \quad t^{\prime}=t e^{4 r} \tag{4.9}
\end{equation*}
$$

For $r=0$ we get:

$$
\begin{equation*}
e^{t \vec{A}}\left(\lambda_{0}\right)=e^{-s \vec{h}_{0}}\left(\widetilde{\lambda}_{t}\right), \quad \tilde{\lambda}_{t}=e^{t \vec{A}} \circ e^{s \vec{h}_{0}}\left(\lambda_{0}\right) \tag{4.10}
\end{equation*}
$$

It is obvious from (3.1) that the space $\mathbb{R}_{h_{6}, h_{7}, h_{8}}^{3}$ factorizes by the flow of the rotation \vec{h}_{0} to the half-plane $\left\{\left(h_{6}, h_{7}, h_{8}\right) \in \mathbb{R}^{3} \mid h_{7}=0, h_{6}-h_{8} \geqslant 0\right\}$. Thus, we can take in (4.10)

$$
\widetilde{\lambda}_{0} \in \Omega=\left\{h_{1}=h_{2}=h_{3}=0, h_{7}=0, h_{6}-h_{8} \geqslant 0\right\}
$$

We call the previous set the fundamental domain of the rotation \vec{h}_{0}.

5. Explicit parameterization of rotations

Denote $\chi=\left(h_{6}, h_{7}, h_{8}\right) \in \mathbb{R}_{h_{6}, h_{7}, h_{8}}^{3}$. Then ODE (3.1) defines in $\mathbb{R}_{h_{6}, h_{7}, h_{8}}^{3}$ a linear system

$$
\dot{\chi}=B \chi, \quad B=\left(\begin{array}{ccc}
0 & -2 & 0 \tag{5.1}\\
1 & 0 & -1 \\
0 & 2 & 0
\end{array}\right)
$$

System (5.1) has the solutions $\chi(s)=e^{B s} \chi^{0}$, explicitly

$$
\begin{align*}
h_{6}(s) & =\frac{1}{2}\left(\left(h_{6}^{0}+h_{8}^{0}\right)+\left(h_{6}^{0}-h_{8}^{0}\right) \cos 2 s-2 h_{7}^{0} \sin 2 s\right) \\
h_{7}(s) & =\frac{1}{2}\left(\left(h_{6}^{0}-h_{8}^{0}\right) \sin 2 s+2 h_{7}^{0} \cos 2 s\right) \tag{5.2}\\
h_{8}(s) & =\frac{1}{2}\left(\left(h_{6}^{0}+h_{8}^{0}\right)-\left(h_{6}^{0}-h_{8}^{0}\right) \cos 2 s+2 h_{7}^{0} \sin 2 s\right)
\end{align*}
$$

In the coordinates

$$
\left(\begin{array}{c}
h_{6}^{*} \\
h_{7}^{*} \\
h_{8}^{*}
\end{array}\right)=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
h_{6}-h_{8} \\
\sqrt{2} h_{7} \\
h_{6}+h_{8}
\end{array}\right)
$$

we have

$$
\begin{align*}
h_{6}^{*}(s) & =\rho \cos \left(2 s+\varphi_{0}\right), \\
h_{7}^{*}(s) & =\frac{\rho}{\sqrt{2}} \sin \left(2 s+\varphi_{0}\right), \tag{5.3}\\
h_{8}^{*}(s) & =h_{8}^{* 0}
\end{align*}
$$

where $\rho^{2}=\left(h_{6}^{* 0}\right)^{2}+2\left(h_{7}^{* 0}\right)^{2}, \cos \varphi_{0}=\frac{h_{6}^{* 0}}{\rho}, \sin \varphi_{0}=\frac{\sqrt{2} h_{7}^{* 0}}{\rho}$. It is visible from formulas (5.3) that the flow of ODE (5.1) defines motion along ellipses

$$
\left\{h_{8}^{*}=\text { const, } 2\left(h_{7}^{*}\right)^{2}+\left(h_{6}^{*}\right)^{2}=\text { const }\right\}=\left\{\Delta=\text { const, } h_{6}+h_{8}=\text { const }\right\} .
$$

Consequently, the fundamental set of rotation is

$$
\begin{equation*}
F=\left\{\chi_{f}=\left(h_{6}, 0, h_{8}\right) \mid h_{6} \geqslant h_{8}\right\} \tag{5.4}
\end{equation*}
$$

6. Solution to the canonical system (4.3), (4.4) in the fundamental case $h_{7}=0$

In this section we consider the case $h_{7}=0$ and describe a solution to the canonical system (4.3), (4.4) with an initial condition $\left(h_{4}, h_{5}, h_{6}, h_{7}, h_{8}\right)(0)=\left(h_{4}^{0}, h_{5}^{0}, h_{6}, 0, h_{8}\right)$.

If $h_{7}=0$, then $\Delta=h_{6} h_{8}$. Denote $\delta=\sqrt{|\Delta|}$.

6.1. Elliptic case $\Delta>0$

6.1.1. Subcase $I \neq 0$

In this case the fundamental set of rotation is

$$
F=\left\{\chi_{f}=\left(h_{6}, 0, h_{8}\right) \mid h_{6} \geqslant h_{8}>0 \quad \text { and } \quad h_{6} \geqslant h_{8}, h_{6}<0, h_{8}<0\right\} .
$$

Then system (4.3) has solution for parameters χ_{f} as follows:

$$
\binom{h_{4}(t)}{h_{5}(t)}=\left(\begin{array}{cc}
h_{4}^{0} & -h_{6} h_{5}^{0} \tag{6.1}\\
h_{5}^{0} & h_{8} h_{4}^{0}
\end{array}\right)\binom{\cos \delta t}{\frac{1}{\delta} \sin \delta t}=\binom{a \cos (\delta t+\varphi)}{b \sin (\delta t+\varphi)}
$$

where

$$
\begin{aligned}
& a=\sqrt{\frac{I}{h_{8}}}, \quad b=\sqrt{\frac{I}{h_{6}}}, \\
& \cos \varphi=h_{4}^{0} / a=\frac{h_{8} h_{4}^{0}}{\delta b}, \quad \sin \varphi=\frac{h_{6} h_{5}^{0}}{\delta a}=h_{5}^{0} / b, \quad \varphi \in(-\pi, \pi) .
\end{aligned}
$$

6.1.2. Subcase $I=0$

If $I=0$, then system (4.3) has solutions

$$
h_{4} \equiv 0, \quad h_{5} \equiv 0
$$

6.2. The hyperbolic case $\Delta<0$

In this case the fundamental set of rotation is

$$
F=\left\{\chi_{f}=\left(h_{6}, 0, h_{8}\right) \mid h_{6}>0, h_{8}<0\right\} .
$$

\qquad

6.2.1. The nonasymptotic subcase $I \neq 0$

In this subcase the initial point does not belong to eigenspaces of the matrix C :

$$
\forall k \in \mathbb{R} \quad \mathbf{h}^{0}=\left(h_{4}^{0}, h_{5}^{0}\right) \neq\left\{\begin{array}{l}
k\left(\sqrt{\left|h_{6}\right|},-\sqrt{\left|h_{8}\right|}\right) \tag{6.2}\\
k\left(-\sqrt{\left|h_{6}\right|},-\sqrt{\left|h_{8}\right|}\right)
\end{array}\right.
$$

Introduce the next value: $\sigma=\operatorname{sign}\left(\left|h_{4}^{0}\right|-\sqrt{\left|\frac{h_{6}}{h_{8}}\right|}\left|h_{5}^{0}\right|\right)$. For hyperbolic χ_{f} it is easy to prove that $I h_{8}>0$ if $\sigma=1$ and $I h_{6}>0$ if $\sigma=-1$. Introduce the next parameters for fundamental set of rotation in hyperbolic case:

$$
a=\sqrt{\sigma \frac{I}{h_{8}}}, \quad b=\sqrt{-\sigma \frac{I}{h_{6}}} .
$$

1. Let $\sigma=1$. Then system (4.3) has solution for parameters χ_{f} as follows:

$$
\binom{h_{4}(t)}{h_{5}(t)}=\left(\begin{array}{cc}
h_{4}^{0} & -h_{6} h_{5}^{0} \tag{6.3}\\
h_{5}^{0} & h_{8} h_{4}^{0}
\end{array}\right)\binom{\operatorname{ch} \delta t}{\frac{1}{\delta} \operatorname{sh} \delta t}=\binom{\operatorname{sign} h_{4}^{0} a \operatorname{ch}\left(\delta t-\operatorname{sign} h_{4}^{0} \alpha\right)}{-\operatorname{sign} h_{4}^{0} b \operatorname{sh}\left(\delta t-\operatorname{sign} h_{4}^{0} \alpha\right)}
$$

where

$$
\operatorname{ch} \alpha=\left|h_{4}^{0}\right| / a=-\frac{h_{8}\left|h_{4}^{0}\right|}{\delta b}, \quad \operatorname{sh} \alpha=h_{5}^{0} / b=\frac{h_{6} h_{5}^{0}}{\delta a}, \quad \alpha \in \mathbb{R}
$$

2. Let $\sigma=-1$.

Then system (4.3) has solution for parameters χ_{f} as follows:

$$
\binom{h_{4}(t)}{h_{5}(t)}=\left(\begin{array}{cc}
h_{4}^{0} & -h_{6} h_{5}^{0} \tag{6.4}\\
h_{5}^{0} & h_{8} h_{4}^{0}
\end{array}\right)\binom{\operatorname{ch} \delta t}{\frac{1}{\delta} \operatorname{sh} \delta t}=\binom{-\operatorname{sign} h_{5}^{0} a \operatorname{sh}\left(\delta t-\operatorname{sign} h_{5}^{0} \beta\right)}{\operatorname{sign} h_{5}^{0} b \operatorname{ch}\left(\delta t-\operatorname{sign} h_{5}^{0} \beta\right)}
$$

where

$$
\operatorname{ch} \beta=\left|h_{5}^{0}\right| / b=\frac{h_{6}\left|h_{5}^{0}\right|}{\delta a}, \quad \operatorname{sh} \beta=h_{4}^{0} / a=-\frac{h_{8} h_{4}^{0}}{\delta b}, \quad \beta \in \mathbb{R}
$$

6.2.2. The asymptotic subcase $I=0$

In this case the initial point belongs to eigenspaces of the matrix C, and we have an equality in (6.2).

Introduce the parameter $p=\sqrt{\left|\frac{h_{8}}{h_{6}}\right|}$. In the upper case (6.2) we have

$$
h_{4}(t)=h_{4}^{0} e^{\delta t}, \quad h_{5}(t)=-h_{4}^{0} p e^{\delta t}
$$

and in the lower case (6.2) we have

$$
h_{4}(t)=\frac{h_{5}^{0}}{p} e^{-\delta t}, \quad h_{5}(t)=h_{5}^{0} e^{-\delta t}
$$

6.3. The parabolic case $\Delta=0$

6.3.1. Subcase $C \neq 0$

In this case the fundamental set of rotation is

$$
F=\left\{\chi_{f}=\left(h_{6}, 0, h_{8}\right) \mid h_{6}>0, h_{8}=0 \text { and } h_{6}=0, h_{8}<0\right\} .
$$

1. Let $C h^{0} \neq 0$. If $h_{6} \neq 0$, then

$$
h_{4}(t)=h_{6} h_{5}^{0} t+h_{4}^{0}, \quad h_{5}(t)=h_{5}^{0} .
$$

If $h_{8} \neq 0$, then

$$
h_{4}(t)=h_{4}^{0}, \quad h_{5}(t)=h_{8} h_{4}^{0} t+h_{5}^{0} .
$$

2. Let $\boldsymbol{C h}^{0}=\mathbf{0}$. If $h_{6} \neq 0$, then

$$
h_{4}(t)=h_{4}^{0}, \quad h_{5}(t)=0 .
$$

If $h_{8} \neq 0$, then

$$
h_{4}(t)=0, \quad h_{5}(t)=h_{5}^{0} .
$$

6.3.2. Subcase $C=0$

We have

$$
\mathbf{h}(t) \equiv \mathbf{h}^{0}
$$

7. Conclusion on parameterization of extremals

On the basis of results of the previous sections, we can get a parameterization of abnormal extremals (4.10), with explicit parameterization of $\widetilde{\lambda}_{t}$ for the case $\widetilde{\lambda}_{0} \in \Omega \subset\left\{h_{7}=0\right\}$ given in Section 6, and explicit parameterization of the flow $e^{s \vec{h}_{0}}$ as follows:

$$
\begin{aligned}
& \binom{h_{4}(s)}{h_{5}(s)}=\left(\begin{array}{cc}
\cos s & -\sin s \\
\sin s & \cos s
\end{array}\right)\binom{h_{4}^{0}}{h_{5}^{0}}, \\
& h_{6}(s)=\frac{1}{2}\left(\left(h_{6}^{0}+h_{8}^{0}\right)+\left(h_{6}^{0}-h_{8}^{0}\right) \cos 2 s-2 h_{7}^{0} \sin 2 s\right), \\
& h_{7}(s)=\frac{1}{2}\left(\left(h_{6}^{0}-h_{8}^{0}\right) \sin 2 s+2 h_{7}^{0} \cos 2 s\right), \\
& h_{8}(s)=\frac{1}{2}\left(\left(h_{6}^{0}+h_{8}^{0}\right)-\left(h_{6}^{0}-h_{8}^{0}\right) \cos 2 s+2 h_{7}^{0} \sin 2 s\right) .
\end{aligned}
$$

An explicit parameterization of abnormal extremal trajectories will be performed similarly in a forthcoming paper.
\qquad

References

[1] Montgomery, R., A Tour of Subriemannian Geometries, Their Geodesics and Applications, Math. Surveys Monogr., vol. 91, Providence, R.I.: AMS, 2002.
[2] Agrachev, A. A. and Sachkov, Yu. L., Control Theory from the Geometric Viewpoint, Encyclopaedia Math. Sci., vol. 87, Berlin: Springer, 2004.
[3] Sachkov, Yu. L. and Sachkova, E. F., Degenerate Abnormal Trajectories in a Sub-Riemannian Problem with Growth Vector (2, 3, 5, 8), Differ. Equ., 2017, vol. 53, no. 3, pp. 352-365; see also: Differ. Uravn., 2017, no. 3, pp. 362-374.
[4] Gauthier, J.-P. and Sachkov, Yu. L., On the Free Carnot (2, 3, 5, 8) Group, Program Systems: Theory and Applications, 2015, vol. 6, no. 2(25), pp.45-61.
[5] Sachkov, Yu. L. and Sachkova, E. F., Structure of Abnormal Extremals in Sub-Riemannian Problem with the Growth Vector $(2,3,5,8)$, submitted for publication (2019).
[6] Lokutsievsky, L. V. and Sachkov, Yu. L., On Liouville Integrability of Sub-Riemannian Problems on Carnot Groups of Step 4 and More, Sb. Math., 2018, vol. 209, no.5, pp.672-713; see also: Mat. Sb., 2018, vol. 209, no. 5, pp. 74-119.
[7] Sachkov, Yu. L., Symmetries of Flat Rank Two Distributions and Sub-Riemannian Structures, Trans. Amer. Math. Soc., 2004, vol. 356, no. 2, pp. 457-494.

