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Symmetries and Parameterization

of Abnormal Extremals in the Sub-Riemannian

Problem with the Growth Vector (2, 3, 5, 8)

Yu. L. Sachkov, E. F. Sachkova

The left-invariant sub-Riemannian problem with the growth vector (2, 3, 5, 8) is consid-
ered. A two-parameter group of infinitesimal symmetries consisting of rotations and dilations
is described. The abnormal geodesic flow is factorized modulo the group of symmetries. A pa-
rameterization of the vertical part of abnormal geodesic flow is obtained.

Keywords: sub-Riemannian geometry, abnormal extremals, symmetries

1. Problem statement

Let L be the free nilpotent Lie algebra with 2 generators of step 4. There exists a basis
L = span(X1, . . . ,X8) in which the product table in L reads as follows:

[X1, X2] = X3, [X1, X3] = X4, [X2, X3] = X5, (1.1)

[X1, X4] = X6, [X2, X4] = [X1, X5] = X7, [X2, X5] = X8. (1.2)

Let G be the connected simply connected Lie group with the Lie algebra L. Consider the left-
invariant sub-Riemannian structure [1, 2] on G defined by (X1,X2) as an orthonormal frame.
The corresponding optimal control problem reads as follows:

ẋ = u1X1(x) + u2X2(x), x ∈ G, u = (u1, u2) ∈ R
2, (1.3)

x(0) = x0 = Id, x(t1) = x1, (1.4)

J =
1

2

t1∫
0

(u21 + u22) dt → min . (1.5)
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A symmetric model of this problem is the following one [4]:

G ∼= R
8
x1 . . . x8 , (1.6)

X1 =
∂

∂x1
− x2

2

∂

∂x3
− x21 + x22

2

∂

∂x5
− x1x

2
2

4

∂

∂x7
− x32

6

∂

∂x8
, (1.7)

X2 =
∂

∂x2
+
x1
2

∂

∂x3
+
x21 + x22

2

∂

∂x4
+
x31
6

∂

∂x6
+
x21x2
4

∂

∂x7
. (1.8)

In this paper we continue the study of abnormal extremals in problem (1.3)–(1.5) started
in [3, 5]. Notice that the normal geodesic flow in problem (1.3)–(1.5) is not Liouville inte-
grable [6].

Denote byD the distribution spanned by the vector fieldsX1, X2, and by g the inner product
in D determined by (X1,X2) as an orthonormal frame. Then (D, g) is the sub-Riemannian
structure given by (X1,X2) as an orthonormal frame.

This work has the following structure. In Section 2 we describe some infinitesimal sym-
metries of the sub-Riemannian structure (D, g) and the distribution D — rotation X0 and
dilation Y . In Section 3 we lift these symmetries to the cotangent bundle T ∗G. In Section 4
we describe the action of these lifted symmetries on the Hamiltonian system for abnormal ex-
tremals. In particular, we show that initial conditions for abnormal extremals can be factorized
via the rotations to a fundamental domain {h7 = 0}. In Section 5, we give an explicit parame-
terization of rotations. In Section 6 we present an explicit parameterization of the vertical part
of abnormal extremals with initial conditions in the fundamental domain {h7 = 0}. Finally,
in Section 7 we conclude on final parametrization of abnormal extremals for arbitrary initial
conditions.

2. Infinitesimal symmetries of (D, g) and D

Definition 1. A vector field V ∈ VecG is called an infinitesimal symmetry of a distribu-
tion D if its flow etV preserves D, i.e., etV∗ D = D.

A vector field V ∈ VecG is called an infinitesimal symmetry of a sub-Riemannian struc-
ture (D, g) if its flow preserves both the distribution D and the inner product g, i.e., etV∗ D = D
and (etV )∗g = g.

The Lie algebras of symmetries of a distribution D (a sub-Riemannian structure (D, g))
will be denoted by Sym(D) (respectively Sym(D, g)).

Symmetries of distributions and sub-Riemannian structures may be computed via the fol-
lowing

Proposition [7]. Let X ∈ Vec(G).

(1) X ∈ Sym(D) iff adX(D) ⊂ D, or, equivalently, adX ∈ gl (Dx) for all x ∈ G, i.e.,

[X,Xi] =

2∑
i,j=1

aijXj, aij ∈ C∞(G).

(2) X ∈ Sym(D, g) iff adX ∈ so(Dx) for all x ∈ G, i.e.,

[X,Xi] =
2∑

i,j=1

aijXj , aji = −aij , aij ∈ C∞(G).
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Theorem 1.

(1) There exists a vector field Y ∈ Sym(D) such that

[Y,X1] = −X1, [Y,X2] = −X2, Y (0) = 0.

In model (1.6)–(1.8) this vector field reads

Y = x1
∂

∂x1
+ x2

∂

∂x2
+ 2x3

∂

∂x3
+ 3x4

∂

∂x4
+ 3x5

∂

∂x5
+ 4x6

∂

∂x6
+ 4x7

∂

∂x7
+ 4x8

∂

∂x8
.

(2) There exists a vector field X0 ∈ Sym(D, g) such that

[X0,X1] = −X2, [X0,X2] = X1, X0(0) = 0.

In model (1.6)–(1.8) this vector field reads

X0 = −x2
∂

∂x1
+ x1

∂

∂x2
− x5

∂

∂x4
+ x4

∂

∂x5
+ P

∂

∂x6
+Q

∂

∂x7
+R

∂

∂x8
,

P =
x41
24

− x21x
2
2

8
− x7,

Q = −x1x
3
2

12
− x31x2

12
+ 2x6 − 2x8,

R = −x
2
1x

2
2

8
+
x42
24

+ x7.

(3) The vector fields Y and X0 commute: [Y,X0] = 0.

Proof. Follows from Theorem 2 [4]. �
The product table given by Eqs. (1.1), (1.2) yields the following statement.

Corollary 1.

(1) The symmetry Y has the following Lie brackets with the basis vector fields in Lie algebra L:

[Y,X3] = −2X3, [Y,X4] = −3X4, [Y,X5] = −3X5,

[Y,X6] = −4X6, [Y,X7] = −4X7, [Y,X8] = −4X8.

(2) The symmetry X0 has the following Lie brackets with the basis vector fields in Lie algebra L:

[X0,X3] = 0, [X0,X4] = −X5, [X0,X5] = X4,

[X0,X6] = 2X7, [X0,X7] = X8 −X6, [X0,X8] = −2X7.

3. Lift of symmetries to T ∗G

Introduce Hamiltonians linear on fibers and corresponding to the vector fields Xi, Y :

hi(λ) = 〈λ,Xi(x)〉, i = 0, . . . , 8,

hY (λ) = 〈λ, Y (x)〉, x = π(λ), λ ∈ T ∗G,
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where π : T ∗G→ G is the canonical projection. Consider the corresponding Hamiltonian vector
fields on T ∗G

�hi(λ), i = 0, . . . , 8, �hY (λ), λ ∈ T ∗G.

The vertical part of these vector fields reads in the coordinates (h1, . . . , h8) as follows: the

rotation �h0

ḣ1 = −h2, ḣ2 = h1, ḣ3 = 0,

ḣ4 = −h5, ḣ5 = h4,

ḣ6 = −2h7, ḣ7 = h6 − h8, ḣ8 = 2h7, (3.1)

the dilation �hY

ḣ1 = −h1, ḣ2 = −h2, ḣ3 = −2h3,

ḣ4 = −3h4, ḣ5 = −3h5,

ḣ6 = −4h6, ḣ7 = −4h7, ḣ8 = −4h8.

The phase flow of rotations is visible via the Casimir Δ = h6h8 − h27: we have

�h0Δ = �h0(h6 + h8) = 0.

The vertical part of the field �h0 is tangent to the closed curves {Δ = const, h6 + h8 = const},
thus it is periodic. An explicit parameterization of the flow of ODE (3.1) is given in Section 7.

4. Canonical abnormal flow and its symmetries

We described in [5] the structure of abnormal extremals for the sub-Riemannian struc-
ture (D, g) in terms of the Casimir Δ and an integral of abnormal extremals I = h8h

2
4 −

− 2h7h4h5 + h6h
2
5.

In the (asymptotic) case Δ < 0, I = 0 projections of abnormal extremals to the plane
(h4, h5) are straight lines or broken lines.

In the complementary (main) case Δ � 0 or I �= 0 projections of abnormal extremals to the
plane (h4, h5) are first- or second-order curves (straight lines, ellipses, hyperbolas, parabolas). In
this case extremals are reparameterization of trajectories of the canonical Hamiltonian system

λ̇ = −h5�h1 + h4�h2, λ ∈ (Δ2)⊥, (4.1)

where (Δ2)⊥ = {λ ∈ T ∗G | h1(λ) = h2(λ) = h3(λ) = 0}. The vertical part of system (4.1) reads
as follows:

h1 = h2 = h3 = 0, (4.2)(
ḣ4

ḣ5

)
= C

(
h4

h5

)
, C =

(
h7 −h6
h8 −h7

)
, (4.3)

ḣ6 = ḣ7 = ḣ8 = 0. (4.4)

Following [5], we call system (4.2)–(4.4) the canonical system for abnormal extremals.
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The symmetries �h0 and �hY act on the canonical abnormal Hamiltonian vector field
�A = −h5�h1 + h4�h2 defined by system (4.1) as follows:

[�h0, �A] = 0, (4.5)

[�hY , �A] = −4 �A. (4.6)

We get from the Lie brackets (4.5), (4.6) the following statement.

Proposition 1. For any t, s, r ∈ R we have

et
�A ◦ es�h0 = es

�h0 ◦ et �A, (4.7)

et
�A ◦ er�hY = er

�hY ◦ et′ �A, t′ = te4r. (4.8)

Consequently, we can find the vertical part of canonical abnormal extremals as follows:

et
�A(λ0) = e−s�h0 ◦ e−r�hY (λ̃t′), λ̃t′ = et

′ �A ◦ es�h0 ◦ er�hY (λ0), t′ = te4r. (4.9)

For r = 0 we get:

et
�A(λ0) = e−s�h0(λ̃t), λ̃t = et

�A ◦ es�h0(λ0). (4.10)

It is obvious from (3.1) that the space R
3
h6,h7,h8

factorizes by the flow of the rotation �h0 to

the half-plane {(h6, h7, h8) ∈ R
3 | h7 = 0, h6 − h8 � 0}. Thus, we can take in (4.10)

λ̃0 ∈ Ω = {h1 = h2 = h3 = 0, h7 = 0, h6 − h8 � 0}.

We call the previous set the fundamental domain of the rotation �h0.

5. Explicit parameterization of rotations

Denote χ = (h6, h7, h8) ∈ R
3
h6,h7,h8

. Then ODE (3.1) defines in R
3
h6,h7,h8

a linear system

χ̇ = Bχ, B =

⎛⎜⎜⎝
0 −2 0

1 0 −1

0 2 0

⎞⎟⎟⎠. (5.1)

System (5.1) has the solutions χ(s) = eBsχ0, explicitly

h6(s) =
1

2
((h06 + h08) + (h06 − h08) cos 2s− 2h07 sin 2s),

h7(s) =
1

2
((h06 − h08) sin 2s + 2h07 cos 2s),

h8(s) =
1

2
((h06 + h08)− (h06 − h08) cos 2s+ 2h07 sin 2s).

(5.2)

In the coordinates ⎛⎜⎜⎝
h∗6
h∗7
h∗8

⎞⎟⎟⎠ =
1√
2

⎛⎜⎜⎝
h6 − h8√

2h7

h6 + h8

⎞⎟⎟⎠
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we have
h∗6(s) = ρ cos(2s + ϕ0),

h∗7(s) =
ρ√
2
sin(2s + ϕ0),

h∗8(s) = h∗08 ,

(5.3)

where ρ2 = (h∗06 )2 + 2(h∗07 )2, cosϕ0 =
h∗06
ρ

, sinϕ0 =

√
2h∗07
ρ

. It is visible from formulas (5.3)

that the flow of ODE (5.1) defines motion along ellipses

{h∗8 = const, 2(h∗7)
2 + (h∗6)

2 = const} = {Δ = const, h6 + h8 = const}.
Consequently, the fundamental set of rotation is

F = {χf = (h6, 0, h8) | h6 � h8}. (5.4)

6. Solution to the canonical system (4.3), (4.4)

in the fundamental case h7 = 0

In this section we consider the case h7 = 0 and describe a solution to the canonical sys-
tem (4.3), (4.4) with an initial condition (h4, h5, h6, h7, h8)(0) = (h04, h

0
5, h6, 0, h8).

If h7 = 0, then Δ = h6h8. Denote δ =
√

|Δ|.

6.1. Elliptic case Δ > 0

6.1.1. Subcase I �= 0

In this case the fundamental set of rotation is

F = {χf = (h6, 0, h8) | h6 � h8 > 0 and h6 � h8, h6 < 0, h8 < 0}.

Then system (4.3) has solution for parameters χf as follows:(
h4(t)

h5(t)

)
=

(
h04 −h6h05
h05 h8h

0
4

)⎛⎝ cos δt
1

δ
sin δt

⎞⎠ =

(
a cos(δt+ ϕ)

b sin(δt+ ϕ)

)
, (6.1)

where

a =

√
I

h8
, b =

√
I

h6
,

cosϕ = h04/a =
h8h

0
4

δb
, sinϕ =

h6h
0
5

δa
= h05/b, ϕ ∈ (−π, π).

6.1.2. Subcase I = 0

If I = 0, then system (4.3) has solutions

h4 ≡ 0, h5 ≡ 0.

6.2. The hyperbolic case Δ < 0

In this case the fundamental set of rotation is

F = {χf = (h6, 0, h8) | h6 > 0, h8 < 0}.
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6.2.1. The nonasymptotic subcase I �= 0

In this subcase the initial point does not belong to eigenspaces of the matrix C:

∀k ∈ R h0 = (h04, h
0
5) �=

{
k(
√

|h6|,−
√

|h8|),
k(−

√
|h6|,−

√
|h8|).

(6.2)

Introduce the next value: σ = sign

(
|h04| −

√∣∣∣∣h6h8
∣∣∣∣|h05|

)
. For hyperbolic χf it is easy to

prove that Ih8 > 0 if σ = 1 and Ih6 > 0 if σ = −1. Introduce the next parameters for
fundamental set of rotation in hyperbolic case:

a =

√
σ
I

h8
, b =

√
−σ I

h6
.

1. Let σ = 1. Then system (4.3) has solution for parameters χf as follows:

(
h4(t)

h5(t)

)
=

(
h04 −h6h05
h05 h8h

0
4

)⎛⎝ ch δt
1

δ
sh δt

⎞⎠ =

(
sign h04a ch(δt− signh04α)

− signh04b sh(δt − signh04α)

)
, (6.3)

where

chα = |h04|/a = −h8|h
0
4|

δb
, shα = h05/b =

h6h
0
5

δa
, α ∈ R.

2. Let σ = −1.

Then system (4.3) has solution for parameters χf as follows:

(
h4(t)

h5(t)

)
=

(
h04 −h6h05
h05 h8h

0
4

)⎛⎝ ch δt
1

δ
sh δt

⎞⎠ =

(
− signh05a sh(δt− signh05β)

signh05b ch(δt− signh05β)

)
, (6.4)

where

ch β = |h05|/b =
h6|h05|
δa

, shβ = h04/a = −h8h
0
4

δb
, β ∈ R.

6.2.2. The asymptotic subcase I = 0

In this case the initial point belongs to eigenspaces of the matrix C, and we have an equality
in (6.2).

Introduce the parameter p =

√∣∣∣∣h8h6
∣∣∣∣. In the upper case (6.2) we have

h4(t) = h04e
δt, h5(t) = −h04peδt,

and in the lower case (6.2) we have

h4(t) =
h05
p
e−δt, h5(t) = h05e

−δt.
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6.3. The parabolic case Δ = 0

6.3.1. Subcase C �= 0

In this case the fundamental set of rotation is

F = {χf = (h6, 0, h8) | h6 > 0, h8 = 0andh6 = 0, h8 < 0}.

1. Let Ch0 �= 0. If h6 �= 0, then

h4(t) = h6h
0
5t+ h04, h5(t) = h05.

If h8 �= 0, then

h4(t) = h04, h5(t) = h8h
0
4t+ h05.

2. Let Ch0 = 0. If h6 �= 0, then

h4(t) = h04, h5(t) = 0.

If h8 �= 0, then

h4(t) = 0, h5(t) = h05.

6.3.2. Subcase C = 0

We have

h(t) ≡ h0.

7. Conclusion on parameterization of extremals

On the basis of results of the previous sections, we can get a parameterization of abnormal

extremals (4.10), with explicit parameterization of λ̃t for the case λ̃0 ∈ Ω ⊂ {h7 = 0} given in

Section 6, and explicit parameterization of the flow es
�h0 as follows:(

h4(s)

h5(s)

)
=

(
cos s − sin s

sin s cos s

)(
h04

h05

)
,

h6(s) =
1

2
((h06 + h08) + (h06 − h08) cos 2s− 2h07 sin 2s),

h7(s) =
1

2
((h06 − h08) sin 2s + 2h07 cos 2s),

h8(s) =
1

2
((h06 + h08)− (h06 − h08) cos 2s+ 2h07 sin 2s).

An explicit parameterization of abnormal extremal trajectories will be performed similarly
in a forthcoming paper.
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