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Hidden Maxwell Stratum in Euler’s Elastic Problem

A.A.Ardentov

This investigation continues the study of the classical problem of stationary configurations
of an elastic rod on a plane. The length of the rod, the ends of the rod and the directions at the
ends are fixed. The problem was first studied by Leonard Euler in 1744 and the optimal synthesis
problem is still an open problem. Euler described a family of geodesics containing the solutions,
which are called Euler elasticae. It is known that sufficiently small pieces of Euler elasticae
are optimal, i.e., they have a minimum of the potential energy. In theory, the point where an
optimal curve loses its optimality is called a cut point. Usually several optimal curves arrive at
such points, so the points have multiplicity more than 1 and are called Maxwell points. The aim
of this work is to describe numerically Maxwell points where two nonsymmetric elasticae come
with the same length and energy value.
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1. Statement of the problem

We consider the following optimal control problem [1]:

q = (x, y, θ) ∈M = R
2 × S1, u ∈ R, (1.1)⎧⎪⎨⎪⎩

ẋ = cos θ,

ẏ = sin θ,

θ̇ = u,

(1.2)

q(0) = q0 = (x0, y0, θ0), q(L) = q1 = (x1, y1, θ1), (1.3)

J =
1

2

T∫
0

u2dt→ min . (1.4)
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Here u ∈ R is unbounded control, it corresponds to curvature κ of the trajectory (x, y). The
problem is known as the classical variational problem of stationary configurations of the elastic
rod on a plane, which has been known for more than 275 years [2]. The minimization of the
integral (1.4) corresponds to the minimization of the potential energy of the rod and the desired
curve (x, y) represents a profile of the rod with given boundary conditions (1.3) at the end points
of the rod with the fixed length L > 0.

System (1.2) is controllable with the natural condition (x1−x0)2+(y1−y0)2 � L2, moreover,
equality is possible in the only case when (x, y) is a straight line.

A possible solution of the problem (1.1)–(1.4) is a trajectory (geodesic) called Euler elastica.
The family of all Euler elasticae was first described by Leonard Euler in 1744 [2] and later was
named after him.

Euler elastica different from a straight line can be of two types: inflectional and noninflec-
tional. Also, we distinguish two special subtypes of a noninflectional elastica: critical (with only
one loop) and circle. It is known that small arcs of an elastica give a solution for the prob-
lem (1.1)–(1.4). However, large enough arcs are usually not optimal. The problem of describing
all optimal arcs of elasticae is still an open problem. This problem is equivalent to that of finding
the cut time along each elastica.

Definition 1. Cut time along a geodesic (elastica) is called the instant of time when the
geodesic loses its optimality. The corresponding point on the geodesic is called the cut point. Cut
locus is the set of all cut points.

2. Known results

Let us recall some known facts concerning the problem under consideration. One of the
main reasons for an elastica to loose its optimality is a Maxwell point.

Definition 2. Maxwell point is a point where several different geodesics (in our case elas-
ticae) with the same length L and the same value of energy integral (1.4) meet one another. The
corresponding instant of time is called Maxwell time. Maxwell points form Maxwell stratum (the
term was introduced by V. I. Arnold in [3]).

After a Maxwell point (Maxwell time) a geodesic (elastica) can’t be optimal. Usually
a Maxwell point corresponds to some reflection symmetry, which provides the way for finding
the cut time via the study of symmetries of the problem.

This work is based on the results obtained in a series of works [1, 4–6]. There are three
nontrivial discrete symmetries ε1, ε2, ε3 for the problem, which generate corresponding Maxwell
strata [1]. The known minimal Maxwell time

t(λ) = min
(
t1MAX(λ), t

2
MAX(λ)

)
corresponding to the reflection symmetries provides an upper bound for the cut time tcut(λ)�t(λ),
where λ is a covector which defines an elastica and t1MAX(λ), t

2
MAX(λ) are Maxwell times corre-

sponding to the symmetries ε1, ε2, respectively. A detailed description of the set of covectors
N 
 λ and an exponential mapping Exp: N → M which parametrizes elasticae is presented
in [5]. The description of the global structure of the exponential mapping shows that there are
Maxwell points which don’t appear from known reflection symmetries εi, i = 1, 2, 3. In fact,
the upper bound tcut(λ) � t(λ) is not sharp for some λ. The aim of this work is to describe
numerically Maxwell points where two nonsymmetric elasticae come to with the same length
and energy value.
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3. Reduced problem

Using the discrete symmetries εi, i = 1, 2, 3, and the continuous symmetries (rotations,
translations, dilations) it is possible to reduce the problem in the following way.

Lemma 1. Any optimal solution of the problem (1.1)–(1.3) can be transformed to the
solution of the same problem (1.1)–(1.3) with the additional conditions

T = 1, (3.1)

x0 = y0 = 0, θ0 = −θ1, (3.2)

q1 ∈ Â = {(x, y, θ) ∈M | x2 + y2 < 1, y � 0, θ ∈ [0, π/2]}. (3.3)

Remark 1. We exclude the case of a straight line for simplicity. Further, we assume that condi-
tions (3.1)–(3.3) hold for the problem under consideration.

Let us state several lemmas concerning the problem (1.1)–(3.3).

Lemma 2. The control problem (1.1)–(1.3), (3.1)–(3.3) has continuum solutions.

Lemma 3. There are a countable number of noninflectional elasticae which give the so-
lution of the problem (1.1)–(1.3), (3.1)–(3.3). All such solutions are locally minimizing func-
tional (1.4).

Solutions of the problem (1.1)–(3.3) for the cases

q1 ∈Mθ = {q ∈ Â | θ = 0}, (3.4)

q1 ∈MP = {q ∈ Â | y = 0} (3.5)

were investigated in [6].
We prove the following statements.

Theorem 1. There are not more than four optimal elasticae which provide a solution to
the problem (1.1)–(3.3).

Theorem 2. If the problem (1.1)–(3.3) has three or four optimal solutions, then condi-
tion (3.4) holds.

Corollary 1. There exists not more than two inflectional and not more than two nonin-
flectional elasticae which provide a solution to the problem (1.1)–(3.3).

4. Hidden Maxwell stratum

Corollary 2. The problem (1.1)–(3.3) with the condition

q1 ∈ Â\Mθ (4.1)

has one or two optimal solutions.

Definition 3. Denote by H a set of points where two optimal solutions of the prob-
lem (1.1)–(3.3) come with condition (4.1). We call the set H hidden Maxwell stratum.

Proposition 1. If q1 ∈ H ∩Mθ, then the problem (1.1)–(3.3) has three or four optimal
solutions.

Figure 1 shows sections of the cut locus Cut formed by the intersection with the planes

{y1 = 0}, {θ1 = 0}, {θ1 = π/2} in the domain Â. The construction of those sections is given
in [6].

RUSSIAN JOURNAL OF NONLINEAR DYNAMICS, 2019, 15(4), 409–414



412 A.A.Ardentov

Fig. 1. Sections of the cut locus formed by the intersection with the planes {y1 = 0}, {θ1 = 0}, {θ1 = π/2}.

Proposition 2. Cut locus Cut ⊂ Â for the problem (1.1)–(3.3) is contained in the union
H ∪Mθ.

Proposition 3. The following equality holds:

Cut ∩ {θ = π/2} = {(x, y, θ) ∈ Â | x = 0, θ = π/2} =MQ. (4.2)

Remark 2. The setMQ represents the Maxwell points corresponding to symmetry ε3 which doesn’t
play an important role in constructing the upper bound t(λ) for the cut time obtained in [1]. However, it

turns out that these points belong to the defined hidden Maxwell stratum MQ = H∩ {q ∈ Â | θ = π/2}.

We construct the hidden Maxwell stratum H inside Â by solving the following system of
equations: {

Exp(λ1) = Exp(λ2),

J(λ1) = J(λ2),
(4.3)

where Exp is the exponential mapping, which translates a covector λ to the end point of the
corresponding elastica with length 1; λ1, λ2 are covectors for elasticae (for short we will not
give the definitions of the domains for those parameters); J(λ) is the value of integral (1.4) for
an elastica with length 1 corresponding to a covector λ.

Notice that system (4.3) is a four-dimensional system given by the Jacobi elliptic functions
and the elliptic integrals of the first and second kind. It seems impossible to resolve such
a system analytically. In order to solve system (4.3) efficiently, we derive simplified formulas
for the exponential mapping Exp for each type of elastica. Then we develop a program for
a numerical solution of system (4.3) in computing system Wolfram Mathematica.

The numerical investigation shows that one of the covectors λ1, λ2 corresponds to an in-
flectional elastica, otherwise system (4.3) doesn’t have a solution, so we associate λ1 with an
inflectional elastica, λ2 is associated with an inflectional or noninflectional (including critical)
elastica.

First, we study solutions when λ2 corresponds to a critical elastica with t(λ2) = ∞, i.e.,
there is no bound on the cut time for a critical elastica. However, the numerical examination
shows that there are nonoptimal pieces of such an elastica. Figure 2 shows a pair of critical and
inflectional elasticae arriving at the point

x1 ≈ 0.38338, y1 = 0, θ1 ≈ 0.15761.
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Fig. 2. An example of critical and inflectional elasticae arriving at the hidden Maxwell strata.

Starting from this point we construct solutions of such type by continuity, see the dashed line
in Fig. 3.

Further, we construct other types of solutions by continuity. A current picture of the
cut locus is presented in Fig. 4. The points over the dashed line represent the case when λ2
corresponds to an inflectional elastica and the points under the dashed line represent the case
when λ2 corresponds to a noninflectional elastica. We found around half million solutions of
system (4.3) to obtain this picture.

We see that the case when λ2 corresponds to an inflectional elastica is almost complete.
However, the noninflectional case is just half filled. During calculation we face an obstacle to
calculate solutions close to the cylinder x21 + y21 = 1, since the value of the energy integral near
such points tends to infinity.

Fig. 3. The dashed line is part of the Hidden
Maxwell strata corresponding to critical elastica.

Fig. 4. The current picture of the cut locus.

Our further aim is to describe numerically the hidden Maxwell set near the cylinder
x21 + y21 = 1 and propose an analytic description of its limit on the cylinder. At present,
we know only two limit points: x1 = −1, y1 = θ1 = 0 and x1 = 0, y1 = 1, θ1 = π/2.
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