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Abstract. We study a data-driven sub-Riemannian (SR) curve opti-
mization model for connecting local orientations in orientation lifts of
images. Our model lives on the projective line bundle R

2 × P 1, with
P 1 = S1/∼ with identification of antipodal points. It extends previous
cortical models for contour perception on R

2×P 1 to the data-driven case.
We provide a complete (mainly numerical) analysis of the dynamics of
the 1st Maxwell-set with growing radii of SR-spheres, revealing the cut-
locus. Furthermore, a comparison of the cusp-surface in R

2 × P 1 to its
counterpart in R

2 ×S1 of a previous model, reveals a general and strong
reduction of cusps in spatial projections of geodesics. Numerical solutions
of the model are obtained by a single wavefront propagation method
relying on a simple extension of existing anisotropic fast-marching or
iterative morphological scale space methods. Experiments show that the
projective line bundle structure greatly reduces the presence of cusps.
Another advantage of including R

2 × P 1 instead of R
2 × S1 in the wave-

front propagation is reduction of computational time.

Keywords: Sub-Riemannian geodesic · Tracking · Projective line
bundle

1 Introduction

In image analysis extraction of salient curves such as blood vessels, is often
tackled by first lifting the image data to a new representation defined on the
higher dimensional space of positions and directions, followed by a geodesic
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tracking [1–3] in this lifted space [4–6]. Benefits of such approaches are that
one can generically deal with complex structures such as crossings [4,6,7], bifur-
cations [8], and low-contrast [5,6,9], while accounting for contextual alignment
of local orientations [5,6]. The latter can be done in the same way as in cortical
models of visual perception of lines [10–13], namely via sub-Riemannian (SR)
geometry on the combined space of positions and orientations. In these corti-
cal models, it is sometimes stressed [12] that one should work in a projective
line bundle R

2 × P 1 with a partition of equivalence classes P 1 := S1/∼ with
n1 ∼ n2 ⇔ n1 = ±n2. Furthermore, in the statistics of line co-occurrences in
retinal images the same projective line bundle structure is crucial [14]. Also, for
many image analysis applications the orientation of an elongated structure is
a well defined characteristic of a salient curve in an image, in contrast to an
artificially imposed direction.

At first sight the effect of the identification of antipodal points might seem
minor as the minimizing SR geodesic between two elements in R

2×P 1 is obtained
by the minimum of the two minimizing SR geodesics in R

2×S1 that arise (twice)
by flipping the directions of the boundary conditions. However, this appearance
is deceptive, it has a rather serious impact on geometric notions such as (1) the
1st Maxwell set (where two distinct geodesics with equal length meet for the
first positive time), (2) the cut-locus (where a geodesic looses optimality), (3)
the cusp-surface (where spatial projections of SR geodesics show a cusp). Besides
an analysis of the geometric consequences in Sects. 2, 3 and 4, we show that the
projective line bundle provides a better tracking with much less cusps in Sect. 5.

2 The Projective Line Bundle Model

The projective line bundle PT(R2) is a quotient of Lie group SE(2), and one can
define a sub-Riemannian structure (SR) on it. The group SE(2) = R

2
� SO(2)

of planar roto-translations is identified with the coupled space of positions and
orientations R

2 × S1, and for each g = (x, y, θ) ∈ R
2 × S1 ∼= SE(2) one has

Lgg
′ = g � g′ = (x′ cos θ + y′ sin θ + x,−x′ sin θ + y′ cos θ + y, θ′ + θ). (1)

Via the push-forward (Lg)∗ one gets the left-invariant frame {A1,A2,A3} from
the Lie-algebra basis {A1, A2, A3} = {∂x|e , ∂θ|e , ∂y|e} at the unity e = (0, 0, 0):

A1 = cos θ ∂x + sin θ ∂y, A2 = ∂θ, A3 = − sin θ ∂x + cos θ ∂y.

Let C : SE(2) → R
+ denote a smooth cost function strictly bounded from below.

The SR-problem on SE(2) is to find a Lipschizian curve γ : [0, T ] → SE(2), s.t.

γ̇(t) = u1(t)A1|γ(t) + u2(t)A2|γ(t), γ(0) = g0, γ(T ) = g1,

l(γ(·)) :=
T∫

0

C(γ(t))
√

ξ2|u1(t)|2 + |u2(t)|2 dt → min,
(2)

with controls u1, u2 : [0, T ] → R are in L∞[0, T ], boundary points g0, g1 are
given, ξ > 0 is constant, and terminal time T > 0 is free.
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Thanks to reparametrization invariance the SR distance can be defined as

d(g0, g1) = min
γ ∈ Lip([0, 1], SE(2)),

γ̇ ∈ Δ|γ , γ(0) = g0, γ(1) = g1

∫ 1

0

√
Gγ(τ)(γ̇(τ), γ̇(τ)) dτ, (3)

with Gγ(τ)(γ̇(τ), γ̇(τ)) = C2(γ(τ))
(
ξ2|u1(τT )|2 + |u2(τT )|2), τ = t

T ∈ [0, 1], and
Δ := span{A1,A2} with dual Δ∗ = span{cos θ dx + sin θ dy,dθ}. The projec-
tive line bundle PT(R2) is a quotient PT(R2) = SE(2)/∼ with identification
(x, y, θ) ∼ (x, y, θ+π). The SR distance in PT(R2) ∼= R

2 ×P 1 = R
2 × R/{πZ} is

d(q0, q1) := min{d(g0, g1) , d(g0 � (0, 0, π), g1 � (0, 0, π)),
d(g0, g1 � (0, 0, π)) , d(g0 � (0, 0, π), g1)}

= min { d(g0, g1) , d(g0 � (0, 0, π), g1)}
(4)

for all qi = (xi, yi, θi) ∈ PT(R2), gi = qi = (xi, yi, θi) ∈ SE(2), i ∈ {0, 1}.
Equation (4) is due to γ∗

g0→g1
(τ) = γ∗

g̃1→g̃0
(1−τ), with g̃i := gi�(0, 0, π), with

γ∗
g0→g1

a minimizing geodesic from g0 = (x0, θ0) to g1 = (x1, θ1), and has 2
consequences:

(1) One can account for the PT(R2) structure in the building of the distance
function before tracking takes place, cf. Proposition 1 below.
(2) It affects cut-locus, the first Maxwell set (Propositions 2 and 3), and cusps
(Proposition 4).

We apply a Riemannian limit [8, Theorem 2] where d is approximated by Rie-
mannian metric d

ε
induced by Gε

q(q̇, q̇) := Gq(q̇, q̇) + C2(q) ξ2

ε2 |−ẋ sin θ + ẏ cos θ|2
for q̇ = (ẋ, ẏ, θ̇), q = (x, y, θ), 0 < ε � 1, and use SR gradient G−1

q dW (q) :=
G−1

q PΔ∗dW (q)= A1W (q)
ξ2C2(q) A1|q+ A2W (q)

C2(q) A2|q for steepest descent on W = d(·, e).
Proposition 1. Let q �= e be chosen such that there exists a unique minimizing
geodesic γ∗

ε : [0, 1] → PT(R2) of d
ε
(q, e) for ε ≥ 0 sufficiently small, that does

not contain conjugate points (i.e. the differential of the exponential map of the
Hamiltonian system is non-degenerate along γ∗

ε , cf. [15]). Then τ 
→ d(e, γ∗
0 (τ))

is smooth and γ∗
0 (τ) is given by γ∗

0 (τ) = γ∗
b (1 − τ) with

{
γ̇∗

b (τ) = −W (q) (G−1
γ∗
b (τ)

dW )(γ∗
b (τ)), τ ∈ [0, 1]

γ∗
b (0) = q,

(5)

with W (q) the viscosity solution of the following boundary value problem:
⎧
⎨

⎩

Gq

( G−1
q dW (q), G−1

q dW (q)
)

= 1 for q �= e,
W (x, y, π) = W (x, y, 0), for all (x, y) ∈ R

2,
W (0, 0, 0) = W (0, 0, π) = 0.

(6)

Proof. By [8, Theorems 2 and 4], (extending [7, Theorem 3.2] to non-uniform
cost) we get minimizing SR geodesics in SE(2) by intrinsic gradient descent on
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W . The 2nd condition in (6) is due to P 1 = S1/∼, the 3rd is due to (4). When
applying [8, Theorem 4] we need differentiability of the SR distance. As our
assumptions exclude conjugate and Maxwell-points, this holds by [16, Theorem
11.15]. �

At least for ε = 0 and C = 1 the assumption in Proposition 1 on conjugate points
is obsolete by [17] and [7, Theorem 3.2, Appendix D].

3 Analysis of Maxwell Sets for C = 1

A sub-Riemannian sphere is a set of points equidistant from e. A sphere of radius
R centred at e is given by S(R) =

{
q ∈ PT(R2) | d(e, q) = R

}
. We define (the

first) Maxwell point as a point in PT(R2) connected to e by multiple SR length
minimizers. I.e. its multiplicity is >1. All Maxwell points form a Maxwell set:

M =
{
q ∈ PT(R2) | ∃ γ1, γ2 ∈ Lip([0, 1],PT(R2)), s. t. γ̇i ∈ Δ|γi ,

γi(0) = e, γi(1) = q, for i = 1, 2, and γ1 �= γ2, l(γ1) = l(γ2) = d(e, q)
}
.

The set M is a stratified manifold M =
⋃

i Mi. We aim for maximal dimension
strata: dim(Mi) = 2.

Fig. 1. Maxwell set and its intersection (right image) with the SR sphere in Fig. 2. The
folds on the Green surface are in M1, the intersections of the Green surface with Red
and Blue surface are in M2, the intersection of the Red and Blue surface is in M3.
(Color figure online)

Proposition 2. Let W (q) = d(e, q) and let W SE(2)(g) = d(e, g). The Maxwell
set M is given by M =

⋃3
i=1 Mi, see Fig. 1, where

– M1 is a part of local component of Maxwell set Exp(MAX2) in SE(2), see
[18, Theorem 5.2], restricted by the condition tMAX

1 = W (γ(tMAX
1 ));

– M2 is given by W SE(2)(g) = W SE(2)(g � (0, 0, π));
– M3 is a part of global component of Maxwell set Exp(MAX5) in SE(2), see

[18, Theorem 5.2], restricted by the condition tMAX
1 = W (γ(tMAX

1 )).
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Proof. There are two possible reasons for PT(R2) � q = g/∼ be a Maxwell point:
(1) if g is a Maxwell point in SE(2), s.t. W SE(2)(g) = W (q) (i.e. W SE(2)(g) ≤
W SE(2)(g � (0, 0, π))); (2) if q is a (new) Maxwell point induced by the quotient
(i.e. q is a root of W SE(2)(g) = W SE(2)(g � (0, 0, π))). Strata M1, M3 follow
from Exp(MAX2), Exp(MAX5) [18], while M2 is induced by P 1 = S1/∼. Set
M3 is in θ = 0, as Exp(MAX5) is in θ = π, which is now identified with θ = 0.

Proposition 3. The maximal multiplicity ν of a Maxwell point on a SR sphere
depends on its radius R. Denote MR = M ∩ S(R) and MR

i = Mi ∩ S(R). One
has the following development of Maxwell set as R increases, see Figs. 2 and 3:

1. if 0 < R < π
2 then S(R) is homeomorphic to S2 and it coincides with SR

sphere in SE(2), MR = MR
1 and ν = 2;

2. if R = π
2 then S(R) is homeomorphic to S2 glued at one point, MR =

MR
1 ∪ MR

2 , MR
1 ∩ MR

2 = ∅, and ν = 2;
3. if π

2 < R < R then S(R) is homeomorphic to T 2, MR = MR
1 ∪ MR

2 , MR
1 ∩

MR
2 = ∅ and ν = 2;

4. if R = R ≈ 17
18π then S(R) is homeomorphic to T 2, MR = MR

1 ∪ MR
2 , and

MR
1 intersects MR

2 at four (conjugate) points, ν = 2;
5. if R < R < R̃ then S(R) is homeomorphic to T 2, MR = MR

1 ∪ MR
2 , and

MR
1 intersects MR

2 at four points, where ν = 3;
6. if R = R̃ ≈ 10

9 π then S(R) is homeomorphic to T 2, M = MR
1 ∪ MR

2 ∪ MR
3 ,

MR
1 = MR

3 , and MR
2 intersects MR

1 at two points, where ν = 4;
7. if R > R̃ then S(R) is homeomorphic to T 2, MR = MR

2 ∪ MR
3 and MR

2

intersects MR
3 at four points, where ν = 3.

Fig. 2. Evolution of the 1st Maxwell set as the radius R of the SR-spheres increases.

Remark 1. Results in [19, Sect. 4] imply that R̃ can be computed from the
system:

R̃/2 = K(k1) = k2 p1(k2),
K(k1) − E(k1)

k1
√

1 − k2
2

=
p1(k2) − E(p1(k2), k2)

dn(p1(k2), k2)
, (7)
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Fig. 3. SR length minimizers ending at the points indicated at Fig. 2.

where K(k) and E(k) are complete elliptic integrals of the 1st and 2nd kind;
E(u, k) = E(am(u, k), k), while E(v, k) is the incomplete elliptic integral of the
2nd kind and am(u, k) is the Jacobian amplitude; p1(k) is the first positive root
of cn(p, k)(E(p, k) − p) − dn(p, k)sn(p, k) = 0; and sn(p, k), cn(p, k), dn(p, k) are
Jacobian elliptic functions. Solving (7), we get R̃ ≈ 1.11545π ≈ 10/9π. Radius
R is s.t. S(R̄) hits the 1st conjugate set and can be computed as well (see item
2 of Fig. 3).

4 Set of Reachable End Conditions by Cuspless Geodesics

A cusp point x(t0) on a spatial projection of a (SR) geodesic t 
→ (x(t), θ(t)) in
R

2 × S1 is a point where the only spatial control switches sign, i.e. u1(t0) :=
ẋ(t0) cos θ(t0) + ẏ(t0) sin θ(t0) = 0 and (u1)′(t0) �= 0. In fact, the 2nd condition
(u1)′(t0) �= 0 is obsolete [8, Appendix C]. The next proposition shows that the
occurrence of cusps is greatly reduced in R

2 × P 1.
Let R ⊂ R

2 × S1 denote the set of endpoints that can be connected to the
origin e = (0, 0, 0) by a SR geodesic γ : [0, T ] → R

2 × S1 whose spatial control
u1(t) > 0 for all t ∈ [0, T ]. Let R̃ ⊂ R

2 ×P 1 denote the set of endpoints that can
be connected to e by a SR geodesic γ : [0, T ] → R

2 × S1 whose spatial control
u1(t) does not switch sign for all t ∈ [0, T ]. Henceforth, such a SR geodesic whose
spatial control u1(·) does not switch sign will be called ‘cuspless’ geodesic.

Proposition 4. The set of reachable end-conditions in R
2 × P 1 via ‘cuspless’

SR geodesics departing from e = (0, 0, 0) is given by

R̃ = {(x, y, θ) ∈ PT(R2)|(x, y, θ) ∈ R or (x, y, θ + π) ∈ R
or (−x, y,−θ) ∈ R or (−x, y,−θ + π) ∈ R or x = y = 0}.

(8)

Proof. A point (x, y, θ) ∈ R
2×P 1 can be reached with a ‘cuspless’ SR geodesic if

(1) (x, y, θ) ∈ R
2
�S1 can be reached with a ‘cuspless’ SR geodesic in SE(2) or (2)

if (−x, y,−θ) can be reached with a ‘cuspless’ SR geodesic in SE(2). Recall from
[20, Theorem 7] that (x, y, θ) ∈ R ⇒ (x ≥ 0 and (x, y) �= (0, 0)). If x ≥ 0 and
(x, y) �= (0, 0), the first option holds if (x, y, θ) ∈ R, and the second option holds
if (x, y, θ+π) ∈ R. If x < 0, the endpoint can only be reached by a ‘cuspless’ SR
geodesic in SE(2) with a negative spatial control function u1 < 0. Here we rely
on symmetry (x, y, θ) 
→ (−x, y,−θ) ⇒ (x(t), y(t), θ(t)) 
→ (−x(t), y(t),−θ(t)))
that holds for SR geodesics (x(·), y(·), θ(·)) in SE(2). For the control u1 in (2),
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this symmetry implies u1(t) 
→ −u1(t). By [20, Theorem 10] one has (x, y, θ) ∈
R ⇒ (x, y, θ + π) /∈ R, and points with x = y = 0 are not in R [20, Remark 5.5]
so all ‘or’ conditions in (8) are exclusive. �

Set R yields a single cone field of reachable angles in x > 0, see [20,
Fig. 14, Theorem 9]. By Proposition 4, set R̃ is a union of 2 such cone fields
that is also reflected to x < 0.

5 Practical Advantages in Vessel Tracking

Distance W (q) can be numerically obtained by solving the eikonal PDE of Eq. (6)
via similar approaches as was previously done for the SE(2) case. E.g., via an
iterative upwind scheme [7], or a fast marching (FM) solver [21] in which case
the SR metric tensor is approximated by an anisotropic Riemannian metric
tensor [22]. A gradient descent (cf. Eq. (5)) on W then provides the SR geodesics.

We construct the cost function C in the same way as in [7]: (1) a retinal image
is lifted via the orientation score transform using cake wavelets [23]; (2) vessels
are enhanced via left-invariant Gaussian derivatives using A3; (3) a cost func-
tion is constructed via C = 1

1+λVp , with V the max-normalized vessel enhanced
orientation score, and with λ and p respectively a “cost-strength” and contrast
parameter. We use the same data and settings (λ = 100, p = 3 and ξ = 0.01) as
in [7], and perform vessel tracking on 235 vessel segments. For the results on all
retinal image patches, see http://erikbekkers.bitbucket.io/PTR2.html.

Figure 4 shows the results on three different vessel segments with comparison
between SR geodesics in SE(2) and PT(R2). As expected, with the PT(R2) model
we always obtain the SE(2) geodesic with minimum SR length (cf. Eq. (4)).
This has the advantage that overall we encounter less cusps in the tracking.
Additionally, the PT(R2) model is approximately four times faster since now
we only have to consider half of the domain R

2 × S1, and by Proposition 1
we only run once (instead of twice). The average computation time via FM
for constructing W with the SE(2) model for 180 × 140 pixel patches is 14.4 s,
whereas for the PT(R2) model this is only 3.4 s. The rightmost image in Fig. 4
shows an exceptional case in which the reversed boundary condition (red arrow)
is preferred as this leads to a geodesic with only one cusp instead of two.

Fig. 4. Data-adaptive SR geodesics in SE(2) (in green and red-dashed) compared to
SR geodesics in PT(R2) (in blue). For the SE(2) case we specify antipodal boundary
conditions since the correct initial and end directions are not known a priori. (Color
figure online)

http://erikbekkers.bitbucket.io/PTR2.html
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6 Conclusion

We have shown the effect of including the projective line bundle structure SR
in optimal geodesic tracking (Proposition 1), in SR geometry (Proposition 2),
and in Maxwell-stratification (Proposition 3), and in the occurrence of cusps in
spatially projected geodesics (Proposition 4). It supports our experiments that
show benefits of including such a projective line bundle structure: A better vessel
tracking algorithm with a reduction of cusps and computation time. As the
cusp-free model without reverse gear [8] also benefits [8, Fig. 12] from PT(R2)-
structure, we leave the Maxwell stratification of this combined model for future
work.
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