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Abstract We consider the problem Pcurve of minimizing
L∫

0

√
ξ2 + κ2(s) ds for a curve x in

R
3 with fixed boundary points and directions. Here, the total length L ≥ 0 is free, s denotes

the arclength parameter, κ denotes the absolute curvature of x, and ξ > 0 is constant. We lift
problem Pcurve on R

3 to a sub-Riemannian problem Pmec on SE(3)/({0} × SO(2)). Here,
for admissible boundary conditions, the spatial projections of sub-Riemannian geodesics
do not exhibit cusps and they solve problem Pcurve. We apply the Pontryagin Maximum
Principle (PMP) and prove Liouville integrability of the Hamiltonian system. We derive
explicit analytic formulas for such sub-Riemannian geodesics, relying on the co-adjoint
orbit structure, an underlying Cartan connection, and the matrix representation of SE(3)
arising in the Cartan-matrix. These formulas allow us to extract geometrical properties of the
sub-Riemannian geodesics with cuspless projection, such as planarity conditions, explicit
bounds on their torsion, and their symmetries. Furthermore, they allow us to parameterize
all admissible boundary conditions reachable by geodesics with cuspless spatial projection.
Such projections lay in the upper half space. We prove this for most cases, and the rest is
checked numerically. Finally, we employ the formulas to numerically solve the boundary
value problem, and visualize the set of admissible boundary conditions.
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1 Introduction

In the space of smooth curves in R
3, we define the energy functional

E(x) :=
∫ L

0

√
ξ2 + κ2(s) ds, E : C∞(R,R3) → R

+, (1.1)

with L ∈ R
+ being the length (free) of a curve s �→ x(s) ∈ R

3. Here, ξ > 0 is a constant,
s denotes the arclength of the curve x and κ : (0, L) → R

+ denotes the absolute curvature
κ(s) = ‖x′′(s)‖ of the curve x for all s ∈ (0, L).

In this paper, we consider the problem Pcurve of minimizing the functional E(x) among
all smooth curves s �→ x(s) in R

3, satisfying the boundary conditions (see Fig. 1)

x(0) = x0, x(L) = x1 ∈ R
3, x′(0) = n0, x′(L) = n1 ∈ S2.

Here, we parameterize x by spatial arclength, i.e., ‖x′(s)‖ = 1, and via ordinary parallel
transport on the tangent bundle T (R3) the tangent vector x′(s) ∈ Tx(s)(R

3) can be identified
with a point n(s) ∈ S2.

The two-dimensional analog of this variational problem was studied as a possible model
of the mechanism used by the visual cortex V1 of the human brain to reconstruct curves
which are partially corrupted or hidden from observation. The two-dimensional model was
initially due to Petitot (see [28, 29] and references therein). Subsequently, Citti and Sarti
[9, 34] recognized the sub-Riemannian Euclidean motion group structure of the problem.
In [5], the existence of minimizers was studied by Boscain, Charlot, and Rossi. It turned
out that only for certain end conditions, the 2D problem Pcurve is well-posed. Character-
ization of the set of end conditions for which Pcurve is well-posed can be found in [11].
The more general 2D problem related to a mechanical problem was completely solved by
Sachkov [25, 32, 33], who in particular derived explicit formulas for the geodesics in sub-
Riemannian arclength parameterization. Later, an alternative expression in spatial arclength
parameterization for cuspless sub-Riemannian geodesics was derived in [6, 13]. Application

Fig. 1 Left: Illustration of problem Pcurve. Isotropy in the brown tangent plane spanned by {A1,A2} is
needed for a well-posed problem on the Lie group quotient SE(3)/({0}×SO(2)). The tangent vectors n0 and
n1 are depicted in red. Right: the angular part n(s) = x′(s) of the lifted curve (x(s), x′(s)) ∈ R

3 × S2
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of problem Pcurve to contour completion in corrupted images was studied in [23]. The prob-
lem was also studied by Hladky and Pauls in [22] and by Ben-Yosef and Ben-Shahar in [4].
However, many imaging applications such as diffusion weighted magnetic resonance imag-
ing (DW-MRI) require an extension to three dimensions [12, 14, 17, 31], which motivates
us to study the three-dimensional curves minimizing the energy functional E(x).

1.1 Statement of the Problem Pcurve

Let x0, x1 ∈ R
3 and n0, n1 ∈ S2 = {v ∈ R

3|‖v‖ = 1}. Our goal is to find an arc-length
parameterized curve s �→ x(s) such that

x = arg inf
y ∈ C∞([0, L],R3), L ≥ 0,
y(0) = x0, y′(0) = n0,
y(L) = x1, y′(L) = n1.

E(y).

We assume that the boundary conditions (x0,n0) and (x1,n1) are chosen such that
a minimizer exists. Due to rotation and translational invariance of the problem, it is
equivalent to the problem with the same functional and boundary conditions (0, ez) and
(RT

n0(x1 − x0), RT
n0n1), where ez denotes the unit vector in the z-axis in the right handed

{x, y, z} coordinate system and Rn0 ∈ SO(3) such that n0 = Rn0ez. Therefore, without
loss of generality, we set (unless explicitly stated otherwise) x0 = 0 and n0 = ez for the
remainder of the article. Hence, the problem now is to find a sufficiently smooth arc-length
parameterized curve s �→ x(s) such that

x = arg inf
y ∈ C∞([0, L],R3), L ≥ 0,
y(0) = 0, y′(0) = ez,

y(L) = x1, y′(L) = n1.

E(y).

We refer to the above problem as Pcurve.
In this paper, we use two different parameterizations: spatial arclength s and sub-

Riemannian arclength t (s) = ∫ s

0

√
ξ2 + κ2(σ ) dσ . We denote the derivative d

ds
by a prime,

and d
dt

by a dot.

1.2 Structure and Results of the Article

In Section 2, we lift problem Pcurve on R
3 to a sub-Riemannian problem Pmec on the

quotient
R
3
� S2 := SE(3)/({0} × SO(2)), (1.2)

where SO(2) is identified with all rotations in R3 about reference axis ez. Such an extension
and naming (‘mec’ refers to mechanical) was also done for the problem Pcurve on R

2, cf.
[6, 11].

To state the problem Pmec on the quotient (1.2), we first resort to the corresponding left-
invariant sub-Riemannian problem PMEC on the Lie group SE(3). We formulate problem
PMEC in Definition 1 and problem Pmec in Definition 3.

The main result in Section 2 is Theorem 1, where we show the two requirements for
sub-Riemannian geodesics γ (·) = (x(·), R(·)) in PMEC to have the property that the corre-
sponding spatially projected curve x(·) is indeed a stationary curve of problem Pcurve. There,
we also show that these sub-Riemannian geodesics in SE(3) relate to well-defined geodesics
of problem Pmec on the quotient R3

� S2. One of the two requirements is a vanishing
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momentum component, the other is a requirement on the end-condition (x1,n1 = Rn1ez)

which should belong to a set R ⊂ R
3
� S2 that we express as the range of an exponential

map of problem Pcurve. In fact, this set R is precisely the set of end conditions for Pmec
where the spatial projection of geodesics does not exhibit a cusp. The formal definition of
a cusp will follow in Definition 8. For an illustration of cases (x1, n1) 
∈ R where cusps
occur on the spatial projection of sub-Riemannian geodesics, see Fig. 2. The geodesic of
Pmec is said to be cuspless if its spatial projection does not have a cusp. The study of cus-
pless sub-Riemannian geodesics in SE(3) is important for image analysis applications. In
particular for the tracking of smoothly varying curvilinear structures (e.g., blood vessels or
neural fibers) in noisy 3D (medical) images (see [12, 17, 31]). There, the presence of cusps
in the spatial projection of a geodesic is typically undesirable, as it yields a non-smooth
path in 3D images. Likewise, to the 2D case [11], it may even be used as a criterium for not
connecting two given boundary conditions in an image.

In Section 3, we apply the Pontryagin maximum principle (PMP) [1, 30, 36] to problem
PMEC in Section 3.1. In Section 3.2, Theorem 2, we prove Liouville integrability. In Sec-
tion 3.3, we express the canonical equations of PMP in terms of the − Cartan connection in
Theorem 3. Then, a natural choice of SE(3) matrix representation arises in the matrix rep-
resentation of the Cartan connection, i.e., the Cartan-matrix. We employ this in Theorem 4
containing one of the two key ingredients that we use for integrating the canonical equa-
tions of Pmec. The other ingredient is the well-known co-adjoint orbit structure in SE(3)
characterized in Lemma 1.

In Section 4, we combine the two ingredients to compute the first cusp-time (Theorem 5
in Section 4.1), and to integrate the canonical equations for geodesics of Pmec. As a result,
we obtain, for the first time, explicit analytic formulas for both problems Pcurve and Pmec.
These analytic formulas involve elliptic integrals of the first and the third kind. This is sum-
marized in Theorem 6, which is the main result of this article. Subsequently, in Section 4.3,
we derive many geometric properties of the sub-Riemannian geodesics such as:

Fig. 2 The spatial projection of the geodesics of Pmec can have singularities (the cusp points). Here, the
spatial projection of the geodesics of Pmec is shown in green before the first cusp point, and in red after the
first cusp point. The range R of the exponential map of the problem Pcurve consists of the end conditions
reachable by the cuspless geodesic in Pmec (i.e., the end conditions reachable by only the green curves). In all
cases, the end condition n1 = Rn1ez is depicted in red. The other black arrows show the remaining vectors
Rn1ex and Rn1ey
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• A uniform bound on torsion of the spatial part of the geodesics in Theorem 7.
• Sufficient and necessary conditions for sub-Riemannian geodesics to be planar in

Theorem 8 and Corollary 6, for which we have global optimality in Corollary 7.
• Monotony along a spatial axis (determined by the initial momentum) in Corollary 8.
• In most cases (see Corollaries 9, 10, and 11), we prove that the spatial part of sub-

Riemannian geodesics stays in the upper half space of the initial direction (if n0 = ez

this upper half space is z ≥ 0). In particular, we prove z ≥ 0 for all planar geodesics
(Corollary 10), and z ≥ 0 for all geodesics departing from a cusp and ending in a cusp.

• In the case of planar geodesics and/or geodesics departing from a cusp and ending in
a cusp, we show in Corollaries 11 and 12 that z = 0 can only be reached with opposite
tangent −ez via a U-shaped planar geodesic that departs from a cusp and ends in a cusp.

• The rotational and reflectional symmetries as we show in Corollary 13 in Section 4.4.

In Section 5, we conclude with numerical analysis of problem Pcurve on R
3. Numerical

experiments in Section 5.1, see Fig. 7, indicate that the first conjugate time comes after the
first cusp time, as in the 2D-case [6]. Numerical experiments in Section 5.2 on the setR and
the cones of reachable angles, see Fig. 8, put a conjecture on homeomorphic/diffeomorphic
properties on the exponential map (cf. Conjecture 1). Finally, we use the analytic formulas
for the sub-Riemannian geodesics for numerical solutions to the boundary value problem as
briefly explained in Section 5.3.Wolfram Mathematica code for solving the boundary value
problem can be downloaded from http://bmia.bmt.tue.nl/people/RDuits/final.rar.

2 Problem Pcurve on R
3, PMEC on SE(3), and Pmec on R

3
� S2 and Their

Connection

In this section, we relate the problem Pcurve to a sub-Riemannian problem Pmec on the
quotient R3

� S2 = SE(3)/({0} × SO(2)), as was also done for the Pcurve on R
2, cf.

[6, 11]. To state the problem Pmec on this Lie group quotient, we first resort to the corre-
sponding left-invariant sub-Riemannian problem PMEC in the Lie group SE(3). The group
SE(3) = R

3
� SO(3) denotes the Lie group of rigid body motions on R

3, which is a semi-
direct product� ofR3 and SO(3). An element g ∈ SE(3) is represented by the pair (x, R) ∈
R
3
�SO(3), and the group product is given by g1g2 = (x1, R1)(x2, R2) = (x1+R1x2, R1R2),

and g−1 = (−RT x, RT ). We define sub-Riemannian problem PMEC by means of the
left-invariant frame (see Fig. 3).

The left-invariant frame consists of the following left-invariant vector fields over SE(3):

A1 = cosα cosβ ∂x + (sinα cos γ + cosα sinβ sin γ ) ∂y + (sinα sin γ − cosα sinβ cos γ ) ∂z,

A2 = − sinα cosβ ∂x + (cosα cos γ − sinα sinβ sin γ ) ∂y + (cosα sin γ + sinα sinβ cos γ ) ∂z,

A3 = sinβ ∂x − cosβ sin γ ∂y + cosβ cos γ ∂z,

A4 = − cosα tanβ ∂α + sinα ∂β + cosα secβ ∂γ ,

A5 = sinα tanβ ∂α + cosα ∂β − sinα secβ ∂γ ,

A6 = ∂α,

where we parameterize R
3 by {x, y, z} and SO(3) by angles {α, β, γ } with α ∈ (−π, π],

β ∈ [−π
2 , π

2 ] and γ ∈ (−π, π ] such that

SO(3) � R =
⎛

⎝
1 0 0
0 cos γ − sin γ

0 sin γ cos γ

⎞

⎠

⎛

⎝
cosβ 0 sinβ

0 1 0
− sinβ 0 cosβ

⎞

⎠

⎛

⎝
cosα − sinα 0
sinα cosα 0
0 0 1

⎞

⎠ . (2.1)

http://bmia.bmt.tue.nl/people/RDuits/final.rar
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Fig. 3 The left-invariant frame representing a moving frame of reference along a curve on R3
� S2

Since Rez = n = (sinβ, − sin γ cosβ, cos γ cosβ)T , we have that (γ, β) are spherical
coordinates on S2. One needs multiple charts to cover S2. However, outside of ±(1, 0, 0)T ,
this choice of spherical coordinates is 1-to-1 and regular, and there it is preferable over stan-
dard Euler angles (which are singular at the unity element ez = (0, 0, 1)T ), [15, ch:2, Fig.
4].

The corresponding co-frame is given by the co-vectors {ω1, . . . , ω6} satisfying

〈ωi,Aj 〉 = δi
j for i, j ∈ {1, . . . , 6},

with δi
j the Kronecker delta. The structure constants ck

i,j of the Lie algebra of left-invariant
vector fields in SE(3) are given in Table 1.

We consider the sub-Riemannian manifold (M,�,Gξ ), [26], with

M = SE(3), � = span{A3,A4,A5}, and Gξ = ξ2ω3 ⊗ ω3 + ω4 ⊗ ω4 + ω5 ⊗ ω5.

(2.2)

Table 1 Table of Lie brackets
[Ai ,Aj ] = AiAj − AjAi =
∑6

k=1 ck
i,jAk

A1 A2 A3 A4 A5 A6

A1 0 0 0 0 A3 −A2

A2 0 0 0 −A3 0 A1

A3 0 0 0 A2 −A1 0

A4 0 A3 −A2 0 A6 −A5

A5 −A3 0 A1 −A6 0 A4

A6 A2 −A1 0 A5 −A4 0
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For those horizontal curves γ (i.e., γ̇ ∈ �) in SE(3) that can be parameterized by spa-
tial arclength, one has

∫ T

0

√
Gξ |γ (t)(γ̇ (t), γ̇ (t)) dt = ∫ L

0

√
ξ2 + κ2(s) ds, which in view of

Problem Pcurve, motivates our choice of (M,�,Gξ ). Details can be found in Appendix A
(A.1). The sub-Riemannian distance on (SE(3),�,Gξ ) is given by

d(g, h) = min
γ ∈ Lip([0, T ], SE(3)), T ≥ 0,
γ̇ ∈ �, γ (0) = g, γ (T ) = h

T∫

0

√
Gξ

∣
∣
γ (t)

(γ̇ (t), γ̇ (t)) dt. (2.3)

Definition 1 In problem PMEC on SE(3), we aim for a Lipschitzian curve γ : [0, T ] →
SE(3), that satisfies the boundary conditions γ (0) = e := (0, I ) and γ (T ) = (x1, R1) ∈
SE(3), and minimizes the integral of sub-Riemannian length

∫ T

0

√
Gξ |γ (t)(γ̇ (t), γ̇ (t)) dt

(with free T ), and has a velocity vector γ̇ (t) ∈ � for a.e. t ∈ [0, T ].

Remark 1 As we will show in Section 3, PMEC is well-posed and the minimizers are
smooth. So one may replace Lip([0, T ], SE(3)) by C∞([0, T ],SE(3)) a posteriori (like we
did in Pcurve).

Definition 2 A (sub-Riemannian) geodesic γ of problem PMEC is a horizontal curve in
SE(3) (i.e. γ̇ ∈ �) whose sufficiently short arcs are minimizers of PMEC.

Next, we will address the quotient structure (1.2) and the connection of problem Pcurve
on R3 to problem PMEC on SE(3), and problem Pmec on R3

� S2.

Remark 2 Throughout this article, we identify SO(2) with all rotations in SO(3) about the
reference axis, which we choose to be ez (i.e., SO(2) ≡ SO(2)⊕1). Furthermore,Rn denotes
any rotation mapping ez = (0, 0, 1)T onto n ∈ S2, whereas Ra,φ denotes the counter-
clockwise rotation about axis a over angle φ. The group SE(3) acts transitively on R

3
� S2

by
g � (y, n) = (x, R) � (y, n) = (Ry + x, Rn). (2.4)

Elements in SE(3) that map (0, ez) to itself are denoted by

hα := (0, Rez,α) ∈ {0} × SO(2).

Regarding Eq. 1.2, we note g1 ∼ g2 ⇔ g1 � (0, ez) = g2 � (0, ez) ⇔ (g1)
−1g2 ∈

{0} × SO(2) for all g1, g2 ∈ SE(3). For sober notation, we write (y, n) ∈ R
3
� S2. This

represents the left coset

(y, n) := {g ∈ SE(3) | g ∼ (y, Rn)} = {(y, R) ∈ SE(3) | (y, R) � (0, ez) = (y, n)}
= {(y, RnRez,α) ∈ SE(3) | 0 ≤ α < 2π}.

This is similar to the common identification S2 = SO(3)/SO(2).

We obtain a well-defined distance on the quotient R3
� S2, recall (1.2) and (2.3), by

d
R3�S2((0, ez), (y1,n1)) = min

α1,α2∈[0,2π)
d(ehα1 , (y1, Rn1)hα2)

= min
α1,α2∈[0,2π)

d(e, h−1
α1 (y1, Rn1)hα2−α1hα1)

= min
α∈[0,2π)

d(e, (y1, Rn1)hα), (2.5)
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where we use both left-invariance and invariance under the specific conjugations g �→
h−1

α ghα and where we have set α = α2 − α1. Hence, we get the following definition.

Definition 3 Problem Pmec is defined as follows on R3
� S2. Let (y1,n1) ∈ R

3
� S2. Find

[0, T ] � t �→ (x(t), n(t)) = γ (t) � (0, ez) ∈ R
3
� S2,

with γ a Lipschitzian curve in SE(3) with velocity γ̇ ∈ �, such that sub-Riemannian

length
∫ T

0

√
Gξ

∣
∣
γ (t)

(γ̇ (t), γ̇ (t))dt is minimal under boundary conditions γ (0) = (0, I ) and

γ (T ) = (y1, Rn1Rez,α), where both T ≥ 0 and α ∈ [0, 2π) are free variables in the
optimization process.

In Section 3.1, we introduce left-invariant Hamiltonians λ1, . . . , λ6 linear on the fibers
of cotangent bundle T ∗(SE(3)) and apply the Pontryagin maximum principle (PMP) to the
problem PMEC, where the Hamiltonian H is expressed as

H(λ) = 1

2

(
ξ−2 λ23 + λ24 + λ25

)
. (2.6)

To distinguish a momentum covector from its components in dual basis, we represent
momentum covectors λ(t) = ∑6

i=1 λi(t)ω
i |γ (t) as row vectors λ

λ := (λ(1),λ(2)) with λ(1) := (λ1, λ2, λ3) and λ(2) := (λ4, λ5, λ6), (2.7)

where we split λ into a spatial part λ(1) and a rotational part λ(2).
A geodesic of problem Pmec is a curve (x(·),n(·)) ∈ R

3
� S2 whose sufficiently short

arcs are minimizers of Pmec. First, we will show that solutions to the problem Pmec in the
quotient R3

� S2 are geodesics in problem PMEC in SE(3) if the initial momentum λ(0) is
chosen such that λ6 = 0.

Later on, for sub-Riemannian geodesics whose spatial projections do not exhibit cusps
(see the green curves in Fig. 2), we shall rely on the spatial arclength parameter s as this
parametrization produces much simpler formulas. To distinguish between derivatives, we
write

γ̇ (t) := d

dt
γ (t) and γ ′(s) := d

ds
γ (s).

The next theorem provides us the terminal conditions of interest, the appropriate choice
of representant in each equivalent class, i.e., the α that minimizes (2.5). In fact, this sets the
choice of (y1, Rn1) ∈ SE(3) in PMEC such that the spatial projection x∗(·) of the optimizer
of γ ∗(·) = (x∗(·), R∗(·)) in PMEC coincides with the optimizer of Pcurve. The proof relies
on notations and results in Section 3.1, but we formulate the theorem here as it fully explains
the connection between problem Pcurve on R3, problem PMEC on SE(3), and problem Pmec
on R

3
� S2. At this point, the reader is advised to skip the proof and return to it after

Section 3.1.

Theorem 1 If the terminal point g1 = (x1, R1) ∈ SE(3) is chosen such that a
corresponding minimizer γ ∗ of PMEC satisfies1

u3(t) := 〈ω3|γ ∗(t), γ̇
∗(t)〉 > 0, for all t ∈ (0, T ), (2.8)

1In Section 3, we will introduce control variables u3, u4, u5 and will formulate the problem PMEC as an
optimal control problem in SE(3). Moreover, it will follow from the Hamiltonian system that λ6 is constant
along extremals.
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then the minimizer γ ∗ can be parameterized by spatial arclength s, and its spatial projection
does not exhibit a cusp. If moreover g1 is chosen such that γ ∗ has vanishing momentum
component

λ6(t) = λ6(0) = 0, for all t ∈ (0, T ), (2.9)

then this yields the required minimum choice of α in Eq. 2.5, and the minimizer γ ∗(t) of
PMEC provides the minimizer (x∗(t),n∗(t)) = γ ∗(t) � (0, ez) of problem Pmec.

Under these two requirements (2.8) and (2.9), the spatial projection x∗(·) of the geodesic
γ ∗(·) = (x∗(·), R∗(·)) of problem PMEC coincides with a stationary curve of problem
Pcurve.

Proof The proof can be found in Appendix A. It relies on notation and results of Section 3.
See Fig. 4 for an illustration of an explicit case.

Definition 4 Let Ẽxpe : {(λ(0), t) ∈ T ∗
e (SE(3)) × R

+ | H(λ(0)) = 1
2 } → SE(3) denote

the exponential map of PMEC. This exponential map is the solution operator that solves
the Hamiltonian system of PMP, with the Hamiltonian H(λ(0)) given by Eq. 2.6, departing
from e = (0, I ) and thereby it maps initial momentum λ(0) and sub-Riemannian arclength
t onto the end-point (x(t), R(t)) ∈ SE(3) of the corresponding geodesic of problem PMEC.

For the required case λ6 = 0, we will derive the operator Ẽxpe((λ1(0), λ2(0), λ3(0),
λ4(0), λ5(0), 0), t) explicitly in Section 4.

Fig. 4 End point (x1,n1) = ((0.53, 1.8, 1.1), (0.031, 0.86,−0.51)) in Pcurve gives rise to many possible
end conditions (x, Rn1 ) ∈ SE(3) in PMEC. By Theorem 1, the minimizer in Eq. 2.5 is found by setting
λ6(0) = 0. Here, the spatial projection of the minimizing geodesic is depicted in green, and the spatial projec-
tion of a geodesic with λ6 
= 0 in blue. In order to show the choice of rotation Rn1 ∈ SO(3), s.t. Rn1ez = n1,
we depict the spatial frame {A1|g1 , A2|g1 , A3|g1 } at the end points g1 = (x1, Rn1 ) of both the blue and
green geodesic. For the minimizing geodesic, we have λ6(0) = 0 and T = d

R3�S2 ((0, ez), (y1,n1)) = 4,
for the other geodesic we have λ6(0) = 2 and indeed T = 4.65 > 4
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Definition 5 Let R denote the set of boundary points g1 = (x1, R1) ∈ SE(3) reachable
by geodesics γ ∗ of problem PMEC satisfying the two requirements (2.8) and (2.9). Define
R = {(x1, R1ez) | (x1, R1) ∈ R} ⊂ R

3
� S2.

Next, we formally define the exponential map of the problem Pcurve, where we rely on
the action of SE(3) onto R3

� S2, recall (2.4).

Definition 6 The exponential map Exp : D0 → R
3
� S2 of Pcurve is defined by:

Exp(λ(0), L) := Ẽxpe(λ(0), T (L)) � (0, ez) = γ ∗(T (L)) � (0, ez) = (x∗(L), d
ds
x∗(L)),

where x∗ denotes the minimizer of Pcurve, γ ∗ denotes a minimizer of PMEC, and with
domain

D0 = {(λ(0), L) ∈ D |λ6(0) = 0}, with
D = {(λ(0), L) ∈ T ∗

e (SE(3)) × R
+ | H(λ(0)) = 1

2 , L ≤ smax(λ(0)), λ(1)(0) 
= 0},
(2.10)

where smax(λ(0)) ∈ R ∪ {∞} is the maximal length of the spatial projection x∗ of the
sub-Riemannian geodesic γ ∗ to the first cusp.

We exclude λ(1)(0) = 0 from the domain D to avoid pure rotations which are not solu-
tions to the problem Pcurve. This is also done in the SE(2) case [11, Remark 5.5]. By
Theorem 1, we have the following result.

Corollary 1 The setR equals the range of the exponential map of Pcurve:

R = {Exp(λ(0), L) | (λ(0), L) ∈ D0} ⊂ R
3
� S2, (2.11)

i.e., it coincides with all possible end conditions (x(L), x′(L)) of geodesics of Pcurve.

Definition 7 An end condition (x1,n1) ∈ R
3
� S2 is called admissible if (x1,n1) ∈ R.

3 PMEC: Sub-Riemannian Problem on SE(3)

In this section, we study the problem PMEC. The optimal control theoretical formulation
of this sub-Riemannian problem is to find a Lipschitzian curve γ : [0, T ] → SE(3), with
boundary conditions γ (0) = e := (0, I ) and γ (T ) = (x1, R1) ∈ SE(3), such that

T∫

0

√
Gξ |γ (t)(γ̇ (t), γ̇ (t)) dt =

T∫

0

√
ξ2(u3(t))2 + (u4(t))2 + (u5(t))2 dt → min (with free T ),

with γ̇ (t) =
5∑

i=3
ui(t)Ai |γ (t) =

5∑

i=3
〈ωi |γ (t), γ̇ (t)〉Ai |γ (t),

(3.1)
where the control variables ui ∈ L∞([0, T ]) for i = 3, 4, 5. In particular, we only consider
the curves for which the absolute curvature of the spatial projections is in L∞([0, T ]). The
control variables are contravariant components of the velocity vector, so we index them with
upper indices.

Remark 3 The problem PMEC given by Eq. 3.1 can be seen as a motion planing problem
for a spacecraft, that can move forward/backward (in direction A3) and rotate about axis
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u4A1 + u5A2. The control u3 determines spacial velocity (the sign of u3 determines for-
ward/backward propagation), while the controls u4 and u5 determine the angular velocity,
cf. Fig. 3.

The existence of minimizers for the problem PMEC is guaranteed by the theorems by
Chow-Rashevskii and Filippov on sub-Riemannian structures [1].

Remark 4 About smoothness of minimizers of PMEC.

• We have that for PMEC, there are no abnormal extremals. It follows from the fact
that any sub-Riemannian manifold with a two-generating distribution does not allow
abnormal extremals (see Chapter 20.5.1 in [1]). This is the case here as we have
for � := {A3,A4,A5}, dim( [�,�]) = dim(span{A1,A2,A3,A4,A5,A6}) =
dim (SE(3)) = 6.

• Due to the non-existence of abnormal extremals, the geodesics are always analytic [1]
and so are the extremal controls. A priori, in the application of the Pontryagin maximum
principle (PMP) [1, 36], one cannot restrict to smooth controls where one relies on
L∞-controls for PMEC (and L1-controls for Pcurve, similar to the SE(2)-case [6, ch:5.1,
App.B]). In retrospect, however, the minimizers are analytic, and one can write the
sub-Riemannian distance from g to e = (0, I ) on (SE(3),�,Gξ ) as

d(g, e) = min
γ ∈ C∞([0, T ], SE(3)), T ≥ 0,
γ̇ ∈ �, γ (0) = e, γ (T ) = g

T∫

0

√
Gξ

∣
∣
γ (t)

(γ̇ (t), γ̇ (t)) dt. (3.2)

Next, in the application of PMP to the problem PMEC, we rely on the sub-Riemannian
arclength parameter t , which is well-defined for all SR-geodesics in (SE(3),�,Gξ ). Before
a cusp occurs, recall Fig. 2, one can also use spatial arclength parameterization s, related by
t (s) = ∫ s

0

√
ξ2 + κ2(σ ) dσ . The formal definition of a cusp time is given bellow.

Definition 8 A cusp time is a time 0 < tcusp < T when the third control component
u3(t) (responsible for spatial propagation in PMEC) vanishes, u3(tcusp) = 0 and moreover
u̇3(tcusp) 
= 0.

For illustrations of cusps, see Fig. 2 and for planar sub-Riemannian geodesics see [11,
Fig. 2], [5].

3.1 Application of Pontryagin Maximum Principle

A first-order necessary optimality condition is given by PMP [1, 30]. Note that PMP gives
a necessary but not a sufficient condition of optimality. Geodesics of PMEC loses local
optimality after the first conjugate point and global optimality after the first Maxwell point
(see [1]).

The Cauchy-Schwarz inequality implies that the minimization problem for the sub-
Riemannian length functional is equivalent to the minimization problem for the action
functional (see [1])

J = 1

2

∫ T

0
(ξ2(u3)2 + (u4)2 + (u5)2) dt → min, with fixed T > 0. (3.3)
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Next, we apply PMP to problem PMEC using the equivalent action functional, i.e., to the
following optimal control problem:

γ̇ (t) =
5∑

i=3

ui(t)Ai |γ (t), J → min, γ (0) = e, γ (T ) = g1 ∈ SE(3). (3.4)

Denote q = (x, y, z, γ, β, α) ∈ R
3 × (−π, π ] × [−π

2 , π
2 ] × (−π, π ] which is iden-

tified with an element from SE(3) via (2.1). The natural momentum coordinates {λi} for
left-invariant sub-Riemannian problems come along with the left-invariant Hamiltonians
hi : T ∗(SE(3)) → R (see [1]), given by

hi(q, λ) = 〈λ(q),Ai |q〉 = λi(q), i = 1, . . . 6,

where λ(q) = p1(q)dx|q+p2(q)dy|q+p3(q)dz|q+p4(q)dγ |q+p5(q)dβ|q+p6(q)dα|q =
∑6

i=1 λi(q) ωi |q ∈ T ∗
q (SE(3)) denotes a momentum covector expressed in respectively the

fixed and the moving dual frame.
Now, we apply PMP. By Remark 4, we only need to consider the normal

case. The control-dependent Hamiltonian reads Hu = u3λ3 + u4λ4 + u5λ5 −
1
2

(
ξ2(u3)2 + (u4)2 + (u5)2

)
. Optimization over all controls produces the (maximized)

Hamiltonian

H = max
u∈R3

Hu = 1

2

(
ξ−2λ23 + λ24 + λ25

)
,

and gives expression for the extremal controls

u3 = λ3

ξ2
, u4 = λ4, u5 = λ5.

By virtue of the Lie brackets (see Table 1), we have the Poisson brackets

{H, λ1} = −λ3λ5, {H, λ2} = λ3λ4, {H, λ3} = λ1λ5 − λ2λ4,

{H, λ4} = λ2λ3

ξ2
− λ5λ6, {H, λ5} = λ4λ6 − λ1λ3

ξ2
, {H, λ6} = 0.

Thus, the Hamiltonian system of PMP reads as follows:
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

λ̇1 = −λ3λ5,

λ̇2 = λ3λ4,

λ̇3 = λ1λ5 − λ2λ4,

λ̇4 = λ2λ3
ξ2

− λ5λ6,

λ̇5 = λ4λ6 − λ1λ3
ξ2

,

λ̇6 = 0,

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = λ3
ξ2

sinβ,

ẏ = − λ3
ξ2

cosβ sin γ,

ż = λ3
ξ2

cosβ cos γ,

γ̇ = secβ(λ4 cosα − λ5 sinα),

β̇ = λ4 sinα + λ5 cosα,

α̇ = −(λ4 cosα − λ5 sinα) tanβ,

— vertical part (for adjoint variables), — horizontal part (for state variables).

(3.5)

These equations only hold outside the singularities of the angles chart {α, β, γ }. In par-
ticular, if β ∈ {−π

2 , π
2 }, we can rely on standard Euler angles R = Rez,γ̄ Rey ,β̄Rez,ᾱ and in

the vicinity of those singularities, the final three equations of the horizontal part need to be
replaced by

˙̄γ = − cos ᾱ

sin β̄
λ4 + sin ᾱ

sin β̄
λ5,

˙̄β = λ4 sin ᾱ + λ5 cos ᾱ, ˙̄α = (λ4 cos ᾱ − λ5 sin ᾱ) cot β̄.

The sub-Riemannian geodesics are solutions to the Hamiltonian system. Finding a
parameterization of the sub-Riemannian geodesics is a nontrivial problem. In order to
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guarantee that such a parametrization exists, we first prove Liouville integrability of the
system. Here, we follow the same approach as in [24].

The next remark shows that we can restrict ourselves to the case ξ = 1.

Remark 5 The Hamiltonian system of PMP (3.5) reveals the scaling homothety. The case
ξ 
= 1 is obtained from the case ξ = 1 by

λ �→ λ(�ξ ⊕ I3) and (x, R) �→ (�−1
ξ x, R),

with �ξ = diag{ξ, ξ, ξ}. So in order to obtain solution x∗ of Pcurve with boundary condi-
tions (x(0), x′(0)) = (0, ez) and (x(L), x′(L)) = (x1, n1) for ξ > 0, we first solve Pcurve
with boundary conditions (x(0), x′(0)) = (0, ez) and (x(L), x′(L)) = (ξx1, n1) for ξ = 1
in dynamics (3.5). Then the optimal curve x(·) needs to be scaled back x∗(s) = ξ−1x(s).
The homothety boils down to making the problem dimensionless, as the physical dimension
of ξ−1 is spatial length.

Remark 6 All prerequisites for the proof of Theorem 1 are now given. See Appendix A.

3.2 Liouville Integrability

To prove the Liouville integrability of the Hamiltonian system (3.5), one should construct a
complete system of first integrals, i.e., indicate six first integrals in involution (w.r.t. Poisson
brackets) and functionally independent on an open dense domain in T ∗(SE(3)) [2, p. 107].

It is well known that the Hamiltonian H = 1
2

(
λ23 + λ24 + λ25

)
is a first integral of the

Hamiltonian system. From the vertical part of Eq. 3.5, we can immediately see one more
first integral λ6, which is functionally independent from H . Since {H, λ6} = 0, we see
that the integrals H and λ6 are in involution. The Hamiltonian system directly reveals
the first integral W = −λ1λ4 − λ2λ5 − λ3λ6. This integral is a Casimir function, i.e.,
{W,λi} = 0, i = 1, ..., 6. Casimir functions are functions on the dual space of the Lie
algebra commuting in the sense of Poisson brackets with all left-invariant Hamiltonians.
They are universal conservation laws on the Lie group. Connected joint level surfaces of all
Casimir functions are coadjoint orbits (see [20, Prop. 7.7]). Since these orbits are always
even-dimensional (they are symplectic manifolds), the difference between the dimension of
the Lie group and the number of Casimir functions is even. Casimir functions are found
by solving {C, λi} = 0. For polynomial functions C, we can write C with undetermined
coefficients as a polynomial of degree 1, 2, 3, and solve the resulting system of equations
algebraically. The second Casimir function in SE(3) is given by c2 = λ21 + λ22 + λ23.
For details on the Casimir functions, see the work of A.A. Kirillov [19] or the book of
V. Jurdjevic [18].

To construct the complete system of first integrals, we consider integrals H , λ6 and W

and find three more first integrals. Then we show that all six integrals are functionally
independent on an open dense domain in T ∗(SE(3)) and are in involution.

3.2.1 Right-Invariant Hamiltonians

For any right-invariant vector field B ∈ VEC(SE(3)), one can define the corresponding
Hamiltonian ρ(q, λ) = 〈λ(q),B|q〉, λ(q) ∈ T ∗

q (SE(3)). Since right translations commute
with the left ones, left-invariant vector fields commute with right-invariant ones. Thus, left-
invariant Hamiltonians Poisson-commute with the right-invariant ones.
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The right-invariant vector fields are given by

B1 = −∂x, B2 = −∂y, B3 = −∂z, B4 = z∂y − y∂z − ∂γ ,

B5 = −z∂x + x∂z − sin γ secβ∂α − cos γ ∂β − sin γ tanβ∂γ ,

B6 = y∂x − x∂y − cos γ secβ∂α − sin γ ∂β + cos γ tanβ∂γ .

Then, the right-invariant Hamiltonians are defined by ρi(q, λ) = 〈λ(q),Bi |q〉. Since
the table of Poisson brackets between ρi coincides with the commutator of corresponding
vector fields (cf. Table 1), we see that only ρ1, ρ2, and ρ3 are in involution. Their expression
via the left-invariant Hamiltonian λi reads as

ρ1 = −λ1 cosα cosβ + λ2 cosβ sinα − λ3 sinβ,

ρ2 = − cos γ (λ2 cosα + λ1 sinα) + (λ3 cosβ + (−λ1 cosα + λ2 sinα) sinβ) sin γ,

ρ3 = −λ3 cosβ cos γ + cos γ (λ1 cosα − λ2 sinα) sinβ − (λ2 cosα + λ1 sinα) sin γ.

(3.6)

3.2.2 Independence of Integrals

In order to study the functional independence of the integrals H , λ6, W , ρ1, ρ2, ρ3 at a point
(q, λ) ∈ T ∗(SE(3)), introduce the Jacobian matrix

J (q, λ) = (∇H | ∇λ6 | ∇W | ∇ρ1 | ∇ρ2 | ∇ρ3)
T |(q,λ).

Liouville integrability of the Hamiltonian system follows by the study of the vertical
derivatives of the integrals (i.e., the derivatives w.r.t. the variables λi). By analyticity, func-
tional independence of the integrals on an open dense domain in T ∗(SE(3)) follows from
linear independence of gradients of the integrals at a single point (q, λ) ∈ T ∗(SE(3)). Since
we have

∂(ρ1, ρ2, ρ3, W, H, λ6)

∂(λ1, λ2, λ3, λ4, λ5, λ6)
(q, λ) = −λ2λ4 + λ1λ5 
≡ 0,

the first integrals ρ1, ρ2, ρ3, I , H , λ6 are functionally independent. Here, we use that

−λ2λ4 + λ1λ5 = λ̇3 = u̇3 = d2s

dt2

≡ 0. So we proved the following theorem.

Theorem 2 The Hamiltonian system (3.5) is Liouville integrable. Functionally independent
first integrals are ρ1, ρ2, ρ3, cf. (3.6), W = −λ1λ4−λ2λ5−λ3λ6, H = 1

2 (λ
2
3+λ24+λ25) and λ6.

Explicit integration of Eq. 3.5 in sub-Riemannian arclength parametrization t is a
difficult problem. Further in Section 4, we show that using spatial arclength parametriza-
tion s leads to relatively simple expressions for sub-Riemannian geodesics whose spatial
projections do not exhibit cusps.

3.3 The − Cartan Connection ∇
In the sub-Riemannian manifold (SE(3),�,Gξ ), the directionsA1,A2, andA6 are prohib-
ited in the tangent bundle. To get a better grasp on what this means on the manifold level,
we consider principal fibre bundles. We use the minus ‘−’ Cartan connection [8] to con-
nect the Hamiltonian PMP approach to the Lagrangian reduction approach by Bryant and
Griffiths [7]. It provides more intuition and is an important tool toward explicit formulas.
As is seen by the following theorem, these curves actually describe parallel transport of the
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momentum covectors w.r.t. Cartan connections. In the original Cartan and Schouten arti-
cle [8], three Cartan connections are presented, the +, the −, and 0 connection. Here, we
shall rely on the minus − Cartan connection for which the left-invariant vector fields are
autoparallel [27], since our geometrical control problem is expressed in left-invariant vec-
tor fields. In order to keep track of correct tensorial computations, we deal with the general
case ξ > 0 in Theorem 3. However, by Remark 5, only the case ξ = 1 is considered in the
remainder of the article.

Definition 9 We define connection ∇ on the (horizontal) tangent bundle of (SE(3),�,Gξ )

by

∇ γ̇A :=
5∑

k=3

⎛

⎝(ȧk) −
5∑

i,j=3

ck
i,j (γ̇ i )aj

⎞

⎠Ak, (3.7)

with γ̇ =
5∑

i=3
γ̇ iAi |γ , A =

5∑

k=3
akAk and Lie algebra structure constants ck

i,j given in

Table 1.

It is a partial − Cartan connection that originates from a specific choice of principle fiber
bundle. For details, see Appendix B below. Another ingredient in the theorem below is the
standard exponential map from Lie algebra to Lie group given by T(0,I )(SE(3)) � A →
eA ∈ SE(3).

Theorem 3 Horizontal exponential curves in (SE(3),�,Gξ ), are given by t �→

g0 e
t

5∑

i=3
ciAi

, with ξ2(c3)2 + (c4)2 + (c5)2 = 1, g0 ∈ SE(3), and they are precisely the
auto-parallel curves, i.e.,

∇ γ̇ γ̇ = 0.

Along sub-Riemannian geodesics in (SE(3),�,Gξ ) one has covariantly constant
momentum, i.e.,

∇∗
γ̇ λ :=

6∑

i=1

⎛

⎝λ̇i +
5∑

j=3

6∑

k=1

ck
i,j λk γ̇ j

⎞

⎠ωi = 0. (3.8)

When setting contravariant components λi = ξ iλi , ξ3 = ξ−2, ξ4 = ξ5 = 1, and

P�∗λ =
5∑

i=3
λiω

i then the Hamiltonian system of PMP (3.5) can be written as:

∀i∈{1,...,6} : λ̇i +
5∑

j=3

6∑

k=1
ck
i,j λk λj = 0 and ∀i∈{3,4,5} : γ̇ i = λi

(vertical part) (horizontal part),

which is equivalent to ∇∗
γ̇ λ = 0 and G−1

ξ P�∗λ = γ̇ .

Proof Define γ̇ i := 〈ωi
∣
∣
γ

, γ̇ 〉. Note that γ̇ i = ui . Here, we write γ̇ i (instead of ui) to
stress the curve dependence of the control components. Then following the same approach
as done in [13], [11, App.C] (for the case SE(2)), the Cartan connection on the tangent
bundle is given by Eq. 3.7. From Eq. 3.7, we see that the auto-parallel curves are horizontal
exponential curves:
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∇̄γ̇ γ̇ = 0 ⇔ ∀i∈{3,4,5}γ̈ i = 0 ⇔ ∀i∈{3,4,5}γ̇ i = ui = ci for some constants ci ⇔ γ (t) =

γ (0) e
t

5∑

i=3
ciAi

, and to ensure t to be the sub-Riemannian arclength parameter we must have
ξ2(c3)2 + (c4)2 + (c5)2 = 1. Now the partial (‘right’ or −) Cartan connection ∇ on the
tangent bundle naturally imposes the partial Cartan connection ∇∗

on the cotangent bundle,
as follows:

∇∗
γ̇

6∑

i=1

λiω
i |γ =

6∑

i=1

⎛

⎝λ̇i +
5∑

j=3

6∑

k=1

ck
i,j λkγ̇

j

⎞

⎠ ωi
∣
∣
∣
γ

, (3.9)

which follows from Eq. 3.7 and d〈ωk|γ ,Aj |γ 〉 = 〈∇∗
γ̇ ωk|γ ,Aj |γ 〉+ 〈ωk|γ , ∇ γ̇Aj |γ 〉 = 0,

and ck
i,j = −ck

j,i . Now, by the horizontal part of PMP, we have γ̇ i = λi for all i ∈ {3, 4, 5},
so that the result follows by substituting this equality into Eq. 3.9.

Next, we switch to spatial arclength parameter s, as this is convenient. Recall d
ds

is
denoted by a prime. Also recall that s-parametrization is well defined until the spatial
projection of a sub-Riemannian geodesic exhibits a cusp (recall Definition 8).

Denote by smax the minimum positive value of the parameter s where such a cusp
appears. Explicit expression for smax in terms of the initial momentum λ(0) will follow
(see Eq. 4.5). Next, to find the sub-Riemannian geodesics, we integrate the equation in
Theorem 3 via a suitable matrix representation visible in the Cartan-matrix of the Cartan
connection. Such a group representation m : SE(3) → Aut(R6) is given by

m(x, R) :=
(

R σxR

0 R

)

, (3.10)

where σx =
3∑

i=1
xiA3+i ∈ so(3), so that σxy = x × y, with x =

3∑

i=1
xiei and A3+i ∈ so(3)

given by

A4 =
⎛

⎝
0 0 0
0 0 −1
0 1 0

⎞

⎠ , A5 =
⎛

⎝
0 0 1
0 0 0

−1 0 0

⎞

⎠ , A6 =
⎛

⎝
0 −1 0
1 0 0
0 0 0

⎞

⎠ .

Here, we have σRx = RσxR
−1 and thereby m(g1g2) = m(g1)m(g2) for all g1, g2 ∈

SE(3). Then

dλ = λm(γ −1)dm(γ ) = λ

(
R−1dR σR−1dx

0 R−1dR

)

= λ

(
σ(ω4,...,ω6)T σ(ω1,...,ω3)T

0 σ(ω4,...,ω6)T

)

,

with short notation ωj = ωj
∣
∣
γ
, λ = λ|γ , dλ = dλ|γ , and where we represent the covector

λ = ∑6
i=1 λi ωi

∣
∣
γ
by a row-vector λ = (λ1, . . . , λ6). So we see that Eq. 3.10 naturally

appears in Eq. 3.8: ∇∗
γ̇ λ = 0 ⇔ dλ

dt − λm(γ −1)
dm(γ )
dt = 0.

Theorem 4 Let m : SE(3) → Aut(R6) denote the matrix group representation (3.10) s.t.

dλ|γ = λ|γ m(γ −1)dm(γ ). (3.11)

Then, along the sub-Riemannian geodesics in (SE(3),�,G1), the following relation holds:

λ(s)m(γ (s))−1 = λ(0) m(γ (0))−1 = λ(0).
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Proof Note that ∇∗
γ ′(s) λ|γ (s) = 0 iff d

ds λ(s)|γ (s) − λ(s)|γ (s) m((γ (s))−1) d
ds m(γ (s)) = 0

for all 0 ≤ s ≤ smax(λ(0)). The rest follows by

d

ds
(λ(s)(g(s))−1) = −λ(s)(g(s))−1g′(s)(g(s))−1 + λ′(s)(g(s))−1 = 0 ,

with g(s) = m(γ (s)). Multiplication with g(s) from the right yields the result.

For further details, see Appendix B. These details are not necessary for the remainder of
the article, where we only rely on Eqs. 3.7, 3.8, 3.10, and 3.11.

Let us recall the first integrals of the Hamiltonian system and the coadjoint orbits, that
we use next for the derivation of explicit formulas for the geodesics.

Lemma 1 Co-adjoint orbits of λ(0) are given by (see [21, p. 474] and Section 3.2)

{λ ∈ T ∗(SE(3)) | C1(λ) = C1(λ(0)) = c2, C2(λ) = C2(λ(0)) = W },
where Ci are the Casimir functions

C1(λ) = λ21 + λ22 + λ23 = c2, C2(λ) = −λ1λ4 − λ2λ5 − λ3λ6 = W. (3.12)

Corollary 2 On each co-adjoint orbit, we can choose the nice representative λ(0) =
(c, 0, 0, −W

c
, 0, 0), solve the Exponential map for this representative, and obtain the gen-

eral solution by left-invariance. More precisely, by Theorem 4, we first find the geodesic γ̃

with

λ(s) = λ(0)m(γ (s)) = λ(0)m(γ̃ (0))−1 m(γ̃ (s)) = (c, 0, 0, −W

c
, 0, 0)m(γ̃ (s)) (3.13)

and then we obtain γ via γ (s) = γ̃ −1(0)γ̃ (s).

4 Sub-Riemannian Geodesics in R
3
� S2 with Cuspless Projections

In this section, we derive sub-Riemannian geodesics with cuspless spatial projection in the
quotient R3

� S2, and we study geometrical properties of the geodesics, such as planarity
conditions and bounds on the torsion. By Remark 5, we set ξ = 1.

Recall that from Theorem 1, application of PMP to Pmec follows from PMP for the
problem PMEC putting initial momentum λ6 = 0. This yields the following ODE for the
horizontal part:

γ̇ = λ3A3|γ + λ4A4|γ + λ5A5|γ ,

and for the vertical part, we obtain the ODE

d

dt
(λ1, λ2, λ3, λ4, λ5) = (−λ3λ5, λ3λ4, λ1λ5 − λ2λ4, λ3λ2, −λ3λ1). (4.1)

Here, λ(t) = ∑5
i=1 λi(t)ω

i |γ (t) is the momentum expressed in the moving dual frame of
reference. This system of ODE’s takes a simple form in s parametrization, where we have
λ3 = ds

dt > 0. It is given by

d

ds
(λ1, λ2, λ3, λ4, λ5) =

(

−λ5, λ4,
λ1λ5 − λ2λ4

λ3
, λ2, −λ1

)

. (4.2)
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This system can be easily integrated as follows:

λ1(s) = λ1(0) cosh s − λ5(0) sinh s, λ5(s) = λ5(0) cosh s − λ1(0) sinh s,

λ2(s) = λ2(0) cosh s + λ4(0) sinh s, λ4(s) = λ4(0) cosh s + λ2(0) sinh s,

λ3(s) = √
1 − |λ4(s)|2 − |λ5(s)|2,

(4.3)

where the last expression follows from the Hamiltonian and the restriction λ3 > 0. Thus,
we obtain two hyperbolic phase portraits (see Fig. 5).

Recall that spatial arc-length parametrization is well-defined only for the geodesics γ

whose spatial projections π(γ ) = x(·) do not have external cusps. Furthermore, we evaluate
smax = min{s > 0|u3(s) = 0}, i.e., the minimal positive value of s, such that π(γ (s)) =
x(s) is a cusp point.

In the remainder of this article, we use the short notation

λ(1) := (−λ1,−λ2) and λ(2) := (λ5,−λ4), (4.4)

which is not to be confused with the pair (λ(1),λ(2)) ∈ R
6 given by Eq. 2.7.

From the Hamiltonian H = λ23+λ24+λ25
2 = 1

2 , we conclude that ‖λ(2)‖ ≤ 1. For ‖λ(1)‖, we
have no restrictions. This follows from λ21 + λ22 + λ23 = c2, where c ∈ R.

4.1 Computation of the First Cusp Time

An arbitrary geodesic in Pmec cannot be extended infinitely in s-parameterization, since
in the common case its spatial projection presents a cusp, where spatial arclength s-
parametrization breaks down. In fact, for any given initial values of λ(1)(0) and λ(2)(0), the
maximum length smax of such a geodesic, where we have κ(s) → ∞ as s ↑ smax , is given
by the following theorem.

Theorem 5 The spatial projection of a geodesic of Pmec corresponding to initial momenta
λ(1)(0), λ(2)(0) such that ‖λ(2)(0)‖ ≤ 1, presents a cusp first time t1cusp = t (smax) when
s = smax ,

smax = 1

2
log

1 + c2 + 2
√
c2 − W 2

‖λ(2)(0) + λ(1)(0)‖2 , (4.5)

with W and c given by Lemma 1. For given λ(1)(0) and λ(2)(0), the spatial projection of the
corresponding geodesic does not have a cusp for all end times iff ‖λ(2)(0) + λ(1)(0)‖ = 0.

Fig. 5 Phase portraits corresponding to the components of λ(1), λ(2) satisfying the second order differential

equation d2

ds2
λ(1)(s) = λ(1)(s) along the geodesics. Several orbits are shown with arrows
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Proof By definition, we have smax = min{s > 0|u3 = 0}. From PMP, we have u3(s) =
λ3(s) for geodesics. Thus, u3(s) = 0 ⇔ λ3(s) = 0. From the Hamiltonian, we have

λ3(s) =
√
1 − (λ24(s) + λ25(s)), yielding λ3(s) = 0 ⇔ λ24(s) + λ25(s) = 1. Expressions

for λ4(s) and λ5(s) are given by Eq. 4.3, so Eq. 4.5 provides the minimal positive root of
λ24(s) + λ25(s) = 1.

Corollary 3 For fixed ‖λ(2)(0)‖ and ‖λ(1)(0)‖, smax is maximal at those λ(2)(0) and λ(1)(0)
such that W = 0 and λ(2)(0) · λ(1)(0) ≤ 0.

Proof Let an angle −π ≤ θ ≤ π be chosen such that λ(2)(0) · λ(1)(0) =
‖λ(2)(0)‖‖λ(1)(0)‖ cos θ and W = ‖λ(2)(0)‖‖λ(1)(0)‖ sin θ . Then along with the condition
smax > 0, Eq. 4.5 yields dsmax

dθ = 0 ⇒ sin θ = 0, yielding three critical points, ±π and 0.
Comparing smax at these critical points, we get ±π as candidates for smax to be maximum.
Checking the second derivative at ±π , we obtain smax to be maximum at θ = ±π . Thus
W = 0 and λ(2)(0) · λ(1)(0) = −‖λ(2)(0)‖‖λ(1)(0)‖ ≤ 0.

4.2 The Exponential Map

In order to integrate the geodesic equations, we apply Theorem 4. This provides the explicit
formulas for the sub-Riemannian geodesics, which we present in the next theorem. The sub-
Riemannian geodesics are parameterized by elliptic integrals of the first, second, and third
kind

F(ϕ,m) =
ϕ∫

0

(1 − m sin2 θ)−
1
2 dθ, E(ϕ, m) =

ϕ∫

0

(1 − m sin2 θ)
1
2 dθ,

�(n, ϕ, m) =
ϕ∫

0

(1 − m sin2 θ)−
1
2 (1 − n sin2 θ)−1 dθ.

In our formulas below, we use constants W = −λ2λ5 −λ1λ4, c =
√

‖λ(1)‖2 − ‖λ(2)‖2 + 1.

Theorem 6 Let the momentum covector be given by Eq. 4.3, where
∑3

i=1 λ2i (0) 
= 0. Then
the spatial part of the cuspless sub-Riemannian geodesics in Pmec is given by

x(s) = R̃(0)T (x̃(s) − x̃(0)), (4.6)

where R̃(0) and x̃(s) := (x̃(s), ỹ(s), z̃(s)) are given in terms of λ(1)(0) and λ(2)(0)
depending on several cases. For all cases with λ(1)(0) 
= λ(2)(0), we have

x̃(s) = 1

c

s∫

0

λ3(τ ) dτ = − i
√
1 − d

√
1 + c2

c
√
2

(
E

((
s + ϕ

2

)
i, M

)
− E

(ϕ

2
i, M

))
, (4.7)

where M := 2d
d−1 , d := ‖λ(2)(0)+λ(1)(0)‖‖λ(2)(0)−λ(1)(0)‖

1+c2
≤ 1, and ϕ := log ‖λ(2)(0)+λ(1)(0)‖

‖λ(2)(0)−λ(1)(0)‖ .
For the case λ(1)(0) = 0, we have

R̃(0) =
⎛

⎝
0 0 1
0 1 0

−1 0 0

⎞

⎠ ∈ SO(3),

(
ỹ(s)

z̃(s)

)

= −1

c

(
λ4(s)

λ5(s)

)

. (4.8)
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For the case λ(1)(0) 
= 0, we have

R̃(0) = 1

c

⎛

⎜
⎝

λ1(0) λ2(0) λ3(0)
c

−λ2(0)
‖λ(1)(0)‖ c

λ1(0)
‖λ(1)(0)‖ 0

−λ1(0)λ3(0)
‖λ(1)(0)‖

−λ2(0)λ3(0)
‖λ(1)(0)‖ ‖λ(1)(0)‖

⎞

⎟
⎠ ∈ SO(3). (4.9)

For the case W = 0 along with λ(1)(0) 
= 0, we have
(

ỹ(s)

z̃(s)

)

= λ(2)(s) · λ(1)(0)

c‖λ(1)(0)‖
(
0
1

)

. (4.10)

For W 
= 0 along with λ(1)(0) 
= 0, we have

(
ỹ(s)
z̃(s)

)

=
√

‖λ(2)(s)‖2 − W 2c−2

c2‖λ(1)(0)‖
√

‖λ(2)(0)‖2 − W 2c−2

(
cos ψ̃(s) − sin ψ̃(s)

sin ψ̃(s) cos ψ̃(s)

) (
Wλ3(0)

c(λ(2)(0) · λ(1)(0))

)

,

(4.11)
where

ψ̃(s) =
s∫

0

W c−1λ3(τ )

‖λ(2)(τ )‖2 − W 2c−2
dτ = −W

c

√
2√

1 + c2
√
1 − d

1

i

(
F(i(s + ϕ

2
), M) − F(

iϕ

2
, M)

−(1 − 1

D
)(�

(
M

D
, i(s + ϕ

2
), M

)

− �

(
M

D
,
iϕ

2
, M

)

)
)
, (4.12)

with D = 2(W 2

c2
− 1)(1 + c2)−1(1 − d)−1 + 1 and |ψ̃(s)| < π , sign(ψ̃(s)) = sign(W).

Proof We use Theorem 4 and apply Corollary 2. From which we have γ (s) = γ̃ (0)−1γ̃ (s),
where m(γ̃ (s)) relates to λ(s) via Eq. 3.13. This provides Eq. 4.6. For the most general
case, assuming non-vanishing denominators throughout, we see that when choosing (4.9)

and x̃(0) := 1
c2‖λ(1)(0)‖

(
0,Wλ3(0), c(λ(1)(0) · λ(2)(0))

)T
, Eq. 3.13 is satisfied in the initial

moment s = 0. Then solving Eq. 3.13 for x̃, ỹ, and z̃, we obtain x̃(s) = 1
c

s∫

0
λ3(τ ) dτ for

x̃(s) and for (ỹ(s), z̃(s)) we obtain the following system:
(

ỹ′(s)
z̃′(s)

)

= A(s)

(
ỹ(s)

z̃(s)

)

,

with A(s) = 1

‖λ(2)(0)‖2− W2

c2

(
λ(2)(s) · λ(1)(s) −W

c
λ3(s)

W
c

λ3(s) λ(2)(s) · λ(1)(s)

)

.

(4.13)

Note that A(s) and A(s′) commute, and Wilcox formula [37] yields the result.
Clearly, the formulas are not valid when denominators vanish. Hence, we do the whole

procedure keeping in mind the special cases (4.8), (4.10) right from the start and get the
required results.

Regarding Eq. 4.11, we note that matrix e
∫ s
0 A(τ)dτ can be computed explicitly. One has

e

s∫

0
A(τ) dτ

=
√

‖λ(2)(s)‖2 − W 2c−2

‖λ(2)(0)‖2 − W 2c−2

(
cos ψ̃(s) − sin ψ̃(s)

sin ψ̃(s) cos ψ̃(s)

)

,
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with ψ̃(s) =
s∫

0

Wc−1λ3(τ )

‖λ(2)(s′)‖2−W 2c−2 dτ . From the first integrals, one can deduce that ∀s ∈
(0, smax) : ‖λ(2)(s)‖2 − W 2c−2 > 0. Note ‖λ(2)(s)‖2 = W 2c−2 ⇔ s = smax ∧ λ(1)(smax) ·
λ(2)(smax) = 0. By direct computation, (4.12) follows. Moreover, by Lemma 4.13 in [16],

we have |ψ̃(s)| < π for all s ≤ smax and since c−1λ3(s)

‖λ(2)(s)‖2−W 2c−2 ≥ 0 we have sign(ψ̃(s)) =
sign(W).

The remaining part is to prove that x̃(s) = 1
c

s∫

0
λ3(τ ) dτ can be integrated in terms of

elliptic integrals, as presented in Eq. 4.7. This is done by the following computation:

x̃(s) =
∫ s

0

λ3(τ )

c
dτ = 1

c

∫ s

0

√
1 − ‖λ(2)(τ )‖2dτ =

√
1 + c2

c
√
2

∫ s

0

√
1 − c1 cosh(2τ) − c2 sinh(2τ)dτ,

where c1 := 1
1+c2

(‖λ(2)(0)‖2 + ‖λ(1)(0)‖2) and c2 := 2
1+c2

λ(2)(0) · λ(1)(0).

Denoting d :=
√

c21 − c22, ϕ := 1
2 log

c1+c2
c1−c2

, M := 2d
d−1 and θ := iτ + iϕ

2 , we can express

x̃(s) =
√

1+c2

c
√
2

∫ s

0

√
1 − d cos(2iτ + iϕ)dτ =

√
1−d

√
1+c2

ic
√
2

i(s+ ϕ
2 )∫

iϕ
2

√
1 − M sin2(θ) dθ

= − i
√
1−d

√
1+c2

c
√
2

(E((s + ϕ
2 )i, M) − E((

ϕ
2 )i,M)),

where we note that d ≤ 1
1+c2

1
2 (‖λ(2)(0) − λ(1)(0)‖2 + ‖λ(2)(0) + λ(1)(0)‖2) ≤ 1.

Corollary 4 The exponential map Exp : D0 → R
3
�S2 defined in Definition 6 is given by

Exp(λ(0), L) = (x∗(L),n∗(L)),

where n∗(L) = d
ds
x∗(s)|s=L and where the spatial part of the geodesic x∗(L) =

(x∗(L), y∗(L), z∗(L)) is explicitly given by Eq. 4.6. Here, the tangent equals

d

ds
x∗(s)|s=L = x∗ ′

(L) = (R̃(0))T x̃′(L),

with R̃(0) given by Eqs. 4.8 and 4.9, and x̃′(L) = 1
c
λ3(L) with λ3(L) given by Eq. 4.3, and

(ỹ′(L), z̃′(L))T = A(L) (ỹ(L), z̃(L))T with A(L) given by Eq. 4.13 and ỹ(L), z̃(L) given
by Eq. 4.11.

4.3 Geometric Properties of the Stationary Curves

Let a stationary curve of Pcurve in R
3 be given by x : [0, L] → R

3 parameterized by
arclength denoted by s. Let the unit tangent, the unit normal, and the unit binormal for this
curve be given by T, N, and B, respectively. Let κ and τ denote curvature and torsion, then
the Frenet-Serret equations are

d

ds

⎛

⎝
T(s)

N(s)

B(s)

⎞

⎠ =
⎛

⎝
0 κ(s) 0

−κ(s) 0 τ(s)

0 −τ(s) 0

⎞

⎠

⎛

⎝
T(s)

N(s)

B(s)

⎞

⎠ . (4.14)
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Let us first study the curvature and signed torsion of the spatial projection of the sub-
Riemannian geodesics. Let us recall the first integral constants W = −λ2λ5 − λ1λ4 and

c =
√

‖λ(1)‖2 − ‖λ(2)‖2 + 1 in Lemma 1. Furthermore, we have that

R′ = dt

ds
Ṙ = λ−1

3 Ṙ = λ−1
3 R

⎛

⎝
0 0 λ5
0 0 −λ4

−λ5 λ4 0

⎞

⎠ . (4.15)

and therefore

x′(s) = R(s)ez ⇒ x′′(s) = R(s)

⎛

⎜
⎝

λ5(s)
λ3(s)

− λ4(s)
λ3(s)

0

⎞

⎟
⎠ ⇒ x′′′(s) = R(s)

⎛

⎜
⎜
⎜
⎝

d
ds

(
λ5(s)
λ3(s)

)

− d
ds

(
λ4(s)
λ3(s)

)

− λ24(s)+λ25(s)

λ23(s)

⎞

⎟
⎟
⎟
⎠

. (4.16)

Theorem 7 The absolute curvature and the signed torsion of a stationary curve of Pcurve
are given by

κ =
√

λ24 + λ25

λ3
=

√
1 − λ23

λ3
, τ = W

λ24 + λ25

, (4.17)

with momentum components λi given by Eq. 4.3. We have the following fundamental
relation between curvature and torsion

τ(s) κ2(s) = W (t ′(s))2. (4.18)

The torsion is bounded as follows

|W | ≤ |τ(s)| ≤ 2|W |
√

(1 − c2)2 + 4W 2 + 1 − c2
for all 0 ≤ s ≤ L ≤ smax. (4.19)

Proof In the proof, we use the following properties of norm, inner product, and cross
product:

∀R∈SO(3)∀a,b∈R3 : ‖Ra‖ = ‖a‖, (Ra) · (Rb) = a · b, (Ra) × (Rb) = R(a × b).

First part follows by straightforward computation via Eqs. 4.15 and 4.16. By definition, we
have κ(s) = ‖x′′(s)‖. Thus by Eq. 4.16 and the Hamiltonian H = 1

2 (λ
2
3 +λ24 +λ25) = 1

2 , we
obtain, that the curvature satisfies (4.17). For arclength parametrized curve x(s) in R

3, the
torsion is given by τ = (x′×x′′)·x′′′

‖x′×x′′‖2 (see e.g. [35]). Thus by Eq. 4.16, we have (x′ ×x′′) ·x′′′ =
W

λ23
and ‖x′×x′′‖2 = λ24+λ25

λ23
, and thereby τ satisfies (4.17). Equation 4.18 follows by λ3 = ds

dt

and Eq. 4.17.
In order to prove bounds (4.19), we use expression for torsion τ = W

λ24+λ25
⇒ |τ | =

|W |
λ24+λ25

. The lower bound in Eq. 4.19 holds since λ24 + λ25 ≤ 1 due to the Hamiltonian.

To prove the upper bound, we show that λ24(s) + λ25(s) ≥
1
2

(√
(1 − c2)2 + 4W 2 + 1 − c2

)
for all s ∈ [0, smax]. To obtain the last inequality, we

solve
d
(
λ24(s)+λ25(s)

)

ds = 0 using Eq. 4.3:

sM := arg min
s∈[0,smax ]{λ

2
4(s)+λ25(s)} =

{
0, if − λ5(0)λ1(0) + λ2(0)λ4(0) > 0,
1
2 log

‖λ(2)(0)−λ(1)(0)‖
‖λ(2)(0)+λ(1)(0)‖ , if − λ5(0)λ1(0) + λ2(0)λ4(0) ≤ 0.
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Thus, evaluation |τ(sM)| = |W |
λ24(sM)+λ25(sM)

gives the upper bound in Eq. 4.19. Here, we use

identity ‖λ(2)(0) + λ(1)(0)‖‖λ(2)(0) − λ(1)(0)‖ = √
(1 − c2)2 + 4W 2.

Corollary 5 The cuspless spatial projections of sub-Riemannian geodesics of Pmec with∑3
i=1 λ2i (0) 
= 0 (i.e., the stationary curves of Pcurve) are planar if and only if W = 0.

Next, we show that when taking the end conditions to be co-planar, one gets W = 0
implying that planar curves are the only cuspless geodesic of problem Pmec connecting these
conditions.

Theorem 8 Let x : [0, smax] → R
3 be the spatial part of a cuspless sub-Riemannian

geodesic of Pmec given by Theorem 6, i.e., let x be a stationary curve of Pcurve. Then for any
s ∈ (0, smax], one has that ez, x(s) and x′(s) are coplanar if and only if x is a planar curve,
i.e.

ez · (x(s) × x′(s)) = 0 ⇔ W = 0.

Proof If W = 0, it follows by Corollary 5 that the curve is planar. By Theorem 6, we indeed
get thatW = 0 ⇒ ỹ(s) ≡ 0 and ỹ(s) ≡ 0 ⇒ x̃(0)·(x̃(s)×x̃′(s)) = 0 ⇒ ez ·(x(s)×x′(s)) =
0.

Now, we focus on the other direction of the implication. Let us consider curve x′ :
[0, smax] → S2. It can have a minimum curvature of 1 if it aligns with a great cir-
cle on S2. By Eqs. 4.16 and 4.17, it follows that the geodesic curvature Ktan of x′(·) is
given as

Ktan(s) := ‖x′′(s) × x′′′(s)‖
‖x′′(s)‖3 =

√
κ6(s) + (

κ2(s) + 1
)2

W 2

κ3(s)
=

√

1 +
(
κ2(s) + 1

)2
W 2

κ6(s)
.

Thus, W 
= 0 ⇒ Ktan(s) > 1 for any s ∈ (0, smax). The curve x′ gets aligned with great
circles only at cusp points where κ(s) = ∞ which never occurs in an interior point. Thus
the curve n = x′ can intersect a great circle on S2 at most at two points. Therefore, any three
points along this curve can never lie simultaneously on a plane passing through the origin.
Thus

∀τ,s>0 : x′(0)·(x′(τ )×x′(s)) 
= 0 ⇒
s∫

0

(
x′(0) · (x′(τ ) × x′(s))

)
dτ 
= 0 ⇒ x′(0)·(x(s)×x′(s)) 
= 0.

So W 
= 0 ⇒ ez · (x(s) × x′(s)) 
= 0. In turn, this leads to ez · (x(s) × x′(s)) = 0 ⇒
W = 0.

The following corollaries relate the planar cuspless sub-Riemannian geodesics in
(SE(3),�,G1) to those in (SE(2), �̃, G̃1) with �̃ = ker{− sin θdx + cos θdy} and G̃1 =
(cos θdx + sin θdy) ⊗ (cos θdx + sin θdy) + dθ ⊗ dθ), cf. [11].

Corollary 6 Given admissible coplanar end conditions for Pcurve, the unique cuspless
stationary curve connecting them is planar.

Now by the global optimality results in [6, 11], we have the following corollary.
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Corollary 7 Let R̃ denote the range of the exponential map of cuspless geodesics in SE(2),
which coincides with the set of admissible end conditions of Pcurve in SE(2). Then the set

{
(

x1, (
x1√

x21+y21

sin θ1,
y1√

x21+y21

sin θ1, cos θ1)
T

)

|(x1, θ1) ∈ R̃} ⊂ R (recall (2.11)) is a set

of end conditions admitting a unique global cuspless minimizer of Pcurve.

Next, we show that the sub-Riemannian geodesics do not self intersect or roll up, despite
the fact that the absolute curvature κ(s) → ∞ as s ↑ smax .

Corollary 8 The cuspless spatial projections of sub-Riemannian geodesics of Pmec
with λ21(0) + λ22(0) + λ23(0) 
= 0, have a monotonically increasing component along
c−1

(
λ1(0)ex + λ2(0)ey + λ3(0)ez

)
. Hence, they do not self intersect or roll up.

Proof From Eq. 4.6, we have ex̃ = (R̃(0))T ex = c−1
(
λ1(0)ex + λ2(0)ey + λ3(0)ez

)
. By

Theorem 6, we have x̃′(s) > 0 for all s ∈ (0, smax) and the result follows.

Next, we want to study bounds on the set R, recall (2.11). Our numerical investigations
clearly show that the spatial part of all points inR is contained in the half space z ≥ 0, and
that the plane z = 0 is only reached with U-shaped planar geodesics (i.e., W = 0, c < 1)
at s = smax . These numerical observations inspired us to find the natural generalization of
formal results in [11, Thm.7&8] on the SE(2)-case. We partly succeeded as we show in the
next three corollaries, which provide bounds on the setR.

Corollary 9 Let s �→ γ (s) = (x(s), y(s), z(s), R(s)) be a sub-Riemannian geodesic in
(SE(3),�,G1) with λ6 = 0 and λ21(0) + λ22(0) + λ23(0) 
= 0, departing from e = (0, I ), s.t.
the spatial projection is cuspless.

If λ(1)(0) · λ(2)(0) ≥ 0, then z(s) > 0 for all s ∈ (0, smax).
If λ(1)(0) · λ(2)(0) < 0, then z(s) > 0 for all s ∈ (0, sm), with

sm =

⎧
⎪⎪⎨

⎪⎪⎩

log
|λ4(0) + λ5(0)|
|λ4(0) − λ5(0)| , if λ(1)(0) = −λ(2)(0),

log
‖λ(2)(0) + λ(1)(0)‖
‖λ(2)(0) − λ(1)(0)‖ , otherwise.

Proof If λ(1)(0) ·λ(2)(0) ≥ 0, then λ(1)(τ ) ·λ(2)(τ ) ≥ 0 for all τ ∈ (0, smax), which implies
A(τ) ≥ 0 for all τ ∈ (0, smax), where we recall Eq. 4.13. Now by Theorem 6, we have

z(s) = (x(s), ez) = ((R̃(0))T (x̃(s) − x̃(0)), ez) = (x̃(s) − x̃(0), R̃(0)ez) = (x̃(s) − x̃(0), x̃′(0))

= x̃(s)x̃′(0) +
⎛

⎝ (e

s∫

0
A(τ) dτ

− I )

(
ỹ(0)
z̃(0)

)

, A(0)

(
ỹ(0)
z̃(0)

)
⎞

⎠

= c−2λ3(s)
s∫

0
λ3(τ ) dτ +

⎛

⎝ (A(0))T (e

s∫

0
A(τ) dτ

− I )

(
ỹ(0)
z̃(0)

)

,

(
ỹ(0)
z̃(0)

)
⎞

⎠ .

As cusps do not occur on the interior of spatially projected curve x(·) = (x(·), y(·), z(·)),
the first term c−2λ3(s)

s∫

0
λ3(τ ) dτ is strictly positive for all s ∈ (0, smax). Regarding the
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second term, we note that A(τ1) and A(τ2) commute for all τ1, τ2 > 0 and each A(τ) can
be diagonalized. Now, AT (0) = C A−1(0) for some C > 0. Thereby, both operators AT (0)

and
(
e
∫ s
0 A(τ) dτ − I

)
commute, have a common eigensystem, and are either semi-positive

definite or semi-negative definite, thus

z(s) >

⎛

⎝ (A(0))T (e

s∫

0
A(τ) dτ

− I )

(
ỹ(0)
z̃(0)

)

,

(
ỹ(0)
z̃(0)

)
⎞

⎠ ≥ 0 ⇔

⇔

⎧
⎪⎪⎨

⎪⎪⎩

AT (0) ≥ 0 and e

s∫

0
A(τ) dτ

− I ≥ 0,

or AT (0) ≤ 0 and e

s∫

0
A(τ) dτ

− I ≤ 0

⇔
{

λ(1)(0) · λ(2)(0) ≥ 0,
or λ(1)(0) · λ(2)(0) ≤ 0 and m(s) cos(ψ̃(s)) ≤ 1,

where the scalar multiplier

m(s) =
√
1 − |λ3(s)|2 − W 2c−2

1 − |λ3(0)|2 − W 2c−2
≤ 1 ⇔ λ3(s) ≥ λ3(0) ,

comes from Eq. 4.13. Now, sm is chosen as the first positive root of λ3(s) = λ3(0) and the
result follows as m(s) ≤ 1 ⇒ m(s) cos(ψ̃(s)) − 1 ≤ 0.

Corollary 10 Let W = 0 then all cuspless sub-Riemannian geodesics in (SE(3),�,G1)

with λ6 = 0 and λ21(0) + λ22(0) + λ23(0) 
= 0, departing from e = (0, I ) stay in the upper
half space z ≥ 0.

Proof If W = 0 the spatial part of such a sub-Riemannian geodesic is coplanar by
Theorem 8. Application of Corollary 7 and [11, Thm.7&8] yields the result.

Corollary 11 Let s �→ γ (s) = (x(s), y(s), z(s), R(s)) be a sub-Riemannian geodesic
in (SE(3),�,G1) with λ6 = 0 and λ21(0) + λ22(0) + λ23(0) 
= 0, departing from e =
(0, I ), s.t. its spatial projection does not have (interior) cusps. Assume it departs from
a cusp and ends towards a cusp, i.e., λ3(0) = 0 = λ3(smax), where smax > 0 by
definition.

Then z(s) > 0 for all s ∈ (0, smax), and z(s) = 0 ⇔ (W = 0 and s ∈ {0, smax} and
c < 1).

Proof If W 
= 0 and λ3(0) = 0, then ‖λ(2)(0)‖ = 1 and ‖λ(1)(0)‖ = c, and by Theorem 6
one has

z(s) = z̃(s) − z̃(0) = (m(s) cos ψ̃(s) − 1)
λ(1)(0) · λ(2)(0)

c2
for all s ∈ [0, smax],

with m(s) < 1 if s < smax and λ(1)(0)·λ(2)(0) < 0 mandatory for smax > 0 in case λ3(0) =
0. Now m(smax) = 1 but even then due to ψ̃(s) 
= 0 we have W 
= 0 ⇒ z(smax) 
= 0, recall
(4.12).

If W = 0 and λ3(0) = 0 then by Eq. 4.10 in Theorem 6, we have for this specific case,

z(s) = z̃(s) − z̃(0) = (λ(2)(s) − λ(2)(0)) · λ(1)(0)

c2
= 1

c2

(
c2 sinh s − c(cosh s − 1)

)
.
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Now only for c < 1, we find two nonnegative roots s = 0 and s = log 1+c
1−c

= smax .
The parabola corresponding to the quadratic equation arising when setting p = es and
multiplying with p is a parabola that opens downward so that z(s) > 0 if s ∈ (0, smax).

Corollary 12 Let (x1,−ez) be the end condition of Pcurve with the initial condition (0, ez).
Then, a solution to problem Pcurve exists if and only if x1 · ez = 0. Moreover, this condition
is only possible for curves departing from a cusp and ending in a cusp.

Proof Let x be a solution to problem Pcurve with x′(0) = −x′(L) for some 0 < L ≤ smax .
So we have x̃′(0) = −x̃′(L), which implies x̃′(0) = −x̃′(L). But this is possible if and only
if x̃′(0) = 0 = x̃′(L), which is possible only if ‖λ(2)(0)‖ = 1 and L = smax , i.e., if the
geodesic both starts and ends at a cusp. Then z(smax) = 0 (see Corollary 11).

4.4 Symmetries of the Exponential Map

We now describe the symmetries of the exponential map of Pcurve, recall Definition 6. Here,
we are interested in the symmetries that retain curvature and torsion along the curve and
preserve direction of time (i.e., we do not consider the symmetries involving time inversion
s �→ L − s, cf. [25]). From the conservation law

(λ1(s))
2 + (λ2(s))

2 − ((λ4(s))
2 + (λ5(s))

2) = c2 − 1 (4.20)

and Eq. 4.17 in Theorem 7, we deduce the following corollary.

Corollary 13 Let P ∈ R
6×6 be given by

(4.21)

with Q ∈ O(2) arbitrary. Then we have the following symmetry property of the exponential
map:

Ẽxpe(λ(0)P T , l) =
(

0,
(

Q 0
0 1

))

· Ẽxpe(λ(0), l) ·
(

0,
(

QT 0
0 1

))

.

Here λ = (λ1, . . . , λ6) and the group product · is on the Euclidean group E(3).

Proof Proof can be found in [16].

Figure 6 depicts both the rotational and reflectional symmetries of the cuspless sub-
Riemannian geodesics of problem Pmec. To generate the figures, we have set

λ(2)(0) = ‖λ(2)(0)‖(cos θ, sin θ)T and λ(1)(0) = ‖λ(1)(0)‖(cos(θ − �), sin(θ − �))T .

(4.22)
Here, � denotes the angle between λ(2)(0) and λ(1)(0). For both these figures, we fixed
‖λ(2)(0)‖ and ‖λ(1)(0)‖. For Fig. 6a, we took � = 0 and varied θ . For Fig. 6b, we fixed θ

and varied �. The plane of reflection corresponds to � = 0. See [16, Fig. 5] for an intuitive
explanation of the relation of � with respect to the momentum variables.
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Fig. 6 a Rotational symmetries in case of several planar cuspless sub-Riemannian geodesics of problem
Pmec departing from e in direction of ez. b Reflectional symmetry of certain cuspless geodesics of Pmec.
These curves are produced by rotating λ(1)(0) by certain angles while keeping λ(2)(0) fixed. The plane of
reflection contains the middle curve with λ(1)(0) parallel to λ(2)(0)

5 Numerical Analysis of Problem Pcurve

5.1 Numerical Computations of the Jacobian of Exponential Map

In this section, we provide a numerical investigation into the absence of conjugate points on
sub-Riemannian geodesics associated to the problem Pcurve. Recall that a conjugate point
is a critical value of the exponential map (cf. Definition 6), i.e., at such a point one has

det
(

∂(Exp(λ(0),L))
∂(λ(0),L)

)
= 0.

Denote by J the Jacobian of the exponential map, i.e.,

J = det

(
∂(Exp(λ1(0), λ2(0), λ4(0), λ5(0), L))

∂(λ1(0), λ2(0), λ4(0), λ5(0), L)

)

.

To compute the Jacobian numerically, we approximate the partial derivatives by finite
differences:

∂(Exp(λ1(0),λ2(0),...,L))
∂(λ1(0))

≈ Exp(λ1(0)+�,λ2(0),...,L)−Exp(λ1(0)−�,λ2(0),...,L)
2� ,

· · ·
∂(Exp(λ1(0),λ2(0),...,L))

∂L
≈ Exp(λ1(0),λ2(0),...,L+�)−Exp(λ1(0),λ2(0),...,L−�)

2� .

We verified that the Jacobian is always positive for a million random points within the
domain D0 of the exponential map of Pcurve, recall (2.10). The points were determined as
follows. The first integrals c2 = ∑3

i=1 λ2i (0) and
∑5

i=3 λ2i (0) = 1 allow us to introduce
coordinates

{
λ4(0) = sinφ2 cosφ1,
λ5(0) = sinφ2 sinφ1,
λ3(0) = cosφ2,

{
λ1(0) = r cosφ3,
λ2(0) = r sinφ3,

where r =
√
c2 − cos2 φ2 =

√
c2 − λ23(0).
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By the rotational symmetry presented in Corollary 13, we can reduce one parameter by
setting φ1 = 0. Furthermore, we recall that λ3(0) ≥ 0, which implies −π

2 ≤ φ2 ≤ π
2 . Thus,

we can parameterize the domain of exponential map by φ2 ∈ [−π
2 , π

2 ], φ3 ∈ [0, 2π ], c ∈
[cosφ2, +∞), L ∈ (0, smax]. We consider c ∈ [cosφ2, 10], and compute the Jacobian in
both a random and a uniform grid on (φ2, φ3, c, L). Here, the restriction of c from above is
not crucial, as smax → 0 when c → ∞. Furthermore, the absence of conjugate points for
short arcs of geodesics follows from general theory (see [1]). Finally, by Corollary 3, we

have smax ≤ 1
2 log

(1+c)2

1+c2
, that implies smax < 0.1 for c > 10.

In Fig. 7, we show several trajectories of different types (U-shaped curves for c < 1
and S-shaped curves for c > 1) and corresponding plots of the Jacobian for s ∈ [0, smax].
Remarkably, the Jacobian is not just positive, it is even a monotonically increasing function
of s for the range of the plot. A similar behavior for the Jacobian can be seen on the closely
related problem Pcurve on R2 (see. [11]), where the absence of conjugate points was proved.

5.2 The Range of the Exponential Map Pcurve

There are a number of restrictions on the possible terminal points reachable by sub-
Riemannian geodesics of problem Pmec with cuspless spatial projection. Together, such
points form the range R of the exponential map of Pcurve, recall (2.11). We present some
special cases which help us to get an idea about the range of the exponential map of Pcurve.
Recall that Corollary 12 gave us the possible terminal positions (at z = 0) when the final
direction is opposite to the initial direction.

Based on our numerical experiments, we pose the following conjecture which is
analogous to a result in the 2D case of finding cuspless sub-Riemannian geodesics in
(SE(2), �̃, G̃1) [6, 11].

Conjecture 1 Let the range of the exponential map defined in Definition 6 be denoted by
R and let the domain D0 of the exponential map be given by Eq. 2.10.

Fig. 7 a Cuspless projections of sub-Riemannian geodesics in problem Pmec of different types. U-curves
are depicted in green and blue colors, and S-curves are depicted in red and purple. b Plot of the Jacobian of
exponential map, corresponding to these geodesics. We see that the Jacobian is positive (even increasing) for
all s ∈ (0, smax). This supports our conjecture that conjugate points are absent before the first cusp point
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• Exp : D0 → R is a homeomorphism when D0 andR are equipped with the subspace
topology.

• Exp : int (D0) → int (R) is a diffeomorphism. Here int (S) denotes the interior of the
set S.

The boundary of the range is given by ∂R = SB ∪ SR ∪ SL with

SB = {Exp(λ(0), smax(λ(0))) |λ(0) ∈ D0} and
SR = {Exp(λ(0), s) | λ(0) ∈ D0 and λ4(0)

2 + λ5(0)
2 = 1 and s > 0}

SL = {(0, R) ∈ SE(3) | Rez · ez ≥ 0}. (5.1)

Fig. 8 a Comparison of the possible end conditions of Pcurve for the 2D and 3D case. On the right, possible
tangent directions of cuspless sub-Riemannian geodesics with unit length departing from the origin in the
direction of ez are depicted. In the SE(2) case (left) within (SE(2), �̃, G̃1) studied in [11], this set of possible
directions at each point is a connected cone [11, Thm.6&9]. The boundary is obtained by end conditions
of geodesics that either begin with a cusp point (shown in red) or end at a cusp point (shown in blue). b
Comparison in the special case when we set the end conditions on a half unit circle
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Note that SB ∈ R and SR ∈ R but SL 
∈ R. This conjecture would imply that no
conjugate points arise within R and the problem Pcurve (1.1) is well posed for all end
conditions in R. The proof of this conjecture would be on similar lines as in Appendix F
of [11]. If the conjecture is true, we have a reasonably limited set of possible directions per
given end positions for which a cuspless sub-Riemannian geodesic of problem Pcurve exists.
Then the cones of admissible end conditions for Pcurve (recall Definition 7) in Fig. 8a form
the image of the boundary of the phase space of {λ(2)(0), λ(1)(0)} under the exponential
map. Recall Fig. 5. These cones represent the boundary of the possible reachable angles by
stationary curves of problem Pcurve. Figure 8b shows the special case of the end conditions
being on a unit circle containing the z-axis. The final tangents are always contained within
the cones at each position. Numerical computations indeed seem to confirm that this is the
case (see Fig. 9). The blue points on the boundary of the cones correspond to SB while the
red points correspond to SR given in Eq. 5.1.

5.3 Solving the Boundary Value Problem Associated to Pcurve

Using explicit formulas for sub-Riemannian geodesics obtained in Theorem 6 in Sec-
tion 4.2, we developed a Wolfram Mathematica package, that numerically solves the
boundary value problem (BVP) associated to Pcurve. The package is available by link http://
bmia.bmt.tue.nl/people/RDuits/final.rar. Note, that the BVP can be also tackled by a soft-
ware Hampath [10] developed to solve optimal control problems. Hampath is based on
numerical integration of a Hamiltonian system of PMP and second-order optimality condi-
tions. In contrast to Hampath, our program does not involve numerical integration, and is
based on numerical solution of a system of algebraic equations in Theorem 6, and relies on
shooting based on the exact formulas, for details see [16].

Fig. 9 The spatial part of arbitrary cuspless geodesics in (SE(3),�,G) and the cones of reachable angles as
depicted in Fig. 8. Note that the cuspless geodesics are always contained within the cones. We checked this
for many more cases, which supports our Conjecture 1

http://bmia.bmt.tue.nl/people/RDuits/final.rar
http://bmia.bmt.tue.nl/people/RDuits/final.rar
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6 Conclusion

In this article, we have derived explicit exact formulas of the geodesics of problem Pcurve
in Theorem 6 and Corollary 4, where because of a scaling homothety we can set ξ = 1.
We have shown in Theorem 1 that they are spatial projections of special cases of sub-
Riemannian geodesics within (SE(3),�,Gξ=1) whose spatial projections are cuspless. We
have characterized the setR of admissible end conditions for problem Pcurve in Corollary 1.
In Theorem 2, we have proved Liouville integrability for the corresponding sub-Riemannian
problem. In Theorem 5, we have computed the first cusp time t1cusp = t (smax) of the sub-
Riemannian geodesics explicitly. We have shown the following geometric properties of
geodesics of Pcurve:

• Global bounds on torsion in Theorem 7.
• They are planar if and only if the boundary conditions are coplanar, cf. Theorem 8.
• Planar geodesics are globally optimal, cf. Corollary 7.
• They do not self intersect or roll up, cf. Corollary 8.
• They stay in the half space prescribed by the orientation of the initial condition (i.e., z ≥

0 if n0 = ez), which was formally shown for most cases (cf. Corollaries 9, 10, and 11).
Also, we analyzed cases where the plane z = 0 is reached, cf. Corollary 11.

• Their rotational and reflectional symmetries in Theorem 13.

Finally, we provided a numerical Mathematica package to solve the boundary value prob-
lem via a shooting algorithm. We included numerical support for the expected absence of
conjugate points on the sub-Riemannian geodesics (with λ6(0) = 0) with cuspless spa-
tial projections, i.e., tconj ≥ t1cusp. Also, numerical computations on the cones of reachable
angles (and their boundaries, cf. Fig. 8) seem to reveal the same homeo/diffeomorphic
properties of the exponential map integrating the canonical ODE’s in Pontryagin maximum
principle, that were formally shown on the SE(2) case [11, Thm.6&9]. In future work, we
plan to analyze the sub-Riemannian spheres via viscosity solutions of sub-Riemannian HJB-
equations, i.e. extend the work [3] to the SE(3) case. This will yield a numerical computation
of the sub-Riemannian spheres and the 1st Maxwell-set.
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Appendix A: Proof of Theorem 1

Here, we rely on the formulation of problem PMEC using the control variables as given by
Eq. 3.1 in Section 3. To this end, we note that 〈ωi |γ , γ̇ 〉 = ui for i ∈ {3, 4, 5}. So for i = 3,

http://creativecommons.org/licenses/by/4.0/
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we have 〈ω3|γ , γ̇ 〉 > 0 ⇔ u3 > 0. Particularly, this holds for a smooth minimizer γ = γ ∗
of problem PMEC.

If the end-condition g = g1 = (x1, R1) in Eq. 3.2 is chosen such that the optimal control
u3(t) > 0 for t ∈ (0, T ), then ds

dt
(t) > 0 and the minimizer is parameterizable by spatial

arclength s. Let γ be a horizontal curve in (SE(3),�,Gξ ). We define γ (s) := γ (t (s)) =
(x(s), n(s)), and uk(s) = uk(t (s)) and let us recall γ is horizontal, i.e.,

γ̇ (t) =
5∑

i=3
ui(t) Ai |γ (t) , γ ′(s) = 1 A3|γ (s) + u4(s) A4|γ (s) + u5(s) A5|γ (s) .

Lifting of a curve x(·) to a curve (x(·),n(·)) into R
3
� S2 is done by setting x′(s) =

n(s). Let ck
i,j denote the usual structure constants of the Lie algebra of SE(3) (see Table 1),

then

x′′(s) = n′(s) = d

ds
x′(s) = d

ds
A3|γ (s) =

3∑

j,k=1

ck
j,3 〈ωj

∣
∣
∣
γ (s)

, γ ′(s)〉 Ak|γ (s)

= −u4(s) A2|γ (s) + u5(s) A1|γ (s) .

Direct computation of the Frenet-Seret ODE along horizontal curves (cf. [16,
ch:2,Thm3.16]) yields the following expressions for curvature magnitude, and torsion
magnitude:

|κ(s)|2 = |u4(s)|2 + |u5(s)|2, τ (s) = u4(s)(u5)′(s) − u5(s)(u4)′(s)
|u4(s)|2 + |u5(s)|2 .

Furthermore, we have ‖(x′(s)‖ = u3(s) = 1, and we see that the energy functionals of
Pcurve and Pmec coincide, as we have

T∫

0

√
Gξ

∣
∣
γ (t)

(γ̇ (t), γ̇ (t)) dt =
L∫

0

√
Gξ

∣
∣
γ (s)

(γ ′(s), γ ′(s)) ds =
L∫

0

√
κ2(s) + ξ2 ds. (A.1)

Application of PMP (scf. Section 3.1) to PMEC yields the following ODE for the
horizontal part

γ̇ = λ3A3|γ + λ4A4|γ + λ5A5|γ ,

and for the vertical part, we obtain the ODE

d
dt λi = −

5∑

b=3

6∑

l=1
cl
i,bλ

bλl ⇔
d
dt (λ1, λ2, λ3, λ4, λ5, λ6) = (λ3λ5, λ3λ4, λ1λ5 − λ2λ4, ξ

−2λ3λ2 − λ5λ6, −ξ−2λ3λ1 + λ4λ6, 0).

Note that reciprocal momentum components are related by the inverse metric tensor
and thereby given by λ3 = ξ−2λ3, λ4 = λ4, λ5 = λ5. PMP gives us that the stationary
curves obtained via these ODE’s are short time local minimizers. It also provides us the
Hamiltonian H(λ) = 1

2

(
ξ−2λ23 + λ24 + λ25

)
and the Exponential map.

Now, we must choose γ (L) = g1 ∈ SE(3) from the equivalence class [g1] = {g ∈
SE(3) | g ∼ g1} (i.e., left-coset recall (2.5)) such that the minimum in Eq. 2.5 is attained.
This does not hold for all elements in SE(3). In fact, it only holds for those end conditions
that can be reached with geodesics having λ6(0) = 0. This follows from the fact that along
all sub-Riemannian geodesics one has λ̇6 = 0 and the fact that the sub-Riemannian mini-
mizers with λ6 = 0 are precisely the ones where the constraint ω6 = 0 is redundant and the
result follows. See also Fig. 4.
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Appendix B: Cartan Connection ∇ on Sub-Riemannian Manifold
(SE(3), �,Gξ )

In this appendix, we provide background/embedding of Definition 9 and Theorem 3, and in
particular Eqs. 3.7 and 3.8, into theory of Cartan connections.

The − Cartan connection [8] is induced by the Maurer-Cartan form (Lg−1)∗ which
induces a Cartan-Ehresmann connection on the principal G-bundle P = (SE(3), {e}, π, R),
with total space SE(3), base space {e} = SE(3)/SE(3), projection π(g) = e, and the right
action Rg1g2 = g2g1.

The construction is as follows. The Maurer-Cartan form induces a connection ω̃ on the
associated vector bundle SE(3) ×Ad L(SE(3)), where L(SE(3)) denotes the Lie algebra
of left-invariant vector fields, given by ω̃ = ∑6

j=1(Ad)∗Aj ⊗ ωj = ∑6
i,j,k=1 ck

i,jAk ⊗
ωi ⊗ ωj . The form ω̃ induces a matrix-valued 1 form −ω̃(ωk, ·,Aj ) on the frame
bundle, and moreover it induces a connection ∇ on tangent bundle T (SE(3)), where

∇
(
∑6

i=1 γ̇ iAi )
(
∑6

k=1 akAk) = ∑6
k=1

(
ȧk − ∑6

i,j=1 ck
i,j γ̇

iaj
)
Ak . This is all still in the

Riemannian setting.
In the sub-Riemannian setting of (SE(3),�,Gξ ), one relies on a different structure sub-

group S̃E(2) (consisting of translations and rotations in the xy-plane only) isomorphic to
SE(2), rather than structure group SE(3) in the Riemannian setting. This boils down to con-
straining some of the summation indices and therefore we use ∇ given by Eq. 3.7 instead of
∇. Next, we explain how partial connection ∇ appears in Cartan geometry.

In the sub-Riemannianmanifold (SE(3),�,Gξ), with� = ker{ω1} ⋂
ker{ω2}⋂

ker{ω6},
the directionsA1,A2, andA6 are prohibited. To get a better grasp on what this means on the
manifold level, we consider principal fibre bundles. To this end, we consider the subgroup

isomorphic to SE(2) given by S̃E(2) = {exp (c1A1 + c2A2 + c6A6)|c1, c2, c6 ∈ R} with
Ak = Ak|e.

Now, we consider the principal fibre bundle P = (SE(3),SE(3)/S̃E(2), π, R) with

Rhg = gh, h ∈ S̃E(2), π(g) = [g] = g S̃E(2) ∈ SE(3)/S̃E(2). On P , we consider the
Maurer-Cartan form w̄ = (Lh−1)∗, more precisely w̄(Ag) = ∑5

i=3〈ωi |g, Xg〉Ai .

Via the group representation S̃E(2) � h �→ Ad(h) := (Lh−1Rh)∗, we obtain the
associated vector bundle (def. 3.7 in [13]) (SE(3) ×Ad|

˜SE(2)
L(SE(3))) with corresponding

connection form

w̄ =
5∑

j=3

(
Ad|

S̃E(2)

)

∗ (Aj ) ⊗ ωj =
5∑

j=3

ad(Aj ) ⊗ ωj =
5∑

i,j,k=3

ck
i,jAk ⊗ ωi ⊗ ωj ,

where ad(X) = [·, X]. This yields a 3×3 matrix valued one form on the frame bundle w̄k
j =

−w̄(ωk, ·,Aj ) which yields a partial connection on the horizontal part � of T (SE(3)):

∇XA =
5∑

k=3

⎛

⎝ȧkAk +
5∑

j=3

aj w̄k
j (X)Ak

⎞

⎠ =
5∑

k=3

⎛

⎝ȧkAk +
5∑

i,j=3

aj γ̇ ick
j,iAk

⎞

⎠ , (B.1)

with X = ∑5
i=3 γ̇ iAi , A = ∑5

k=3 akAk and w̄k
j (Ai ) = −w̄(ωk,Ai ,Aj ) = −ck

i,j where
the Christoffels are equal to minus the structure constants of the Lie algebra and where
ȧk = ∑5

i=3 γ̇ i (Ai |γ ak).
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Finally, Eq. B.1 is equivalent to Eq. 3.7, as ck
i,j = −ck

j,i . As shown in the proof of

Theorem 3, partial connection ∇ on the tangent bundle induces a partial connection ∇∗
on

the cotangent bundle (given by the left-hand side of Eq. 3.8).
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