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Abstract. We present a neuro-mathematical model for the well-known
Poggendorff illusion, where an illusory contour appears as a geodesic in
some given metric, induced in the primary visual cortex V1 by a visual
stimulus. Our model extends the cortical based model by Citti and Sarti
of perceptual completion in the roto-translation space SE(2), where the
functional architecture and neural connectivity of V1 of mammalians
is modelled as principal fiber bundle of SE(2) equipped with a sub-
Riemannian (SR) metric. We extend the model by taking into account a
presence of a visual stimulus (data adaptivity), which is done by includ-
ing an appropriate external cost modulating the SR-metric. Perceptual
curves appear as geodesics, that we compute via SR-Fast Marching.

1 Introduction

In this paper, we present a neuro-mathematical model for the Poggendorff illu-
sion, a well-known geometrical optical illusion [14,33,34], in which the presence
of the central bar induces a misalignment of an oblique transversal [10,31]. See
Fig. 1, left. Our interest is to provide a model that takes into account the neuro-
physiology of the visual process, starting from the investigation of Hubel and
Wiesel [19]. They discovered the hypercolumnar structure of the primary visual
cortex V1, meaning that for each point of the retina a whole set of cells in
V1 sensitive to all possible orientations (hypercolumn) spikes. This structure
induced a great interest among scientists from many communities: first neuro-
mathematical model for the functionality of V1 of mammalians have been pre-
sented in [2,6,18,21,25].

We base our model on [6], where the functional architecture and neural con-
nectivity of V1 is modelled as a principal fiber bundle of the roto-translation
space SE(2) equipped with a sub-Riemannian (SR) metric. In particular, the
latter provides a justified model of perceptual completion through surfaces, ruled
in geodesics. As a consequence, an illusory contour appears as a geodesic in the
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metric defined in the cortex. In this work, we propose a new SR-metric in SE(2),
with a neuro-physiological basis and directly induced by data-adaptivity to a
visual stimulus. The polarized SR metric obtained in this way is presumably
responsible for the misperception in such type of illusions. In particular, illusory
curves arise as geodesics of the considered metric.

We compute globally optimal geodesics (length-minimizers) via SR Fast-
Marching(SR-FM) [28], a fast accurate numerical method for solving SR-eikonal
system. The solution is a SR distance map and minimizers are recovered through
back-tracking on it. We show that illusory contours are well approximated by
length-minimizers of SE(2), meaning that the perceptual phenomena is naturally
explained by the geometry of V1. This hypothesis is verified qualitatively for the
Poggendorff illusion in Sect. 4.1.

Fig. 1. Left: The Poggendorff illusion: a transversal line, obstructed by a surface,
appears to be misaligned. Center: the initial stimulus with a second transversal cor-
responding to the perceptual completion. Right: A level set of C(x, y, θ) for θ = 0.

2 Preliminaries

2.1 Gabor Filters

The visual process is the result of several retinal and cortical mechanisms which
act on the visual signal. The retina is the first part of the visual system responsi-
ble for the transmission of the signal, which passes through the Lateral Genicu-
late Nucleus and arrives in the visual cortex, where it is processed. The receptive
field (RF) of a cortical neuron is the portion of the retina which the neuron reacts
to, and the receptive profile (RP) ψ(χ) is the function that models its activa-
tion when a stimulus is applied to a point χ = (χ1, χ2) of the retinal plane.
Let us notice that χ = (χ1, χ2) denotes the local portion of the retina, cen-
tered at η = (x, y), to which the neuron reacts to, while η = (x, y) refers to the
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global coordinates system of the retina R
2. Simple cells of V1 are sensitive to

position and orientation of the contrast gradient of an image. Their properties
have been experimentally described by De Angelis in [11]. Considering a basic
geometric model, the set of simple cells RPs can be obtained via translation of
vector η = (x, y) and rotation of angle θ from a unique mother profile ψ0(χ).
As pointed out by Daugmann in [9] and Jones and Palmer in [20], Gabor filters
are a good model of receptive profiles and they provide a good estimation of the
spiking responses. In our contribution, odd part of Gabor filters are employed
to detect orientation and polarity of contours and to identify the presence of
surfaces. A mother Gabor filter is given by

ψ0(χ) = ψ0(χ1, χ2) =
α

2πσ2
e

−(χ2
1+α2χ2

2)

2σ2 e
2iχ2

λ , (1)

where λ > 0 is the spatial wavelength of the cosine factor, α > 0 is the spatial
aspect ratio and σ > 0 is the standard deviation of the Gaussian envelope.
Translations and rotations can be expressed as:

A(x,y,θ)(χ) =
(

x
y

)
+

(
cos θ − sin θ
sin θ cos θ

)(
χ1

χ2

)
. (2)

Hence a general RP can be expressed as:

ψ(x,y,θ)(χ1, χ2) = ψ0(A−1
(x,y,θ)(χ1, χ2)).

2.2 Output of Receptive Profiles

The retinal plane is identified with R
2, see [6]. When a visual stimulus of inten-

sity I(x, y) : M ⊂ R
2 → R

+, activates the retinal layer of photoreceptors, the
neurons whose RFs intersect M spike and their spike frequencies O(x, y, θ) can
be modelled (taking into account just linear contributions) as the integral of
the signal I with the set of Gabor filters. Indeed we assume the treated visual
stimulus I to be integrable, i.e. I ∈ L1(R2). The expression for this output is:

O(x, y, θ) =
∫

M

I(χ1, χ2)ψ(x,y,θ) (χ1, χ2) dχ1dχ2. (3)

In the right hand side of the equation, the integral of the signal with the real and
imaginary part of the Gabor filter is expressed. These last model two families of
simple cells which have different shapes, hence they detect different features.

2.3 Sub-Riemannian Structure on SE(2)

The Lie group SE(2) of planar roto-translations is identified with the coupled
space of positions and orientations R

2 × S1, and for each η = (x, y, θ), η′ =
(x′, y′, θ′) ∈ R

2 × S1 one has left multiplication

Lηη′ = (x′ cos θ + y′ sin θ + x,−x′ sin θ + y′ cos θ + y, θ′ + θ). (4)
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Via the push-forward (Lη)∗ one gets the left-invariant frame {X1,X2,X3}
from the Lie-algebra basis {A1, A2, A3} = {∂x|e , ∂θ|e , ∂y|e} at the unity e =
(0, 0, 0):

X1 = cos θ ∂x + sin θ ∂y, X2 = ∂θ, X3 = − sin θ ∂x + cos θ ∂y. (5)

A SR manifold is given by a triple (SE(2),Δ,G), where Δ is a subbundle of the
tangent bundle, and G is a metric defined on Δ. For a general introduction to SR-
geometry see [24]. If we define the horizontal distribution Δ = span(X1,X2), the
length of a curve γ : [0, T ] �→ SE(2) whose derivative belongs to the distribution
Δ is defined as

γ̇(t) = u1(t)X1|γ(t) + u2(t)X2|γ(t), l(γ) :=
T∫
0

√Gγ(t)(γ̇(t), γ̇(t)) dt (6)

Here G is a diagonal metric, represented in the form G = diag( 1
C , 1

C ), with
respect to the chosen basis {X1,X2}. The Riemannian approximation of G is
Gε, formally defined over TSE(2), with respect to the basis {X1,X2,X3}. C is a
strictly positive function, called external cost. In this framework, given a starting
point η0 and a terminal point η1, the geodesic problem is to find a Lipschitzian
curve γ with γ̇ ∈ Δ almost everywhere on an unknown interval [0, T ] with
controls u1, u2 : [0, T ] → R in L∞[0, T ] that minimizes the distance between the
two given points [24]:

d(η0, η1) = min
γ ∈ Lip([0, T ], SE(2)),

γ̇ ∈ Δ|γ , γ(0) = η0, γ(T ) = η1

l(γ). (7)

SR-geodesics and their application to image analysis were also studied in [4,
17,22]. For explicit formulas of SR-geodesics in SE(2) in the particular case of
uniform external cost C = 1, see [27]. One of the most efficient method to com-
pute geodesics in the Euclidean setting is Fast-Marching, introduced by Sethian
in [30]. The method allows to compute a distance map, viscosity solution (in the
sense by [7,8]) of the eikonal equation, which in the SR setting has the following
expression: {‖∇GW (η)‖G = 1 for η �= e,

W (e) = 0. (8)

The fast-marching method has been extended in the case of Riemannian met-
ric by Mirebeau, [23], and in [3] was developed in the SE(2) equipped with a
SR metric, with arbitrary external cost. The theoretical counterpart for viscos-
ity solution of the Eikonal equation in the sub-Riemmanian case can be found
in [12]. In the current study we use method [3] to compute geodesics. It is based
on Riemannian approximation of SR-structure. To compute the minimizers, a
Riemannian limit [15] is applied, where d is approximated by Riemannian dis-
tance dε induced by a Riemannian metric Gε = diag( 1

C , 1
C , 1

Cε2 ), for 0 < ε 	 1,

and then the SR gradient ∇GW (η) = C(η)
(
X1W (η) X1|η + X2W (η) X2|η

)
is
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used to find geodesics via steepest descent on W (η) := dε(e, η).
In particular, in [3] it was shown that if η1 �= e be chosen such that there exists a
unique minimizing geodesic γε : [0, T ] → SE(2) of dε(e, η1) for ε ≥ 0 sufficiently
small, that does not contain conjugate points (i.e. the differential of the expo-
nential map of the Hamiltonian system is non-degenerate along γε, cf. [1]), then
γ0(t) is given by γ0(t) = γb(T − t) and the backtracking equation writes as:

{
γ̇b(t) = −∇GW (γb(t)), t ∈ [0, T ]
γb(0) = η1,

(9)

with W (η) the viscosity solution of the eikonal system (8).

3 Neuro-Mathematical Model for the Poggendorff
Illusion

3.1 Perceptual Curves as SR-length Minimizers

The Poggendorff illusion consists in an apparent misalignment of two collinear,
oblique, transversals separated by a rectangular surface (Fig. 1, left). Psy-
chological elements contributing to this misperception have been presented
in [10,26,31]. It is largely accepted that cortical connectivity propagates the
output of the cells O(x, y, θ), defined in (3), through the metric of the cortex,
and is responsible for visual completion and appearance of illusory contours [6].
First model of boundary completion in a contact structure has been presented
in [25]. As proved in [5,29], cortical mechanisms of completion induces minimal
surfaces ruled in geodesics. Hence it is possible to look for an illusory contour as
minimizer of the geodesic problem in SE(2) with a SR metric. Here we develop
the idea that the metric is modulated by the output of the cells O(x, y, θ) induced
by the presence of a stimulus I(x, y): cells already activated by the output are
more sensitive to cortical propagation. In this way we can define a polarizing
term which will be maxima is correspondence of edges of the visual stimulus:

C(x, y, θ) = 1 + Im(O(x, y, θ)). (10)

Imaginary part of the output corresponds to the response of Odd Gabor fil-
ters, responsible for detecting polarity of a surface in an initial stimulus. Polarity
means that contours with the same orientation but opposite contrast are referred
to opposite angles. In the Poggendorff illusion (1, left) the contribution of odd
Gabor receptive profiles, responsible for the detection of surfaces, indeed plays
a role. For this reason we assume that the orientation θ takes values in [−π, π).
Furthermore the contribution of odd receptive profiles over a straight line is null.
Then the inverse of the metric G in Sect. 2.3, polarized by the output of odd sim-
ple cells and expressed in Euclidean coordinates, is given by the following:

G−1(x, y, θ) = C(x, y, θ)

⎛
⎝ cos2 θ sin θ cos θ 0

sin θ cos θ sin2 θ 0
0 0 1

⎞
⎠ , (11)
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Fig. 2. Left: Representation of a section of (x, y, θ, C(x, y, θ)), graph of C(x, y, θ), for
y fixed. C(x, y, θ) is the output positively shifted of odd receptive profiles of simple
cells. C(x, y, θ) is constant along y. Right: ∇C(x, y, θ) is visualized in correspondence
of the contours of the central bar, projected onto the (x, θ) plane. We represent x, and
θ component of ∇C, since the y component vanishes.

where C(x, y, θ) is given by (10). Let us also observe that the analysis of Fig. 1
(center) can be reduced to the processing of a stimulus in which we neglect the
contribution of C(x, y, θ) over the entry trasversals. These last are employed to
recover θ boundary condition for the experiments. The resulting idea is that
the metric mainly depends on the vertical bar and the perceptual curves are
obtained as geodesics of the polarized metric (11).

3.2 Implementation

In order to test the model, first the convolution of the initial image with a bank of
odd Gabor filters is performed. A response Im(O) is produced, corresponding to
the polarization of our SR metric, which is shifted to positive values C(x, y, θ) and
used as weight for the connectivity (Fig. 2, left). The SR geodesic that solves (7)
is obtained in two steps: 1) computation of the distance map by solving (8) via
SR-FM, 2) computation of the geodesic by steepest descent (9). In such a way,
we construct a metric in R

2×S 1, Riemannian approximation of the SR metric,
weighted by external cost C(x, y, θ). When switching from image coordinates to
mathematical coordinates one should take care of correctly evaluating ξ, which
represents the anisotropy between the two horizontal direction, ξΔx = Δθ, where
Δx,Δθ are the discretization steps along x and θ. Then equation (11), adding
the Riemannian approximation of the metric, becomes:

(Gε)−1(x, y, θ) = C(x, y, θ)

⎛
⎝ ξ−2(cos2 θ + ε2 sin2 θ) ξ−2(1 − ε2) sin θ cos θ 0

ξ−2(1 − ε2) sin θ cos θ ξ−2(sin2 θ + ε2 cos2 θ) 0
0 0 1

⎞
⎠ .

where ε is a parameter of Riemannian approximation (note ε = 0 in SR-case).
In the experiments we set ε = 0.1. As was shown in [28], this value is taken
sufficiently small to give an accurate approximation of the SR-case.
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4 Results

In this section we discuss the results obtained through the method presented in
Sect. 3.1 and implemented in Sect. 3.2.

Fig. 3. From left to right: (1) minimum of distance map W (η) from the boundary
value condition (initial seed) of Eq. 8, along the direction θ, computed through SR-
Fast-Marching. (2): 2D projection of the computed geodesics. The perceptual curve is
blue, the actual completion of the left side transversal is the red curve. (3): 3D plot of
the computed geodesics. (Color figure online)

4.1 Poggendorff Simulation and Comparison with Quantitative
Psychophysical Results

Manipulating the elements of Poggendorff to understand how to magnify the
illusory phenomenon has been done in many works [10,32]. In [32], the authors
performed psychophysical experiments to obtain quantitative measures of the
magnitude of the illusion: the illusory effects increased linearly with increasing
separation between the parallels as well as increasing the width of the obtuse
angle formed by the transversal. Here we consider odd Gabor filters with the
following values: α = 1.5, θ ∈ [−π, π] (65 values), σ ∈ {2, 4} (pixels), σ

λ = 2.
This means that for each point of the image (of dimension 50 × 100 pixels) we
took 65 × 2 receptive profiles. The scale parameter σ is chosen in relationship
with the mentioned image resolution. In this example we took the mean between
the filter responses for σ = 2 and for σ = 4. As initial test we chose θ =
π/4 and width = 15 pixels, see Fig. 3 (center): the SR-length of the red curve
is 2.0480 (correct transversal), and the SR-length of the blue curve is 1.8094
(perceptual completion). The shortest curves implemented through this model
are the perceptual ones. Then we tested the following widths for the central
surfaces, 15, 25, 9 pixels (see Fig. 4) and the following angles for the transversals
θ = π/4, π/10, π/2. Keeping fixed the width of the bar, we varied the angle
of the transversal, to create an increased obtuse angle effect (θ = π/10) and
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a non illusory effect (θ = π/2). In Fig. 4 (left), a 2D projection of computed
geodesics for transversal oriented at θ = π/2 is presented. In this case no illusion
is shown and the geodesic is a straight line. In the center a 2D representation of
the correct transversal (red one), called actual geodesic, and the perceptual one
(blue) is shown, for θ = π/4 and width = 25 pixels. Right, same 2D plot for
θ = π/4 and width = 9 pixels.

Fig. 4. From left to right: 2D projection of the experiment for θ = π/2 and central
width = 15 pixels. Experiment for θ = π/4 and central width = 25 pixels, 2D projection.
Right, θ = π/4 and central width = 9 pixels. (Color figure online)

Discussion. In this paragraph we show a table reporting the collected data
concerning the SR lengths of the computed curve. It refers to the change of
length varying the widths and angles, underlining the observed phenomena.

Type of curve Width = 9 pixels Width = 15 pixels Width = 25 pixels

Percep. curve θ = π/4 1.0366 1.8094 3.1113

Actual curve θ = π/4 1.1369 2.0480 3.5354

Percep. curve θ = π/10 2.1033 3.4719 4.9411

Actual curve θ = π/10 2.8925 4.4927 7.3924

Percep. curve θ = π/2 1.0320 1.4412 2.5196

4.2 Round Poggendorff Illusion

Now we consider a variant of the Poggendorff illusion, called Round Poggendorff,
see Fig. 5, left. The presence of the central surface induces a misperception: the
arches do not seem cocircular and the left arc seems to be projected to some
point with a certain orientation on the left bar.
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Fig. 5. Left: Round Poggendorff illusion, courtesy of Talasli and Inan see [31]. Center:
A family of geodesics starting from (x0, y0, θ0) with multiple endpoints. The aim is to
determine (y, θ) minimizing the length of the perceptual curve. Right: A minimizer
has end point (y, θ) = (0.88, −0.27)

Computation of shortest curve with terminal manifold. The seed is fixed
at the crossing point between the right arc and the right bar, ξ = 2.5. In order
to compute the corrected perceptual completion curve we provide a terminal
set to the SR-Fast Marching (SR-FM). Possible terminal orientations belong to
[−π/10, 0], where θ = 0 is the angle corresponding to the orthogonal projection
over the left bar and θ = −π/10 is the boundary condition of the circle at crossing
point with the left bar. In an analogous way we take a discretization between
possible values of the y coordinate and run SR-FM, which is able to identify the
minimizer connecting a certain seed with multiple end (terminal) points. The
aim is to identify the correct angle θ and coordinate y for the end point of the
perceptual curve. The SR length of the minimizing geodesic is 1.32668 and the
corresponding computed end point is {0.3, 0.88,−0.27}.

5 Conclusion

In this paper a neuro-mathematical model for the perceptual Poggendorff phe-
nomenon is presented, based on the functional architecture of V1. Perceptual
curves arise as geodesics of a polarized metric in SE(2), directly induced by
the visual stimulus. The geodesics are computed through SR-FM and the per-
ceptual curves result to be shorter (w.r.t. SR-metric) than the corresponding
geometrical continuation. The model has been compared with psychophysical
evidences which explain how the effect varies depending on the width of the cen-
tral surface and the angle of the transversal. Our measurements are in accord
with those studies. Such approach can be extended to other illusions such that
Hering, Zollner and Wundt illusions ([16]). Improving the understanding of these
phenomena is very important because it can lead to insights about the behaviour
of the visual cortex [13], allowing new applications to be developed.
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