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Abstract– In order to detect vessel locations in spherical images of retina we consider the problem of mini-

mizing the functional  for a curve  on a sphere with fixed boundary points and direc-

tions. The total length l is free, s denotes the spherical arclength, and  denotes the geodesic curvature of .
Here the smooth external cost  is obtained from spherical data. We lift this problem to the sub-Rie-
mannian (SR) problem in Lie group SO(3) and propose numerical solution to this problem with consequent
comparison to exact solution in the case . An experiment of vessel tracking in a spherical image of the
retina shows a benefit of using SO(3) geodesics.
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In computer vision, it is common to extract salient
curves in images via data-driven minimal paths or geo-
desics [1]. The minimizing geodesic is defined as the
curve that minimizes the length functional, which is
typically weighted by a cost function with high values
at image locations with low curve saliency. Another set
of geodesic methods, inspired by the psychology of
vision, was developed in [3, 4]. In these articles sub-
Riemannian (SR) geodesics in respectively the
Heisenberg  and the Euclidean motion group

 are proposed as a model for contour perception
and contour integration.

The combination of such contour perception mod-
els with data-driven geodesic methods has been pre-
sented in [5]. There, a computational framework for
tracking of salient curves via globally optimal data-
driven sub-Riemannian geodesics on the Euclidean
motion group  has been presented. In [5] the
framework was used for tracking of retinal vessels in
flat images of retina.

In this work we extend the framework for tracking
of vessels in spherical images of the retina with reduced

1 The article was translated by the authors.
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distortion. This requires a sub-Riemannian manifold
structure in the group SO(3) acting transitively on the
2-sphere .

Let  be a sphere of unit
radius. We consider the problem  (see Fig. 1),
which is for given boundary points  and
directions , ,  = 1

to find a smooth curve :  that satisfies the
boundary conditions

and for given  minimizes the functional

where  denotes the geodesic curvature on  of
 evaluated in time , the total length  is free, s

denotes the spherical arclength, and : ,
, is a smooth function “external cost.”

We call  the following SR problem in SO(3):
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where ,  are basis left-invariant vector
fields in SO(3),  is a constant and terminal time

 is free.
The external cost : , , is a

smooth function that is typically obtained by lifting
the external cost  from the sphere  to the group
SO(3), i.e., .

We call a spherical projection the projection map
. We show that the spherical

projection of certain minimizers of  provides solu-
tion of problem . More precisely this only holds
for the minimizers whose spherical projection does
not have a cusp. The spherical projection of a mini-
mizer of  is said to have a cusp at  if the
corresponding control  changes a sign locally, i.e.,
there exists , s.t.  for all

 and . Before the
first cusp a minimizer of  can be parameterized by
spherical arclength .

Theorem 1. Let ,  be a minimizer of 
parameterized by SR-arclength, and let the correspond-
ing optimal control  satisfy the inequality

 for all .
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for  and .
We perform an analytical study of  in case

. The Lie group SO(3) is the group of all rota-
tions about the origin in . We denote a counter-
clockwise rotation around axis  with angle φ via

, and parameterize SO(3) by 3 angles  as
. Then we apply Pontryagin

maximum principle (PMP), which is the first order
necessary condition for optimality [9], and we derive
the explicit formulas for the sub-Riemannian geode-
sics. Also, we present new formulas for SR geodesics
parameterized by spherical arclength before the first
cusp in their spherical projection. Such “cuspless”
geodesics are determined by the Hamiltonian system

with the boundary conditions

The formulas for “cuspless” geodesics are simpler
than the general formulas for SR geodesics in SO(3).
In contrast to the general case, where the Jacobi ellip-
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Fig. 1. Problems  (a) on a sphere and (b)  in SO(3).

n1

n1e3
e3

e2

e−θA1

−θ

e−yA3

e−xA2

e2

S2

−u2 u1

S2

TTn  n  (S2)
1Tn  (S2)
1

T
n  (S 2)
0

e1
e1

'

n0

n0n0

'

(a) (b)

curveP mecP



170

DOKLADY MATHEMATICS  Vol. 95  No. 2  2017

MASHTAKOV et al.

tic functions appear, here only single elliptic integral is
involved.

Theorem 2. The unique solution of the Hamiltonian
system for “cuspless” geodesics is defined for

, where

with  (where one should take principal
square root),  and κ =

The solution to the vertical part is given by

The solution to the horizontal part is given by

where R(s) =  =
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.
We use these exact formulas to verify our PDE-

approach to solve the problem  for general exter-
nal cost case . The approach is summarized by
the following theorem.

Theorem 3. Let  be a viscosity solution of the
eikonal system

A SR length minimizer  end-
ing at  is found by backward integration for

where  and .

Solving numerically this system for external cost C
induced by a spherical image of the retina we obtain an
effective method for vessel detection. Comparison
with tracking via SE(2)-geodesics (see [5]) shows, that
in general the SO(3)-geodesics have a slower variation
in curvature, and are less eager to take short-cuts.
Furthermore, there are visible differences between
geodesic curvature of data-driven SR geodesics on the
sphere and the curvature of their planar projections.
As in retinal imaging applications curvature is con-
sidered as a relevant biomarker [2] for detection of
diabetic retinopathy and other systemic diseases,
the data-driven SR geodesic model in SO(3) is a rel-
evant extension of data-driven geodesic model in
SE(2) [5].
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