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Abstract—For the sub-Riemannian problem on the group of motions of Euclidean space we
present explicit formulas for extremal controls in the special case where one of the initial
momenta is fixed.
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1. INTRODUCTION

In this paper, we consider a sub-Riemannian (SR) problem on the group of motions of Euclidean
space SE(3). It can be interpreted as a problem of optimal motion of a rigid body in R

3 with
nonintegrable constraints [7]. Solution curves to the problem have applications in image processing
(tracking of neural fibers and blood vessels in DW-MRI images of a human brain); and in robotics
(motion planing problem for an aircraft that can move forward/backward).

The sub-Riemannian problem on SE(3) can be seen as follows. Given two orthonormal frames
N0 =

{
v1
0 , v

2
0 , v

3
0

}
and N1 =

{
v1
1, v

2
1 , v

3
1

}
attached, respectively, to two given points q0 = (x0, y0, z0)

and q1 = (x1, y1, z1) in space R
3, find an optimal motion that transfers q0 to q1 such that the frame

N0 is transferred to the frame N1. The frame can move forward or backward along one of the vector
in the frame and rotate simultaneously via two (of three) remaining vectors. The required motion
should be optimal in the sense of minimal length in the space SE(3) ∼= R

3 × SO(3).

The two-dimensional analog of this problem was studied as a possible model of the mechanism
used by the visual cortex V1 of the human brain to reconstruct curves that are partially corrupted
or hidden from observation. The two-dimensional model was initially presented in [10] and
subsequently refined in [11], where the authors recognized the sub-Riemannian Euclidean motion
group structure of the problem. The related SR problem in SE(2) was solved in [12], where, in
particular, explicit formulas for the geodesics were derived in SR arclength parameterization. Later,
an alternative expression in spatial arclength parameterization for cuspless SR geodesics was derived
in [13]. Application to contour completion in corrupted images was studied in [14]. The problem
was also studied in [15]. However, many imaging applications such as diffusion weighted magnetic
resonance imaging (DW-MRI) require an extension to three dimensions [16–18], which motivates
us to study the problem on SE(3).
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The Lie group SE(3) of Euclidean motions of space R
3 is generated by translations and rotations

about coordinate axes. It is parameterized by the matrices⎛
⎜⎜⎜⎜⎜⎜⎝

cos α cos β − cos β sinα sin β x

cos θ sin α + cos α sin β sin θ cos α cos θ − sin α sin β sin θ − cos β sin θ y

sin α sin θ − cos α cos θ sin β cos θ sin α sin β + cos α sin θ cos β cos θ z

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (1.1)

where θ ∈
[
− π

2 , π
2

)
, β ∈ [−π, π), α ∈ [0, 2π) are the angles of rotation about the axes OX, OY ,

OZ; and (x, y, z) ∈ R
3 are coordinates with respect to the axes.

Let us choose

A1 = cos α cos β ∂x + (sin α cos θ + cos α sin β sin θ) ∂y + (sin α sin θ − cos α sin β cos θ) ∂z,

A2 = − sin α cos β ∂x + (cos α cos θ − sin α sin β sin θ) ∂y + (cos α sin θ + sinα sin β cos θ) ∂z,

A3 = sin β ∂x − cos β sin θ ∂y + cos β cos θ ∂z,

A4 = − cos α tan β ∂α + sin α∂β + cos α secβ ∂θ,

A5 = sin α tan β ∂α + cos α ∂β − sin α secβ ∂θ,

A6 = ∂α

as the basis left-invariant vector fields according to parameterization (1.1).
We consider the sub-Riemannian (SR) manifold (SE(3),Δ,Gξ), see [1]. Here Δ is a left-invariant

distribution generated by the vector fields A3,A4,A5; Gξ is an inner product on Δ defined by

Gξ = ξ2ω3 ⊗ ω3 + ω4 ⊗ ω4 + ω5 ⊗ ω5,

where ξ > 0 is a constant and ωi are basis one forms satisfying

〈ωi,Aj〉 = δi
j , δj

i = 0, if i �= j, δi
i = 1.

We study the problem of finding sub-Riemannian length minimizers: given boundary conditions,
find a Lipschitz curve γ : [0, t1] → SE(3) such that γ̇(t) ∈ Δ for almost all t ∈ (0, t1) and γ minimizes
a functional of sub-Riemannian length

l(γ) =
∫ t1

0

√
Gξ

(
γ̇(t), γ̇(t)

)
d t.

SR geodesics are curves in SE(3) whose sufficiently short arcs are SR minimizers. They satisfy
the Pontryagin maximum principle, and the corresponding controls are called extremal controls.

Due to left-invariance of the problem one can fix the initial value γ(0) = e, where e is the
identical transformation of R

3. Then the sub-Riemannian problem is equivalent to the following
optimal control problem [1, 2]:

γ̇ = u3A3 + u4A4 + u5A5,

γ(0) = e, γ(t1) = q,

l(γ) =
∫ t1
0

√
ξ2u2

3 (t) + u2
4 (t) + u2

5 (t) d t → min,

where the controls u3, u4, u5 are real-valued functions from L∞(0, t1).
The Cauchy – Schwarz inequality implies that the minimization problem for the sub-Riemannian

length functional l is equivalent to the minimization problem for the action functional

J(γ) =
1
2

∫ t1

0

(
ξ2u2

3 (t) + u2
4 (t) + u2

5 (t)
)
d t → min,

with fixed t1 > 0.
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In [19], the authors show that the problem can be reduced to the case ξ = 1 and that the
application of the Pontryagin maximum principle leads to the following Hamiltonian system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇1 = −u3u5,

u̇2 = u3u4,

u̇3 = u1u5 − u2u4,

u̇4 = u2u3 − u5u6,

u̇5 = u4u6 − u1u3,

u̇6 = 0,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = u3 sin β,

ẏ = −u3 cos β sin θ,

ż = u3 cos β cos θ,

θ̇ = sec β(u4 cos α − u5 sin α),
β̇ = u4 sin α + u5 cos α,

α̇ = −(u4 cos α − u5 sin α) tan β,

— the vertical part (for extremal controls), — the horizontal part (for geodesics).

(1.2)

The vertical part describes the dynamics of the extremal controls u3, u4, u5 together with the
remaining momentum components u1, u2, u6. SR geodesics are solutions to the horizontal part.

In this paper we focus on the simplest case u6 = 0 as the most important for applications,
in particular, for tracking of neural fibers and blood vessels in MRI and CT images of a human
brain [19]. In this case, the system on extremal controls becomes

u̇1 = −u3u5, u̇2 = u3u4, u̇3 = u1u5 − u2u4, u̇4 = u2u3, u̇5 = −u1u3. (1.3)

We generalize results of [19], where, in particular, the extremal controls are found in the
case when the geodesics do not have cusps in their spatial projection. Such geodesics admit
parameterization by spatial arclength, which leads to an expression for the extremal controls in
elementary functions. Now we relax the ’cuspless’ assumption and derive an explicit expression for
u1, . . . , u5 in terms of Jacobi elliptic functions.

In Section 2 we show that if the function u3 is known, then the first, the second, the fourth and
the fifth equations of system (1.3) allow us to express uk, k ∈ {1, 2, 4, 5} via the initial values uk(0).
Then by substitution of uk in the third equation of system (1.3) we obtain an ordinary differential
equation on u3. A solution to this equation is presented in Section 3.

Remark 1. Finding a parameterization of SR geodesics is a nontrivial problem. First, a natural
question arises as to a theoretical possibility of such parameterization in some reasonable sense
— the question of integrability of the Hamiltonian system, see, e. g., [8, 9]. It was shown in [19,
Thm. 2] that (1.2) is Liouville integrable, since it has a complete set of functionally independent
first integrals in involution: u6, the Hamiltonian H = 1

2

(
u2

3 + u2
4 + u2

5

)
, a Casimir function W =

u1u4 + u2u5 + u3u6, and the right-invariant Hamiltonians

ρ1 = −u1 cos α cos β + u2 cos β sin α − u3 sin β,

ρ2 = − cos θ(u2 cos α + u1 sin α) +
(
u3 cos β + (−u1 cos α + u2 sin α) sin β

)
sin θ,

ρ3 = −u3 cos β cos θ + cos θ(u1 cos α − u2 sin α) sin β − (u2 cos α + u1 sinα) sin θ.

The question of integrability of Hamiltonian systems was actively studied by V.I. Arnold [3]. Our
research continues his study and examines an important example of an integrable system.

2. EXPRESSION FOR uk, k �= 3 VIA u3 AND THE INITIAL VALUES

Let T > 0, g ∈ C(0, T ). If g is unbounded, assume the existence of the integral
∫ T
0 g(t) d t. Denote

G(t) =
∫ t

0
g(τ) d τ.

It is known [5, Ch. 1, par. 3] that under such assumptions the Cauchy problem ẏ(t) = g(t)y(t),
y(0) = y0 has a unique solution y ∈ C[0, T ] ∪D(0, T ) given by y(t) = y0 exp

(
G(t)

)
.
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Similarly, under the same assumptions the Cauchy problem{
v̇(t) = g(t)w(t), v(0) = v0,

ẇ(t) = g(t)v(t), w(0) = w0

(2.1)

has a unique solution (v,w) given by

v(t) =
v0 + w0

2
exp

(
G (t)

)
+

v0 − w0

2
exp

(
− G (t)

)
,

w(t) =
v0 + w0

2
exp

(
G (t)

)
− v0 − w0

2
exp

(
− G (t)

)
.

(2.2)

Notice that the first and the fifth equations of system (1.3) can be written in the form (2.1),
where g(t) = −u3(t), and the second and the fourth equations of system (1.3) can be written in the
form (2.1), where g(t) = u3(t). Thus, denoting

U(t) =
∫ t

0
u3(τ) d τ (2.3)

and using (2.2), we express u1, u2, u4, u5 via integral (2.3) and the initial values

u1(t) =
u1(0) + u5(0)

2
exp

(
− U (t)

)
+

u1(0) − u5(0)
2

exp
(
U (t)

)
,

u2(t) =
u2(0) + u4(0)

2
exp

(
U (t)

)
+

u2(0) − u4(0)
2

exp
(
− U (t)

)
,

u4(t) =
u2(0) + u4(0)

2
exp

(
U (t)

)
− u2(0) − u4(0)

2
exp

(
− U (t)

)
,

u5(t) =
u1(0) + u5(0)

2
exp

(
− U (t)

)
− u1(0) − u5(0)

2
exp

(
U (t)

)
.

(2.4)

3. EXPRESSION FOR THE FUNCTION u3

It follows from (2.4) that

u1(t)u5(t) =
(

u1(0) + u5(0)
2

)2

exp
(
− 2U (t)

)
−

(
u1(0) − u5(0)

2

)2

exp
(
2U (t)

)
,

u2(t)u4(t) =
(

u2(0) + u4(0)
2

)2

exp
(
2U (t)

)
−

(
u2(0) − u4(0)

2

)2

exp
(
− 2U (t)

)
.

Therefore,

u1(t)u5(t) − u2(t)u4(t) =
1
4

(
A exp

(
− 2U (t)

)
− B exp

(
2U (t)

))
, (3.1)

where A =
(
u1(0) + u5(0)

)2 +
(
u2(0) − u4(0)

)2, B =
(
u1(0) − u5(0)

)2 +
(
u2(0) + u4(0)

)2.
Substitution of (3.1) in the third equation of system (1.3) gives the following second-order

autonomous differential equation on integral (2.3):

u̇3(t) = Ü(t) =
A

4
exp

(
− 2U(t)

)
− B

4
exp

(
2U(t)

)
. (3.2)

There are three possible cases: two special cases (A = 0 or B = 0) and the general case AB �= 0 (in
this case A and B both are positive). Next we study these 3 cases.

I. A = 0 ⇔ u1(0) = −u5(0), u2(0) = u4(0). Equation (3.2) becomes

Ü(t) = −B1 exp
(
2U(t)

)
, where B1 = u2

4(0) + u2
5(0). (3.3)

We aim for a solution that satisfies the initial conditions

U(0) = 0, U̇(0) = u3(0). (3.4)
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The initial value problem (3.3), (3.4) can be solved by standard methods. A solution is given by

U(t) = − ln
(

1
2

[(
1 + u3(0)

b

)
e−bt +

(
1 − u3(0)

b

)
ebt

])
, where b =

√
u2

3(0) + u2
4(0) + u2

5(0).

Therefore, we find

u3(t) = U̇(t) =

(
b + u3(0)

)
e−bt −

(
b − u3(0)

)
ebt(

1 + u3(0)
b

)
e−bt +

(
1 − u3(0)

b

)
ebt

. (3.5)

II. B = 0 ⇔ u1(0) = u5(0), u2(0) = −u4(0). Equation (3.2) becomes

Ü(t) = B1 exp
(
− 2U(t)

)
.

A solution that satisfies the initial conditions (3.4) is given by

U(t) = ln
(

1
2

[(
1 + u3(0)

b

)
ebt +

(
1 − u3(0)

b

)
e−bt

])
.

Therefore, we find

u3(t) = U̇(t) =

(
b + u3(0)

)
ebt −

(
b − u3(0)

)
e−bt(

1 + u3(0)
b

)
ebt +

(
1 − u3(0)

b

)
e−bt

. (3.6)

III. AB �= 0 ⇒ A > 0, B > 0. Denote V = 2U , V0 =
1
2

ln
(

B

A

)
and rewrite Eq. (3.2) as

V̈ =
√

AB

√
A/B e−V −

√
B/A eV

2
=

√
AB

e−V −V0 − eV +V0

2
= −

√
AB sh(V + V0).

Next, denoting y = V + V0, we obtain the following Cauchy problem:

ÿ = −
√

AB sh y, y(0) =
1
2

ln
(

B

A

)
, ẏ(0) = 2u3(0). (3.7)

In [20], the authors find a solution to problem (3.7). It leads to

y(t) = ln

(
1 +

P 2

2
√

AB

(
cn2 (ψt, k) +

1
k

cn (ψt, k) dn (ψt, k)
))

,

ẏ(t) = −P sn (ψt, k) ,

where ψt = F (p0, k) +
Q

2
t, k =

P

Q
, p0 =

⎧⎪⎪⎨
⎪⎪⎩
− arcsin

(
2u3 (0)

P

)
, if B � A,

π + arcsin
(

2u3 (0)
P

)
, if B < A,

with P =

√
4u2

3 (0) +
(√

A −
√

B
)2

, Q =

√
4u2

3 (0) +
(√

A +
√

B
)2

.

Here, the Jacobi functions sn, cn, dn and the elliptic integral of the first kind F are used, see [6].

Finally, by backward substitutions we express

U (t) =
y (t)
2

− 1
4

ln
(

B

A

)
, u3(t) =

ẏ (t)
2

. (3.8)
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4. CONCLUSION
Let us summarize the results of Sections 1–3. The following theorem is proved.

Theorem 1. Consider the SR problem in SE(3). Suppose u6(0) = 0; then the vertical part (on
extremal controls) of the Hamiltonian system of PMP is given by (1.3).
The extremal controls u4, u5 are expressed via U(t) =

∫ t
0 u3(τ) d τ and the initial values in (2.4).

The extremal control u3 is given in terms of the initial values depending on several cases. For the
cases u1(0) = ±u5(0), u2(0) = ∓u4(0), we have (3.5) and (3.6). Otherwise, we have (3.8).

In future work, we plan to perform an explicit integration of the geodesic equation γ̇(t) =∑5
i=3 ui(τ)Ai and to carry out a study of the general case u6(0) �= 0.
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