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Existence of Global Fundamental Solution to
a Class of Fokker–Planck Equations

Abstract. In this paper, we investigate global solvability of the Fokker–Planck
equations of a special type. Such equations arise in models of the primary
visual cortex of the human brain and describe a process of anisotropic blurring

of the image of the visual field on the retina of the eye. By modifying the
Folland lifting technique for linear hypoelliptic differential operators satisfying
the Hormander condition, we propose a method to saturate the system of vector

fields in the equation to a basis of the tangent space at every point. We present
the conditions that guarantee existence of a global fundamental solution to the
considered equations.

Key words and phrases: nilpotent and stratified Lie groups, lifting of operator, saturation, funda-
mental solution.

1. Introduction

In this paper, we study a class of Fokker–Planck equations given by

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
=

(︁ 𝑚∑︁
𝑖=1

𝑋2
𝑖 − 𝑌

)︁
𝑢(𝑥, 𝑡),(1)

where 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛, 𝑡 ∈ R and the vector fields

𝑋𝑖 =

𝑛∑︁
𝑗=1

𝑎𝑖𝑗(𝑥)
𝜕

𝜕𝑥𝑗
, 𝑖 = 1, 2, ...,𝑚, 𝑌 =

𝑛∑︁
𝑗=1

𝑎(𝑚+1)𝑗(𝑥)
𝜕

𝜕𝑥𝑗
(2)

satisfy the following conditions:

(1) 𝑋𝑖 and 𝑌 are 𝐶∞ vector fields on R𝑛, i.e. their coefficients are

smooth functions 𝑎𝑖𝑗(𝑥) ∈ 𝐶∞(R𝑛);
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(2) 𝑋1, . . . , 𝑋𝑚 are homogeneous of degree 1 and 𝑌 is homogeneous of
degree 2 w.r.t. 𝛿𝜆(𝑥) = (𝜆𝜎1𝑥1, 𝜆

𝜎2𝑥2, ..., 𝜆
𝜎𝑛𝑥𝑛), 1 ≤ 𝜎1 . . . ≤ 𝜎𝑛, i.e.

for any smooth on R𝑛 test function 𝑓

𝑋𝑖(𝑓 ∘ 𝛿𝜆(𝑥)) = 𝜆(𝑋𝑖𝑓(𝑥)) ∘ 𝛿𝜆(𝑥), 𝑌 (𝑓 ∘ 𝛿𝜆(𝑥)) = 𝜆2(𝑌 𝑓(𝑥)) ∘ 𝛿𝜆(𝑥);

(3) 𝑋1, . . . , 𝑋𝑚, 𝑌 are linearly independent almost everywhere w.r.t.
standard Lebesgue measure on R𝑛

rank(𝑋1, . . . , 𝑋𝑚, 𝑌 ) = 𝑚+ 1;

(4) 𝑋1, . . . , 𝑋𝑚, 𝑌 satisfy Hormander hypoellipticity condition

rankLie(𝑋1, . . . , 𝑋𝑚, 𝑌 ) = 𝑛.

The question of solvability of equation (1) is equivalent to the question
of existence of a global fundamental solution to the corresponding partial
differential operator of the second order

𝜕

𝜕𝑡
−

𝑚∑︁
𝑖=1

𝑋2
𝑖 + 𝑌.(3)

The paper has the following structure. It starts from motivation that
comes from modelling of the primary visual cortex of the human brain,
where equations (1) describe a process of anisotropic blurring (diffusion) of
an image of the visual field on the retina of the eye. Then, in Section 3, we
prepare a necessary mathematical background. Afterwards, in Section 4,
we present the main result, the conditions that guarantee existence of
a global fundamental solution of (3), followed by its proof in Section 5.
Finally, we summarize the work in Conclusion.

2. Motivation

Our motivation to study Fokker–Planck equations (1) comes from
modelling of the primary visual cortex V1 of the human brain, see e.g. [1],
where such equations describe anisotropic diffusion of the image transmit-
ted from the retina of the eye to the visual cortex V1. Such a diffusion
underlies a mechanism of contour completion. According to the Petitot–
Citti–Sarti model [2,3], the primary visual cortex lifts the image from the
retina R2 to the extended space of positions and directions R2×𝑆1 ∼= SE(2)
(the group of Euclidean motions of the plane [4]):

ℱ : 𝐼 =
(︀
(𝑥1, 𝑥2) ∈ R2 → [0, 1]

)︀
→

(︀
(𝑥1, 𝑥2, 𝑥3) ∈ SE(2) → [0, 1]

)︀
= 𝐼,

where 𝑥3 ∈ 𝑆1 is the direction angle. Thus, the original image of 𝐼(𝑥) on

SE(2) has the form 𝐼(𝑥) = ℱ(𝐼)(𝑥).
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Denote by 𝑋𝑖 the basis left invariant vector fields on SE(2):

𝑋1 =
𝜕

𝜕𝑥3
, 𝑋2 = cos𝑥3

𝜕

𝜕𝑥1
+sin𝑥3

𝜕

𝜕𝑥2
, 𝑋3 = − sin𝑥3

𝜕

𝜕𝑥1
+cos𝑥3

𝜕

𝜕𝑥2
.

The Fokker–Planck equation that simulates the contour completion
mechanism has the following form, see [5],

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
=

(︁
𝐵𝑋2

1 −𝑋2

)︁
𝑢(𝑥, 𝑡),(4)

where 𝐵 > 0 is the diffusion coefficient.

In the paper [6], the authors show that such a diffusion process can
be modelled by the following Fokker–Planck equation of type (1) in R2:

𝜕𝑢(𝑥, 𝑡)

𝜕𝑡
=

(︁
𝐵𝑌 2

1 − 𝑌2

)︁
𝑢(𝑥, 𝑡),(5)

where (𝑥, 𝑦) ∈ R2, 𝑡 ∈ R and the vector fields 𝑌1 = 𝑦 𝜕
𝜕𝑥 − 𝑥 𝜕

𝜕𝑦 , 𝑌2 = 𝜕
𝜕𝑥 .

3. Preliminaries

Let 𝑃 be a linear partial differential operator of an arbitrary order
with smooth on R𝑛 real-valued coefficients. We say that a function

Γ : {(𝑥; 𝑦) ∈ R𝑛 × R𝑛 : 𝑥 ̸= 𝑦} → R,
is a (global) fundamental solution for 𝑃 if it satisfies the following as-
sumptions:

(1) for every fixed 𝑥 ∈ R𝑛 the function Γ(𝑥; ·) is locally integrable on R𝑛

and ∫︁
R𝑛

Γ(𝑥; 𝑦)𝑃 ′𝜑(𝑦)𝑑𝑦 = −𝜑(𝑥) for every 𝜑 ∈ 𝐶∞(R𝑛),

where 𝑃 ′ denotes the usual formal adjoint of 𝑃 (this condition can be
rewritten as 𝑃Γ𝑥 = −𝐷𝑖𝑟𝑥 in 𝒟′(R𝑛));

(2) Γ(𝑥, 𝑦) > 0 whenever 𝑥 ̸= 𝑦;

(3) Γ(𝑥; 𝑦) ∈ 𝐿1,𝑙𝑜𝑐(R𝑝 × R𝑝) for every fixed 𝑦 ∈ R𝑛 the function Γ(·; 𝑦)
is locally integrable on R𝑛;

(4) for every fixed 𝑥 ∈ R𝑛 the function 𝑦 ↦→ Γ(𝑥; 𝑦) vanishes as 𝑦 → ∞;

(5) for every fixed 𝑥 ∈ R𝑛 the function 𝑦 ↦→ Γ(𝑥; 𝑦) tends to ∞ as 𝑦 → 𝑥.

Let 𝑃 be a smooth linear partial differential operator on R𝑛. We
say that a linear partial differential operator 𝑃 , defined on a higher-
dimensional space R𝑛 × R𝑝, is a lifting of 𝑃 if the following conditions
are fulfilled:
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(1) 𝑃 has smooth coefficients, possibly depending on 𝑥 ∈ R𝑛 and 𝜉 ∈ R𝑝,

(2) for every fixed 𝑓 ∈ 𝐶∞(R𝑛), one has

𝑃 (𝑓 ∘ 𝜋)(𝑥, 𝜉) = 𝑃𝑓(𝑥), for every(𝑥, 𝜉) ∈ R𝑛 × R𝑝 ≡ R𝑁 ,(6)

where 𝑁 = 𝑛+ 𝑝 and 𝜋(𝑥, 𝜉) = 𝑥 is the canonical projection.

It is obvious that (6) holds if and only if

𝑃 = 𝑃 +𝑅 with 𝑅 =
∑︁
𝛽 ̸=0

𝑟𝛼,𝛽(𝑥, 𝜉)𝐷
𝛼
𝑥𝐷

𝛽
𝜉 ,

for a finite number of coefficients 𝑟𝛼,𝛽 ∈ 𝐶∞(R𝑁 ), possibly identically
vanishing on R𝑁 . The use of the term ’lifting’ here is more specific than

commonly accepted in differential geometry.

Let 𝑃 be a smooth linear partial differential equation on R𝑛, and
𝑃 = 𝑃 +𝑅 be a lifting of 𝑃 on R𝑁 . We say that 𝑃 is saturable lifting of

𝑃 if the following conditions hold:

(1) Every summand of the formal adjoint 𝑅′ to a given operator 𝑃 collect

as least one derivative along some 𝜉, i.e., 𝑅′ has a form

𝑅′ =
∑︁
𝛽 ̸=0

𝑟′𝛼,𝛽(𝑥, 𝜉)𝐷
𝛼
𝑥𝐷

𝛽
𝜉 ,

for a finite number of possibly vanishing smooth coefficients 𝑟′𝛼,𝛽 .

(2) There exists a sequence {𝜃𝑗(𝜉)}∞𝑗=1 : R𝑝 ↦→ [0, 1] of smooth function

with compact supports such that⋃︁
𝑗∈N

Ω𝑗 = R𝑝 where Ω𝑗 = {𝜉 ∈ R𝑝 : 𝜃𝑗(𝜉) = 1} and for ∀𝑗 Ω𝑗 ⊂ Ω𝑗+1.

Moreover, for every compact set 𝐾 ⊆ R𝑛 and for any coefficient

function 𝑟′𝛼,𝛽(𝑥, 𝜉) of 𝑅
′ there are exist constants 𝐶𝛼,𝛽(𝐾) such that

|𝑟′𝛼,𝛽(𝑥, 𝜉)
𝜕|𝛽|

𝜕𝜉𝛽
𝜃𝑗(𝜉)| ≤ 𝐶𝛼,𝛽(𝐾) for every 𝑥 ∈ 𝐾, 𝜉 ∈ R𝑝, 𝑗 ∈ N.

In the paper of Bonfiglioli-Biagi [7] one can find some sufficient

conditions for a lifting operator to be saturable. In particular, for any
smooth second order operator on R2 the associated operator 𝑃 = 𝜕𝑡 − 𝑃

is a saturable lifting of 𝑃 .
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Theorem 1. (Bonfiglioli-Biagi) Let 𝑃 be a smooth linear partial

differential equation on R𝑛 and let 𝑃 be a saturable lifting of 𝑃 on R𝑁 .
Assume that there exists a fundamental solution Γ̃ to 𝑃 on the whole R𝑁

which satisfies the following conditions

(1) for every fixed 𝑥, 𝑦 ∈ R𝑛 such that 𝑥 ̸= 𝑦

𝜂 ↦→ Γ̃(𝑥, 0; 𝑦, 𝜂) ∈ 𝐿1(R𝑝);

(2) for every fixed 𝑥 ∈ R𝑛 and for any compact 𝐾 ⊂ R𝑛

(𝑦, 𝜂) ↦→ Γ̃(𝑥, 0; 𝑦, 𝜂) ∈ 𝐿1(𝐾 × R𝑝).

Then the function Γ : {(𝑥; 𝑦) ∈ R𝑛 × R𝑛 : 𝑥 ̸= 𝑦} ↦→ R, defined by

Γ(𝑥; 𝑦) =

∫︁
R𝑝

Γ̃(𝑥, 0; 𝑦, 𝜂)𝑑𝜂

is a global fundamental solution of 𝑃 .

4. Main result

As a basic example, let us consider Grushin vector fields

𝑋1 =
𝜕

𝜕𝑥
, 𝑋2 = 𝑥

𝜕

𝜕𝑦
,

which are smooth on a plane R2 ∋ (𝑥, 𝑦). The vector fields 𝑋1, 𝑋2

homogeneous of degree 1 w.r.t. 𝛿𝐺𝜆 (𝑥) = (𝜆𝑥, 𝜆2𝑦). Conditions (1)–(4)
hold. R2 is a Lie group homogeneous w.r.t. 𝛿𝐺𝜆 (𝑥). Vector fields 𝑋1, 𝑋2

satisfy the Hōrmander rank condition (4), hence Hōrmander operator
𝑋2

1 +𝑋2
2 as well as Kolmogorov operator 𝑋2

1 +𝑋2 are both hypoelliptic
but there is no Lie group structure on R2 making these operators left-
invariant on it.

In general case in such situation we need to use a special modification
of Folland-Bonfiglioli-Biagi technique built in this paper. In the considered
example we can use the Folland-Bonfiglioli-Biagi saturation-lifting tech-
nique without any modifications, which leads to a new set of generating
vector fields (let us call them Kolmogorov vector fields)

𝑋1 =
𝜕

𝜕𝑥
, 𝑋2 = − 𝜕

𝜕𝑡
+ 𝑥

𝜕

𝜕𝑦
.

Now, R3 is a saturated Lie group with a group law ∙

(𝑥, 𝑦, 𝑡) ∙ (𝑥′, 𝑦′, 𝑡′) = (𝑥+ 𝑥′, 𝑦 + 𝑦′ + 𝑡′𝑥, 𝑡+ 𝑡′).
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Let us construct Hōrmander and Kolmogorov operators 𝐻 and 𝐾 on
these vector fields

𝐻 = 𝑋2
1 +𝑋2

2 =
𝜕2

𝜕𝑥2
+

(︂
− 𝜕

𝜕𝑡
+ 𝑥

𝜕

𝜕𝑦

)︂2

,

𝐾 = 𝑋2
1 +𝑋2 =

𝜕2

𝜕𝑥2
− 𝜕

𝜕𝑡
+ 𝑥

𝜕

𝜕𝑦
.

Notice that the well-known Kolmogorov operator 𝐾 on R3 coincides with

the Fokker–Planck operator on Grushin vector fields 𝜕
𝜕𝑡 −

𝜕2

𝜕𝑥2 − 𝑥 𝜕
𝜕𝑦 on

R2 × R which we would like to solve, cf. (3).

It is easy to check that 𝐾 is invariant w.r.t. the left translations on
R3 and commutes with the following dilations:

𝛿𝐾𝜆 (𝑥) = (𝜆𝑥, 𝜆3𝑦, 𝜆2𝑡).(7)

Kolmogorov vector fields are homogeneous for these dilations family.
Therefore, Lie group R3 is homogeneous w.r.t. (7). But this time 𝑋1 is
1-homogeneous whereas 𝑋2 is 2-homogeneous w.r.t. (7). We can see that
𝐻 is also invariant w.r.t. left translations on R3 while 𝐻 commutes with
another family of dilations 𝛿𝐻𝜆 (𝑥):

𝛿𝐻𝜆 (𝑥) = (𝜆𝑥, 𝜆2𝑦, 𝜆2𝑡).(8)

The homogeneity for hypoellipic operators guarantees that these
operators have global fundamental solutions. Thus, by lifting technique
we have proved the existence of a global solution to the Fokker–Planck
equation on Grushin vector fields.

Let us formulate the main result of this paper

Theorem 2. For any set of vector fields that satisfy conditions (1)-(4)
there exists a global fundamental solution to Fokker–Planck differential
operator 𝐹 = 𝜕

𝜕𝑡 −
∑︀𝑚

𝑖=1 𝑋
2
𝑖 + 𝑌 .

5. Proof of Theorem

5.1. Lifting construction

Let 𝑥 = (𝑥1, . . . , 𝑥𝑛) ∈ R𝑛. Let us consider the family (by 𝜆 ≥ 0) of
non-isotropic diagonal maps on R𝑛

𝛿𝜆(𝑥) = (𝜆𝜎1𝑥1, 𝜆
𝜎2𝑥2, . . . , 𝜆

𝜎𝑛𝑥𝑛), 1 ≤ 𝜎1 ≤ 𝜎2 ≤ . . . ≤ 𝜎𝑛,

and a set of vector fields 𝑋𝑖 and 𝑌 such that 4 main conditions hold:

(1) Coefficients are smooth functions 𝑎𝑖𝑗(𝑥) ∈ 𝐶∞(R𝑛). So, 𝑋1, . . . , 𝑋𝑚

and 𝑌 are 𝐶∞ vector fields in R𝑛;
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(2) 𝑋1, . . . , 𝑋𝑚 are homogeneous of degree 1 and 𝑌 is homogeneous of
degree 2 w.r.t. 𝛿𝜆(𝑥), i.e. for an arbitrary vector filed 𝑋 homogeneous
in degree 𝑙 and for any smooth on R𝑛 test function 𝑓

𝑋(𝑓 ∘ 𝛿𝜆(𝑥)) = 𝜆𝑙(𝑋𝑓(𝑥)) ∘ 𝛿𝜆(𝑥);

(3) 𝑋𝑖, 𝑌 are linearly independent (as linear differential operators);

(4) 𝑋𝑖, 𝑌 satisfy Hōrmander hypoellipticity condition:

rank Lie{𝑋1, . . . , 𝑋𝑚, 𝑌 } = 𝑛.

Condition (4) means that at any point of R𝑛 one can find 𝑛 linearly
independent differential operators among 𝑋1, . . . , 𝑋𝑚, 𝑌 and their
non-zero commutators.

We recall that a typical example of vector fields that satisfy conditions
(1)− (4) is given by Grushin vector fields 𝑋1 = 𝜕

𝜕𝑥 , 𝑋2 = 𝑥 𝜕
𝜕𝑦 , which are

smooth in R2 and homogeneous of degree 1 w.r.t. 𝛿𝜆(𝑥) = (𝜆𝑥, 𝜆2𝑦).

The innovative modification is that now we can extend 𝑥 ∈ R𝑛 to
(𝑥, 𝑡) ∈ R𝑛+1. The dilations can be extended as well

𝛿+𝜆 (𝑥, 𝑡) = (𝛿𝜆(𝑥), 𝜆
2𝑡).(9)

Using the commutativity operation, let us construct Lie algebra
a = Lie{𝑋1, . . . , 𝑋𝑚, 𝑌 }. We denote

dim a := 𝑁 ≥ 𝑛.(10)

This algebra must be extended from a to a+ with one more vector
filed 𝜕

𝜕𝑡 = 𝑇 , linearly independent from 𝑋1, 𝑋2, . . . , 𝑋𝑚, 𝑌 . We have
changed the dilations for 𝑇 to be homogeneous with degree 2. This field
is independent from others in sense that [𝑇,𝑋𝑖] = [𝑇, 𝑌 ] = 0 and, thus, it
gives an additional dimension dim a+ = 𝑁 + 1.

From homogeneity of the extended set of generators 𝑋1, . . . , 𝑋𝑚, 𝑌, 𝑇
(property (2)) one can conclude that a+ is nilpotent of step 𝑟 and stratified
a+ = a+1 ⊕ ...⊕ a+𝑟 .

Let us denote by 𝐴 the set of vector fields which is a basis of algebra
a+ = Lie{𝑋1, 𝑋2, .., 𝑋𝑚, 𝑌, 𝑇}.

As far as 𝑋1, 𝑋2, . . . , 𝑋𝑚, 𝑌, 𝑇 are linearly independent in R𝑛+1

(condition (3)) to fulfil condition (10) (to find 𝑁 + 1 linearly independent
differential operators and construct the basis a+) we can choose first 𝑋1,
𝑋2,. . ., 𝑋𝑚,𝑌 ,𝑇 , and then some additional operators among commuta-
tors of 𝑋1, . . . , 𝑋𝑚, 𝑌 or their linear combinations. Let us denote them
𝑋𝑚+2, . . . , 𝑋𝑁 . We will call this set the additional part of the basis 𝐴⊥.
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Let us notice that each vector field among 𝐴⊥ belongs to some layer
a+𝑘 , 1 ≤ 𝑘 ≤ 𝑟, consequently, it is 𝛿𝜆(𝑥)-homogeneous of degree 𝑘 while

𝑋1, 𝑋2, . . . , 𝑋𝑚 having 1-homogeneity belong to a+𝑘 and 𝑌, 𝑇 ∈ a+2 for
the same reason.

Thus, Campbell-Hausdorff formula for arbitrary 𝑋,𝑌 ∈ a+ is finite
𝑋 ◇ 𝑌 = 𝑋 + 𝑌 + 1

2 [𝑋,𝑌 ]...+ const[𝑋, [, [...[..., ...]]].

The last commutator has degree 𝑟 (and we have 𝑟 > 𝑛).

Each element from a+ can be written in a unique way as a linear
combination of vector fields from 𝐴.

Thus, we can rewrite Campbell-Hausdorff formula as a linear com-
position of the basis 𝐴 and coefficients of linear combinations of vector
fields 𝑋 and 𝑌

𝑋 ◇ 𝑌 = 𝑋 + 𝑌 +

𝑛∑︁
𝑖=1

𝑝𝑖𝑋𝑖.

Here 𝑝𝑖 are in our case finite polynomials of degree ≤ 𝑘 (in general, infinite
polynomials) of coefficients of decompositions of 𝑋 and 𝑌 on the basis
vector fields. So a+ can be considered as a homogeneous Lie group.

Observe that since among vector fields 𝑋1, .., 𝑋𝑁+1 there are 𝑛+ 1
linearly independent then to this set belong our generators 𝑋1, .., 𝑋𝑚, 𝑌, 𝑇 .
Let us denote them

𝐵 = (𝑋𝑖1 , ..., 𝑋𝑖𝑛+1
) and take 𝐵(0) as a basis for R𝑛+1.

As a consequence, 𝐵 must be homogeneous with degrees 𝜎1, . . . , 𝜎𝑛,
(𝜎𝑚+2 = 2). We rearrange them saving the same notation to

1 ≤ 𝜎1 ≤ 𝜎2 ≤ . . . ≤ 𝜎𝑛+1.

Now, let us reorder 𝐴⊥ as well and continue the rearrangement to get
the matrix of coefficients (𝑋𝑖1 , . . . , 𝑋𝑖𝑛+1 , . . . , 𝑋𝑖𝑁+1

) with homogeneity
degrees

𝜎1, 𝜎2, . . . , 𝜎𝑛, 𝜎𝑛+1, 𝑠𝑛+2, . . . , 𝑠𝑁+1.

It was shown in the paper of Bofiglioli-Biagi [7] that by a smooth
change of variables in a+ one can construct a basis 𝐽1, . . . , 𝐽𝑁+1 such that
matrix (𝑋𝑖1 , . . . , 𝑋𝑖𝑛+1 , . . . , 𝑋𝑖𝑁+1

) will be transformed to (𝑍𝑖1 , . . . , 𝑍𝑖𝑛+1 ,
. . . , 𝑍𝑖𝑁+1

) which at point 0 has the following form(︂
𝐵(0) 0

0 I

)︂
,

where I is a unit matrix (which corresponds to R𝑛) and coincides with
(𝑋𝑖1 +𝑅𝑖1 , ..., 𝑋𝑖𝑛+1

+𝑅𝑖𝑛+1
, ..., 𝑋𝑖𝑁+1

+𝑅𝑖𝑁+1
), where each 𝑅𝑖 satisfies

the following conditions:
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(1) 𝑅𝑖 is a vector field of a+ and it consists only from 𝜉-derivatives with
coefficients possibly depending from (𝑥, 𝜉);

(2) 𝑍𝑖 = 𝑋𝑖 +𝑅𝑖 holds the same homogeneity as 𝑋𝑖.

Now, following the Folland technique [8], there is the possibility to
construct 1-to-1 smooth map 𝜋

a+ ≃ R𝑁+1 ↦→ R𝑛+1,

Exp(𝑠𝑋) = Exp(𝑠1𝐽1) ∘ . . . ∘ Exp(𝑠𝑁+1𝐽𝑁+1),

𝜋(𝑋) = Exp(𝑠𝑋)|𝑠=1 .

Here Exp(𝑠𝑋) is a smooth integral curve (we can call it a flow)
which starts from the origin at time 𝑠 = 0 and moves always in the
direction 𝑋 with unit speed. This curve is a unique solution of the system
of smooth ordinary differential equations �̇� = 𝑋(𝛾(𝑠)). Thus, for any
smooth function 𝑓

𝜕

𝜕𝑠
𝑓(𝑥1(𝑠), 𝑥2(𝑠), . . . , 𝑥𝑛(𝑠)) =

𝜕

𝜕𝑠
𝑓(𝛾(𝑠)) = 𝑋𝑓(𝑥1, 𝑥2, . . . , 𝑥𝑛).(11)

In the paper of Folland [8] and in the consequent article of Bonfilgioli
and Biagi [7] there was proved that if 𝐵(0) is a basis for R𝑛+1 then
Jacobi matrix of the projection 𝜋 at point 0 coincides with 𝐵(0) and
one can find the neighborhood in which 𝜋 is surjective. Moreover, it is
polynomial map which preserves the dilations, 𝜋(𝑥, 𝑡, 𝜉) = (𝑥, 𝑡) and, the
most important, 𝑑𝜋(𝐽𝑖)𝑎 = (𝑋𝑖)𝜋(𝑎), ∀ 𝑎 ∈ a+ ≃ R𝑁+1, ∀𝑖. Thus, 𝑍𝑖

are liftings of 𝑋𝑖, ∀𝑖 = 1, ..,𝑚, 𝑍𝑚+1 is a lift of 𝑌 . It easy to see also
that 𝑍𝑚+2 = 𝑇 is left without changes.

Let us consider the operator 𝐹 = 𝜕
𝜕𝑡 −

∑︀𝑚
𝑖=1 𝑍

2
𝑖 + 𝑍𝑚+1. By the

construction it is a saturable lifting of 𝐹 . From Folland results one can
conclude that 𝐹 is homogeneous of degree 2 w.r.t. 𝛿+𝜆 (𝑥, 𝑡).

5.2. Solvability which depends from homogeneity of an operator

Proof of solvability for homogeneous hypoelliptic operators is based on
two classical theorems. The first states the local solvability for hypoelliptic
operators. It belongs to Fr. Treves

Theorem 3. (Treves) (see [9] Theorem 52.2 ) If 𝐷 is a hypoelliptic
differential operator on an open domain Ω ⊆ R𝑛, then every point in
Ω has an open neighborhood in which formal adjoint operator 𝐷′ has a
fundamental kernel. If 𝐷′ is also hypoelliptic, then every point of Ω has
neighborhood in which 𝐷 has a two-sided fundamental kernel, which is
very regular (belongs to Frechet space).
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The second theorem belongs to F. Folland [10]

Theorem 4. (Folland) Let 𝐷 be a homogeneous of degree 𝛼 differen-
tial operator on the homogeneous Lie group 𝐺 (0 < 𝛼 < 𝑄, 𝑄 =

∑︀𝑛
𝑖=1 𝜎𝑖

is a homogeneous dimension of 𝐺) such that 𝐷 and his adjoint 𝐷′ are
both hypoelliptic on G. Then there is a unique kernel 𝐾0 of type 𝛼 which
is a fundamental solution for 𝐷 at point 0, i.e. satisfies in distributional
meaning the equation 𝐷𝐾0 = 𝐷𝑖𝑟𝑥. Here 𝐷𝑖𝑟𝑥 is a Dirac distribution.

To prove Theorem 4 Folland has used the so called “local-to-global”
or blow up argument to construct from local solution the global one.

According to these theorems operator 𝐹 has a global fundamental
solution with properties (1)-(4) from definition of a fundamental solu-
tion, and following the Bofiglioli-Biagi theorem we can construct the
fundamental solution to 𝐹 . Thus, the proof is complete.

6. Conclusion

In this paper, we have stated global solvability of the Fokker–Planck
equations of a special type. Our motivation comes from modelling of the
primary visual cortex of the human brain, where equations (1) describe a
process of anisotropic blurring (diffusion) of an image of the visual field on
the retina of the eye. By modifying the Folland lifting technique for linear
hypoelliptic differential operators satisfying the Hormander condition,
we have obtained a method to saturate the system of vector fields in
the equation to a basis of the tangent space at every point. Finally, in
Theorem 2 we have presented the conditions that guarantee existence of
a global fundamental solution to the considered equations.

Sections 1, 2 and 6 of the paper are written by A. Mashtakov, and
Sections 3, 4 and 5 are written by V. Markasheva.
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УДК 517.958

В. А. Маркашева, А. П. Маштаков. Существование глобального фундамен-
тального Решения для Класса Уравнений Фоккера–Планка.

Аннотация. В статье исследован вопрос глобальной разрешимости уравнений
Фоккера–Планка специального вида. Уравнения такого вида возникают в моделях
первичной зрительной коры головного мозга человека и описывают процесс анизо-
тропного размытия изображения, поступающего на сетчатку глаза. Модифицируя
технику лифтинга Фолланда для линейных гипоэллиптических дифференциаль-
ных операторов, удовлетворяющих условию Хермандера, был предложен метод
насыщения системы векторных полей в уравнении до базиса касательного про-
странства в каждой точке. Найдены условия, гарантирующие существование
глобального фундаментального решения для уравнений рассматриваемого вида.

Ключевые слова и фразы: Уравнение Фоккера–Планка, группа Ли, фундаментальное
решение, насыщение.
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