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ABSTRACT. In this paper, we investigate global solvability of the Fokker—Planck
equations of a special type. Such equations arise in models of the primary
visual cortex of the human brain and describe a process of anisotropic blurring
of the image of the visual field on the retina of the eye. By modifying the
Folland lifting technique for linear hypoelliptic differential operators satisfying
the Hormander condition, we propose a method to saturate the system of vector
fields in the equation to a basis of the tangent space at every point. We present
the conditions that guarantee existence of a global fundamental solution to the

considered equations.
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1. Introduction

nilpotent and stratified Lie groups, lifting of operator, saturation, funda-

In this paper, we study a class of Fokker—Planck equations given by

(1)

where © = (z1,. ..

(2) X;= Z a;j(x

p) €
d
T

8ux t) (ZX2 )u(x,t),

€ R™, t € R and the vector fields

, Z" 9
1= 1,2, ceey M, Y = a(m+1)j($)87
—y J

satisfy the following conditions:

(1) X; and Y are C* vector fields on R", i.e. their coeflicients are
smooth functions a;;(z) € C*°(R");
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(2) X1,...,X,, are homogeneous of degree 1 and Y is homogeneous of
degree 2 w.r.t. 0x(x) = (A71x1, A\7229, ..., AT xy,), 1 < o01... <oy, e
for any smooth on R" test function f

Xi(f o da(@) = MXif (@) 0 0a(x), Y (f 0 dx(2)) = N (Y f(x)) 0 dx(x);

(3) X1,...,X,,,Y are linearly independent almost everywhere w.r.t.
standard Lebesgue measure on R"”

rank(Xy,..., X, Y)=m+1;
(4) X1,...,X, Y satisfy Hormander hypoellipticity condition
rank Lie(Xy,..., X, Y) =n.

The question of solvability of equation (1) is equivalent to the question
of existence of a global fundamental solution to the corresponding partial
differential operator of the second order

0 o,
(3) a—;XﬂLY.

The paper has the following structure. It starts from motivation that
comes from modelling of the primary visual cortex of the human brain,
where equations (1) describe a process of anisotropic blurring (diffusion) of
an image of the visual field on the retina of the eye. Then, in Section 3, we
prepare a necessary mathematical background. Afterwards, in Section 4,
we present the main result, the conditions that guarantee existence of
a global fundamental solution of (3), followed by its proof in Section 5.
Finally, we summarize the work in Conclusion.

2. Motivation

Our motivation to study Fokker—Planck equations (1) comes from
modelling of the primary visual cortex V1 of the human brain, see e.g. [1],
where such equations describe anisotropic diffusion of the image transmit-
ted from the retina of the eye to the visual cortex V1. Such a diffusion
underlies a mechanism of contour completion. According to the Petitot—
Citti-Sarti model [2, 3], the primary visual cortex lifts the image from the
retina R? to the extended space of positions and directions R? x S = SE(2)
(the group of Euclidean motions of the plane [4]):

F oI = ((1,22) € R? = [0,1]) = ((x1,22,23) € SE(2) — [0,1]) =1,

where 23 € S! is the direction angle. Thus, the original image of I(z) on
SE(2) has the form I(z) = F(I)(x).
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Denote by X; the basis left invariant vector fields on SE(2):
0 Xy —cosas-2 sines 2 Xu— —sinag 2 9
Bxg’ 9 = COS I3 92, +sinxs 83:2’ X3 = —sinzs 921 +cosxs 3$2'

The Fokker—Planck equation that simulates the contour completion
mechanism has the following form, see [5],
(4) Ou(z,t)
ot
where B > 0 is the diffusion coefficient.

In the paper [6], the authors show that such a diffusion process can
be modelled by the following Fokker—Planck equation of type (1) in R?:

X =

- (BX% - Xg)U(a:,t),

t
) Wl _ (B2~ %5 )u(e0),
where (z,y) € R?, ¢t € R and the vector fields Y; = ya% - xa%, Y, = %.

3. Preliminaries

Let P be a linear partial differential operator of an arbitrary order
with smooth on R™ real-valued coefficients. We say that a function
I:{(z;y) e R" xR" : z#y} =R,
is a (global) fundamental solution for P if it satisfies the following as-
sumptions:
(1) for every fixed x € R™ the function I'(z;-) is locally integrable on R"™
and

[ P oty = ~o(e) for every 6 € C2(R")

where P’ denotes the usual formal adjoint of P (this condition can be
rewritten as PT', = —Dir, in D'(R™));

(2) T'(z,y) > 0 whenever x # y;

(3) T'(z;y) € L1,10c(RP x RP) for every fixed y € R™ the function I'(;y)
is locally integrable on R™;

(4) for every fixed x € R™ the function y — T'(z;y) vanishes as y — oo;

(5) for every fixed z € R™ the function y — I'(z;y) tends to oo as y — x.

Let P be a smooth linear partial differential operator on R™. We
say that a linear partial differential operator P, defined on a higher-
dimensional space R™ x RP, is a lifting of P if the following conditions
are fulfilled:
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(1) P has smooth coefficients, possibly depending on z € R™ and £ € RP,
(2) for every fixed f € C*°(R"), one has

(6) P(fom)(z,&) = Pf(x), for every(z,&) € R" x RP = RY,
where N =n + p and n(z,£) = x is the canonical projection.

It is obvious that (6) holds if and only if

P=P+R with R=Y raz(z,§)Ds Dy,
BF#0

for a finite number of coefficients r, 5 € C(RY), possibly identically
vanishing on RY. The use of the term ’lifting’ here is more specific than
commonly accepted in differential geometry.

Let P be a smooth linear partial differential equation on R", and
P = P + R be a lifting of P on RY. We say that P is saturable lifting of
P if the following conditions hold:

(1) Every summand of the formal adjoint R’ to a given operator P collect
as least one derivative along some &, i.e., R’ has a form

R = Z r'(,ﬁ(x, {)D;‘D?,
50

for a finite number of possibly vanishing smooth coefficients /', g.

(2) There exists a sequence {0;(£)}32; : RP + [0, 1] of smooth function
with compact supports such that

U 2 =R? where Q; = {¢ € R : 6;(§) =1} and for Vj Q; C Q1.
JjEN

Moreover, for every compact set K C R™ and for any coefficient
function ', g(x,§) of R’ there are exist constants Cy, g(K) such that
o8l

|r’a,5(x,§)@9j(§)| < Cup(K) forevery z € K,£ € RP,j € N.

In the paper of Bonfiglioli-Biagi [7] one can find some sufficient
conditions for a lifting operator to be saturable. In particular, for any
smooth second order operator on R? the associated operator P = 8, — P
is a saturable lifting of P.
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THEOREM 1. (Bonfiglioli-Biagi) Let P be a smooth linear partial

differential equation on R™ and let P be a saturable lifting of P on RV,

Assume that there exists a fundamental solution T' to P on the whole RN
which satisfies the following conditions

(1) for every fixed x,y € R™ such that x #y
0= L(@,05y,7m) € L1 (RP);
(2) for every fixred x € R™ and for any compact K C R™
(y.1) = D(x,05y,n) € L1 (K x RP).
Then the function T': {(z;y) e R® xR : x # y} — R, defined by

T(x;y) = /IR T(z,0;y,n)dn

is a global fundamental solution of P.

4, Main result

As a basic example, let us consider Grushin vector fields

which are smooth on a plane R? > (x,y). The vector fields X1, X»
homogeneous of degree 1 w.r.t. 0§ (z) = (Az, A\%y). Conditions (1)—(4)
hold. R? is a Lie group homogeneous w.r.t. 5f(ac) Vector fields X5, Xo
satisfy the Hormander rank condition (4), hence Hormander operator
X? + X2 as well as Kolmogorov operator X7 + X5 are both hypoelliptic
but there is no Lie group structure on R? making these operators left-
invariant on it.

In general case in such situation we need to use a special modification
of Folland-Bonfiglioli-Biagi technique built in this paper. In the considered
example we can use the Folland-Bonfiglioli-Biagi saturation-lifting tech-
nique without any modifications, which leads to a new set of generating
vector fields (let us call them Kolmogorov vector fields)

0 0 0
Xl—%, X2—7§+$87y

Now, R3 is a saturated Lie group with a group law e

(z,y,t) o (z, g, t") = (x+ o',y +y +t'z,t +1).
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Let us construct Hormander and Kolmogorov operators H and K on
these vector fields

2 2
H:X%+X§:%+ <§t+x§y> :
0? 0 0

K:X12+X2:@—a+xa—y.
Notice that the well-known Kolmogorov operator K on R? coincides with
the Fokker—Planck operator on Grushin vector fields % - 8‘9—; — :Ea% on
R? x R which we would like to solve, cf. (3).

It is easy to check that K is invariant w.r.t. the left translations on
R3 and commutes with the following dilations:

(7) 55 (2) = (A, Ay, A22).

Kolmogorov vector fields are homogeneous for these dilations family.
Therefore, Lie group R? is homogeneous w.r.t. (7). But this time X; is
1-homogeneous whereas X5 is 2-homogeneous w.r.t. (7). We can see that

H is also invariant w.r.t. left translations on R® while H commutes with
another family of dilations §7 (z):

(8) 55\{(1‘) = (Az, Ny, \%t).

The homogeneity for hypoellipic operators guarantees that these
operators have global fundamental solutions. Thus, by lifting technique
we have proved the existence of a global solution to the Fokker—Planck
equation on Grushin vector fields.

Let us formulate the main result of this paper

THEOREM 2. For any set of vector fields that satisfy conditions (1)-(4)
there exists a global fundamental solution to Fokker—Planck differential
operator F = % -3 XE+Y.

5. Proof of Theorem

5.1. Lifting construction

Let © = (x1,...,2,) € R™. Let us consider the family (by A > 0) of
non-isotropic diagonal maps on R”
In(z) = (A 21, A%29,..., A7 2y), 1 <01 <09 < ... <oy,
and a set of vector fields X; and Y such that 4 main conditions hold:

(1) Coeflicients are smooth functions a;;(z) € C*°(R"). So, Xi,...,Xm
and Y are C'*° vector fields in R"™;
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(2) X1,...,X,, are homogeneous of degree 1 and Y is homogeneous of
degree 2 w.r.t. dx(x), i.e. for an arbitrary vector filed X homogeneous
in degree [ and for any smooth on R™ test function f

X(f 0 da(x)) = N (X f(x)) 0 6x(x);
(3) X;, Y are linearly independent (as linear differential operators);
(4) X;, Y satisfy Hormander hypoellipticity condition:
rank Lie{X,..., X, Y} =n.

Condition (4) means that at any point of R™ one can find n linearly
independent differential operators among Xi,...,X,,,Y and their
non-zero commutators.

We recall that a typical example of vector fields that satisfy conditions
(1) — (4) is given by Grushin vector fields X; = a%, X = xa%, which are
smooth in R? and homogeneous of degree 1 w.r.t. d\(z) = (Az, \%y).

The innovative modification is that now we can extend x € R" to
(z,t) € R*"L. The dilations can be extended as well

9) 55 (2, 1) = (6x(x), A%t).

Using the commutativity operation, let us construct Lie algebra
a=Lie{X1,...,Xm,Y}. We denote

(10) dim a:= N > n.

This algebra must be extended from a to a™ with one more vector
filed % = T, linearly independent from X7, Xo,...,X,,,Y. We have
changed the dilations for T to be homogeneous with degree 2. This field
is independent from others in sense that [T, X;] = [T,Y] = 0 and, thus, it
gives an additional dimension dim at = N + 1.

From homogeneity of the extended set of generators Xq,...,X,,, Y, T
(property (2)) one can conclude that a™ is nilpotent of step r and stratified
at=a@..@at.

Let us denote by A the set of vector fields which is a basis of algebra
a* = Lie{Xl, XQ, .y Xm, Yv, T}

As far as X1, Xo,...,X,,,Y,T are linearly independent in R"*+!
(condition (3)) to fulfil condition (10) (to find N + 1 linearly independent
differential operators and construct the basis a™) we can choose first X7,
Xo,oooy X, Y, T, and then some additional operators among commuta-
tors of X1,...,X,,,Y or their linear combinations. Let us denote them
Xoio, ..., Xn. We will call this set the additional part of the basis A~.
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Let us notice that each vector field among A+ belongs to some layer
aﬁ, 1 < k <, consequently, it is J,(z)-homogeneous of degree k while
X1, Xo, ..., X, having 1-homogeneity belong to a; and Y, T € aj for
the same reason.

Thus, Campbell-Hausdorff formula for arbitrary X,Y € at is finite
XoY =X+Y +i[X,Y]... +const[X, [, [...[..., ..]]].

The last commutator has degree r (and we have r > n).

Each element from a®™ can be written in a unique way as a linear
combination of vector fields from A.

Thus, we can rewrite Campbell-Hausdorff formula as a linear com-

position of the basis A and coefficients of linear combinations of vector
fields X and Y

n
XoY =X+Y+) pX.
i=1
Here p; are in our case finite polynomials of degree < k (in general, infinite
polynomials) of coeflicients of decompositions of X and Y on the basis
vector fields. So a* can be considered as a homogeneous Lie group.
Observe that since among vector fields X7, .., X1 there are n + 1
linearly independent then to this set belong our generators Xy, .., X,,,, Y, T.
Let us denote them

B=(X;,...X

ins:) and take B(0) as a basis for R"*1.
As a consequence, B must be homogeneous with degrees o1,...,0p,

(0m+2 = 2). We rearrange them saving the same notation to
1<o1 <02 <... < opqr.

Now, let us reorder A+ as well and continue the rearrangement to get

the matrix of coefficients (Xj,,..., X, ,,,..., Xiy,,) with homogeneity
degrees

01,02,...,0n,0n41y5n42,++-3SN+1-

It was shown in the paper of Bofiglioli-Biagi [7] that by a smooth

change of variables in a™ one can construct a basis Ji, ..., Jy,1 such that

matrix (X, ..., X4, .., Xiy,,) will be transformed to (Z;,,...,Z;,,,,

RN/ which at point 0 has the following form

ine1)
(%01).

where I is a unit matrix (which corresponds to R™) and coincides with
(Xi, + Riyy o Xy + R WX + Ri,.,), where each R; satisfies
the following conditions:

17"

(ERERE INf1 N1
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(1) R; is a vector field of a™ and it consists only from &-derivatives with
coefficients possibly depending from (z,£);

(2) Z; = X; + R; holds the same homogeneity as X;.
Now, following the Folland technique [8], there is the possibility to
construct 1-to-1 smooth map m

at ~ RN R+
Exp(sX) = Exp(s1J1) o...0o Exp(syt1Jn+41)s
7(X) = Bxp(sX)|

s=1"

Here Exp(sX) is a smooth integral curve (we can call it a flow)
which starts from the origin at time s = 0 and moves always in the
direction X with unit speed. This curve is a unique solution of the system
of smooth ordinary differential equations ¥ = X (y(s)). Thus, for any
smooth function f

(11) %f(xl(s),xg(s), o xp(s) = %f(*y(s)) = X f(x1,22,...,2,).

In the paper of Folland [8] and in the consequent article of Bonfilgioli
and Biagi [7] there was proved that if B(0) is a basis for R"™! then
Jacobi matrix of the projection 7 at point 0 coincides with B(0) and
one can find the neighborhood in which 7 is surjective. Moreover, it is
polynomial map which preserves the dilations, 7(z,t,£) = (z,t) and, the
most important, dr(J;)a = (Xi)r(a), Y a € at ~ RN+ Vi, Thus, Z;
are liftings of X;, Vi = 1,..,m, Z,,41 is a lift of Y. It easy to see also
that Z,,42 = T is left without changes.

Let us consider the operator F = % — 2211 Zf + Zm+1- By the
construction it is a saturable lifting of F'. From Folland results one can
conclude that F' is homogeneous of degree 2 w.r.t. 55 (z,1).

5.2. Solvability which depends from homogeneity of an operator

Proof of solvability for homogeneous hypoelliptic operators is based on
two classical theorems. The first states the local solvability for hypoelliptic
operators. It belongs to Fr. Treves

THEOREM 3. (Treves) (see [9] Theorem 52.2) If D is a hypoelliptic
differential operator on an open domain 2 C R™, then every point in
Q has an open neighborhood in which formal adjoint operator D' has a
fundamental kernel. If D' is also hypoelliptic, then every point of Q0 has
neighborhood in which D has a two-sided fundamental kernel, which is
very regular (belongs to Frechet space).
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The second theorem belongs to F. Folland [10]

THEOREM 4. (Folland) Let D be a homogeneous of degree o differen-
tial operator on the homogeneous Lie group G (0 < a < Q, Q = E?:l o;
is a homogeneous dimension of G) such that D and his adjoint D’ are
both hypoelliptic on G. Then there is a unique kernel Ko of type o which
is a fundamental solution for D at point 0, i.e. satisfies in distributional
meaning the equation DKy = Dir,. Here Dir, is a Dirac distribution.

To prove Theorem 4 Folland has used the so called “local-to-global”
or blow up argument to construct from local solution the global one.

According to these theorems operator F' has a global fundamental
solution with properties (1)-(4) from definition of a fundamental solu-
tion, and following the Bofiglioli-Biagi theorem we can construct the
fundamental solution to F'. Thus, the proof is complete.

6. Conclusion

In this paper, we have stated global solvability of the Fokker—Planck
equations of a special type. Our motivation comes from modelling of the
primary visual cortex of the human brain, where equations (1) describe a
process of anisotropic blurring (diffusion) of an image of the visual field on
the retina of the eye. By modifying the Folland lifting technique for linear
hypoelliptic differential operators satisfying the Hormander condition,
we have obtained a method to saturate the system of vector fields in
the equation to a basis of the tangent space at every point. Finally, in
Theorem 2 we have presented the conditions that guarantee existence of
a global fundamental solution to the considered equations.

Sections 1, 2 and 6 of the paper are written by A. Mashtakov, and
Sections 3, 4 and 5 are written by V. Markasheva.
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VOK 517.958

B. A. Mapkamesa, A. I1. Mamrrakos. Cyuwecmsosarue 24060451020 GyHIaMEH-
manavrozo Pewenusa das Kaacca Ypasrenuti Poxxepa—Ilranka.

AnHHOTALMA. B crarbe mccienoBan Bompoc riao6ajibHON pPas3penmMoCTy ypaBHEHUN
Doxkepa—Ilianka crenuaJbHOro Buja. Y paBHEHHSI TAKOI'O BHU/ A BO3HUKAIOT B MOJIEJIAX
IIepBI/I‘{HOﬁ BPHTEJIBHOI‘/'I KOpr T'OJIOBHOI'O MO3ra 4eJjiOBeKa M OIIMChIBalOT leOLLECC AHU30-
TPOIHOIO Pa3MbITHsI U300parkKeHnsl, OCTYMAIIEro Ha ceryarky riasa. Moaudunupys
TexHuKy audrunra Posstanga s JTUHEHHBIX THIOIIANTHYECKAX AuddepeHnnaib-
HBIX OIIEPATOPOB, Y/IOBJIETBOPSIOIINX YCJIOBHIO XepMaHIepa, ObLI MPEIJIOXKEH METOL
HACBIIIEHUs] CUCTEMbl BEKTODHBLIX IIOJIell B ypaBHEHUU IO 6asuca KacaTeJbHOIO IPO-
cTpaHCTBa B KaxKJoil Touke. Haiijienbl ycsaoBusi, rapaHTHpPYIOIIHE CYyI[ECTBOBAHUE
r106abHOro0 (PyHIAMEHTAJIBLHOTO PEIIeHUs [Jisl yPaBHEHNH pacCMaTpUBaeMOro BHIA.

Kmouesvie caosa u Ppadvi: VpasHenne Dokkepa—llnanka, rpynna Jlu, dyHgamenTansHoe
peweHne, HacbllWweHne.
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dyunamentansuoro Pemenus nns Kaacca Ypasuennit @okkepa—llmankas,
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