Системы с переполнениями и управление по переполнениям

Н. Н. Непейвода

Напоминание: концепция локальных вычислений и её связь с робастностью

Пусть заданы хаусдорфовы топологические пространства аргументов \mathcal{A} , значений \mathcal{V} и результатов \mathcal{R} . Входным сигналом является функция $\mathcal{A} \to \mathcal{V}$, выходным — $\mathcal{A} \to \mathcal{R}$.

Пусть заданы хаусдорфовы топологические пространства аргументов \mathcal{A} , значений \mathcal{V} и результатов \mathcal{R} . Входным сигналом является функция $\mathcal{A} \to \mathcal{V}$, выходным — $\mathcal{A} \to \mathcal{R}$.

Класс допустимых входных функций называется типом аргументов и обозначается \mathbb{R} , выходных — типом результатов и обозначается \mathbb{R} .

Пусть заданы хаусдорфовы топологические пространства аргументов \mathcal{A} , значений \mathcal{V} и результатов \mathcal{R} . Входным сигналом является функция $\mathcal{A} \to \mathcal{V}$, выходным — $\mathcal{A} \to \mathcal{R}$. Класс допустимых входных функций называется типом аргументов и обозначается \mathbb{A} , выходных — типом результатов и обозначается \mathbb{R} .

Действие (преобразователь информации) — функция из \mathbb{A} в \mathbb{R} .

$$\mathfrak{F}\in\mathbb{A}
ightarrow\mathbb{R}$$

Пусть заданы хаусдорфовы топологические пространства аргументов \mathcal{A} , значений \mathcal{V} и результатов \mathcal{R} . Входным сигналом является функция $\mathcal{A} \to \mathcal{V}$, выходным — $\mathcal{A} \to \mathcal{R}$.

Класс допустимых входных функций называется типом аргументов и обозначается \mathbb{R} , выходных — типом результатов и обозначается \mathbb{R} .

Действие (преобразователь информации) — функция из \mathbb{A} в \mathbb{R} .

$$\mathfrak{F}\in\mathbb{A}
ightarrow\mathbb{R}$$

Непрерывность аргументов и результатов можно предполагать не всегда, поскольку возможны пороговые функции.

Ограниченность

Среди окрестностей наших пространств выделяем подкласс ограниченных, замкнутыцй вниз по вложению.

Ограниченность

Среди окрестностей наших пространств выделяем подкласс ограниченных, замкнутыцй вниз по вложению.

Подмножество ограниченной окрестности называется *ограниченным*.

Ограниченность

Среди окрестностей наших пространств выделяем подкласс ограниченных, замкнутыцй вниз по вложению.

Подмножество ограниченной окрестности называется *ограниченным*.

Например, ограниченными можно считать все окрестности вида $(t, +\infty)$ на шкале времени.

Влияние и монотонность

Влияние действия \mathfrak{F} на подмножестве пространства аргументов $X \subseteq \mathcal{A}$ есть множество всех аргументов, для которых значение действия может отличаться для входных сигналов, совпадающих вне X:

$$\mathcal{I}(X) = \bigcup_{\substack{f_1, f_2 : \{x | f_1(x) \neq f_2(x)\} \subseteq X}} \{x \mid \mathfrak{F}(f_1)(x) \neq \mathfrak{F}(f_2)(x)\}$$
 (1)

Действие монотонно, если

$$X \subseteq Y \Longrightarrow \mathcal{I}(X) \subseteq \mathcal{I}(Y)$$
 (2)

Локальное действие

Действие называется *локальным*, если для каждого аргумента x найдётся его окрестность $\mathcal{D}(x)$ (область зависимости), такая, что если два входных сигнала f_1, f_2 различаются лишь на этой окрестности, то выходные сигналы различаются на ограниченном множестве $\mathcal{J}(x, f_1, f_2)$, включающем x. Действие равномерно локально, если выбор $\mathcal{J}(x,f_1,f_2)$ может быть сделан не зависящим от f_1, f_2 . Лемма. Действие равномерно локально тогда и только тогда, когда для каждой точки существует окрестность, на которой влияние действия ограничено.

Следствие. В дискретной топологии действие равномерно локально тогда и только тогда, когда влияние любой точки ограничено.

Влияние точки; влияние на сигнал

Предел множества, на котором различаются преобразования сигналов, различных лишь в окрестности точки x, называется влиянием x.

$$\mathcal{IN}(x) = \bigcap_{x \in O)} \mathcal{I}(O) \tag{3}$$

Фиксируя в определении влияния сигнал f_1 , получаем определение влияния на данный сигнал на данном множестве $\mathcal{I}(X)(f_1)$ и переходом к пределу аналогично (3) — влияния точки на сигнал.

Зависимость

Множество точек, для любой окрестности которых существуют f_1 , f_2 , различающиеся лишь в этой окрестности, для которых $\mathfrak{F}(f_1)(x) \neq \mathfrak{F}(f_2)(x)$, называется зависимостью x:

$$\{y \mid \forall \mathcal{O}(y \in \mathcal{O} \Longrightarrow \exists f_1, f_2(\forall z (f_1(z) \neq f_2(z) \& f_1(x) = f_2(x) \Longrightarrow z \in \mathcal{O}) \& \\ \mathfrak{F}(f_1)(x) \neq \mathfrak{F}(f_2)(x))\}$$
 (4)

и обозначается $\mathcal{D}(x)$. Здесь \mathcal{O} — переменная по окрестностям, f_1 , f_2 — по входным сигналам. Зависимость множества $\mathcal{D}(X)$ — объединение зависимостей его элементов.

Корректность

Теорема. Понятия локальности, равномерной локальности, влияния и зависимости для монотонных действий инвариантны относительно конкретного выбора базиса окрестностей топологии. В случае немонотонных действий это не обязательно так.

В дальнейшем мы рассматриваем лишь монотонные действия.

Теорема. Зависимость равномерно локального действия на любом ограниченном множестве ограничена.

Для локального действия это не обязательно выполнено.

Разбиения сигналов, прямоточные вычисления и переполнения

Важно!

В дальнейшем пространства входных и выходных сигналов будем считать совпадающими и называть их просто сигналами.

Неподвижный сигнал

Если $\mathfrak{F}(e) = e$, то e называется неподвижным сигналом.

Неподвижный сигнал можно использовать как нулевой при численном представлении. На нём часто можно проверять локальность.

Пространство X*2 — пространство X, в котором ограниченные множества являются попарными объединениями пересекающихся ограниченных множеств X.

Лемма. Действие локально (равномерно локально) на X*2 тогда и только тогда, когда оно локально (равномерно локально) на неподвижном сигнале на X.

Конечный сигнал

Фиксируется некоторый неподвижный сигнал e. *Носителем* сигнала f называется такое множество, что вне его f(x) = e(x).

Сигнал f, такой, что некоторый его носитель ограничен, называется *конечным*.

В этом случае множество таких x, что $f(x) \neq e(x)$, ограничено.

В дальнейшем слово «некоторый» перед «носителем» будет опускаться. Если нет других определений, носитель всегда один из возможных.

Ограниченное локально конечное покрытие

Ограниченное локально конечное покрытие пространства X — семейство ограниченных множеств $Y_{(\iota \in I)}$ (основы), такое, что каждая точка принадлежит конечному числу основ и каждое ограниченное множество покрывается конечным числом основ и пересекается с конечным числом основ.

Соседями множества Y_i из покрытия называются пересекающиеся с ним множества из покрытия. Множество соседей Y_i обозначается \mathfrak{N}_i . Покрытие задаёт неориентированный граф соседства основ.

Пространство *структурировано на основы* (структурировано), если семейство $Y_{(\iota \in I)}$ конечно.

Основные сигналы и переполнения

 $\mathfrak{F}(f)$ основным не является.

Сигнал *основной*, если его носитель основа. Возникает *переполнение*, если сигнал f основной, а

Структурирование на основы корректно по переполнениям, если для основы f с носителем Y_i носитель $\mathfrak{F}(f)$ вложен в объединение множеств \mathfrak{N}_i . Содержательно это означает, что переполнения воздействуют лишь на соседей.

Направленные переполнения

Переполнения в семействе основных сигналов f_i направленные, если для любых двух соседей Y_i, Y_j одно из двух множеств

$$\{x \mid \mathfrak{F}(f_j) \neq e(x) \& x \in Y_i\}$$

$$\{x \mid \mathfrak{F}(f_i) \neq e(x) \& x \in Y_j\}$$

пусто.

Содержательно это означает, что переполнения между соседями идут лишь в одну сторону и из графа соседства можно создать ориентированный граф переполнений.

Прямоточные вычисления

Под прямоточными вычислениями понимается процесс преобразования информации, в котором сигналы от вычислительных элементов немедленно и непосредственно подаются на вход другого вычислительного элемента либо на выход схемы и каждый сигнал проходит на пути к выходу заранее ограниченное число вычислительных элементов.

Прямоточные вычисления

Под прямоточными вычислениями понимается процесс преобразования информации, в котором сигналы от вычислительных элементов немедленно и непосредственно подаются на вход другого вычислительного элемента либо на выход схемы и каждый сигнал проходит на пути к выходу заранее ограниченное число вычислительных элементов. При этих условиях вычислительное устройство может быть формализовано как сеть, в вершинах которой стоят преобразователи информации, а дугам приписаны сигналы. Входами устройства являются начальные вершины сети. Выходами конечные.

Выделим условия, при которых для структурированного множества можно организовать прамоточные вычисления базирующиеся на

Разбиение и восстановление сигналов

Зададим операцию разбиения сигналов на основные $\mathfrak{B}(f)$, сопоставляющую каждому сигналу семейство основных сигналов $\mathfrak{B}(f)(\iota)(\iota \in I)$ с носителями $Y_{(\iota \in I)}$.

Разбиение и восстановление сигналов

Зададим операцию разбиения сигналов на основные $\mathfrak{B}(f)$, сопоставляющую каждому сигналу семейство основных сигналов $\mathfrak{B}(f)(\iota)(\iota \in I)$ с носителями $Y_{(\iota \in I)}$. Правой обратной ей является коммутативная операция восстановления сигнала, сопоставляющая любому семейству конечных сигналов Φ_{ι} ($\iota \in J$) сигнал $\mathfrak{R}(\Phi)$ и

$$\mathfrak{R}(\mathfrak{B}(f)) = f. \tag{5}$$

Потребуем, чтобы операция восстановления была согласована с \mathfrak{F} :

$$\Re\left((g_i)_{(i\in J)}\right) = f \Rightarrow \Im(f) = \Re\left(\Im(g_i)_{(i\in J)}\right).$$
 (6)

Обработка переполнений

Зададим четырёхместную операцию обработки переполнений *, сопоставляющую каждой паре соседей i,j и паре сигналов f_i,f_j пару сигналов g_i,g_j , таких, что носитель g_i вложен в носитель f_i и не пересекается с $Y_j \setminus Y_i$, и аналогично для g_j , причём

$$\Re(\{\langle i, f_i \rangle, \langle j, f_j \rangle\}) = \Re(\{\langle i, g_i \rangle, \langle j, g_j \rangle\}).$$
 (7)

Операция * частично коммутативна в том смысле, что одновременная перестановка i,j и f_i,f_j приводит к перестановке g_i,g_j .

Ассоциативность и параллелизм

Пусть операция $\mathfrak R$ ассоциативна, то есть

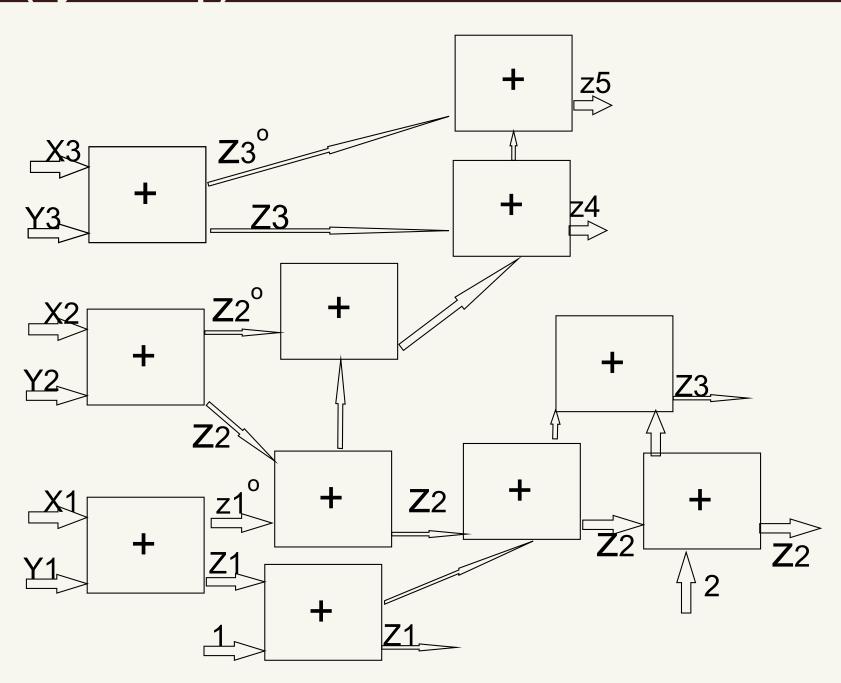
$$\Re\left(\left(\Re(f_{i,j}(i\in I_j))_j \left(j\in J\right)\right) = \Re\left(f_{i,j}(i\in I_j, j_i n J)\right)$$
 (8)

В этом случае граф соседства задаёт стандартный в параллельных вычислениях граф процессов. Передача данных между процессами происходит посредством операции *, а обработка данных в узлах посредством \mathfrak{F} .

Сеть прямоточных вычислений

Если переполнения направленные и граф переполнений сеть, то наша параллельная вычислительная система превращается в прямоточную.

(сумматор)



Алгебро-логическое рассмотрение

Переход к операциям

Переполнения возникают в ходе алгебраических операций, не только в ходе массовых вычислений. Рассмотрение с нашей точки зрения алгебраических операций также оказалось нетривиальным и заставило пересмотреть многие исходные понятия.

Алгебраические системы

Алгебраическая система — носитель (непустое множество) вместе с множеством операций, предикатов и констант, интерпретированных на нём. Сигнатура алгебраической системы — множества операций и предикатов вместе с их арностями и множество констант. Если среди предикатов встречается предикат равенства, алгебраическая система называется эквациональной или просто алгеброй.

Алгебраическая традиция

В алгебре традиционно операции считаются всюду определёнными и их результаты не выходят за пределы носителя. В случае операции, которая может не давать результата (например, деления) возникающие трудности просто замалчиваются или обходятся и рассмотрения становятся неаккуратными. Случай результатов, выходящих за носитель, насколько известно, не рассматривался вообще.

Для нас оба этих случая являются важнейшими.

Логика

Четыре логических значения: t,f, u (неопределённость), ⊥ (ошибка). Сильная трёхзначная логика Клини, пополненная ⊥:

$$t \supset t = f \supset f = f \supset t = f \supset u = t \& t = t \\ t \lor t = t \lor f = f \lor t = u \lor t = t \lor u = t;$$
$$t \supset f = t \& f = f \& t = f \& f = f \lor f = f \& u = u \& f = f \\ \neg t = f; \ \neg f = t; \neg u = u$$

Все действия, один из аргументов которых \bot , дают \bot .

Алгебраическая система частичная

Функции и предикаты могут принимать значение u. Функции сохраняют u: если хотя бы один из аргументов имеет значение u, то функция имеет значение u.

Предикаты имеют значение u тогда и только тогда, когда хотя бы один из их аргументов имеет значение u.

Подмножество носителя *основное*, если на нём ни одна из функций не принимает значение u. Алгебраическая система с переполнением — частичная, в которой выделено основное подмножество X.

истинность, ложность и справедливость на множеств

 $\forall x\, A(x)$ истинна на X, если для любого $c\in X$ значение A(c) ${\bf t}$. $\forall x\, A(x)$ справедлива на X, если для любого $c\in X$ значение A(c) ${\bf t}$ или ${\bf u}$. $\forall x\, A(x)$ ложна на X, если для некоторого $c\in X$ значение A(c) ${\bf f}$ а для других ${\bf f}$ или ${\bf u}$.

 $\exists x\, A(x)$ истинна на X, если для некоторого $c\in X$ значение A(c) ${\bf t}$ а для других ${\bf t}$ или ${\bf u}$. $\exists x\, A(x)$ справедлива на X, если для любого $c\in X$ значение A(c) ${\bf f}$ или ${\bf u}$. $\exists x\, A(x)$ ложна на X, если для любого $c\in X$ значение A(c) ${\bf f}$.

Основная теорема корректности

Две классически эквивалентных предварённых формы одной и той же предикатной формулы равнозначны на любом основном множестве.

Расширение переполнениями

Основное множество X корректно расширено переполнениями относительно теории Th, если все её аксиомы справедливы на X.

Таким образом, можно корректно говорить о сохранении таких свойств, как коммутативность, ассоциативность и т. п. в системе с переполнениями.

Надсистема с переполнениями 1

Покажем, как абстрактные и тяжёлые определения предыдущей части конкретизируются в практически важном случае.

Пусть имеется частичная алгебраическая система S с коммутативной и ассоциативной бинарной операцией *, имеющей нейтральный элемент e, для которой справедлива теория Th.

Надсистема с переполнениями 2

Надсистема с переполнениями — расширение S, в котором выделена сеть основных множеств X_i , корректно расширяющих теорию Th, вместе с:

- 1. мономорфизмами ψ_i каждого X_i в исходный носитель S;
- 2. разложениями для каждого X_i любого элемента переполнения x = y * z на совокупность значений x_j , где j пробегает множество N_i из i и непосредственно следующих за i узлов, обладающее свойством

$$\underset{j \in N_i}{*} \psi(x_j) = \psi(y) * \psi(z)$$

.

Содержательное истолкование

«Большие» элементы S разлагаются в композицию «малых» элементов X_i , и показывается, что обработку их можно вести параллельно (или даже прямоточно).

Этот подход может работать и в вычислениях, и в базах данных, и в других местах.

Ограничение: корректно работает лишь для ассоциативных и коммутативных операций. Примеры из статьи.

