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Plan of the talk:

1) Grushin metric spaces (heuristic description)

2) Motivation (Neurovision (image completion), Approximation
and Stochastic Control Theory)

3) Hamilton-Jacobi equation (Existence, Regularity of solution and
Total Mass Decay criterion)

4) Liouville type results for mean curvature operator and the
related topic.

5) Grushin regular surfaces
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Grushin metric spaces

RN*M denotes N 4+ M- dimensional Carnot-Carathéodory space
(N >1,M > 1) with elements z = (x, y) which is a manifold with

degenerate Riemannian metrics dx? + I |2a agreed with a choice of

generalized Baouendi-Grushin vector fields
o) le) 0 a_0 a_0 a_0

aixl,ain,...,m,’ W’ ’X 87)/27 ,’ Aym Od>0 .
The agreement mentioned above means that the shortest curves in
this metric are the straightest ones according to the horizontal

_ ) d 9

gradient Dg = (8x1’ 3a o oy XYoo |x|"‘ay2 X150
The shortest curves are geodesics and the straightest ones we will

call horizontal.



Grushin metric spaces

Let us give a precise definition of horizontal curves. A piecewise
Cl-curve v : [0, T] — RN*M is called horizontal if whenever ~/(t)
exists, one has for every £ € RVNtM

(7/(1).€)* < (Da(x(1)). €)*.

Using shortest curves, it is natural to introduce a metric distance
(Carnot-Carathéodory or CC-distance). Given two points
z1, zo € RVtM one defines

dcc(z1, 2z2) = inf{T among all horisontal curves  : [0, T] — RN+tM

7(0) = z1, Y(T) = 2}

An appropriate curve «y in this definition, in general, can be not
unique.



Grushin metric spaces

For the generalized Grushin settings Franchi and Lanconelli have
proved the following universal estimate for the distance.

The distance estimate
There is a constant C > 0 such that

ct! <|x —&| + min { |y|);a77|7 ly — 77|1/(a+1)}>

< dcc((x,¥),(&:m))
SC(!X—fH-min {‘y_m7 ’y_ml/(oﬁ-l)}) (1)

[x|*

for all points z; = (x,y), z = (£,1) € RMHN,

Thus, dcc is well defined.
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Example. Grushin plane. oo = 1.

Let us consider R?, where vector fields @ \x|‘”@ correspond to
Riemannian degenerate metrics g,J(z)dz,dzj = dx? + I |2a. If

o = 1 the manifold R? with the metrics gj(z)dz;dz; = dx? + —2 is
called Grushin plane.

In the paper of Faizullin formulas of all locally possible geodesics
on Grushin plane were obtained. Moreover,
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Example. Grushin plane. oo = 1.

Moreover, from now we can describe the CC-ball (metric ball). By
definition, it is a ball Bec(zo,r) = {z € RN*M . dec(z, z) < r}.
Faizullin has found a vector parametric equation for CC-ball of
radius R centered at the point (0,0) of Grushin plane
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Figure: CC-ball of radius 1 on Grushin plane
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Example. Grushin plane. oo = 1.
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Figure: Geodesics cross a ball of radius 1
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Motivation to the study of Grushin settings

Let us recall some backgrounds.

Gestalt laws have been proposed to explain several phenomena of
visual perception (see for example Wertheimer '38 , Kanizsa
’80). Among the local laws the law of good continuation plays a
central role for perceptual completion.
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Grushin settings in Neurovision

The same principle of good continuation has been described
through the notion of association fields by the psychophysical
experiments of Field, Hayes and Hess '93 . During the
experiment researchers presented different stimuli to an observer
(see Figure - left) in which it was possible to recognize perceptual
units in a background of random Gabor patches. Then they
experimentally studied when it is possible to recognize an unitary
stimulus changing orientations of the patch. The results were
summarized in the so-called association fields (Figure, right),
which describes the complete set of possible subjective contour
starting from a point with an horizontal orientation.




Motivation.
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Grushin settings in Neurovision

Integral curves of the Grushin structure provide natural models of
association fields.

Figure: Grushin integral curves starting from a point (left), and
association field experimentally found (right) .
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Grushin settings in Neurovision

The metric ball of the Grushin structure provides natural model of
horizontal connectivity in the cortex.
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Figure: Grushin metric ball (left), and horizontal connectivity pattern
experimentally found (right) .
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Grushin settings in Neurovision
Indeed, the model of cortical connectivity of Citti and Sarti '06 is
expressed as the 2D projection of a SE(2) structure, which is well
approximated via the Grushin group. The 2D projection of integral
curves for roto-translation settings is a good model of the
association fields and the 2D projection of fundamental solutions
provide the model of connectivity (see Fig.).

Figure: The integral curves starting from a point (left), and the
fundamental solution of the FokkerPlanck in SE(2) (right). Their 2D
projection are model of the association fields of Fields, Heyes and Hess
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Motivation to the study of Hamilton-Jacobi equations Let us
discuss viscous Hamilton-Jacobi equation

uy — ediv(|VulP™2Vu) 4 pu|Vu|? = 0. (2)

That kind of equations in Euclidean and in more general
Carnot-Carathéodory metric settings appear as

@ the viscosity approximation to the first order partial
differential equations of Hamilton-Jacobi type,

@ in the stochastic control theory (Benachour, Roynette,
Vallois '97),

@ in a number of interesting and different physical
considerations, for example, to the study of ballistic deposition
mechanism to describe the growth of surfaces of crystals,
chemical deposits, flame or tumor (Gilding, Guedda and
Kersner’ 03).

Here we assume that p > 2 and p,e,q > 0. The case of p > 2
corresponds to the slow p-Laplacian diffusion.
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It is well-known that the behavior of solution to problem (2)
changes dramatically because it strongly depends on the value of
the parameter g > 0. Thus, the model is reach in unusual
phenomena even in linear cases. It explains unfading investigative
interest.

We would like to mention the papers of

Ben-Artzi '92 and his collaborators (classical variational
approach),

Weissler and his co-authors (the analysis focused on the
invariance properties of equations),

the approach of Benachour 97, Laurencot and
collaborators (approach based on Bernstein type estimates),
in particular, for the linear case.

Balseiro and coauthors have used Lie group algebraic
approach to find the geometry underlying different dynamical
systems. In particular, in example 4.3 they have constructed
the equation of Hamilton-Jacobi type built on special smooth
vector fields for a specified non-holonomic meehanical system.
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The long-time behavior of solution for the evolution equation of
problem (2) with linear diffusion and gradient absorption was
studied by Ben-Artzi 92, '99 , Benachour, Roynette, Vallois
97, Amour, Ben-Artzi '98 where the waiting time
phenomenon (briefly WTP) was proven. For nonlinear diffusion
case p > 2 infinite WTP was proved by Laurencot, Vazquez '07
for 1 < g < p—1. WTP means that from some (finite or infinite)
time the solution’s support after a moment T* stops it's growth.
In addition, in this situation the total mass decay (TMD) arises
when the parameter q is less or equal to the critical exponent g*
(for the linear diffusion case gq* = %—ﬁ) Both WTP and TMD
appear thanks to the influence of the Hamilton-Jacobi term |Vu|9
because when 1 < g < p — 1 then the nonlinear absorption term
becomes more and more dominant and the diffusion plays a
secondary role for the large times.
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Let us recall separately the article of Tedeev, Andreucci, Ughi
’04. They have been studied the viscous Hamilton-Jacobi equation

uy — ediv(|VulP2Vu) + p|Vu”|9 = 0. (3)

. Their approach gives not only the possibility to prove WTP,
TMD and find the critical exponent for the nonlinear case but to
estimate precisely the rate of the decay in terms of critical
exponent Namely, they have proved that the following estimate is
true: [ u(z,t)dz < Ct™4, where A = %,_(,”NJFI) and

q* = 5/\/++,\{ is a generallzed critical exponent. Here
H=p(rg—1)—q(p—2) >0, K= N(p—2)+ p. This estimate
can be reduced to the case of the linear diffusion if
p=2,v=1H=2 K=2.

As a PhD student of professor Tedeev, | have inherited this
technique to use it to more complicate viscous Hamilton-Jacobi

equation in metric settings.
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Problem

Let us consider the following Cauchy problem

2 = dive(|Deul? 2Deu) ~ alp()F (1) Deur ", (4

(z,t) € ST =RN*M (0, T),
u(z,0) = up(z) € Li(RMTN) uo(z) > 0, up(z) Z0 ae.,  (5)

z=(x,y) ERN*M Herep>2 1<qg<p, vg>p—1.
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Problem

Let f(t),a(p(z)) be non-negative and measurable. Moreover,

a(s) is a continuous nondecrising function,
such that for all s > 0: s9/a(s) also non decreases.

(H1)

Let a function p(z) hereinafter is either a CC-distance or a
homogeneous distance.

f(t) is a continuous nondecreasing function,
(H3) such that for all ¢ > 0 there exists a number p :

O<pu< qu—iffrl’ t"/f(t) also non decreases.
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Definition

Nonnegative function u(z,t) € Lo joc(ST) we will call a weak
solution of the equation (4) in ST = RV*M x (0, T) if for any
t: T>t>0, R>0,

ue C((0, T), Ly joc(RNHMY),

’DGu|pv a(p(z))f(t)’DGuV‘q € Ll,loc(ST)7

and satisfies:

i}
=

// _ums+(| Ds P 2D ) Denna(p(2))F(r)| Deu” |dxdydr 4
BR)K(t,T)

where 7(x, y, t) is any smooth function with the support from
Br x (t, T)
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Problem

Definition

A weak solution of the equation (4) which is a function
u(z,t) € Lo joc(ST) we will call a weak solution of the problem

(4), (5) if

lim / un(z)dz = /uon(z)dz,Vn(z)ngo(RNJrM).

t—0
RN+M RN+M

Let ¢(s) be a function inverse to a(s)P~2s"| where
H=p(rg—1)—q(p—2)>0,K=Q(p—2)+ p. An important
role here will be played by the critical function

w(t): w(t) = W. (6)

1
tK



Hamilton-Jacobi equation
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Remark

Let us introduce some notations A, gu =: divg(|DgulP~2Dgu)
and some auxiliary results.

Tedeev, Markasheva-main problem

ur = Np gu— a(x)f(t)|Dgu”|?




Hamilton-Jacobi equation
[ Jelele]

Remark

Let us introduce some notations A, gu =: divg(|DgulP~2Dgu)
and some auxiliary results.

Tedeev, Markasheva-main problem

ur = Np gu— a(x)f(t)|Dgu”|?

o’

Tedeev, Markasheva-auxiliary problem

ur = Apgu

\
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Remark

Tedeev, Markasheva-main problem

ur = Ap gu — a(x)f(t)|Dgu”|?

Tedeev, Markasheva-auxiliary problem

ur = Ap gu

Tedeev, Markasheva-asymptotic estimates for p-Laplacian

_9 2
lulloo < c2t™ |||
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Remark

Tedeev, Markasheva-main problem

ur = Ap gu— a(x)f(t)|Dgu”|?

Tedeev, Markasheva-auxiliary problem

ur = Ap gu

Tedeev, Markasheva-asymptotic estimates for p-Laplacian

_Q £ _Q 2
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Remark

Tedeev, Markasheva-main problem

ur = Ap gu— a(x)f(t)|Dgu”|?

Tedeev, Markasheva-auxiliary problem

ur = Ap gu

Tedeev, Markasheva-asymptotic estimates for p-Laplacian

_Q £ _Q 2
at K|uo|lf* <|lullee < e2t™® |[uo||{

p—2
K

1 =2 i
atk|[uoll,* <Z(t) < 4Ry + cat®|[|uoll;
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Theorem 1

Let conditions (H1), (Hz2) hold. Then there exists u a weak
solution of (4). Moreover, if w(t) is a function which was defined
in (6), supp up C Bg,, Ry < 00, then for big enough t we have

1

Z(t) < Gu(t)tk. (7)

Remark

Solutions of the problem (4), (5) are subsolutions for the
corresponding auxiliary Cauchy problem to the model equation
with parabolic p-Laplace and classical estimates are true in all
cases. Thus, whenever w(t) — 0 as t — oo the estimate (7) is
more precise.
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Theorem 2

Let u be a weak solution of (4) and conditions (Hy), (H2) hold,
supp up C Bgr,, Ry < co. And let 0 < o < M(vq —1)/q. Then for
big enough t we have

/ udz < Clowp*g(t), (8)
RM+N
|[t]] oo m+m < C11wp%2(t)t_% (9)

Thus, one can see immediately that the condition of the total mass
decay is
lim w(t) =0. (10)

t—o0
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There are two border cases in which we can neglect the condition
of the bounded support of the initial data saving total mass decay
phenomenon.

Theorem 3

Let u be a weak solution of (4) and conditions (Hy), (H2) hold.
Then for big enough t, provided that » =1, A > 1 and

0 < a < M(g—1)/q, the following estimate is true

/u(t)dz§ / tpdz + Crow? 2 (t). (1)

N+M 1
R p>w(t)tK

In case p=2and 0 < a < M(rvq — 1)/q, the following holds

Q(vg—1)+q—2
t 2vg-1)

u(t)dz < / updz + Cj, (12)
RN+M po/E a(\[)yq Tf(t )Vq !
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Next theorem gives a more precise estimate of the total mass of
the solution.

Theorem 4

Let u be a weak solution of (4) and conditions (H1), (H2) hold,
supp up C Br,, Ry < co. If the following condition holds:

dCG >0: Cg < lim w(t), (13)

t—00

then for big enough t: t >ty = HuoH’l’ﬁHM/Ré(, we have

_1
vg—1

[wrcae([20,) T

Q(vg—1)+q
T K

RN+M to
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Main results

Moreover, the corollary of Theorem 4 shows that total mass decay
is preserving in the case of the bounded criterion function w(t) as
well.

Corollary 1

In particular, (14) implies that if
3C > 0,0€(0,1): Co <w(t) < C, then for big enough
t: t>tyg= HuoH‘ljgj\,JrM/Ré(, we have

[wezca(n(D) 7 oy

RN+M
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Theorem 5

Let u be a weak solution of (4) and conditions (H1), (H2) hold,
supp up C Br,, Ry < oo. If the following condition holds

3Gy, e > 0: Got® < w(t), (16)
then for big enough t we have
u(t)dz > (15 > 0, (17)
RN+M

where Ci5 is a positive constant depending only from parameters
of the problem and ||ug||1.
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Main results

Summarizing all previous results, we obtain

Total mass decay criterion.

If w(t) is bounded from above then total mass of the solutions
decays to zero. If, by the contrary, 3C,e > 0: Ct° < w(t) then
total mass decreases to some positive constant.

We would like to notice that because of the restrictions (Hy), (H2)
the behavior of the criterion function which differs from described

above is impossible.
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Main results

Example. Let u be a weak solution of the problem

ot
u(z,0) = ug(z) € Ly(RM+N) uo(2) > 0, up(z) #
0 a.e., supp up C Br),Ro < o0. Let y < q,8 < %”fl. Then for

the exponents

vQ+1 T H+y(p-2)

O _ Give(IDeulP~2Deu) — p(2)'¢8|Deu|%, (2,t) € St

.. . _Alp=2)
the critical function w(t) =t~ & .

2(t) < Gk %2, / u(t)dz < Crot ™,

RN+M

>

Q_Ap
KK .

u()]]oo mrsm < Crrt™
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Thank you for attention!
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