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Plan of the talk:

1) Grushin metric spaces (heuristic description)

2) Motivation (Neurovision (image completion), Approximation
and Stochastic Control Theory)

3) Hamilton-Jacobi equation (Existence, Regularity of solution and
Total Mass Decay criterion)

4) Liouville type results for mean curvature operator and the
related topic.

5) Grushin regular surfaces
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Grushin metric spaces

RN*M denotesN + M- dimensional Carnot-Caratheodory space
(N! 1,M ! 1) with elementsz = ( x,y) which is a manifold with
degenerate Riemannian metrics? + % agreed with a choice of
generalized Baouendi-Grushin vector belds

'|71'|72'|TN| I 57 Ix|" !!?,..,|x|" ﬁ 1> 0.

The agreement mentioned above means that the shortest curves in
this metric are the straightest ones according to the horizontal
grac“entDG = ( 'xl' |X2 o 'XN |X| |y1 |X| |y2 |X| |yM

The shortest curves are geodeS|cs and the stralghtest ones we will
call horizontal.



Grushin metric spaces

Let us give a precise debnition of horizontal curves. A piecewise
Cl-curve" : [0,T]" RN*M js called horizontal if whenevér (t)
exists, one has for evesy# RN*M

$''(t), #% & $D (" (1)), #%.

Using shortest curves, it is natural to introduce a metric distance
(Carnot-Caratheodory or CC-distance). Given two points
71, o # RN*M gne debnes

dcc(z1, 22) = inf{T among all horisontal curves: [0,T]" RN*M

"(0) = z1, "(T)= z2}.

An appropriate curve' in this depbnition, in general, can be not
unique.
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For the generalized Grushin settings Franchi and Lanconelli have
proved the following universal estimate for the distance.

The distance estimate

There is a constanC > 0 such that
! > o @ #$
Cc'! |x' #+ min y|X| ly' $YC+D
& dec((x, ), (#,9)
! g #$
&C |x' #+ min lyIXI ly' e+ @)
for all pointsz; = (X,y), z2 = (#,9 # RM*N,

Thus, dcc is well debPned.
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Example. Grushin plane.! = 1.

Let us consideR?, where vector belds_, x| ,'—y correspond to
Riemannian degenerate metrigg(z)dz dz = dx? + %’; If

I =1 the manifold R? with the metricsg;j(z)dzdz = dx? + dXL; is
called Grushin plane.

In the paper of Fa®zullin formulas of all locally possible geodesics
on Grushin plane were obtained. Moreover,
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Example. Grushin plane.! = 1.

Moreover, from now we can describe the CC-ball (metric ball). By
debnition, it is a balBcc(zo,1) = {z # RN*M = dec(z, 20) < r}.
Fa®zullin has found a vector parametric equation for CC-ball of
radius R centered at the point (0,0) of Grushin plane
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Figure: CC-ball of radius 1 on Grushin plane
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Example. Grushin plane.! = 1.
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Motivation to the study of Grushin settings

Let us recall some backgrounds.

Gestalt laws have been proposed to explain several phenomena of
visual perception (see for exampigertheimer 038 , Kanizsa

O80). Among the local laws the law of good continuation plays a
central role for perceptual completion.
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Grushin settings in Neurovision

The same principle of good continuation has been described
through the notion of association belds by the psychophysical
experiments ofField, Hayes and Hess 093 During the
experiment researchers presented dilerent stimuli to an observer
(see Figure - left) in which it was possible to recognize perceptual
units in a background of random Gabor patches. Then they
experimentally studied when it is possible to recognize an unitary
stimulus changing orientations of the patch. The results were
summarized in the so-called association belds (Figure, right),
which describes the complete set of possible subjective contour
starting from a point with an horizontal orientation.
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Grushin settings in Neurovision

Integral curves of the Grushin structure provide natural models of
association pelds.

Figure: Grushin integral curves starting from a point (left), and
association beld experimentally found (right) .
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Grushin settings in Neurovision

The metric ball of the Grushin structure provides natural model of
horizontal connectivity in the cortex.
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Figure: Grushin metric ball (left), and horizontal connectivity pattern
experimentally found (right) .
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Grushin settings in Neurovision
Indeed, the model of cortical connectivity @itti and Sarti 006 is
expressed as the 2D projection ofSE(2) structure, which is well
approximated via the Grushin group. The 2D projection of integral
curves for roto-translation settings is a good model of the
association belds and the 2D projection of fundamental solutions
provide the model of connectivity (see Fig.).

Figure: The integral curves starting from a point (left), and the
fundamental solution of the FokkerPlanck BE(2) (right). Their 2D
projection are model of the association belds of Fields, Heyes-and-Hess
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Motivation to the study of Hamilton-Jacobi equations Let us
discuss viscous Hamilton-Jacobi equation

Ut 9Biv(|( ulP 2 u)+ i U9 = 0. )

That kind of equations in Euclidean and in more general
Carnot-Caratheodory metric settings appear as

e the viscosity approximation to the Prst order partial
dilerential equations of Hamilton-Jacobi type,

@ in the stochastic control theoryBenachour, Roynette,

Vallois 097,

e in a number of interesting and dilerent physical
considerations, for example, to the study of ballistic deposition
mechanism to describe the growth of surfaces of crystals,
chemical deposits, Rame or tumo6G{lding, Guedda and
Kersner® 03.

Here we assume thagt ! 2 andp, %g > 0. The case ofp > 2
corresponds to the slow-Laplacian dilusion.
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It is well-known that the behavior of solution to problem (2)
changes dramatically because it strongly depends on the value of
the parameterq > 0. Thus, the model is reach in unusual
phenomena even in linear cases. It explains unfading investigative
interest.

We would like to mention the papers of

e Ben-Artzi ©92 and his collaborators (classical variational
approach),

e Weissler and his co-authors (the analysis focused on the
invariance properties of equations),

e the approach ofBenachour ©97, Laurenéot and
collaborators (approach based on Bernstein type estimates),
in particular, for the linear case.

e Balseiro and coauthors have used Lie group algebraic
approach to bnd the geometry underlying dilerent dynamical
systems. In particular, in example 4.3 they have constructed
the equation of Hamilton-Jacobi type built on special smooth
vector pelds for a speciPed non-holonemic-mechanical system.
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The long-time behavior of solution for the evolution equation of
problem (2) with linear di'usion and gradient absorption was
studied byBen-Artzi ©92, 99 , Benachour, Roynette, Vallois
097, Amour, Ben-Artzi O98where thewaiting time
phenomenon (brieBy WTP) was proven. For nonlinear dilusion
casep > 2 inbnite WTP was proved byaureniéot, Vazquez 007
for1< g< p' 1. WTP means that from some (Pnite or inPnite)
time the solutionOs support after a momént stops itOs growth.
In addition, in this situation thetotal mass decay (TMD) arises
when the parameteq is less or equal to the critical exponeqt
(for the linear dilusion caseg” = N*2). Both WTP and TMD
appear thanks to the inBuence of the Hamilton-Jacobi teffnu|?
because when & q< p' 1 then the nonlinear absorption term
becomes more and more dominant and the dilusion plays a
secondary role for the large times.
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Let us recall separately the article @edeev, Andreucci, Ughi
004 They have been studied the viscous Hamilton-Jacobi equation

up ' oliv(( Ul 2 u)+ i ufl9 = 0. ®3)

. Their approach gives not only the possibility to prove WTP,
TMD and Pnd the critical exponent for the nonlinear case but to
estimate precisely the rate of the decay in terms of critical
expopgnt. Namely, they have proved that the following estimate is
true: u(z,t)dz & Ct" A, whereA = %, and

g% = £ is a generalized critical exponent. Here

H=p(&g"' 1) q(p' 2)> 0, K= N(p' 2)+ p. This estimate
can be reduced to the case of the linear dilusion if
p=2,&=1,H=2,K=2.

As a PhD student of professor Tedeev, | have inherited this
technique to use it to more complicate viscous Hamilton-Jacobi
equation in metric settings.
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Problem

Let us consider the following Cauchy problem

'.—? = dive(IDgul”” ?Dgu) ' a(((2))f (t)|Dcu”|9, 4)
(z.t) # Sr = RN*M) (0,T),
u(z,0) = up(z) # Li(RM*N), up(z) ! 0,ug(z) *+0 a.e,  (5)

z=(x,y) # RN*M Herep> 2, 1< q<p, &> p' 1.
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Let f(t),a(((z)) be non-negative and measurable. Moreover,

a(s) is a continuous nondecrising function

(Hy) such that for alls > 0 : s% a(s) also non decreases.

Let a function((z) hereinafter is either a CC-distance or a
homogeneous distance.

f(t) is a continuous nondecreasing function
(H,) such that for allt > 0 there exists a numbeu :
O<pc< #qr)ipl*fl tH/f(t) also non decreases.



Hamilton-Jacobi equation
[eJe] le]

DePnition

Nonnegative functioru(z,t) # Ls j0c(Sr) we will call aweak
solution of the equation (4) in St = RN*M) (0, T) if for any
t: T>t>0 R>0,

u# C((0,T), Laioc(RV*M)),

IDaulP, a(((2))f (t)IDcU*|% # Lyjoc(Sr),

and satispbes:
&&

" uSs+(|Daul”" *Dau)De$+ $a(((2))f ())IDeu*|%dxdyd) 30,

Br%(t,T)

where$(x,y,t) is any smooth function with the support from
Br) (t,T).
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Depnition

A weak solution of the equation (4) which is a function
u(z,t) # L 10c(Sr) we will call aweak solution of the problem
(4), (5) if
& &
lm  u$(z)dz = up$(z)dz, , $(z) # C$ (RN*M).

RN+M RN+M

Let * (s) be a function inverse t@(s)?" 2s™, where
H=p&a"' 1)' q(p' 2)>0,K=0Q(p" 2)+ p. An important
role here will be played by the critical function

x tapa
f(t)r" 2
) +() + ————. (6)

tx
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RENETS

Let us introduce some notations jgu =: divg(|Dgul®" ?Dgu)
and some auxiliary results.

Tedeev, Markasheva-main problem

U =" pgu’ ax)f(t)Dsu’l
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RENETS

Let us introduce some notations jgu =: divg(|Dgul®" ?Dgu)
and some auxiliary results.

Tedeev, Markasheva-main problem

U =" pgu’ ax)f(t)Dsu’l

o’

Tedeev, Markasheva-auxiliary problem

ut = p,Gu

\
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RENETS

Tedeev, Markasheva-main problem

U =" peu' aXx)f(t)|Dsu”|"

y

Tedeev, Markasheva-auxiliary problem

A\

Tedeev, Markasheva-asymptotic estimates for p-Laplacian

" Q b
llulls & cot K|[uoll
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Tedeev, Markasheva-auxiliary problem

\
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RENETS

Tedeev, Markasheva-main problem

U =" pou' aXx)f(t)|Dsu”|"

v

Tedeev, Markasheva-auxiliary problem

\

Tedeev, Markasheva-asymptotic estimates for p-Laplacian

T T
cat” Fllullf &llulls & cat” Fluoll

1 P2 1 P2
Cat K |[Uoll," &Z(t) & 4Ro + catk|[Uol,"
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Theorem 1

Let conditions H1), (H2) hold. Then there exista a weak
solution of (4). Moreover, if+(t) is a function which was debned
in (6), supp Ww- Bgr,,Ro< . ,then for big enought we have

Z(t) & Cr+(t)tx. @)

REINES

Solutions of the problem (4), (5) are subsolutions for the
corresponding auxiliary Cauchy problem to the model equation
with parabolicp-Laplace and classical estimates are true in all
cases. Thus, whenevet(t) " Oast". the estimate (7) is
more precise.




Hamilton-Jacobi equation
O®000000

Theorem 2

Let u be a weak solution of (4) and condition$i¢), (H>) hold,
supp Ww- Br,,Ro<. .Andlet0O<!< M(&"' 1)/q. Then for
big enought we have

&
udz & C10+ﬁ(t), ®)
RM+N
[ullg rv+m & Cu+m2(t)t’ K. 9)

Thus, one can see immediately that the condition of the total mass
decay is
|m +(t) = (10)
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There are two border cases in which we can neglect the condition
of the bounded support of the initial data saving total mass decay
phenomenon.

Theorem 3
Let u be a weak solution of (4) and condition$ig), (H>) hold.
Then for big enough, provided that&=1,,> 1 and
0<!< M(q' 1)/ q, the following estimate is true
& & .
u(t)dz & Updz + Cyo+7 2(t). (11)

N+ M 1
S %>8&(t)t K

Incasep=2and 0<!< M(&"' 1)/q, the following holds

& & Q( g rg 2
\ t 290D
u(t)dz & updz + C;,

RN+M %> f

(12)

a( DyTIf(t)wT
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Next theorem gives a more precise estimate of the total mass of
the solution.

Theorem 4

Let u be a weak solution of (4) and condition$i¢), (H») hold,
supp W - Bg,,Ro < . . If the following condition holds:

0Cs> 0: Cg& lim +(t), (13)

then for big enought : t! tp= ||uo||E"Rﬁ+M/ RX, we have

Ve T
00y g

QC"a” I+q
K

&
udz & C;|_3 *

RN+M tO
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Moreover, the corollary of Theorem 4 shows that total mass decay
is preserving in the case of the bounded criterion functig(t) as
well.

Corollary 1

In particular, (14) implies that if
0C > 0,- #(0,1) : C- & +(t) & C, then for big enough
t:t! to= ||uo||ER2N+M/R(*§, we have

& Lol $$. 1
q" 1

t
udz& Cy4 In r . (15)
0

RN+M
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Theorem 5

Let u be a weak solution of (4) and condition$i¢), (H») hold,
supp W- Bg,,Ro <. .If the following condition holds

0Cy,.> 0: Cot & +(t), (16)
then for big enough we have
&
u(t)dz! Ci5> 0, @7
RN+M

(2]

whereCy5 is a positive constant depending only from parameter
of the problem and|up||1.
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Main results

Summarizing all previous results, we obtain

Total mass decay criterion.

If +(t) is bounded from above then total mass of the solutions
decays to zero. If, by the contrar@dC,.> 0: Ct & +(t) then
total mass decreases to some positive constant.

We would like to notice that because of the restrictiond {), (Hz)
the behavior of the criterion function which dilers from describe
above is impossible.




Hamilton-Jacobi equation
0O000000e

Main results

Example. Let u be a weak solution of the problem

1

Y = dive(IDsuUl" 2Dau) ' ((2)(t) IDeu|d, (z.1) # St

u(z,0) = uo(z) # Li(RM*N),up(2) ! O,uo(z) *+
Oa.e, supp W- Bgr, Ro<. .let"< qg,/< #qpipfl Then for
the exponents

foQETHKAE)) (@ a(&QFD o

a &Q+1 T H+"(p' 2)
the critical function+(t) = t" "%
&
Z(t) & it “5 2, u(t)dz & Ciot" A,
RN+M

" n A
lu®)]ls guew & Crat” &%
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Thank you for attention!



