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A Cortical Based Model for Contour Completion
on the Retinal Sphere

Abstract. We introduce a natural spherical extension of a well-known contour
perception model due to J. Petitot, G. Citti and A. Sarti, which additionally
takes into account the spherical nature of the retina. Such a spherical extension

was initially proposed by U. Boscain and F. Rossi. We extend their model by
taking into account a relevant anisotropy parameter controlling the stiffness
of optimal spherical contours, and an external cost modeling the non-uniform

distribution of photoreceptors on the retina.
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Introduction

Modeling of a visual system of mammals has been attracting a great
interest of many researchers in recent years. The investigation of Hubel
and Wiesel [1] (Nobel Prize in Physiology or Medicine, 1981) has produced
a strong progress in understanding of the functional architecture of the
primary visual cortex V1. Hubel and Wiesel have realized that specific
neurons in the visual areas of the cerebral cortex are connected to certain
areas of the visual field of the retina. They performed an experiment
showing that the neurons in different areas of the visual cortex react
to various directions at the same locations in the visual field. It was
understood that, for efficient image processing, the brain stores the image
not as a sequence of points, but as a sequence of strokes (points and
directions tangential to the contour). Thus, a contact structure in the
extended space of locations and directions over the retina naturally appears
in modelling of V1.
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Figure 1: Densities of rods and cones in Human retina

Therefore, Petitot [2], Citti and Sarti [3] proposed to model V1 by a
sub-Riemannian contact structure on Lie groups H(3) and SE(2). In their
model the retina is represented by a real plane, and sub-Riemannian
geodesics arise naturally as the curves that minimize the energy expended
to create a connection between the excited neurons.

In this work, inspired by [4], we refine the Petitot-Citti-Sarti model
1) by including the curvature of the retina, inducing an SO(3) Lie group
structure (instead of an SE(2) or H(3) group structure);
2) by including an external cost, that accounts for a non-uniform distri-
bution of photoreceptors on the retina [5,6], see Fig. 1.

In our model, we approximate the retina by a hemisphere and propose
a realistic external cost, that performs adaptation to the nonuniform
distribution of photoreceptors.

It is known [7,8], that a small area of the retina responsible for central
vision (macula) is processed in a large area of the striate cortex (V1),
see Fig. 2. Empirically, this retina-cortical map can be modelled by a
log-polar transformation, see [9,10]. This observation is important for
understanding of the internal mechanism of image processing by the striate
cortex in the contour completion problem.

This work continues our previous research, initiated in [11,12], where
we developed a computational framework for tracking of lines in images via
data-driven sub-Riemannian geodesics in the Lie groups SE(2) and SO(3).
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(a) Retina (b) Primary visual cortex

Figure 2: Experiment of Totelli: retina with spoke-wheel stimulus is
retinotopically mapped onto stimulus in the striate cortex

The key idea in [11, 12] was to include an external cost factor in the
sub-Riemannian metric. The external cost was used for adaptation to
image date. In this paper, we develop the idea of data-driven geodesics,
but now in new context of modelling of visual system. Here, the external
cost is added for adaptation to nonuniform distribution of photoreceptors.
Based on the results of Florack [10], we propose a natural construction of
the external cost for a sub-Riemannian metric in SO(3).

The paper has the following structure. It starts from introduction,
where we retrospect history of the problem. Then, in Section 1, we prepare
the necessary mathematical background for description of our model. To
this end we state a problem Pcurve on a sphere, and lift it to a sub-
Riemannian problem Pmec in SO(3). Next, we analyse the problem Pmec

and derive the Hamiltonian system of Pontryagin Maximum Principle,
that describes the sub-Riemannian geodesics. Afterwards, in Section 2,
we formulate our model for contour completion on the retinal hemisphere
and illustrate it by a simulation of association field lines. Finally, we
summarize the work in the conclusion.

History of the problem

An important discovery of neurophysiology of vision of mammals was
done by Hubel and Wiesel in 1959 (Nobel prize in 1981), who showed
that in striate cortex of a cat, there exist groups of neurons sensitive to
positions and directions. Here, in the first stage of processing, the image
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is lifted by the brain to the extended space of positions and directions.
In [2] a sub-Riemannian structure on the Heisenberg group was proposed
for contour perception and completion.

This was refined subsequently in [3] as a sub-Riemannian problem on
the SE(2) group. This means that one considers the following optimization
of curves 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝜃(𝑡)) in SE(2):∫︁ 𝑇

0

√︁
𝜉2 (�̇�(𝑡)2 + �̇�(𝑡)2) + 𝜃(𝑡)2 d𝑡 → min,

under constraint 𝜃(𝑡) = arg(±�̇�(𝑡)± i �̇�(𝑡)),

with a free time 𝑇 > 0, that we can by reparameterization invariance
set 𝑇 = 1. This constraint is equivalent to imposing ⟨− sin 𝜃(𝑡) d𝑥 +
cos 𝜃(𝑡) d𝑦, �̇�(𝑡)⟩ = 0.

Such curves may exhibit cusps on their projection to the image
plane [13]. The set of terminal conditions for which cusps do not occur
are determined in [14], where association field lines [15] in the psychol-
ogy of vision are modeled by cuspless sub-Riemannian geodesics. Such
curves were shown to be global minimizers, which followed by the optimal
synthesis [16,17] on (SE(2),Δ,𝒢𝜉), with the distribution

Δ = 𝑘𝑒𝑟(− sin 𝜃 d𝑥+ cos 𝜃 d𝑦)

and with the metric tensor

𝒢𝜉 = 𝜉2 (cos 𝜃 d𝑥+ sin 𝜃 d𝑦)⊗ (cos 𝜃 d𝑥+ sin 𝜃 d𝑦) + d𝜃 ⊗ d𝜃.

For a semidiscrete version of this model see [18]. Furthermore, a possible
extension of the model was proposed in [4], where the spherical nature of
the retina is included. However, this is only done for the case of the metric,
left-invariant w.r.t. action of SO(3) and right-invariant w.r.t. action of
one-parametric subgroup SO(2). In that case, the optimal synthesis was
obtained. Note, that the same result was independently obtained by
Berestovskii and Zubareva [19], using a different technique. Also note,
that the general case 𝜉 > 0, in contrast to SE(2) case [14,17], does not
follow by a simple scaling homothety. A projective version of the problem
for the case 𝜉 = 1 was studied in [20].

In Section 2, we refine the model of Boscain and Rossi [4] by taking
into account the nonuniform distribution of photoreceptors on the retina,
and by considering the general case of sub-Riemannian metric in SO(3),
where we control the stiffness of curves via the parameter 𝜉 > 0.
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1. Problem Pcurve on a Sphere and Problem Pmec in SO(3)

In this section we provide mathematical formalism to our spherical
model of V1. We start from mathematical notations used in this work.
Then, we formulate a variational problem Pcurve on a sphere, that will be
our point of departure. We lift this problem to a sub-Riemannian problem
Pmec in SO(3). Here we rely on our previous work [12], where we have
shown that solution to the problem Pcurve is obtained by projection of
certain sub-Riemannian geodesics in SO(3) to the sphere 𝑆2. Afterwards,
we apply the Pontryagin Maximum Principle and derive the Hamiltonian
system that describes the geodesics.

1.1. Mathematical foundation and notations

The Lie group SO(3) is the group of all rotations about the origin
in R3. We shall denote a counter-clockwise rotation around axis a ∈ 𝑆2

with angle 𝜑 via 𝑅a,𝜑. In particular, for rotations around standard axes

e1 = (1, 0, 0)𝑇, e2 = (0, 1, 0)𝑇, e3 = (0, 0, 1)𝑇 .

We use representation of SO(3) by 3× 3 matrices

𝑅(𝑥, 𝑦, 𝜃) = 𝑅e3,𝑦𝑅e2,−𝑥𝑅e1,𝜃 =⎛⎝ 𝑐𝑥 𝑐𝑦 −𝑠𝑥 𝑐𝑦 𝑠𝜃 − 𝑠𝑦 𝑐𝜃 𝑠𝑦 𝑠𝜃 − 𝑠𝑥 𝑐𝑦 𝑐𝜃

𝑐𝑥 𝑠𝑦 𝑐𝑦 𝑠𝜃 − 𝑠𝑥 𝑠𝑦 𝑠𝜃 −𝑐𝑦 𝑠𝜃 − 𝑠𝑥 𝑠𝑦 𝑐𝜃

𝑠𝑥 𝑐𝑥 𝑠𝜃 𝑐𝑥 𝑐𝜃

⎞⎠ ,(1)

where 𝑐𝑥 = cos𝑥, 𝑐𝑦 = cos 𝑦, 𝑐𝜃 = cos 𝜃, 𝑠𝑥 = sin𝑥, e.t.c., and

(𝑥, 𝑦, 𝜃) ∈ R/{2𝜋Z} × R/{2𝜋Z} × R/{2𝜋Z}.

The Lie group SO(3) defines an associated Lie algebra

so(3) = 𝑇Id(SO(3)) = span(𝐴1, 𝐴2, 𝐴3),

𝐴1 =

⎛⎝ 0 0 0

0 0 −1

0 1 0

⎞⎠ , 𝐴2 =

⎛⎝ 0 0 1

0 0 0

−1 0 0

⎞⎠ , 𝐴3 =

⎛⎝ 0 −1 0

1 0 0

0 0 0

⎞⎠ ,

where 𝑇Id(SO(3)) denotes the tangent space at the unity element.

The non-zero Lie brackets between 𝐴𝑖 are given by

[𝐴1, 𝐴2] = 𝐴3, [𝐴1, 𝐴3] = −𝐴2, [𝐴2, 𝐴3] = 𝐴1.(2)
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There is a natural isomorphism between so(3) and Lie algebra ℒ(SO(3))

of left-invariant vector fields on SO(3), where commutators of vector fields

in ℒ(SO(3)) correspond to the matrix commutators in so(3)

[𝑅𝐴,𝑅𝐵] = 𝑅[𝐴,𝐵], 𝐴,𝐵 ∈ so(3), 𝑅 ∈ SO(3) .

In matrix form, we define ℒ(SO(3)) = span(X1,X2,X3) , where⎧⎪⎪⎨⎪⎪⎩
X1(𝑥, 𝑦, 𝜃) = −𝑅(𝑥, 𝑦, 𝜃)𝐴2,

X2(𝑥, 𝑦, 𝜃) = 𝑅(𝑥, 𝑦, 𝜃)𝐴1,

X3(𝑥, 𝑦, 𝜃) = 𝑅(𝑥, 𝑦, 𝜃)𝐴3,

(3)

We call a spherical projection the following map (see Fig. 3):

SO(3) ∋ 𝑅 ↦→ 𝑅 e1 ∈ 𝑆2.(4)

In coordinates (𝑥, 𝑦, 𝜃), defined by (1), we have

𝑅(𝑥, 𝑦, 𝜃) e1 =

⎛⎝ cos𝑥 cos 𝑦

cos𝑥 sin 𝑦

sin𝑥

⎞⎠ = n(𝑥, 𝑦) ∈ 𝑆2.

So we see, that (𝑥, 𝑦) are spherical coordinates on 𝑆2.

Remark 1.1. Note, that due to physical construction of an eye it is

enough to consider the problem Pcurve on a hemisphere. This allows us to

consider only the domain (𝑥, 𝑦) ∈ (−𝜋
2 ,

𝜋
2 )× (−𝜋

2 ,
𝜋
2 ). From mathematical

point of view, restriction to a hemisphere releases from a problem with

multiple charts for covering full 𝑆2.

1.2. Problem Pcurve on 𝑆2 and Pmec in SO(3)

Let 𝑆2 = {n ∈ R3
⃒⃒
‖n‖ = 1} be a sphere of unit radius. We consider

the problem Pcurve (see Fig. 3), which is for given boundary points

n0,n1 ∈ 𝑆2 and directions n′
0 ∈ 𝑇n0

(𝑆2), n′
1 ∈ 𝑇n1

(𝑆2), ‖n′
0‖ = ‖n′

1‖ = 1

to find a smooth curve n(·) : [0, 𝑙] → 𝑆2, that satisfies the conditions

n(0) = n0, n(𝑙) = n1, n′(0) = n′
0, n′(𝑙) = n′

1,(5)

and, for given 𝜉 > 0, minimizes the functional

ℒ(n(·)) :=
∫︁ 𝑙

0

C(n(𝑠))
√︁

𝜉2 + 𝑘2𝑔(𝑠) d𝑠,(6)
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(a) Problem Pcurve (b) Problem Pmec

Figure 3: Problem Pcurve on 𝑆2 of finding a curve with given boundary
conditions (5) that minimizes (6), is lifted to the problem Pmec in SO(3),
parameterized by angles 𝑥, 𝑦, 𝜃 of rotation about basis axes, see (1.1)

where 𝑘𝑔(𝑠) denotes the geodesic curvature of n(·) evaluated at time 𝑠,
and C : 𝑆2 → [𝛿,+∞), 𝛿 > 0, is a smooth function “external cost”.

The problem was studied in our previous work [12], where we have
shown that minimizers of Pcurve are given by spherical projection of
certain minimizers in a sub-Riemannian problem Pmec in SO(3).

1.3. Sub-Riemannian Problem Pmec in SO(3)

The problem Pmec is given by the following optimal control problem:

�̇�(𝑡) =
∑︀2

𝑖=1 𝑢𝑖(𝑡)𝑋𝑖|𝛾(𝑡), for 𝑡 ∈ [0, 𝑇 ],

𝛾(0) = 𝐼𝑑, 𝛾(𝑇 ) = 𝑔1, 𝛾(𝑡) ∈ SO(3), (𝑢1(𝑡), 𝑢2(𝑡)) ∈ R2,

𝑙(𝛾(·)) =
∫︀ 𝑇

0
𝒞(𝛾(𝑡))

√︀
𝜉2𝑢2

1(𝑡) + 𝑢2
2(𝑡) 𝑑𝑡 → min .

Here, the terminal time 𝑇 is free; 𝑋𝑖 are basis left-invariant vector fields
in SO(3), recall (3); and 𝒞 : SO(3) → [𝛿,+∞), 𝛿 > 0 is an external cost.

We parameterize 𝛾(·) by the SR-arclength, that is defined by

𝒞(𝛾(𝑡))
√︁
𝜉2𝑢2

1(𝑡) + 𝑢2
2(𝑡) = 1.

The Cauchy-Schwartz inequality implies that the minimization prob-
lem for the sub-Riemannian length functional 𝑙 is equivalent to the mini-
mization problem for the action functional

𝐽 =
1

2

∫︁ 𝑇

0

𝒞2(𝛾(𝑡))(𝜉2𝑢2
1(𝑡) + 𝑢2

2(𝑡)) 𝑑𝑡,
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with fixed 𝑇 .

Next, we apply Pontryagin Maximum Principle in invariant formula-
tion [21]. The control dependent Hamiltonian reads as

𝐻𝑢(𝜆, 𝑔) = 𝑢1ℎ1 + 𝑢2ℎ2 −
1

2
𝒞2(𝑔)

(︀
𝜉2𝑢2

1 + 𝑢2
2

)︀
,

where 𝑔 ∈ SO(3), ℎ𝑖 = ⟨𝜆,𝑋𝑖⟩, 𝜆 ∈ 𝑇 *
𝑔 (SO(3)) are basis left-invariant

Hamiltonians, linear on fibers of the cotangent bundle 𝑇 *(SO(3)).

The (maximized) Hamiltonian

𝐻 = max
(𝑢1,𝑢2)∈R2

𝐻𝑢(𝜆, 𝑔) =
1

2 𝒞(𝑔)2

(︂
ℎ2
1

𝜉2
+ ℎ2

2

)︂
follows from the expression for the extremal controls

𝑑𝐻𝑢

𝑑𝑢𝑖
= 0, 𝑖 = 1, 2 ⇒ 𝑢1 =

ℎ1

𝜉2𝒞2
, 𝑢2 =

ℎ2

𝒞2
.

Now, we derive the Hamiltonian system of PMP. The vertical part
(for momentum components ℎ𝑖) is given by

ℎ̇𝑖 = {𝐻,ℎ𝑖} ,

where {·, ·} denotes the Poisson bracket (see [21]).

Using the standard relation between Poisson and Lie brackets {ℎ𝑖, ℎ𝑗} =
⟨𝜆, [𝑋𝑖, 𝑋𝑗 ]⟩, recall (2), we get,

{𝐻,ℎ1} =
𝑋1(𝒞)

𝒞
− ℎ2ℎ3

𝒞2
,

{𝐻,ℎ2} =
𝑋2(𝒞)

𝒞
+

1

𝜉2
ℎ1ℎ3

𝒞2
,

{𝐻,ℎ3} =
𝑋3(𝒞)

𝒞
+

(︂
1− 1

𝜉2

)︂
ℎ1ℎ2

𝒞2
,

where 𝑋𝑖(𝒞) denotes the derivative of the function 𝒞 along 𝑋𝑖.

The horizontal part of the Hamiltonian system is obtained by substi-
tution of extremal controls in the control system

�̇�(𝑡) = 𝑢1(𝑡)𝑋1|𝛾(𝑡) + 𝑢2(𝑡)𝑋2|𝛾(𝑡).(7)

A requested sub-Riemannian geodesic 𝛾 is obtained by integration of (7).

Switching to the coordinate chart (𝑥, 𝑦, 𝜃), recall Section 1.1, and
restriction to the hemisphere 𝑥 ∈ (−𝜋

2 ,
𝜋
2 ), 𝑦 ∈ (−𝜋

2 ,
𝜋
2 ), recall Remark 1.1,

provides the following result.
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Theorem 1.1. In problem Pmec, any sub-Riemannian geodesic 𝛾(𝑡) =
(𝑥(𝑡), 𝑦(𝑡), 𝜃(𝑡)), whose spherical projection ( 4) belongs to the hemisphere,
is obtained by integration of the Hamiltonian system⎧⎪⎪⎨⎪⎪⎩

ℎ̇1 = 𝑋1(𝒞)
𝒞 − ℎ2ℎ3

𝒞2 ,

ℎ̇2 = 𝑋2(𝒞)
𝒞 + 1

𝜉2
ℎ1ℎ3

𝒞2 ,

ℎ̇3 = 𝑋3(𝒞)
𝒞 +

(︁
1− 1

𝜉2

)︁
ℎ1ℎ2

𝒞2

⎧⎪⎪⎨⎪⎪⎩
�̇� = ℎ1

𝜉2𝒞2 cos 𝜃,

�̇� = − ℎ1

𝜉2𝒞2 sec𝑥 sin 𝜃,

𝜃 = ℎ1

𝜉2𝒞2 sin 𝜃 tan𝑥+ ℎ2

𝒞2

— vertical part, — horizontal part,

(8)

with the initial conditions

ℎ1(0) = ℎ0
1, ℎ2(0) = ℎ0

2, ℎ3(0) = ℎ0
3, 𝑥(0) = 𝑦(0) = 𝜃(0) = 0,(9)

for 𝑡 ∈ [0, 𝑇 ], where 𝑇 > 0 is sufficiently small.

2. Model of contour completion on the retinal sphere

Now we have all the background to formulate a model of contour
completion on the retinal hemisphere.

An appropriate external cost C on the hemisphere encodes the nonuni-
form distribution of photoreceptors. To formulate the associated model
for contour completion, we lift C(𝑥, 𝑦) from 𝑆2 to the Lie group SO(3). In
our model, this lift is simply done by 𝐶(𝑥, 𝑦, 𝜃) = C(𝑥, 𝑦), for all 𝜃 ∈ 𝑆1.

Then, our model for contour completion on the retinal hemisphere
can be written as the minimization of

𝑇∫︁
0

𝐶(𝛾(𝑡))

√︁
𝜉2
(︀
�̇�(𝑡)2 + �̇�(𝑡)2 cos2 𝑥(𝑡)

)︀
+

(︀
𝜃(𝑡) + �̇�(𝑡) sin𝑥(𝑡)

)︀2
d𝑡,

among the curves 𝛾(𝑡) = (𝑥(𝑡), 𝑦(𝑡), 𝜃(𝑡)) in SO(3) satisfying the horizon-
tality constraint 𝜃(𝑡) = − arg(±�̇�(𝑡) ± i �̇�(𝑡) cos𝑥(𝑡)) and the boundary
conditions

𝑥(0) = 𝑦(0) = 𝜃(0) = 0, 𝑥(𝑇 ) = 𝑥1, 𝑦(𝑇 ) = 𝑦1, 𝜃(𝑇 ) = 𝜃1,

with free 𝑇 > 0.

The parameter 𝜉 encodes the balance between the “spatial” displace-
ment on the sphere 𝑆2 and “angular” displacement in 𝜃 direction. By
considering the general case 𝜉 > 0, we obtain a general case of sub-
Riemannian metric in SO(3) (see [22]). Note, that in [4], [19], only the
symmetric case 𝜉 = 1 was studied.
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Remark 2.1. According to our model, the lift of an image by the
cortex can be interpreted as a map from 𝑆2 (retina) to 𝑆3 (cortex), which
is double cover of SO(3). Then, the Hopf fibration [23] naturally appears
as a fiber bundle, where the base is 𝑆2 and a fiber is 𝑆1, see Fig. 4.

Figure 4: Hopf fibration — circle bundle with the base 𝑆2

Now, we formulate a criteria of good continuation.

Criteria of good continuation. Given a boundary condition
𝑔1 = (𝑥1, 𝑦1, 𝜃1) is perceptually connected to 𝑒 = (0, 0, 0), if the sub-
Riemannian distance 𝑑(𝑒, 𝑔1) ≤ 𝑇 for some fixed 𝑇 > 0. Here, we
also assume that 𝑔1 is chosen such that it can be connected to 𝑒 with a
minimizing geodesic whose spherical projection does not have a cusp [12,
14].

2.1. Construction of the external cost

Now, as the distribution of photoreceptors is nonuniform (see Fig. 1)
on the retina, this can be included in our model by putting an appropriate
external cost C on a hemisphere. In this section, we develop this idea.

The nonuniform distribution of photoreceptors could provide a natural
reason for cortical magnification [9,10]. Cortical magnification describes
how many neurons in an area of the visual cortex are responsible for
processing a stimulus of a given size on the retina.

A mathematical description of phenomenon of cortical magnification
is proposed by Florack in [9]. There, the slightly modified log-polar
coordinates on the geometrical retina were introduced. According to the
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model of Florack, the log-polar coordinates are rectified in the primary

visual cortex. Thus cortical magnification is naturally modelled by a

log-polar transform. Such a model is supported by experimental results

of Tootell et al. [8], who studied functional anatomy of macaque striate

cortex, see Fig. 2.

From the mathematical point of view, it is well-known that the

log-polar coordinates have a cumbersome and unrealistic singularity at

the origin. In reality, this singularity never appears in the biological

system since even at the centre of the foveola there are still finite number

of photoreceptors. The problem of the singularity was resolved in the

consequent work of Florack [10] by a slight modification of the log polar

coordinates (cf. Eq. (10) below).

We base our construction of the external cost on the model [10].

The external cost puts the penalty in the distance measure when moving

outside the foveola (central point of the macula).

To illustrate the phenomena of cortical magnification, let us consider

the map from the canonical coordinates in the cortex to the retina (see [10,

eq. (20)]). This map provides a natural coordinate chart on the retinal

hemisphere, given by {︃
𝑥 = sinh(𝑝) cos𝜑,

𝑦 = sinh(𝑝) sin𝜑,
(10)

where 𝜑 = arg(𝑥+ i 𝑦) ∈ 𝑆1 is a polar angle, and 𝑝 ≥ 0 is the canonical

coordinate, that encodes the logarithm of the distance between the fovea

and a given point (𝑥, 𝑦), introduced by [10, eq. (20)].

According to [10, eq. (13)], the integrated retino-cortical magnifica-

tion is given by

𝑣(𝑥, 𝑦) =
log(1 + (𝑥2 + 𝑦2)/𝑎2)

log(1 + 𝑇 2
0 )

,(11)

where 𝑎 > 0 is a parameter, that represents a transient radius separating

the geometric foveola, and 𝑇0 is a constant, that encodes the maximal

size of retinal region involved in visual perception. The phenomenological

value 𝑇0 ≈ 95 and 𝑎 ≈ 𝑅
10 were estimated in [10]. Here 𝑅 is physical size

of a radius of the eye. In our model, we represent the eye by a unit sphere

𝑆2 and use the eyeball radius to express lengths. Thus, we set 𝑎 = 0.1.
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Figure 5: The graph of C(𝑥, 0) given by (12)

We construct the external cost C(𝑥, 𝑦) so, that it does not put a
penalty in the foveola C(0, 0) = 1, and it penalizes a motion outside the
foveola proportionally to the cortical magnification factor (11)

C(𝑥, 𝑦) = 1 + 𝑣(𝑥, 𝑦),(12)

See the profile of the external cost (12) in Fig. 5.

3. Simulation of the Association Field Model

Gestalt laws have been proposed for several phenomena of visual
perception. Among them the law of good continuation plays a central
role for perceptual completion. The same principle of good continuation
has been also found in psychophysical experiments of Field, Hayes and
Hess [15]. Those experiments have resulted to the notion of association
field, which describes the set of possible subjective contour starting from
a point with a horizontal orientation (see Fig. 6, right).

Here, we provide a simple experiment for a simulation of the asso-
ciation field lines on the retinal hemisphere via spherical projections of
the sub-Riemannian length minimizers of the problem Pmec, where we
rely on Theorem 1.1 and employ the fact that sufficiently short arcs of
geodesics are minimizers [21].

See the result in Fig. 6. To perform this experiment we set 𝜉 = 2,
ℎ3(0) = 0, ℎ2(0) ∈ {−0.7,−0.525,−0.35,−0.175, 0, 0.175, 0.35, 0.525, 0.7}
and 𝑇 = 3

4𝜋. Here we note that in order to get an association field that
is symmetric around the x-axis, one must set ℎ3(0) = 0 and let ℎ2(0) run
in a symmetric interval. This follows by the Hamiltonian system (8).
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We can observe, that the association field on the retinal sphere via
projection of the sub-Riemannian geodesics in SO(3) indeed leads to a
close approximation of the association field from the original work of Field,
Hayes and Hess [15].

Figure 6: The association field obtained by the experiment from Section 3
versus the original result of Field, Hayes and Hess

Conclusion and discussion

In this work, we have proposed the cortical based model for con-
tour completion on the retinal sphere, which includes both a stiffness
parameter 𝜉 > 0 and accounts for the nonuniform distributions of pho-
toreceptors on the retinal hemisphere via an external non-uniform cost.
This realistic external cost (12) relies on mathematical model of cortical
magnification [10]. In this article we have provided a novel mathematical
formulation of good continuation. Applying this principle (together with
a necessary symmetry constraint on initial momenta) indeed leads to a
close approximation of the association field [15] by Field, Hayes and Hess,
as shown in Fig. 6.

For future work, we plan to apply the proposed model of contour
completion for reconstruction of partially corrupted contours in real im-
ages. There we plan to employ our criteria of good continuation and
to develop the software that selects only the sufficiently close boundary
conditions (in sense of sub-Riemannian distance) among all the bound-
ary conditions, induced by the image locations, where the contours are
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corrupted. The selected boundary conditions will be connected via data-
driven sub-Riemannian length minimizers, computed via our numerical
approach [11,12]. Furthermore, automatic training of the parameters 𝜉
and 𝑇 is an interesting topic for further investigation.
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УДК 517.977

А. П. Маштаков, Р. Дайтс. Сферическая модель первичной зрительной коры
головного мозга человека.

Аннотация. В работе предложено и исследовано естественное сферическое обобще-
ниемоделиPetitot–Citti–Sarti первичной зрительнойкорыголовногомозгачеловека.
Уточнение осуществляется путем включения кривизны сетчатки. В предлагаемой
модели сетчатка имеет форму полусферы. Это дает лучшее приближение, чем ап-
проксимация сетчатки плоскостью (использованная в модели Petitot–Citti–Sarti).
Возникающая при этом задача поиска кривых, минимизирующих компромисс
между длиной и геодезической кривизной кривой на поверхности сферы (вариа-
ционный принцип, в соответствии с которым человеческий мозг восстанавливает
скрытые от наблюдения контуры), с заданными граничными точками и направле-
ниями на поверхности сферы, решается путем подъема задачи на группу Ли SO(3).
Неоднородность распределения светочувствительных рецепторов на сетчатке глаза
также учтена, путем включения внешней стоимости в субриманову структуру.
(In English).
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