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Abstract
The work studies a number of approaches to solving motion plan-

ning problem for a mobile robot with a trailer. Different control models
of car-like robots are considered from the differential-geometric point
of view. The same models can be also used for controlling a mobile
robot with a trailer. However, in cases where the position of the trailer
is of importance, i.e., when it is moving backward, a more complex ap-
proach should be applied. At the end of the article, such an approach,
based on recent works in sub-Riemannian geometry, is described. It is
applied to the problem of reparking a trailer and implemented in the
algorithm for parking a mobile robot with a trailer.

Keywords: Mobile robot, trailer, motion planning, sub-Riemannian ge-
ometry, nilpotent approximation.
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Introduction
Control problems for wheeled robots are usually described by nonholonomic
systems. A nonholonomic system arises when the dimension of configuration
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1

ar
X

iv
:1

61
2.

01
34

4v
2 

 [
m

at
h.

O
C

] 
 9

 D
ec

 2
01

6



space is greater than the dimension of control. Here and below, the con-
figuration space represents possible positions of a wheeled robot, i.e., for a
car-like robot it can be expressed in the following way:

Mc ⊆ R2 × S1,

where R2 corresponds to the reference point of the robot on a plane and
S1 corresponds to the orientation of the robot. For nonholonomic systems,
motion in some directions is infinitesimally prohibited, but it is locally and
globally possible (through complex maneuvers of the system).

There is a well-known problem about parking of a car which can not
move in a direction perpendicular to the direction of motion of the wheels.
In fact, every driver has faced this problem. Let us consider the simplest
case where a car should be parked on an empty parking lot (a plane) with no
other cars or static obstacles. It is the classical hypothesis of "rolling without
slipping" that provides the kinematic model of the car. The control problem
for this model is stated as follows: given a system of differential equations,
fixed initial and final positions of the mobile robot and restrictions on one or
two dimensional control, one should find a control law and the corresponding
trajectory satisfying these conditions. Note that in order to control a real
robot, the kinematic model should be derived from a dynamic one.

1 Kinematic control models of a car-like mobile
robot

From a driver’s point of view, cars have two controls: the accelerator and
the steering wheel. The position of a rear-wheel drive car can be defined by
a vector q = (x, y, θ) ∈ Mc, where (x, y) ∈ R2 is the midpoint of the rear
wheels and θ ∈ S1 is the angle of the car orientation which coincides with
the direction of the rear wheels. The direction of the front wheels is not
fixed and corresponds to the steering control. It is possible that each pair of
wheels can be reduced to one wheel only. Moreover, if we are not concerned
with the direction of the front wheels, the control system for a car-like robot
is equivalent to the system for a wheel or a skate [1]:

ẋ = u1 cos θ,

ẏ = u1 sin θ, (1)

θ̇ = u2,

2



where u1, u2 are respectively linear and angular velocities as controls. Note
that the mechanical constraint for the steering angle of the front wheels of
a car should be reduced to the constraint on u1, u2. Such a system looks
like the kinematic model of a unicycle or a two-driving wheel mobile robot.
However, the dynamical models of these systems are not identical. The main
difference between kinematic models lies in the admissible control domains
which should be obtained from dynamical models. Further in the text, a car
is identified with a mobile robot.

The problem is to find controls
(
u1(t), u2(t)

)
and the corresponding tra-

jectory qc(t) =
(
x(t), y(t), θ(t)

)
satisfying system (1) with boundary condi-

tions:

qc(0) = (x0, y0, θ0), qc(t1) = (x1, y1, θ1), (2)

where (x0, y0, θ0), (x1, y1, θ1) ∈Mc.
Since such a formulation of the problem has a continuum of solutions in

the general case, a cost functional should be added and minimized in order
to choose the optimal solution among the family.

The fact that we can choose the coordinate system (x, y) allows us to
always associate the initial position with the origin:

(x0, y0, θ0) = (0, 0, 0). (3)

Further, the paper considers a number of known approaches to solve the
described above problem, which admits different restrictions on the control.

1.1 Dubins car

A.A. Markov is one of the first mathematicians to work on such a problem [2].
In 1887, he studied four problems with application to railroad practice. The
first problem can be formulated geometrically in the following way. Given two
points A,B ∈ R2 in a plane, a positive number R and a direction AC ∈ S1,
the problem is to find the shortest smooth path γ joining A and B s.t. AC is
the tangent direction of γ at the point A and the curvature of γ is bounded
everywhere by 1

R
.

The solution consists of an arc of a circle with radius R and a straight
segment or of two arcs depending on the position of the point B (see Fig. 1).
Such a solution can be applied to parking problem (1),(2), provided that the
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Figure 1: Sketches from Markov’s work [2]

car is moving with a constant speed equal to one and is unable to move on
a circle with radius smaller than R, i.e.,

u1 = 1, |u2| ≤
1

R
, (4)

and the direction of the car is of no importance at the desired end state, i.e.,
θ1 is not fixed. Since the car is moving with the unit velocity, the length
minimization is equivalent to the time minimization:

t1 → min . (5)

Other problems from [2] involve the condition about the direction at the
point B, but also have some additional constraints on the curvature and its
derivative.

In 1957, L. Dubins [3] solved problem (1)–(5) with fixed θ1 using geometric
methods. The solution is reduced to selection among 6 variants of smooth
connection of arcs and straight segments (see Fig. 2). This model corresponds
to the time-optimal control problem for a car moving with a constant velocity
and with bounds on angular velocity. Such a car is called the Dubins car.

1.2 Reeds-Shepp car

In 1990, J.A. Reeds and L.A. Shepp [4] studied the so-called model of Reeds–
Shepp car which can move forwards and backwards. This case gives the
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Figure 2: 6 variants of shortest paths for Dubins car

following constraints on controls:

|u1| = 1, |u2| ≤
1

R
. (6)

Such an admission allows the construction of paths shorter than in case (4).
However, the number of variants of shortest paths increases significantly, the
worst case providing 68 variants. Optimal trajectories could contain cusp
points, i.e., points where the movement vector of the car changes to the op-
posite (see example in Fig. 3). As in Dubins’ work, this characterization is
done without obstacles.

Soon, simpler solutions for both models were obtained in [5] and in [6]
via Pontryagin’s maximum principle [7]. In addition, H.J. Sussmann and
G. Tang reduced the sufficient family to 46 canonical paths.

The Reeds–Shepp car is small time controllable from everywhere, i.e., the
reachable set of admissible configurations for any small time t > 0 contains
a small neighborhood of an initial point (see geometric proof in [8]). The
Dubins car is locally controllable, i.e., it is possible to find a path for the
initial and final configurations that are arbitrarily close, but not small time
controllable from everywhere, so the length of such a path does not converge
to zero. Optimal control for both cars is a piecewise constant function.

Both models serve as classical examples of time-optimal problems. How-
ever, another criterion for choosing an optimal solution which minimizes the
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Figure 3: Comparison of paths in Reeds-Shepp model [4]

amount of car maneuvers can be considered. A classic problem from me-
chanics with such a variational principle is described below.

1.3 Planar elasticae

In 1744, L. Euler considered a problem on stationary configurations of an
elastic rod [9]. Given an elastic rod in a plane with fixed endpoints and
tangents at the endpoints; should find the possible profiles of the rod with
given boundary conditions. Euler derived differential equations for stationary
configurations of a rod and described their possible qualitative types. These
configurations are called Euler’s elasticae. In 1880, L. Saalschutz obtained
explicit parametrization of the curves [10]. These curves have rich history
including Max Born’s work [11] on stability of Euler’s elasticae (see Fig. 4),
for more details see [12]. They appear as solutions to several problems of
sub-Riemannian geometry [13]: nilpotent sub-Riemannian problem on the
Engel group [14], nilpotent sub-Riemannian problem with the growth vector
(2, 3, 5) [15], the problem of rolling a sphere over a plane [16].

In other words, we have system (1) with u1 = 1, u2 ∈ R, boundary
conditions (2) and a cost functional of energy to be minimized∫ t1

0

u22(t) dt→ min . (7)
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Figure 4: Euler’s scetches [9] and Born’s experiments [11]

One of the solutions to the parking problem of a car can be expressed via
the shape of an elastic rod [17], provided the car is moving forwards with a
constant linear speed and with no boundary on steering. Time minimization
in this case has no solutions (curves tend to straight segments but can not
reach them for general boundary conditions). Note that time t1 is fixed
in (7) and is equal to the length of the corresponding rod. Jacobi elliptic
functions [18] are used in the expression of optimal control [12] for a car
moving along an elastica.

The global structure of all solutions of the problem is described in a series
of works [12, 19, 20], the software and algorithm for numerical computation
of optimal elasticae are given in [21]. A tool for plotting and evaluating
generic Euler’s elastica can be found in [22].

All models considered above have one-dimensional steering control u2.
The Reeds–Shepp car has an additional discrete control for direction of move-
ment. A natural extension to it is the Reeds-Sheep car with varying speed
and two dimensional control. One of such models arises in sub-Riemannian
geometry [23].
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1.4 Differential drive robot

Consider system (1) with no bounds on control (u1, u2) ∈ R2. The problem
is to find a curve connecting two points (2) with a minimum sub-Riemannian
length ∫ t1

0

√
u21(t) + u22(t) dt→ min . (8)

Optimal solutions for this problem were obtained by Yu. Sachkov in [24,
25, 26] via geometric control theory [13]. A more general length functional
reflecting the different weights of controls can be minimized:∫ t1

0

√
u21(t) + α2u22(t) dt→ min, α > 0. (9)

The extension is easily implemented by changing the configuration variables
(x, y, θ). The parameter α corresponds to the choice of scale in plane (x, y).

This solution can be applied to a mobile robot with two parallel driving
wheels, the acceleration of each being controlled by an independent motor.
Such a robot is called a differential drive robot. The distance between the
wheels may define the value of parameter α.

2 Geometric formalization of the control prob-
lem for a trailer-like robot

Consider a general model of a mobile robot with a trailer (see Fig. 5). If
a robot is able to move forward only then such a system can usually be
reduced to system (1), since the position of the trailer is of no importance.
Such systems can use Dubins paths (see. Subsec. 1.1) or planar elastica (see.
Subsec. 1.3) for the path planning problem.

That being said, the complexity of the parking problem increases signif-
icantly for a car with a trailer moving backwards. A detailed survey on the
various control strategies for the backward motion of a mobile robot with
trailers can be found in [27]. Formalization of control laws for such a prob-
lem requires the study of a nonlinear four-dimensional differential system
with two-dimensional control which defines the linear and angular velocity.
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Figure 5: Parameters of the system for a mobile robot with a trailer

Such a differential system has the following form:

q̇ = u1X1(q) + u2X2(q), (10)
q = (x, y, θ, ϕ)T ∈M = R2 × (S1)2, (u1, u2) ∈ R2, (11)

X1(q) =


cos θ
sin θ

0
− sinϕ

lt

 , X2(q) =


0
0
1

− lr cosϕ
lt
− 1

 , (12)

where x, y, θ are coordinates of the position of the car defined in Sec. 1, ϕ ∈ S1

is the angle of the trailer with respect to the car; constant parameters lr, lt
define distances from the robot and the trailer to the connection point as
shown in Fig. 5.

The problem is to move a robot with a trailer from one configuration to
another, i.e., to find a path q(t), s.t.

q(0) = q0 = (x0, y0, θ0, ϕ0), q(t1) = q1 = (x1, y1, θ1, ϕ1), (13)

where q0, q1 ∈M.
Such a problem has symmetries which translate solutions of the problem

to other solutions. The group of motions of the plane gives such symmetries
and allows to move the initial position of a car to the origin (3). Another
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known symmetry is the similarity transformation δµ, which changes configu-
ration coordinates, constants and controls in the following way:

δµ : (x, y, θ, ϕ, lt, lr, u1, u2) 7→ (µx, µy, θ, ϕ, µlt, µlr, µu1, u2), (14)

this symmetry is used in the algorithm for trailer reparking, see Subsec. 5.1.
Note that usually there is mechanical constraint |ϕ| ≤ ϕmax. Such a

constraint can be treated as an obstacle in R2 × (S1)2.

3 Obstacle avoidance
The presence of obstacles can be described by inequalities and equalities for
x, y. In other words we have a function R2 → {true, false} which tells us if a
point (x, y) belongs to an obstacle.

The resulting constraint equations for configuration space have different
forms for different shapes of a robot. The simplest shape of a car-like robot
is a circle because such constraint equations do not involve the angle param-
eter θ. The algorithm for computing the configuration space obstacles, when
the objects are polygons, is given in [28].

Figure 6: Planner for car-like and trailer-like robots [29]

In 1989, J. Barraquand and J.-C. Latombe [29], using standard results
of differential geometry, nonlinear control theory and dynamic programming
search, developed path planning algorithms for two robotic systems: car-like
robots and trailer-like robots. A car-like robot is kinematically similar to
a rectangular-shaped car. Left Fig. 6 shows an example of maneuvering in
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an unstructured workspace represented as a 5122 bitmap with a maximal
steering angle of the front wheels equal to 45 degrees (the running time was
about 2 minutes). A trailer-car is kinematically similar to a vehicle towing
a trailer. Right Fig. 6 shows an example with a simulated two-body trailer-
like robot where the trailer has to maneuver in a cluttered workspace with
a maximal steering angle equal to 45 degrees (the running time was about
5 minutes). Their planners confirm controllability of such systems among
obstacles in practice, but the solutions are not optimal.

Figure 7: Examples of trajectories generated by geometric planners from [30],
left pictures are made for a polygonal robot, right pictures for a circular robot:
(a) holonomic path, (b) feasible path, (c) after optimization, (d) result

In 1994, J.-P. Laumond, P. Jacobs, M. Taïx and R. Murray [30] developed
a fast and accurate planner for a car-like model in presence of obstacles,
based on a recursive subdivision of a collision free path generated by a lower-
level geometric planner that ignores the motion constraints. The resultant
trajectory is optimized to give a path that has near-minimal length in its
homotopy class. The model of a front-wheel-drive car with a constraint on
the turning radius can be reduced to system (1) with the constraints

|u2(t)| ≤ |u1(t)| ≤
1

R
. (15)

The shortest paths for system (1) satisfying inequalities (15) are the same as
for Reeds–Sheep’s problem (see the proof in [5]).
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The algorithm of the planner consists of three steps [30]:

(a) To plan a collision-free path for the geometric system, i.e., without
taking into account differential system (1). If such a path does not
exist, neither does a feasible path. The experimental results present
two implementations based on two different geometric planners. The
first one runs for a polygonal robot (see left Fig. 7 (a)), the second one
for a disk based on the Voronoi diagram (see right Fig. 7 (a)).

(b) To perform subdivision of the path until all endpoints are linked by
a minimal-length path satisfying system (1) and constraints (6). The
shortest path for Reeds-Shepp car is used in order to link interme-
diate configurations along the path, generated in the previous step
(see Fig. 7 (b)).

(c) To perform an "optimization" routine to remove extra maneuvers and
reduce the length of the path (See Fig. 7 (c)). The resulting paths are
showed on Fig. 7 (d).

Later in 1998, J.-P. Laumond presented notes [31] which describes a more
general approach for the motion planning problem of a car and a car with one
or two trailers. He mentioned several steering methods for step (b), including
methods for nilpotent systems with piecewise and sinusoidal control. Back
in those days, steering with optimal control was possible only for car-like
systems, so, the only possibility for general systems was to call on numerical
methods.

In 2013, H. Chitsaz [32] considered the time-optimal control problem for
system (10)–(12) with lr = 0, lt = 1 and the constraints (u1, u2) ∈ [−1, 1]2.
He revealed the structure of extremals through analytical integration of the
system and adjoint equations. It was shown that Reeds-Shepp curves are
time-optimal for system (10)–(12), and that the general case corresponds to
a planar elastica (see Subsec. 1.3) connecting an arc of a circle to a straight
segment. A complete characterization of optimal trajectories and control
synthesis for the problem is still an open question.

This paper considers a sub-Riemannian problem for system (10)–(12), i.e.,
the problem with boundary conditions (13) and integral of sub-Riemannian
length (8). Nowadays, computing optimal paths for such a problem is a
challenging task.
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4 Sub-Riemannian geometry
Sub-Riemannian geometry considers optimal control problems with a system
of linear in control differential equations and with the sub-Riemannian length
minimization. For two-dimensional control, such a system has form (10),
where X1, X2 are smooth vector fields on manifold M and dim(M) = n > 2.
The optimality criterion for two-dimensional control has form (8). Sys-
tem (10) with (2) and integral (8) describe an n-dimensional sub-Riemannian
problem with 2-dimensional control.

So far, only several sub-Riemannian problems have been studied com-
pletely, mostly for n = 3. The simplest problems are nilpotent and are
defined by the simplest structure of Lie algebras Lie (X1, X2).

4.1 Nilpotent approximation

Control system (10) is called nilpotent if Lie brackets of the corresponding
vector fields X1, X2 vanish at a given length. Such systems provide a non-
linear approximation for sub-Riemannian problems. Linearization of control
systems is usually used as a local approximation, but for system (10) which
is linear in control the linearization is a too rough approximation: since the
dimension of control is less than the dimension of configuration space, the
linearization can not be controllable. Nilpotent approximation preserves this
important property of a control system.

The term "nilpotent approximation" is defined by A.A. Agrachev and
A.V. Sarychev in [33], also by H. Hermes in [34]. G. Laferriere and H.J. Suss-
mann propose a method in the context of nilpotent systems in [35]. Invariant
construction of nilpotent approximation is proposed in [36]. The exact so-
lution to a control problem with a nilpotent system gives an approximate
solution to arbitrary system (10) in a small neighborhood of the final point.

The method of nipotent approximation can be applied to control prob-
lem (10)–(12) with arbitrary values of lt, lr. Different solutions to the nilpo-
tent problem give different approximations. This article considers the solu-
tion in terms of optimal control (8) and uses a general algorithm, given by
Bellaiche in [37] and further specified for system (10) in [38], for constructing
the nilpotent approximation. It uses the Maclaurin expansion of vector fields
X1, X2 in privileged coordinates in the very same way as in [38] for a mobile
robot with two trailers.
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4.2 Nilpotent sub-Riemannian problem on the Engel
group

The nipotent approximation for a mobile robot with a trailer is unique and
has the following canonical form:

˙̃q = u1X̃1(q̃) + u2X̃2(q̃), (16)

q̃ = (x̃, ỹ, z, v)T ∈ M̃ = R4, (u1, u2) ∈ R2, (17)

X̃1 =


1
0
− ỹ

2

0

 , X̃2 =


0
1
x̃
2

x̃2+ỹ2

2

 . (18)

Problem (16)–(18), (8) with arbitrary boundary conditions is called the nilpo-
tent sub-Riemannian problem on the Engel group. Since the problem is in-
variant under left shifts on the Engel group (see the defenition in [23]), we
can assume that the initial point is the identity, i.e.,

q̃(0) = q̃0 = (0, 0, 0, 0), q̃(t1) = q̃1 = (x̃1, ỹ1, z1, v1), (19)

where q̃0, q̃1 ∈ M̃ .
The corresponding sub-Riemannian problem has been studied quite re-

cently in a series of works [14, 39, 40]. The problem of finding optimal
synthesis in the general case x̃1z1 6= 0 is reduced to a system of three alge-
braic equations in elliptic functions and elliptic integrals. It seems impossible
to analytically solve such equations, therefore, a software for computing op-
timal trajectories for the nilpotent sub-Riemannian problem on the Engel
group is being developed in Wolfram Mathematica [41]. This software has
already been used to devise several algorithms for computing approximate
paths close to optimal in terms of (8) for a mobile robot with a trailer (see
Subsec. 5.2).

5 Path planning via nilpotent approximation
The algorithm proposed by A. Bellaiche in [37] is used to control a mobile
robot with a trailer. Let us describe this algorithm applied to the prob-
lem (10)–(13), (8). Commutators of the vector fields X1, X2 taken from (12)
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have the following form:

X3 = [X1, X2] =


sin θ
− cos θ

0

− lr+lt cosϕ
l2t

 , X4 = [X1, X3] =


0
0
0

− lt+lr cosϕ
l3t

 .

New coordinates q̃ are defined in the following way:

q̃ = Γ−1(q − q1). (20)

where Γ is the matrix composed from vectors X1, X2, X3, X4 and vector q1
corresponds to the final point of the curve, see (13). With such changes,
terminal point q = q1 goes to the origin q̃ = q̃0 and initial point q = q0 goes
to point q̃ = q̃1.

The next step is to find optimal control (u1, u2) = (û1, û2) for prob-
lem (10), (17), (18) with the boundary conditions q̃(0) = q̃1, q̃(t1) = q̃0 and
functional (8). It is possible to transform the boundary conditions to (19)
by inverting resulting controls and time on controls.

The controls (û1, û2) should be applied to initial problem (10)–(13), (8).
The corresponding curve

q̂(t) =

∫ t

0

(
X1

(
q(t)

)
û1(t) +X2

(
q(t)

)
û2(t)

)
dt (21)

can be found by numerical integration. It gives an approximate solution to
the problem close to optimal in terms of (8).

5.1 Reparking of trailer

Let us consider the particular case of problem (10)–(13),(8):

x0 = y0 = θ0 = x1 = y1 = θ1 = 0, (22)

i.e. initial and final position of the car coincide one with each other, so the
problem is to change the direction of the trailer. In this case, according
to (20), the end point for the nilpotent problem on the Engel group is the
following:

q̃1 =

(
0, 0, 0,

l3t (ϕ1 − ϕ0)

lt + lr cosϕ

)
. (23)
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Figure 8: Nilpotent approximation for reparking problem with parameters
(lr, lt) = (0, 2), (ϕ0, ϕ1) = (π

4
, π
2
)

For this case, there is an infinite number of optimal solutions which come
to the same point q̃1 in a figure-eight shape on the plane (x̃, ỹ) [40]. All
of them can be used as the nilpotent approximation. The corresponding
optimal controls are described by Jacobi elliptic functions:

û1(t) = sign(σ)2k0 sn
(
|σ|(φ+ tcut − t)

)
dn
(
|σ|(φ+ tcut − t)

)
, (24)

û2(t) = − sign(σ)
(

2 dn2
(
|σ|(φ+ tcut − t)

)
− 1
)
, (25)

where, in this case, tcut = 4K(k0)
|σ| (see [40]) and φ ∈ [0, tcut). On the other

hand, using the parametrization of extremal trajectories [14], we get

q̃1 =

(
0, 0, 0,

8E(k0)

3σ3

)
⇒ σ = 3

√
8E(k0)

3v1
. (26)

Numerical experiments show that a trajectory of system (10)–(12) start-
ing from point q(0) = (0, 0, 0, ϕ0) with control (24),(25) and arbitrary σ, φ
always ends at point q(tcut) = (0, 0, 0, ϕ̃1(σ, φ)), where ϕ̃1(σ, φ) is a function
which can be calculated numerically. For fixed ϕ0, ϕ1, the parameter σ can
be obtained from (23),(26). A numerical algorithm is developed in order to
find the value φ = φ̂ which satisfies ε = |ϕ̃1(σ, φ̂) − ϕ1| → min. See an
example of reparking obtained by this algorithm with accuracy ε < 0.001 in
Fig. 8.
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Figure 9: Nilpotent approximation for reparking problem with parameters
(lr, lt) = (1, 5), (ϕ0, ϕ1) = (π

2
,−π

3
), α = 1

The algorithm was tested for different ϕ0, ϕ1 and lr, lt. Some cases provide
rough accuracy ε > 7/10, see an example in Fig. 9. Usually, such accuracy
arises for distant points. One of the way to treat them is to use symme-
try (14). For the reparking problem it is possible to consider controls for mod-
els with δµ(lt), δµ(lr) and then translate them to controls for the model with
lt, lr. Such a transformation also changes the functional integral to (9) with
α = µ. Therefore, using optimal solutions for the nilpotent sub-Riemannian
problem, it is possible to obtain an approximate solution for each weighted
integral (9) with fixed α. This consideration is equivalent to choosing scale
on the plane. A similar trick has been used for sub-Riemannian problem
on SE (2) regarding cusp avoidance in image analysis applications [42]. The
example illustrated in Fig. 9 is solved with such consideration, see Fig. 10.

5.2 Algorithm for parking a mobile robot with a trailer

Let us consider problem (10)–(13),(8) with arbitrary q0, q1. The correspond-
ing end point for the nilpotent problem on the Engel group according to (20)
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Figure 10: Nilpotent approximation for reparking problem with parameters
(lr, lt) = (1, 5), (ϕ0, ϕ1) = (π

2
,−π

3
), α = 1.76113

is expressed in the following way:

q̃1 =

(
(x0 − x1) cos θ0 + (y0 − y1) sin θ0, θ0 − θ1,

(x0 − x1) sin θ0 − (y0 − y1) cos θ0, − lt
lt + lr cosφ0

×

×
(
l2t (θ0 − θ1 + ϕ0 − ϕ1) + lrlt(θ0 − θ1) cosϕ0+

+ lr
(
(x0 − x1) sin θ0 − (y0 − y1) cos θ0

)
+

+ lt
(
(x0 − x1) sin(ϕ0 + θ0)− (y0 − y1) cos(ϕ0 + θ0)

)))
. (27)

If x̃1z1 6= 0, then there is a unique optimal trajectory for problem (10)–
(13),(8) [40]. Note that for case x̃1z1 = 0 it is always possible to consider
an arbitrarily close solution corresponding to a point (x̃1 + ε, ỹ1, z1 + ε, v1)
with small enough ε, which satisfies (x̃1 + ε)(z1 + ε) 6= 0. In order to find
optimal controls for the end point with x̃1z1 6= 0, the corresponding system
of algebraic equations in elliptic functions and elliptic integrals should be

18



Figure 11: Nilpotent approximation for parking problem with parameters
(lr, lt) = (1, 4), q0 = (0, 0, 0, π

3
), q1 = (−1, 1, π

2
, 0)

solved. Unfortunately, standard methods such as Newton’s method, secant
method, random search and grid search do not solve the system, therefore
a hybrid method should be used instead. Such a method is developed by
combining standard methods, and it finds a solution in most of the cases.
A complete testing of the method is to be performed. We have reasonable
grounds to believe that it is possible to develop an approach which can solve
the system for any q̃1. Thus, its detailed description is yet to be made in a
future article.

For arbitrarily close initial and final configurations the nilpotent approxi-
mation gives solution q̂(t) close to optimal. However, such a solution usually
does not connect the configurations. Starting from point q̂(0) = q0 it arrives
at point q̂(t̂1) = q̂1 6= q1. If the distance ε = |q̂1−q1| is small enough, then the
solution q̂(t), t ∈ [0, t̂1] can be used to solve the parking problem. Otherwise,
there should be found a way to improve the obtained solution. Fig. 11 shows
an example with ε > 0.72. Here and below, gray images of a robot and a
trailer correspond to desired positions.
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Figure 12: Improved nilpotent approximation for parking problem with pa-
rameters (lr, lt) = (1, 4), q0 = (0, 0, 0, π

3
), q1 = (−1, 1, π

2
, 0)

One of the ways to improve the approximation is to consider the parking
problem with the constraints q(0) = q̂0, q(t1) = q1, where q̂0 6= q0 is an
arbitrary point of curve q̂. This improvement can be repeated several times
until the resulting curve comes to a point close enough to q1. Fig. 12 shows
an improved approximation of the example showed in Fig. 11 with ε < 0.022.
Black points correspond to points q̂0 where the nilpotent approximation has
been recalculated.

Such an improvement is not always achieved with the desired precision,
Fig. 13 illustrates an example with ε ≈ 0.935 for improved approximation,
where the initial approximation has precision ε > 4.1. In order to obtain
a more accurate solution, a specified algorithm should be developed on the
base of the proposed approach.

More examples are shown in Fig. 14 with ε ≈ 0.53 (initial approximation
has precision ε > 6.11) and in Fig. 15 with ε ≈ 1 (initial approximation
has precision ε > 3.8). Note that, as the last example shows, there is no
restrictions on the parameter ϕ.
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Figure 13: Improved nilpotent approximation for a parking problem with
parameters (lr, lt) = (2, 3), q0 = (0, 0, 0, 0), q1 = (1, 1/2, π, 0)

Figure 14: Improved nilpotent approximation for a parking problem with
parameters (lr, lt) = (3, 2), q0 = (0, 0, 0, π

2
), q1 = (1, 3, π, 0)
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Figure 15: Improved nilpotent approximation for a parking problem with
parameters (lr, lt) = (0, 4), q0 = (0, 0, 0, π

2
), q1 = (−3, 1

10
, π
3
, π
2
)

Conclusion
The article explores motion planning problems for a mobile robot with a
trailer. This is quite a difficult task even without obstacles. The simplest
case is given by the kinematic model of a car-like mobile robot, i.e. when the
position of the trailer is not taken into account. The article also includes a
brief overview of the existing methods of solving a motion planning problem
for a mobile robot and a mobile robot with a trailer. One of them is based on
the concept of nilpotent approximation. Different solutions, obtained from
different classes of controls, are used to control a nilpotent system. Optimal
control, in sense of minimization of controls, corresponds to nilpotent sub-
Riemannian problems.

Recently, the nilpotent sub-Riemannian problem on the Engel group was
solved. This problem is given by a 4-dimensional control system with a
2-dimensional control and provides an approximate optimal solution to con-
trolling a differential system for a mobile robot with a trailer. The algorithm
of nilpotent approximation is applied for solving the problem of reparking a
trailer. This algorithm is improved using a symmetry of the corresponding
differential system for a mobile robot with a trailer. At the end of the article
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a new algorithm for parking a mobile robot with a trailer is presented. It
will be applied for controlling a real mobile robot with a trailer.

The author acknowledges support by Russian Foundation for Basic Re-
search, Project No. 16-31-00396-mol_a.
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