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Abstract

We consider the Lie group PSL2(R) (the group of orientation preserving isome-
tries of the hyperbolic plane) and a left-invariant Riemannian metric on this group
with two equal eigenvalues that correspond to space-like eigenvectors (with respect
to the Killing form). For such metrics we find a parametrization of geodesics, the
conjugate time, the cut time and the cut locus. The injectivity radius is computed.
We show that the cut time and the cut locus in such Riemannian problem converge
to the cut time and the cut locus in the corresponding sub-Riemannian problem
when the third eigenvalue of the metric tends to infinity. Also similar results are
obtained for SL2(R).

Keywords: Riemannian geometry, sub-Riemannian geometry, geodesics, cut
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1 Introduction

Let X be a two-dimensional Riemannian manifold of a constant curvature −1, 0, 1: so, X
is the hyperbolic (Lobachevsky) plane Λ2, the Euclidean plane E2 or the sphere S2. Let
G be the group of isometries preserving the orientation of X , i.e., G is PSL2(R), SE2 or
SO3 respectively.

Consider G as the bundle of unit tangent vectors to X . This bundle is a weakly
symmetric space (G × SO2)/SO2. The second multiplier SO2 acts on the bundle of unit
tangent vectors to X by rotations by the same angle in all tangent spaces. The stabilizer
SO2 is embedded into the direct product in the anti-diagonal way. The weakly symmetric
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spaces were introduced by A. Selberg [1] and (PSL2(R) × SO2)/SO2 is Selberg’s first
original example. We consider a (G× SO2)-invariant Riemannian metric on G. In other
words it is a left-invariant Riemannian metric on G which is a lift of a Riemannian metric
on X . Such a metric is determined by three eigenvalues I1 = I2, I3 of the restriction of
the metric to the tangent space at the identity.

Now fix the distribution of 2-dimensional planes in G that are orthogonal to fibres of
the projection to X . Consider the Riemannian and sub-Riemannian problems on G, i.e.,
the problems of finding shortest arcs connecting two arbitrary points (a shortest arc in
the sub-Riemannian problem must be tangent to the distribution at almost any point).
Due to the left-invariance of the metric it is enough to consider geodesics starting at the
identity and find a parametrization of such geodesics, the cut time (the time of loss of
optimality of geodesics) and the cut locus (the union of cut points of all geodesics starting
at the identity).

The group G (as the bundle of unit tangent vectors to X) is the configuration space
of a mobile robot on X . (A unit tangent vector defines an orientation of a mobile robot.)
The sub-Riemannian problem models energy-optimal motions of a mobile robot with two
engines that correspond to motions in two different directions. Obviously such a system
is not completely controllable on E2 (it is impossible to change orientation of a robot
via translations). But on Λ2 and S2 such systems are completely controllable due to the
curvature of the manifold. The corresponding sub-Riemannian problems were considered
by V. N. Berestovskii and I. A. Zubareva [4], [3], [2] and by U. Boscain and F. Rossi [5].

A more traditional way of modeling a mobile robot is to consider a vehicle that can
go forward and can rotate. Such a model corresponds to the sub-Riemannian problem on
G with the distribution of 2-dimensional planes tangent to the fibres of projection to X .
In the Euclidean case such non-trivial sub-Riemannian problem was solved by the second
co-author in the series of papers [6] (in collaboration with I. Moiseev), [7], [8].

In this paper we consider a Riemannian problem on the group of isometries of the
hyperbolic plane with I1 = I2. The cut locus and the equations for the cut time are
found. It turns out that the Riemannian problem approximates the sub-Riemannian one
when I3 → ∞. It means that the parametrization of geodesics, the conjugate time, the
conjugate locus, the cut time, the cut locus of the Riemannian problem converge to the
same objects in the sub-Riemannian one. We have achieved similar results for SO3 (the
group of isometries of a sphere) in [9].

Table 1 presents a summary of known results.
Our plan of investigation of the cut locus is as follows:

1. parametrization of geodesics via Pontryagin maximum principle [10], [11];

2. description of the group of symmetries of the exponential map;

3. description of the Maxwell strata and the Maxwell time that correspond to the
symmetry group of the exponential map;
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Table 1: Summary of known results

Curvature of X -1 0 1

Isometry group of
X

PSL2(R) SE2 SO3

sub-Riemannian
cut locus

The set of central
symmetries, the circle
of all nontrivial
rotations around the
fixed point,
V. N. Berestovskii [2]

Is not completely
controllable

The set of central
symmetries, the circle
of all nontrivial
rotations around the
fixed point,
V. N. Berestovskii,
I. A. Zubareva [3],
U. Boscain,
F. Rossi [5]

Riemannian cut
locus

The set of central
symmetries and the
interval of some
nontrivial rotations
around the fixed
point (for I1 < 2I3),
a result of this paper

unknown The set of central
symmetries and the
interval of some
nontrivial rotations
around the fixed
point (for I1 < 2I3),
A. V. Podobryaev,
Yu. L. Sachkov [9]

4. finding the first conjugate time;

5. it turns out that the first conjugate time is greater than (or equal to) the Maxwell
time (corresponding to the symmetries), and the exponential map is a diffeomor-
phism of the set bounded by the first Maxwell time in the pre-image of the exponen-
tial map to the open dense subset of G. That is why the first Maxwell time turns
out to be the cut time. Then we describe the global structure of the cut locus.

This scheme of investigation of the global optimality of extremals first appears in
works of the second co-author on the generalized Dido problem [12], [13].

The structure of this paper corresponds to the above items (Sections 2–6).
In Section 7 the injectivity radius of the considered metric is computed (depending on
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the parameters I1 and I3).
Section 8 contains results on the similar Riemannian problem on the group SL2(R)

(an answer in the corresponding sub-Riemannian problem was achieved by U. Boscain
and F. Rossi [5], a complete proof was given by V. N. Berestovskii and I. A. Zubareva [4],
besides such sub-Riemannian problem was considered by E. Grong and A. Vassil’ev [14]).
Note that we got the result in the similar Riemannian problem on SU2 [9], while the cor-
responding sub-Riemannian problem on SU2 was considered by D.-Ch. Chang, I. Markina
and A. Vassil’ev [15].

Section 9 deals with the Riemannian approximation of the sub-Riemannian problem
when I3 → ∞.

2 Parametrization of geodesics

2.1 Definitions and notation

Let G = PSL2(R) and let g be the corresponding Lie algebra. Consider a basis of the
Lie algebra e1, e2, e3 ∈ g in which the Killing form and the Riemannian metric have
the matrices diag(1, 1,−1) and diag(I1, I2, I3) respectively. Next we consider the case of
I1 = I2, I3 > 0. Let

η = −I1
I3

− 1 < −1

be the parameter of the Riemannian metric (which measures prolateness of small spheres).
All properties of the Riemannian metric considered below depend on this parameter. We
identify g with g∗ via the Killing form. Consider the basis ε1, ε2, ε3 ∈ g∗ that maps to
e1, e2, e3 ∈ g via such identification. Let p = p1ε1 + p2ε2 + p3ε3 ∈ g∗.

Denote by Kil(p) the value of the quadratic Killing form on a covector p:

Kil(p) = p21 + p22 − p23, |p| =
√

|Kil(p)|.

Let type(p) = sgn(−Kil(p)) be the type of a covector p. Recall that p is called time-like,
light-like or space-like if type(p) is equal to 1, 0 or −1 respectively.

We assume that all geodesics have an arclength parametrization by the parameter t
(called the time). If |p| 6= 0 define

p̄ =
p

|p| , τ(p) =
t|p|
2I1

.

By Rv,ϕ we denote the rotation of a 3-dimensional oriented Euclidean space around
the axis span{v} by the angle ϕ in the positive direction.
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2.2 Optimal control problem

Using the above notation consider the problem of finding shortest arcs of the Riemannian
metric as an optimal control problem [11]:

Q̇ = QΩ, Ω = u1e1 + u2e2 + u3e3 ∈ g,
Q ∈ G, (u1, u2, u3) ∈ R3,

Q(0) = id, Q(t1) = Q1,

1

2

∫ t1

0

(I1u
2
1 + I2u

2
2 + I3u

2
3) dt→ min,

(1)

where u = (u1, u2, u3) is a control.
Minimization of the Riemannian length is equivalent to minimization of this energy

functional due to the Cauchy-Schwartz inequality (with a fixed terminal time t1).

2.3 Equations of geodesics

The following theorem gives a parametrization of geodesics.

Theorem 1. The geodesic Q(t) starting at the identity and having an initial momentum

p = p1ε1 + p2ε2 + p3ε3 (where
p21
I1

+
p22
I2

+
p23
I3

= 1) is the product of two one-parameter
subgroups:

Q(t) = exp

(
tp

I1

)
exp

(
tηp3e3
I1

)
. (2)

Proof. Geodesics are extremals of the optimal control problem (1). Apply the Pon-
tryagin maximum principle [10]. Consider the trivialization of the cotangent bundle
τ : G × g∗ → T ∗G via the G-action: τ(g, α) = dL∗

gα, where Lg : G → G is the left
product by g ∈ G and α ∈ g∗.

The Hamiltonian of the Pontryagin maximum principle reads as

Hν
u(p) = u1p1 + u2p2 − u3p3 +

ν

2
(I1u

2
1 + I2u

2
2 + I3u

2
3),

where ν 6 0. For an extremal control ũ(t) for almost any timeHν
ũ(t)(p(t)) = maxuH

ν
u(p(t)).

As usual in Riemannian problems ν = 0 implies p = 0 in contradiction with the condition
of Pontryagin maximum principle of non-triviality of the pair (ν, p). This pair is defined
up to a positive multiplier. So we can set ν = −1. Then

ũ1(t) =
p1(t)

I1
, ũ2(t) =

p2(t)

I2
, ũ3(t) = −p3(t)

I3
.

The maximized Hamiltonian is

H(p) = H−1
ũ(t)(p) =

1

2

(
p21
I1

+
p22
I2

+
p23
I3

)
.
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The corresponding Hamiltonian system reads as

{
Q̇(t) = Q(t) Ω(t),
ṗ(t) = (ad∗ Ω(t))p(t),

where Ω(t) = ũ1(t)e1+ ũ2(t)e2+ ũ3(t)e3 ∈ g. We call the first equation the horizontal part
and the second one the vertical part of the Hamiltonian system.

It is easy to see that in the coordinates p1, p2, p3 the equations of the vertical part are
as follows: 




ṗ1(t) = −p2(t)p3(t) I2+I3
I2I3

,

ṗ2(t) = p1(t)p3(t)
I1+I3
I1I3

,

ṗ3(t) = p1(t)p2(t)
I1−I2
I1I2

.

When I1 = I2 the solution is

p(t) = R
e3,− tηp3

I1

p, p(0) = p. (3)

In invariant notation

p(t) = Ad exp

(
−tηp3e3

I1

)
p.

Note that

Ω(t) =
p1(t)

I1
e1+

p2(t)

I2
e2−

p3(t)

I3
e3 =

1

I1
(p(t)+ηp3e3) =

1

I1
Ad exp

(
−tηp3e3

I1

)
(p+ηp3e3).

Compute derivative of Q(t) (2):

Q̇(t) = dLexp tp

I1

dRexp
tηp3e3

I1

(
p

I1

)
+ dLexp tp

I1

dLexp
tηp3e3

I1

(
ηp3e3
I1

)

= dLexp tp
I1

exp
tηp3e3

I1

(
1
I1
dLexp (− tηp3e3

I1
)dRexp (

tηp3e3
I1

)(p + ηp3e3)
)
,

where Lg and Rg are the left and right products by g ∈ G respectively. Using the formula
for Ω(t) it is easy to see that the last expression is equal to Q(t)Ω(t). So, Q(t) satisfies
the horizontal part of the Hamiltonian system. �

Remark 1. If |p| 6= 0, the solution of the vertical part of the Hamiltonian system takes
the form p̄(τ) = Re3,−2τηp̄3 p̄.

Remark 2. The Killing form is a Casimir function on g∗. Thus type(p) ≡ const, i.e.,
type of a covector is an integral of the Hamiltonian system.
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2.4 Model of PSL2(R)

Here we describe the model of PSL2(R) in which we produce computations and draw
figures. Consider the group SU1,1 that can be realized as the group of unit norm split-
quaternions

SU1,1 = {q0 + q1i+ q2j + q3k | q20 − q21 − q22 + q23 = 1, q0, q1, q2, q3 ∈ R}.

The product rule of split-quaternions is distributive and satisfies the following conditions:

i2 = j2 = 1, k2 = −1, ij = −k, jk = i, ki = j.

It is well known (see for example [16]) that there is an isomorphism

ψ : SL2(R) → SU1,1, ψ

(
a b
c d

)
=
a+ d

2
+
a− d

2
i+

b+ c

2
j +

c− b

2
k,

where ad− bc = 1, a, b, c, d ∈ R.
Consider projection of elements of SU1,1 to a 3-dimensional real space with coordinates

q1, q2, q3. The condition
q23 − q21 − q22 = 1− q20 6 1

implies that these projections lie between two cups of the hyperboloid defined by the
equation q23 − q21 − q22 = 1. For fixed q1, q2, q3 (such that q23 − q21 − q22 6= 1) there are two
possibilities for the value of q0. Hence the group SU1,1 is the union of two such domains
between the cups of the hyperboloid with identified boundary points (which correspond
to q0 = 0). The group SU1,1 is homeomorphic to an open solid torus.

The group PSL2(R) ⋍ SU1,1/{±1} can be seen as the domain between the cups of the
hyperboloid with identified opposite points on the cups of the hyperboloid: (q1, q2, q3) ∼
(−q1,−q2,−q3).

As we will see below, the Maxwell strata and the cut locus are invariant under rotations
around axis q3 because of the symmetry of the Riemannian metric (I1 = I2). So we will
draw all the required sets in the plane q1, q3 (see Figure 1).

The group SU1,1/{±E} is the group of Möbius transformations of complex numbers
which preserve the unit disk. In other words, it is the group of orientation preserving
isometries of the Poincaré disk model of the hyperbolic geometry. The split-quaternion
q0 + q1i+ q2j + q3k corresponds to the Möbius transformation

z 7→ (q0 + q3i)z + (q1 + q2i)

(q1 − q2i)z + (q0 − q3i)
, z ∈ C. (4)

It is well known (see Appendix) that an orientation preserving isometry of the hyper-
bolic plane is the product of two reflections with respect to lines. There are three types
of orientation preserving isometries: elliptic, parabolic and hyperbolic ones. These types
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Figure 1: Model of SU1,1.

correspond to pairs of lines that are intersecting, parallel one to another (the intersection
point is on the absolute) or ultra parallel one to another (not intersecting) respectively.

The following proposition provides a geometric interpretation of some subsets of SU1,1.

Proposition 1. Consider the projection Π : SU1,1 → SU1,1/{±E} ⋍ PSL2(R), then:
(1) Π{q ∈ SU1,1 | q1 = q2 = 0} is the set of rotations around the center of the Poincaré
disk model;
(2) Π{q ∈ SU1,1 | q0 = 0} is the set of central symmetries (reflections in points);
(3) Π{q ∈ SU1,1 | q3 = 0} is the set of hyperbolic isometries that is defined by a sheaf
of ultra parallel lines which is symmetric with respect to a diameter of the Poincaré disk
model.

Proof. (1) Obviously the corresponding Möbius transformation is the multiplication
by (q0 + q3i)

2. That is rotation around zero by the angle 2 arg (q0 + q3i).
(2) If z is a fixed point of the Möbius transformation (4), then

(q1 − q2i)z
2 − 2q3iz − (q1 + q2i) = 0. (5)

One of the two solutions i(q3±1)
q1−q2i

is inside of the unit disk. Hence we have an elliptic

8



isometry (rotation). Compute derivative of transformation (4) at the fixed point:

q23 − (q21 + q22)

(q1 − q2i)2z2 − 2q3i(q1 − q2i)z − q23
=

1

(q1 − q2i)((q1 − q2i)z2 − 2q3iz)− q23
.

But z satisfies equation (5), then

1

(q1 − q2i)(q1 + q2i)− q23
= −1.

This implies that the transformation is the reflection in the point z (the central symmetry).
(3) Fixed points of the Möbius transformation can be found from the equation

(q1 − q2i)z
2 − (q1 + q2i) = 0.

There are two opposite solutions with the same absolute value that is equal to 1. That
means it is a hyperbolic isometry. The corresponding sheaf of ultra parallel lines is
symmetric with respect to the diameter connecting the two fixed points. �

2.5 Exponential map

Corollary 1. The geodesic starting at the identity of SU1,1 with an initial momentum p
has the following arclength parametrization:
(1) for a time-like covector p (p23 − p21 − p22 > 0)

qe0(τ) = cos τ cos (τηp̄3)− p̄3 sin τ sin (τηp̄3),(
qe1(τ)
qe2(τ)

)
= sin τRe3,τηp̄3

(
p̄1
p̄2

)
,

qe3(τ) = cos τ sin (τηp̄3) + p̄3 sin τ cos (τηp̄3),

(6)

(2) for a light-like covector p (p23 − p21 − p22 = 0)

qp0(t) = cos tηp3
2I1

− t
2I1
p3 sin

tηp3
2I1

,(
qp1(t)
qp2(t)

)
= t

2I1
R

e3,
tηp3
2I1

(
p1
p2

)
,

qp3(t) = sin tηp3
2I1

+ t
2I1
p3 cos

tηp3
2I1

,

(7)

(3) for a space-like covector p (p23 − p21 − p22 < 0)

qh0 (τ) = cosh τ cos (τηp̄3)− p̄3 sinh τ sin (τηp̄3),(
qh1 (τ)
qh2 (τ)

)
= sinh τRe3,τηp̄3

(
p̄1
p̄2

)
,

qh3 (τ) = cosh τ sin (τηp̄3) + p̄3 sinh τ cos (τηp̄3).

(8)
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Proof. Consider the exponential map from the Lie algebra to the Lie group exp :
su1,1 → SU1,1. Let p = p1

i
2
+ p2

j

2
+ p3

k
2
∈ su1,1 be the orthonormal (with respect to the

Killing form) decomposition of the vector p. Then

pn =
Kil(p)[

n
2
]

2n
p(n mod 2).

It follows that

exp(p) =





cos ( |p|
2
) + sin ( |p|

2
)(p̄1i+ p̄2j + p̄3k), for Kil(p) < 0,

1 + 1
2
(p1i+ p2j + p3k), for Kil(p) = 0,

cosh ( |p|
2
) + sinh ( |p|

2
)(p̄1i+ p̄2j + p̄3k), for Kil(p) > 0.

It remains to calculate the product of the expressions of the two one-parametric subgroups
from Theorem 1. �

We will skip the upper index of the functions q0, q1, q2, q3 when we formulate a general
statement for them.

Remark 3. The image of a geodesic under the projection Π : SU1,1 → PSL2(R) is a
geodesic. Inversely any geodesic in PSL2(R) lifts to a geodesic in SU1,1.

Definition 1. Let C = {p ∈ g∗ | H(p) = 1/2} be the level surface of the Hamiltonian (it
is an ellipsoid). Initial momenta from C correspond to unit initial velocities of geodesics
(i.e., the arclength parametrization of geodesics).

Definition 2. The exponential map (for the Riemannian problem) is the map

Exp : C × R+ → G, Exp(p, t) = π ◦ et ~H(id, p),

where p ∈ C, t ∈ R+ and et
~H is the flow of the Hamiltonian vector field ~H ∈ Vec(T ∗G),

and π : T ∗G→ G is the projection of the cotangent bundle to the base.

The exponential map defines the arclength parametrization of geodesics.

Remark 4. The exponential map is real analytic, since the Hamiltonian H and the
Hamiltonian vector field ~H are real analytic.

3 Symmetries of exponential map

In this section symmetries of the problem are described. These symmetries help us to
find some Maxwell points.
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Definition 3. A symmetry of the exponential map is a pair of diffeomorphisms

s : C × R+ → C × R+ and ŝ : G→ G such that Exp ◦ s = ŝ ◦ Exp.

Next we consider only symmetries that correspond to isometries of C (in the sense of
the Killing form) that conserve or invert the vertical part of the Hamiltonian vector field

~Hvert(p) = −ηp3
I1

(−p2ε1 + p1ε2) ∈ Vec(C).

It is clear that the group of such isometries is generated by rotations around the axis
span{e3} and the reflections σ1 and σ2 in the planes span{e1, e3} and span{e1, e2} respec-
tively. Denote this group by S. It is isomorphic to O2 × Z2.

Let us introduce the following notation:

Qe
t,p = cos t+ sin t(p1i+ p2j + p3k),

Qp
t,p = 1 + t

2
(p1i+ p2j + p3k),

Qh
t,p = cosh t+ sinh t(p1i+ p2j + p3k).

Note that any element of SU1,1 has one of the following forms: Qe
t,p,±Qp

t,p,±Qh
t,p, where

t > 0. The parameter t is unique up to addition of 2π in the case of Qe
t,p.

Proposition 2. The group S is embedded into the group of symmetries of the exponential
map. An element σ ∈ S corresponds to the pair of diffeomorphisms

sσ : C × R+ → C × R+ and ŝσ : G→ G

that are equal to

sσ(p, t) =

{
(σ(p), t), for dσ( ~Hvert) = ~Hvert,

(et
~Hvertσ(p), t), for dσ( ~Hvert) = − ~Hvert,

ŝσ(ΠQ
e
t,p) = ΠQe

t,σ(p), ŝσ(ΠQ
p
t,p) = ΠQp

t,σ(p), ŝσ(ΠQ
h
t,p) = ΠQh

t,σ(p).

Proof. Note that the action of ŝσ does not depend on the choice of pre-image of
s ∈ PSL2(R) under the covering Π.

It is enough to check that for generators σ ∈ S the pair of diffeomorphisms (sσ, ŝσ) is
the symmetry of the exponential map. The generators of S are rotations around the line
span{e3} and reflections in the planes span{e1, e3} and span{e1, e2}.

Such rotations and the first reflection do not change p3, therefore they do not change
the components q0 and q3 of a corresponding split-quaternion. The second reflection
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changes the sign of p3, so the component q0 does not change, but the component q3
changes the sign.

Thus we need to know how the components q1 and q2 of the endpoint of the geodesic
change when the generators of S act on the initial momentum of the geodesic. It is enough
to show that (

q1(t, σ(p))
q2(t, σ(p))

)
= σ

(
q1(t, p)
q2(t, p)

)
.

From (6, 8, 7) one can see that this is true for rotations around the axis span{e3}, since
the transformation R

e3,
tηp3
2I1

is such a rotation and it commutes with σ.

If σ is one of reflections then it reverses the vertical part of the Hamiltonian vector
field. Hence

Exp ◦ sσ(p, t) = Exp(et
~Hvertσ(p), t) = Exp(R

e3,− tησ(p)3
I1

σ(p), t).

If σ is reflection in the plane span{e1, e3} then Re3,ϕσ = σRe3,−ϕ and σ(p)3 = p3, thus

(
q1(t, σ(p))
q2(t, σ(p))

)
= R

e3,
tηp3
2I1

R
e3,− tηp3

I1

σ

(
p1
p2

)
= σR

e3,
tηp3
2I1

(
p1
p2

)
= σ

(
q1(t, p)
q2(t, p)

)
.

If σ is reflection in the plane span{e1, e2} then σ commutes with rotations around the
axis span{e3}, but σ(p)3 = −p3, whence
(
q1(t, σ(p))
q2(t, σ(p))

)
= R

e3,
tη(−p3)

2I1

R
e3,− tη(−p3)

I1

σ

(
p1
p2

)
= σR

e3,
tηp3
2I1

(
p1
p2

)
= σ

(
q1(t, p)
q2(t, p)

)
.

Hereby we have shown that Exp◦sσ(p, t) = ŝσ ◦Exp(p, t) for generators σ ∈ S. �

4 Maxwell strata

Definition 4. A Maxwell point is a point Q ∈ G such that there are two distinct geodesics
with arclength parametrization Q1, Q2 : [0, T ] → SO3, coming to the point Q at the same
time Q = Q1(tmax) = Q2(tmax). This time is called a Maxwell time.

It is known (see for example [12]) that after a Maxwell point an extremal trajectory
can not be optimal.

Definition 5. The first Maxwell set in the pre-image of the exponential map is the set

M = {(p, tmax) ∈ C × R+ | ∃p′ ∈ C \ {p} : Exp(p, tmax) = Exp(p′, tmax),

but ∀t ∈ (0, tmax) ∀p1 ∈ C \ {p} Exp(p, t) 6= Exp(p1, t)}.

The time tmax is called the first Maxwell time for p ∈ C.
Obviously Exp(M) consists of Maxwell points.

12



Definition 6. Let A be a subset of the group S. The first Maxwell set that corresponds
to A in the pre-image of the exponential map is the set

M(A) = {(p, tmax) ∈ C × R+ | ∃σ ∈ A : Exp(p, tmax) = Exp ◦ sσ(p, tmax),

but ∀t ∈ (0, tmax) ∀σ ∈ A \ {id} Exp(p, t) 6= Exp ◦ sσ(p, t)}.

The time tmax is called the first Maxwell time corresponding to A for p ∈ C.
This time is not less than the first Maxwell time.
The aim of this section is the description of the first Maxwell strata in the image

and pre-image of the exponential map. First we describe the sets M(σ) for each σ ∈ S.
Second we explore the relative location of the sets M(σ) and then find

M(S) ⊂
⋃

σ∈S
M(σ).

Next we will show that the exponential map is a diffeomorphism from the domain of
C × R+ bounded by M(S) to G \ (ExpM(S) ∪ {id}). This will imply that M(S) and
ExpM(S) are the cut loci in the pre-image and image of the exponential map respectively.
It means that M(S) = {(p, tcut(p)) ∈ C×R+}, where tcut(p) is such time that the geodesic
{Exp(p, t) | t ∈ R+} is a shortest arc for t ∈ [0, tcut(p)] but it is not a shortest arc for
t > tcut(p).

4.1 Maxwell strata corresponding to symmetries

Definition 7. Denote by Ce, Cp, Ch the subsets of C consisting of time-, light- or space-
like covectors respectively. Introduce the following notation:

τ e0 (p̄3) = min{τ ∈ R+ | qe0(τ, p̄3) = 0}, τ e3 (p̄3) = min{τ ∈ R+ | qe3(τ, p̄3) = 0},
tp0(p) = min{t ∈ R+ | qp0(t, p) = 0}, tp3(p) = min{t ∈ R+ | qp3(t, p) = 0},
τh0 (p̄3) = min{τ ∈ R+ | qh0 (τ, p̄3) = 0}, τh3 (p̄3) = min{τ ∈ R+ | qh3 (τ, p̄3) = 0}.

We consider the values of τ e0 , τ
e
3 , τ

h
0 , τ

h
3 as functions of the variable p̄3 and the parameter

η. For time- and space-like covectors p the functions q0(τ) and q3(τ) are even and odd
respectively. Thus all of the functions τ e0 , τ

e
3 , τ

h
0 , τ

h
3 are even. For p̄3 = 0 the equations

qh0 (τ, p̄3) = 0 and qh3 (τ, p̄3) = 0 read as cosh τ = 0 and identity respectively. That is why
the values τh0 (0) and τ

h
3 (0) are undefined. Thus we can consider the following domains of

the functions:
τ e0 : [1,+∞) → R+, τh0 : (0,+∞) → R+,
τ e3 : [1,+∞) → R+, τh3 : (0,+∞) → R+.

Proposition 3. The set ⋃

σ∈S
M(σ) = M0 ∪M12 ∪M3

13



is the union of the three strata

M0 = Me
0 ∪Mp

0 ∪Mh
0 ,

M12 = {(p, t) ∈ Ce × R+ | p̄3 6= ±1, t = 2πI1
|p| },

M3 = Me
3 ∪Mp

3 ∪Mh
3 ,

where

Me
0 = {(p, t) ∈ Ce × R+ | t = 2τe0 (|p̄3|)I1

|p| }, Me
3 = {(p, t) ∈ Ce × R+ | t = 2τe3 (|p̄3|)I1

|p| },
Mp

0 = {(p, t) ∈ Cp × R+ | t = tp0(p)}, Mp
3 = {(p, t) ∈ Cp × R+ | t = tp3(p)},

Mh
0 = {(p, t) ∈ Ch × R+ | p̄3 6= 0, Mh

3 = {(p, t) ∈ Ch × R+ | p̄3 6= 0,

t =
2τh0 (|p̄3|)I1

|p| }, t =
2τh3 (|p̄3|)I1

|p| }.

Proof. It is clear that M(σ) ⊂ Gσ = {g ∈ G | ŝσ(g) = g}. For any σ ∈ S consider the
set of its fixed points Gσ. For which of them are there two symmetric geodesics coming
there at the same time?

Evidently the sets of fixed points in G for different elements of S lie in the union of
the sets

Π{q ∈ SU1,1 | q0 = 0}, Π{q ∈ SU1,1 | q1 = q2 = 0}, Π{q ∈ SU1,1 | q3 = 0}.

For any covector in C there is a symmetric (via some element of S) covector such that
the two geodesics with these initial momenta come to one of these sets at the same
time. This time is equal to the first positive root of the corresponding equation. The
covectors with p̄3 = 0 are exceptions: a geodesic with such initial momentum always lies
in Π{q ∈ SU1,1 | q3 = 0} and never reaches Π{q ∈ SU1,1 | q0 = 0}. Note that only
geodesics with initial momenta from Ce reach the set Π{q ∈ SU1,1 | q1 = q2 = 0}, and the
geodesics with p̄3 = ±1 always lie in this set. For details see the similar Proposition 2 in
paper [9] about the Riemannian problem on SO3. �

4.2 The functions τ e0 , τ
e
3 , τ

h
0 , τ

h
3 are continuous

To investigate the relative location of the Maxwell strata M0, M12 and M3 we need to

compare the corresponding Maxwell times: for time-like initial momenta
2τe0 (p̄3)I1

|p| , 2πI1
|p| and

2τe3 (p̄3)I1
|p| ; for light-like initial momenta tp0(p), t

p
3(p); and for space-like ones

2τh0 (p̄3)I1
|p| ,

2τh3 (p̄3)I1
|p| .

Since |p| depends only on p̄3, it is enough to compare the functions τ e0 (p̄3), τ
e
3 (p̄3) and

the number π for different values of p̄3 ∈ [1,+∞), and compare τh0 (p̄3) and τh3 (p̄3) for
p̄3 ∈ (0,+∞). For this purpose let us examine some properties of these functions.

Proposition 4. The functions τ e0 , τ
e
3 , τ

h
0 , τ

h
3 are continuous on their domains.
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Proof. The implicit function theorem implies that it is enough to verify that the
functions q0 and q3 have no multiple roots. (We consider q0 and q3 as functions of the
variable τ and parameter p̄3.) Let us check this for time- and space-like parameters p
together. Introduce some notation to make computations more easy:

c(τ, p) =

{
cos τ, for type(p) = 1,
cosh τ, for type(p) = −1,

s(τ, p) =

{
sin τ, for type(p) = 1,
sinh τ, for type(p) = −1.

(9)
Then the following equations hold:

c2(τ, p) + type(p)s2(τ, p) = 1,

∂c

∂τ
(τ, p) = −type(p)s(τ, p),

∂s

∂τ
(τ, p) = c(τ, p),

where type(p) = sgn(−Kil(p)).
Calculate derivatives of the functions q0 and q3 of the variable τ :

∂q0
∂τ

= −type(p)(1 + type(p)ηp̄23)s(τ, p) cos (τηp̄3)− p̄3(1 + η)c(τ, p) sin (τηp̄3),

∂q3
∂τ

= −type(p)(1 + type(p)ηp̄23)s(τ, p) sin (τηp̄3) + p̄3(1 + η)c(τ, p) cos (τηp̄3).

1. Assume that q0(τ) has a multiple root. This means that there is p̄3 ∈ [0,+∞) such
that 




q0(τ) = 0,

∂q0
∂τ

(τ) = 0.
(10)

Let us divide the both equations by c(τ, p) cos(τηp̄3) and denote t(τ, p) = s(τ,p)
c(τ,p)

. The case
when the denominator equals zero will be considered below. We have

{
1− p̄3t(τ, p) tan(τηp̄3) = 0,

−type(p)(1 + type(p)ηp̄23)t(τ, p)− p̄3(1 + η) tan(τηp̄3) = 0.

Note that t(τ, p) 6= 0 and p̄3 6= 0. Expressing tan(τηp̄3) from the first equation and
substituting it to the second one we get

t2(τ, p) = − 1 + η

type(p)(1 + type(p)ηp̄23)
.

Let us show that type(p)(1 + type(p)ηp̄23) < 0. Indeed, if type(p) > 0 then p̄3 > 1, and
η < −1 implies ηp̄23 < −1. When type(p) < 0 we have p̄3 > 0 and −ηp̄23 > 0, thus
(1 + type(p)ηp̄23) > 0. Besides 1 + η < 0. Hence t2(τ, p) < 0. We get a contradiction.
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Now consider the case when the denominator c(τ, p) cos(τηp̄3) equals zero. When
c(τ, p) = 0, from system (10) we have

{
−p̄3 sin (τηp̄3) = 0,

−type(p)(1 + type(p)ηp̄23) cos (τηp̄3) = 0,

then (since cosine and sine can not be zero simultaneously and type(p)(1+type(p)ηp̄23) < 0)
we have p̄3 = 0, thus cos (τηp̄3) = 1, and we get a contradiction.

When cos (τηp̄3) = 0 from system (10) we get
{

−p̄3s(τ, p) = 0,

−p̄3(1 + η)c(τ, p) = 0,

thus p̄3 = 0. Then cos (τηp̄3) = 1, we get a contradiction.
2. Assume that q3 has a multiple root. Thus for some p̄3 ∈ (0,+∞) we have





q3(τ) = 0,

∂q3
∂τ

(τ) = 0.
(11)

If c(τ, p) cos(τηp̄3) is non zero then divide both equations by this expression. We get
{

tan(τηp̄3) + p̄3t(τ, p) = 0,

−type(p)(1 + type(p)ηp̄23)t(τ, p) tan(τηp̄3) + p̄3(1 + η) = 0.

Since p̄3 6= 0 we have

t2(τ, p) = − 1 + η

type(p)(1 + type(p)ηp̄23)
,

this fraction is less than zero (see item 1), we get a contradiction.
Consider now the case when the denominator c(τ, p) cos(τηp̄3) is equal to zero.
When c(τ, p) = 0, from system (11) we get

{
−p̄3 cos (τηp̄3) = 0,

−type(p)(1 + type(p)ηp̄23) sin (τηp̄3) = 0,

hence (since cosine and sine can not be equal to zero simultaneously and type(p)(1 +
type(p)ηp̄23) < 0) we have p̄3 = 0, a contradiction.

When cos (τηp̄3) = 0 from system (11) we have
{

c(τ, p) = 0,

−type(p)(1 + type(p)ηp̄23)s(τ, p) = 0,

we get a contradiction. �
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4.3 Relative location of Maxwell strata

Now we compare τ e0 (p̄3), π and τ e3 (p̄3) for different values of p̄3 ∈ [1,+∞) and compare
τh0 (p̄3) and τ

h
3 (p̄3) for p̄3 ∈ (0,+∞). Thereby we will explore the relative location of the

Maxwell strata.

Proposition 5. For all p̄3 ∈ [1,+∞) the inequality τ e0 (p̄3) < τ e3 (p̄3) is satisfied.

Proof. Notice that for p̄3 = 1 the statement of the proposition is true. Indeed,

qe0(τ) = cos(τ(1 + η)), qe3(τ) = sin(τ(1 + η)).

Then τ e0 (1) = − π
2(1+η)

< − π
(1+η)

= τ e3 (1).

Assume (by contradiction) that for some p̄3 there holds the inequality τ
e
0 (p̄3) > τ e3 (p̄3).

Because of continuity of the functions τ e0 and τ e3 (Proposition 4) there is p̂3 such that
τ e0 (p̂3) = τ e3 (p̂3). This means that for some p̂3 and τ we have q0(τ, p̂) = q3(τ, p̂) = 0 in
contradiction with q20 − q21 − q22 + q23 = 1. �

The above proposition shows that geodesics with time-like initial momenta reach the
stratum Exp(Me

0) earlier than the stratum Exp(Me
3).

Consider now the strata Me
0 and Me

12.

Proposition 6. (1) If η 6 −3
2
, then for all p̄3 ∈ [1,+∞) the inequality τ e0 (p̄3) 6 π is

satisfied.
(2) If η > −3

2
, then τ e0 (p̄3) > π for p̄3 ∈ [0,− 3

2η
] and τ e0 (p̄3) < π for p̄3 ∈ (− 3

2η
,+∞).

See Figure 2.

Figure 2: The function τ e0 (p̄3) and π.

η < −3
2

η = −3
2

−3
2
< η

Proof. (1) Note that qe0(0) = 1. Hence it is enough to find θ ∈ (0, π] such that
qe0(θ) 6 0, since in this case the continuous function qe0 of the variable τ has zero at the
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interval (0, θ], i.e., a zero that is less than or equal to π. Take

θ =

{
π, for− ηp̄3 < 2,

− π
ηp̄3
, for− ηp̄3 > 2.

When η 6 −3
2
, for p̄3 > 1 we have −ηp̄3 > 3

2
. Then − π

ηp̄3
6 2π

3
< π. Thus

qe0(θ) =

{ − cos(πηp̄3), for− ηp̄3 < 2,
− cos(− π

ηp̄3
), for− ηp̄3 > 2.

In the first case −2π < πηp̄3 6 −3π
2
then cos(πηp̄3) > 0. In the second case 0 < − π

ηp̄3
6 π

2

then cos(− π
ηp̄3

) > 0. So we get qe0(θ) 6 0.

(2) Firstly obtain the second part of the statement. For p̄3 > − 3
2η

we have −ηp̄3 > 3
2
.

Choose now the same θ as in the proof of statement (1).
Obtain now the first part of statement (2). When p̄3 = 1 we get qe0(τ) = cos(τ(1+η)).

The first positive root of this function is − π
2(1+η)

> π. Assume (by contradiction) that

there exists p̄′3 ∈ (1,− 3
2η
) such that τ e0 (p̄

′
3) < π. Because of continuity of the function τ e0

there is p̂3 ∈ (1, p̄′3) such that qe0(π, p̂3) = − cos(πηp̂3) = 0. Whence p̂3 =
2k+1
2η

, k ∈ Z. It

is easy to see that for all k ∈ Z the point p̂3 is outside of the interval (1,− 3
2η
). We get a

contradiction. �

Proposition 7. For all p̄3 ∈ (0,+∞) the inequality τh0 (p̄3) < τh3 (p̄3) is satisfied.

Proof. Actually we need to find at least one p̄3 such that τh0 (p̄3) < τh3 (p̄3). Indeed, if
there is a point such that this inequality is violated then there exists a point at which the
continuous functions τh0 and τh3 have the same value. This means that q0 and q3 vanish
simultaneously in contradiction with q20 − q21 − q22 + q23 = 1.

Let us verify that the required inequality holds for p̄3 = 1. We have

qh0 (τ
h
0 (1), 1) = cosh τh0 (1) cos(τ

h
0 (1)η)− sinh τh0 (1) sin(τ

h
0 (1)η) = 0,

qh3 (τ
h
0 (1), 1) = cosh τh3 (1) sin(τ

h
3 (1)η) + sinh τh3 (1) cos(τ

h
3 (1)η) = 0.

Note that sin(τh0 (1)η) 6= 0, since otherwise from the first equation we have cos(τh0 (1)η) = 0,
a contradiction. Furthermore cos(τh3 (1)η) 6= 0, since otherwise from the second equation
we have sin(τh3 (1)η) = 0, a contradiction. The hyperbolic cosine never vanishes, so the
expressions cosh τh0 (1) sin(τ

h
0 (1)η) and cosh τh3 (1) cos(τ

h
3 (1)η) never vanish as well. Divide

the first and the second equations by these expressions respectively. Now we need to
compare the first positive roots of the equations

cot(τη) = tanh τ,

− tan(τη) = tanh τ.
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The first positive root of the first equation lies inside of the interval (− π
2η
,−π

η
). The first

positive root of the second one lies in the interval (−π
η
,−3π

2η
). (We use the fact that the

derivative of the function − tan(τη) at zero is equal to −η > 1, i.e., it is greater than
the derivative of the function tanh τ at zero. Therefore the graph of the function tanh τ
intersects the first branch of the graph of the function − tan(τη) only at zero.) So we
have τh0 (1) < τh3 (1). �

The above proposition implies that geodesics with space-like initial momenta reach
the stratum Exp(Mh

0) earlier than the stratum Exp(Mh
3). The proposition below states

that the same is true for light-like initial momenta.

Proposition 8. For p ∈ Cp the inequality tp0(p) < tp3(p) holds.

Proof. The equation qp0(t) = 0 reads as

cos
tηp3
2I1

− tp3
2I1

sin
tηp3
2I1

= 0.

It is easy to see that sin( tηp3
2I1

) 6= 0. Divide the equation by this expression. Denote

τp =
tp3
2I1

. We get an equivalent equation

cot(τpη) = τp.

Its first positive root lies in the interval (− π
2η
,−π

η
).

Similarly, the equation qp3 = 0 is equivalent to the equation

tan(τpη) = −τp.

Its first positive root lies in (−2π
η
,−5π

2η
). (Since derivative of the function tan(τpη) at zero

is equal to −η > 1, hence the graph of the function −τp intersects the first branch of the
graph of the function tan(τpη) at zero only.)

The last interval is located to the right of the first one, so we get the statement of the
proposition. �

Denote by tmax(p), p ∈ C, the first Maxwell time corresponding to the symmetry
group S of the exponential map. Propositions 5, 6, 7, 8 imply that

tmax(p) =





2I1
|p| min (π, τ e0 (|p̄3|)), for p ∈ Ce,

tp0(p̄3), for p ∈ Cp,
2I1
|p| τ

h
0 (|p̄3|), for p ∈ Ch, p̄3 6= 0,

+∞, for p ∈ Ch, p̄3 = 0.

(12)

Lemma 1. The function tmax : C → (0,+∞] is continuous.

Proof. Proposition 4 implies that it is enough to proof that:
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1. the first Maxwell time is continuous at points p ∈ C with |p| = 0;

2. there holds the equality: limp̄3→0
2τh0 (|p̄3|)I1

|p| = +∞.

1. The map Exp : C × R+ → SU1,1 is smooth (Remark 4), hence its component q0
(in the coordinates q0, q1, q2, q3 on SU1,1) is smooth as well. To prove that the function

tmax(p) is continuous at a point p ∈ C, |p| = 0, we need to verify that
∂q

p
0

∂t
(tmax(p), p) 6= 0

(by the implicit function theorem).

Assume (by contradiction) that
∂q

p
0

∂t
(tmax(p), p) = 0, then by definition of tmax(p) we

have qp0(tmax(p), p) = 0. So we get the following system of equations:

{
−ηp3

2I1
(1 + η) sin tηp3

2I1
− tηp23

4I21
cos tηp3

2I1
= 0,

cos tηp3
2I1

− tp3
2I1

sin tηp3
2I1

= 0.

Express cos tηp3
2I1

from the second equation and substitute it to the first one. From
ηp3
2I1

sin tηp3
2I1

6= 0 we get ( tp3
2I1

)2 = −1+η

η
< 0, a contradiction.

2. Let us prove that limp̄3→0
2τh0 (|p̄3|)I1

|p| = +∞. Actually τh0 (p̄3) is the root of the

equation qh0 (p̄3, τ) = 0. Note that sin(τηp̄3) 6= 0, since otherwise cos(τηp̄3) = 0. Dividing
the equation by cosh τ sin(τηp̄3) we get the equation

cot(τηp̄3) = p̄3 tanh τ.

Its first positive root lies in the interval (− π
2ηp̄3

,− π
ηp̄3

). Thus this root tends to infinity
when p̄3 → 0. It is easy to see that

|p| =
√

I1
1 + p̄23η

→
√
I1,

and the statement follows. �

We get the following description of the first Maxwell strata corresponding to the
symmetry group S in the pre-image and in the image of the exponential map.

Corollary 2. (1) When η 6 −3
2
we have

M(S) = {(p, t) ∈ Ce × R+ | t = 2τe0 (|p̄3|)I1
|p| } ∪

{(p, t) ∈ Cp × R+ | t = tp0(p)} ∪
{(p, t) ∈ Ch × R+ | p̄3 6= 0,

2τh0 (|p̄3|)I1
|p| },

Exp(M(S)) = Z := Π{q ∈ SU1,1 | q0 = 0} ⋍ R
2
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is the plane of all central symmetries of the hyperbolic plane.
(2) When −3

2
< η < −1 we have

M(S) = {(p, t) ∈ Ce × R+ | |p̄3| > − 3
2η
, t =

2τe0 (|p̄3|)I1
|p| } ∪

{(p, t) ∈ Ce × R+ | |p̄3| 6 − 3
2η
, p̄3 6= ±1, t = 2πI1

|p| } ∪
{(p, t) ∈ Cp × R+ | t = tp0(p)} ∪
{(p, t) ∈ Ch × R+ | p̄3 6= 0,

2τh0 (|p̄3|)I1
|p| },

Exp(M(S)) = Z ∪ Rη,

where the interval

Rη := {R0,±ϕ ∈ PSL2(R) | ϕ ∈ (−2π(1 + η), π]}

consists of the rotations around the center of the Poincaré disk model. (The rotation
around the center of the Poincaré disk model by the angle ϕ is denoted by R0,ϕ.)

Proof. The statements aboutM(S) follow from Propositions 5, 6, 7, 8. For description
of Exp(M(S)) recall that geodesics reach the set Π{q ∈ SU1,1 | q0 = 0} at the time
corresponding to the values τ e0 (p̄3), t

p
0(p), τ

h
0 (p̄3). This set consists of central symmetries

(see Section 2.4). It remains to show that we can get any central symmetry at the image
of the first Maxwell stratum. Use continuity of the exponential map and continuity of
the first Maxwell time corresponding to symmetries of the exponential map (Lemma 1).
Actually for |p̄3| = 1 when η 6 −3

2
or |p3| = − 3

2η
when η > −3

2
a corresponding geodesic at

the first Maxwell time reaches a point with q1 = q2 = 0. Because of τh0 (p̄3) ∈ (− π
2ηp̄3

,− π
ηp̄3

)

we have τh0 (p̄3) → ∞ when p3 → 0, it follows (q1(τ
h
0 (p̄3)))

2 + (q2(τ
h
0 (p̄3)))

2 → +∞. A
continuous function (q1(τ

h
0 (p̄3)))

2 + (q2(τ
h
0 (p̄3)))

2 takes all values of the interval [0,+∞).
We can achieve any direction of the vector (q1(τ

h
0 (p̄3)), q2(τ

h
0 (p̄3))) by an appropriate choice

of p1, p2.
For description of the stratum Rη notice that the function q0(π) = − cos (πηp̄3) is

continuous at the interval (1,− 3
2η
]. Thus this function takes all values in the interval

from its minimum to its maximum [0, cos (π(1 + η))). It corresponds to rotations around
the center of the Poincaré disk model by angles (−2π(1 + η), π]. Another interval (corre-
sponding to the rotations in the opposite direction) is obtained by opposite values of p̄3.
�

5 Conjugate time

Definition 8. A conjugate point is a critical value of the exponential map. A conjugate
time is a time when a geodesic with arclength parametrization reaches the conjugate
point.
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Proposition 9. Consider a geodesic with an initial momentum p ∈ C. For a time-like
initial momentum and p̄3 6= ±1 there are two series of conjugate times:

t2k−1 =
2I1πk

|p| , t2k =
2I1τk(p)

|p| , k ∈ N,

where τk(p) is the k-th positive root of the equation

tan τ = −τη 1− p̄23
1 + ηp̄23

.

For p̄3 = ±1 these two series merge to one series:

tk =
2I1πk

|p| , k ∈ N.

For light- or space-like initial momenta the corresponding geodesics have no conjugate
points.

Proof. Calculate Jacobian of the exponential map. To make calculations more easy
and independent of the type of an initial covector use notation (9).

For time- and space-like covectors p the Jacobian is equal to

J(τ, p) = s2(τ, p)

(
∂q0
∂p̄3

∂q3
∂τ

− ∂q3
∂p̄3

∂q0
∂τ

)
.

The partial derivatives are equal to

∂q0
∂p̄3

= −τηc(τ, p) sin (τηp̄3)− s(τ, p) sin (τηp̄3)− τηp̄3s(τ, p) cos (τηp̄3),
∂q3
∂p̄3

= τηc(τ, p) cos (τηp̄3) + s(τ, p) cos (τηp̄3)− τηp̄3s(τ, p) sin (τηp̄3),
∂q0
∂τ

= −type(p)(1 + type(p)ηp̄23)s(τ, p) cos (τηp̄3)− p̄3(1 + η)c(τ, p) sin (τηp̄3),
∂q3
∂τ

= −type(p)(1 + type(p)ηp̄23)s(τ, p) sin (τηp̄3) + p̄3(1 + η)c(τ, p) cos (τηp̄3).

(13)

Substituting these expressions to the formula of Jacobian we get

J(τ, p) = type(p)s3(τ, p)
[
τη(1− type(p)p̄23)c(τ, p) + (1 + type(p)ηp̄23)s(τ, p)

]
. (14)

Now we find positive roots of the function J(τ, p). For a time-like covector p the first
multiplier s3(τ, p) equals sin3 τ and vanishes at the points πk, k ∈ N. For a space-like
covector p this multiplier is equal to sinh3 τ , and it has no positive roots.

Consider roots of the second multiplier of the Jacobian (the expression in the square
brackets).

Note that η < −1 implies ηp̄23 < −p̄23. Thus 1 + ηp̄23 < 1 − p̄23 6 0 for a time-
like covector p (p̄23 > 1). But 1 − ηp̄23 > 1 + p̄23 > 1 for all p̄3 > 0. It follows that
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1 + type(p)ηp̄23 6= 0. So, if τ is a zero of the second multiplier of the Jacobian, then
c(τ, p) 6= 0, since otherwise s(τ, p) = 0 and these functions can not vanish simultaneously.
Hence we need to investigate roots of the equation

s(τ, p)

c(τ, p)
= −τη 1− type(p)p̄23

1 + type(p)ηp̄23
.

It is easy to see that the coefficient of τ in the right-hand side is non-negative.
For a time-like covector p this coefficient is less than 1, since η < −1 and −η + ηp̄23 >

1+ηp̄23. This means that the line with such slope does not intersect the branch of the plot
of the function tan τ passing through the origin. For p̄3 6= ±1 we get τk(p) ∈ (πk, πk+ π

2
).

For p̄3 = ±1 we have τk(p) = πk, k ∈ N.
For a space-like covector p we have −η − ηp̄23 > 1− ηp̄23. This means that the slope of

the line is greater than 1. Thus this line intersects the plot of the function tanh τ at the
origin only. It follows that for a space-like initial covector the corresponding geodesics
have no conjugate points.

Consider now geodesics with light-like initial momenta. We will show that there are
no conjugate points. Apply the argument from [17]. By contradiction assume that for
a light-like covector p0 there is a finite conjugate time tconj(p

0). The conjugate points
on the geodesic are isolated ([18]). So there exists t1 > tconj(p

0) such that t1 is not a
conjugate time for p0. Consider the continuous curve ps : [0, 1] → C such that covectors
ps are space-like for s ∈ (0, 1] and lims→+0 p

s = p0. In paper [18] it was shown that the
number of conjugate points (taking into account multiplicity) on the geodesic arc qs(t) =

π ◦ et ~H(ps, id), t ∈ [0, t1], is equal to the Maslov index [19] of the path ls(t) = e−t ~H
∗ T ∗

qs(t)G
in the Grassmaian of Lagrange subspaces of T(id,0)T

∗G. Due to the homotopic invariance
of the Maslov index, the number of conjugate points on the geodesic arcs q0(t), t ∈ [0, t1]
and q1(t), t ∈ [0, t1] are equal. There are no conjugate points on the arc q1(t), t ∈ [0, t1],
thus there are no conjugate points on the geodesic arc with the light-like initial momentum
p0 for t ∈ [0, t1]. We get a contradiction. �

Definition 9. The first conjugate time tconj(p) is the time when the arclength parametrized
geodesic with the initial momentum p reaches the first conjugate point. We set it equal
to infinity for geodesics that have no conjugate points.

Corollary 3.

tconj(p) =

{ 2πI1
|p| , for type(p) = 1,

+∞, for type(p) 6 0.

Proof. Follows from Proposition 9. �

Remark 5. The function tconj : C → (0,+∞] is continuous. Actually when a time-like
initial covector tends to a light-like one, the corresponding conjugate time tconj(p) =

2πI1
|p|

tends to infinity, since |p| → 0.
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6 Cut locus

Consider the Maxwell strata in the pre-image of the exponential map which correspond
to the symmetry group S. Denote the domain bounded by the closure of these Maxwell
strata by

U = {(p, t) ∈ C × R+ | 0 < t < tmax(p)},
where tmax(p) is the first Maxwell time (12) for the symmetry group S.

Note that U is an open subset of C ×R+, since it is the domain under the graph of a
continuous function (see Lemma 1).

Proposition 10. The map Exp : U → G \ (Exp(M(S)) ∪ {id}) is a diffeomorphism.

Proof. We use the Hadamard global diffeomorphism theorem [20]: a proper non-
degenerate smooth map of smooth connected and simply connected manifolds of same
dimension is a diffeomorphism.

The manifolds U and G \ (Exp(M(S))∪ {id}) both are 3-dimensional and connected,
since both of them are homeomorphic to the punctured ball. Indeed, the first one is the
domain under the graph of a continuous function on C ⋍ S2. The second one is the open
punctured solid torus G\{id} without closure of the Maxwell set, that is the union of the
open meridional disk Z of the torus and the interval Rη (for η ∈ (−3

2
,−1)). The result

of the subtraction is homeomorphic to the punctured open ball. Consequently the both
manifolds are simply connected.

The exponential map is non-degenerate on U (there are no critical points in U). Indeed,
U is the domain under the graph of the first Maxwell time (12). The first Maxwell time
for time-like initial covectors is 2I1

|p| min (π, τ e0 (|p̄3|)) and it is less than or equal to the first

conjugate time 2πI1
|p| . For initial covectors of other types the first conjugate time is infinite

(Corollary 3).
Now we prove that the map Exp : U → G \ (Exp(M(S)) ∪ {id}) is proper, i.e., pre-

image of a compact set K ⋐ G \ (Exp(M(S)) ∪ {id}) is compact (closed and bounded).
Assume that Exp−1(K) is unbounded. Then there exists a sequence (pn, tn) ∈ Exp−1(K)

such that tn → +∞. Since pn belongs to a compact set C, there is a converging sub-
sequence. So we can assume pn → p0 ∈ C. Clearly p̄03 = 0, since otherwise tmax(p

0) is
bounded and tn can not tend to infinity. Because of p̄03 = 0 the covectors pn are space-like
for numbers n big enough and their lengths |pn| are separated from zero.

For the images Exp(pn, tn) ∈ K in the coordinates qn0 , q
n
1 , q

n
2 , q

n
3 we have

qn0 → +∞, qn3 → 0, (qn1 )
2 + (qn2 )

2 = sinh2

(
tn|pn|
2I1

)
((pn3 )

2 + 1) → +∞,

but K is bounded. We get a contradiction.
Assume now that Exp−1(K) is not closed. Since it is bounded, there is a sequence

(pn, tn) ∈ Exp−1(K) converging to (p, t) ∈ U \ Exp−1(K).
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Then the sequence Exp(pn, tn) ∈ K converges to Exp(p, t) ∈ K, since the map Exp is
continuous and the set K is compact.

Hence, if (p, t) ∈ U then (p, t) ∈ Exp−1(K). We get a contradiction.
For (p, t) /∈ U (i.e., located at the boundary of U) we have (p, t) ∈ M(S) or (p, t) ∈ C

(i.e., t = 0), since the sets M(S) and C are closed. Then Exp(p, t) belongs to Exp(M(S))
or is equal to id. We get a contradiction with compactness of K.

So the set Exp−1(K) is compact, thus the map Exp is proper. Thereby hypotheses of
the Hadamard theorem are satisfied and the statement of the proposition is true. �

Theorem 2. (1) When η 6 −3
2
the cut time is

tcut(p) =





2I1τe0 (p̄3)

|p| , for p ∈ Ce,

tp0(p3), for p ∈ Cp,
2I1τh0 (p̄3)

|p| , for p ∈ Ch, p̄3 6= 0,

+∞, for p̄3 = 0.

(2) When η > −3
2
the cut time is

tcut(p) =





2I1τe0 (p̄3)

|p| , for p ∈ Ce, |p̄3| > − 3
2η
,

2I1π
|p| , for p ∈ Ce, |p̄3| 6 − 3

2η
,

tp0(p3), for p ∈ Cp,
2I1τh0 (p̄3)

|p| , for p ∈ Ch, p̄3 6= 0,

+∞, for p̄3 = 0.

Theorem 3. (1) When η 6 −3
2
the cut locus is the plane Z consisting of central symme-

tries.
(2) When η > −3

2
the cut locus is a stratified manifold Z ∪ Rη, where

Rη = {R0,±ϕ ∈ PSL2(R) | ϕ ∈ [−2π(1 + η), π]}
is the interval consisting of some rotations around the center of the Poincaré disk model.

Proofs of Theorems 2 and 3 immediately follow from Proposition 10. �

The cut locus is the surface of revolution of the contours presented in Figure 3 (in the
model of PSL2(R) which is an open solid torus considered as the domain between two
cups of a hyperboloid with the boundary identification).

Propagation of the equidistant wave front is represented at Figure 4 for η > −3
2
.

Remark 6. When η 6 −3
2
the cut locus coincides with the set of the first Maxwell points.

When η > −3
2
in the cut locus there are two conjugate points R0,±2π(1+η) in addition to

the set of the first Maxwell points.
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Figure 3: Cut locus in PSL2(R).

η 6 −3
2
, Z η > −3

2
, Z ∪Rη

Figure 4: Wave front and cut locus for η > −3
2
.

7 Injectivity radius

In this section we compute injectivity radius of the symmetric left-invariant Riemannian
metric on PSL2(R). Recall that the injectivity radius is the supremum of the set of T
such that the restriction of the exponential map to the set

{(p, t) | p ∈ C, 0 < t < T}

is injective. It is clear that injectivity radius is equal to inf {tcut(p) | p ∈ C}.
Below we investigate the function tcut(p) defined on the sets Ce, Cp and Ch, find and

compare its local minima. The cut time is not a smooth function on C, but it is defined
by the Maxwell times corresponding to the strata M0 and M12, these times are smooth
functions of the variable p̄3.

Denote the first Maxwell times corresponding to the strata M0 and M12 by

t0(p̄3) =
2I1τ0(p̄3)

|p| , τ0(p̄3) =

{
τ e0 (p̄3), p ∈ Ce, p̄3 ∈ [1,+∞),
τh0 (p̄3), p ∈ Ch, p̄3 ∈ (0,+∞).

t12(p̄3) =
2πI1
|p| , p ∈ Ce, p̄3 ∈ [1,+∞).

Also introduce the functions:

r(p, η) = 1 + type(p)ηp̄23,
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j(τ, p, η) = r(p, η)s(τ, p) + τη(1− type(p)p̄23)c(τ, p).

Proposition 11. The next formulas are satisfied:

|p| =
√

I1
−type(p)r(p, η)

,
∂|p|
∂p̄3

= − ηp̄3|p|
type(p)r(p, η)

,

∂t0
∂p̄3

= −2I1
|p|

j(τ, p, η)c(τ, p)

r(p, η)p̄3[type(p)r(p, η)s2(τ, p) + (1 + η)c2(τ, p)]
.

Proof. From
p21
I1

+
p22
I1

+
p23
I3

= 1 it follows p21 + p22 = I1 + (η + 1)p23. Thus Kil(p) =

p21 + p22 − p23 = I1 + ηp23 = I1 + ηp̄23|Kil(p)| = −type(p)|Kil(p)|. Expressing |Kil(p)| and
substituting it to |p| =

√
|Kil(p)| we get the first formula, the second one can be produced

just by computing derivative of the first one.
Next

∂t0
∂p̄3

= 2I1

∂τ0
∂p̄3

|p| − τ0
∂|p|
∂p̄3

|p|2 = 2I1

∂τ0
∂p̄3

+ τ0
ηp̄3

type(p)r(p,η)

|p| .

By the implicit function theorem we have

∂τ0
∂p̄3

= −∂q0
∂p̄3

/∂q0
∂τ

,

using expressions (13) of the partial derivatives of the function q0 we get

∂τ0
∂p̄3

= −τηc(τ, p) sin (τηp̄3) + s(τ, p) sin (τηp̄3) + τηp̄3s(τ, p) cos (τηp̄3)

type(p)r(p, η)s(τ, p) cos (τηp̄3) + p̄3(1 + η)c(τ, p) sin (τηp̄3)
.

Consider the case s(τ, p) sin (τηp̄3) 6= 0. Dividing numerator and denominator of the
expression ∂τ0

∂p̄3
by s(τ, p) sin (τηp̄3) we get

∂τ0
∂p̄3

= −
τη c(τ,p)

s(τ,p)
+ 1 + τηp̄3 cot (τηp̄3)

type(p)r(p, η) cot (τηp̄3) + p̄3(1 + η) c(τ,p)
s(τ,p)

.

Because of q0(τ, p) = c(τ, p) cos (τηp̄3)−p̄3s(τ, p) sin (τηp̄3) we obtain c(τ,p)
s(τ,p)

cot (τηp̄3) = p̄3.

Next c(τ, p) 6= 0, since for p ∈ Ch we have c(τ, p) = cosh τ 6= 0, and for p ∈ Ce if c(τ, p) = 0

then p̄3 = 0, in a contradiction with p ∈ Ce. Thus cot (τηp̄3) = p̄3
s(τ,p)
c(τ,p)

. Substituting it

to the expression of ∂τ0
∂p̄3

we obtain

∂τ0
∂p̄3

= − τηc2(τ, p) + c(τ, p)s(τ, p) + τηp̄23s
2(τ, p)

p̄3[type(p)r(p, η)s2(τ, p) + (1 + η)c2(τ, p)]
.
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Substituting this expression to the formula of ∂t0
∂p̄3

, transforming to a common denominator

and using the equation c2(τ, p) + type(p)s2(τ, p) = 1, we get the third formula of the
proposition.

It remains to consider the case s(τ, p) sin (τηp̄3) = 0. Because of

q0(τ, p) = c(τ, p) cos (τηp̄3)− p̄3s(τ, p) sin (τηp̄3) = 0

there are two cases.
The case s(τ, p) = 0 and cos (τηp̄3) = 0. Then

∂τ0
∂p̄3

= − τη

p̄3(1 + η)
,

∂t0
∂p̄3

= −2I1
|p|

τη(1− type(p)p̄23)

r(p, η)p̄3(1 + η)
,

it coincides with the general formula.
The case sin (τηp̄3) = 0 and c(τ, p) = 0. Then

∂τ0
∂p̄3

= − τηp̄3
type(p)r(p, η)

,
∂t0
∂p̄3

= 0,

it coincides with the general formula as well. �

Proposition 12. The following equation is satisfied:

sgn

(
∂t0
∂p̄3

)
= −sgn(p̄3)sgn(j(τ, p, η))sgn(c(τ, p)).

Proof. In fact r(τ, η) = 1 + type(p)ηp̄3. For p ∈ Ce we have p̄3 > 1. From η < −1 it
follows ηp̄23 < −1, i.e., r(p, η) < 0. For p ∈ Ch we get −ηp̄23 > 0 then r(p, η) > 0. Hence
sgn(r(p, η)) = −type(p).

Therefore the expression in the square brackets in denominator of the expression of
∂t0
∂p̄3

is negative. The statement of the proposition follows. �

Proposition 13. The function t0(p̄3) satisfies the properties:
(1) it is increasing at the interval [1,+∞) for p ∈ Ce when η 6 −2;
(2) it is decreasing at the interval [1,− 2

η
] and it is increasing at the interval [− 2

η
,+∞) for

p ∈ Ce when −2 < η 6 −3
2
;

(3) it is decreasing at the interval [− 3
2η
,− 2

η
] and it is increasing at the interval [− 2

η
,+∞)

for p ∈ Ce when η > −3
2
;

(4) it is decreasing at the interval (0,+∞) for p ∈ Ch.

Proof. Notice that the expression j(τ, p, η) appears as a multiplier in expression (14)
of the Jacobian J of the exponential map. It was shown in the proof of Proposition 9
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that for p ∈ Ce the first positive zero of the function j(τ, p, η) (of variable τ) is greater
than π, and for p ∈ Ch this function has no positive zeros.

(1–3) Computing j(π, p, η) we have −πη(1 − p̄23) < 0. Thus a continuous function
j(τ, p, η) is negative for τ ∈ (0, π]. From Proposition 6 it follows that the function τ e0 (p̄3)
is less than or equal to π on the intervals [1,+∞) and [− 3

2η
,+∞) when η 6 −3

2
and η > −3

2

respectively. That is why j(τ, p, η) is negative under the hypotheses of the proposition.
This means that on the considered intervals the sign of ∂t0

∂p̄3
is equal to the sign of cos τ

due to Proposition 12.
It remains to determine when the sign of cos τ e0 (p̄3) changes, i.e., τ

e
0 (p̄3) =

π
2
. Let us

prove that this happens at the point p̄3 = − 2
η
for η > −2.

Consider p̄3 > − 2
η
, then qe0(0, p̄3) = 1 > 0 and on the other hand qe0(− π

ηp̄3
, p̄3) =

− cos (− π
ηp̄3

) < 0, since for p̄3 > − 2
η
the inequality 0 < − π

ηp̄3
< π

2
holds. Hence the

function qe0(τ, p̄3) (of variable τ , for p̄3 > − 2
η
) at the endpoints of the interval [0,− π

ηp̄3
]

have values of different signs. So this continuous function has zero inside this interval.
Consequently, τ e0 (p̄3) <

π
2
for p̄3 > − 2

η
.

Consider now the case p̄3 < − 2
η
. Our aim is to prove the inequality τ e0 (p̄3) >

π
2
. Notice

that this inequality is satisfied for p̄3 = 1 (indeed, τ e0 (1) = − π
1+η

> π
2
). Assume that

the inequality breaks at some point of the interval [1,− 2
η
). Since the function τ e0 (p̄3) is

continuous, there exists p̂3 ∈ [1,− 2
η
) such that qe0(

π
2
, p̂3) = −p̂3 sin (π2ηp̂3) = 0. Solving

this equation in the variable p̂3 we get p̂3 ∈ {2k
η
| k ∈ Z}. But this set does not intersect

the interval [1,− 2
η
), so we get a contradiction.

(4) The expression j(τ, p, η) is non-vanishing for τ > 0 and p ∈ Ch. Substituting
τ = π

2
to this expression we get r(p, η) > 0 (see the proof of Proposition 12). Thus the

sign of ∂t0
∂p̄3

is opposite to the sign of cosh τ , which is always positive. Consequently, the

function t0(p) is decreasing for p ∈ Ch and p̄3 ∈ (0,+∞). �

Proposition 14. The function t12(p̄3) = 2πI1
|p| is increasing at the interval [1,+∞) for

p ∈ Ce.

Proof. Use the formula of |p| from Proposition 11. The function r(p, η) = 1 +
type(p)ηp̄23 is decreasing at the interval [1,+∞), because of η < 0. Thus the function
−type(p)r(p, η) increases. Hence |p| decreases, the statement of the proposition follows.
�

Figure 5 presents plots of the cut time as the function of variable p̄3 ∈ [1,+∞) for
time-like initial momenta and different values of the parameter η.

Corollary 4. The injectivity radius of the symmetric left-invariant Riemannian metric
on the group PSL2(R) is equal to

(1) π
√
I1
√

− 1
1+η

when η 6 −2;
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Figure 5: Cut time for p ∈ Ce.

(a)
η < −2

(b)
−2 < η < −3

2

(c)

−3
2
< η < −3−

√
73

8

(d)
−3−

√
73

8
< η < −1

(2) π
√
I1

√
−η+4

η
when −2 < η 6 −3−

√
73

8
;

(3) 2π
√
I1
√
−(1 + η) when −3−

√
73

8
< η < −1.

Proof. The injectivity radius is equal to the minimal value of the cut time tcut(p) for
p ∈ C. From Theorem 2 it follows that the cut time is equal to the minimum of the
Maxwell times corresponding to the strata M0 and M12.

From Propositions 13–14 and continuity of the cut time (Lemma 1) we obtain the
following facts about the local minima of the cut time.

(e) There are two local minima of the cut time in the set Ce. They are the north n and
the south s poles of the ellipsoid C (the points where p̄3 = ±1). The cut time has the same
values at those points. Besides, there are two circles of local minima {p ∈ Ce | p̄3 = ± 2

η
}.

The cut time is constant on these circles. Denote by m an arbitrary point of the circle in
the north hemisphere, i.e., m̄3 = − 2

η
.

(p) The cut time has no local minima in the set Cp (for any point of Cp there are an
arbitrarily close point of Ce with a lower value of the cut time and an arbitrarily close
point of Ch with a greater value of the cut time).

(h) In the set Ch there are no local minima of the cut time (on the equator of the
ellipsoid C the cut time is infinite and it decreases along meridians from the equator to
the poles).

The values of the cut time at the points of local minima are

tcut(n) =

{
2τe0 (n̄3)I1

|n| , when η 6 −3
2
,

2πI1
|n| , when η > −3

2
,

tcut(m) =
2τ e0 (m̄3)I1

|m| .

It is easy to see that for n̄3 = 1 the equation qe0(τ, n̄3) = cos τ(1 + η) = 0 has the first
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positive root − π
2(1+η)

. Next |n| =
√

I1
−(1+η)

. Thus

tcut(n) =

{
π
√
I1
√

− 1
1+η

, when η 6 −3
2
,

2π
√
I1
√
−(1 + η), when η > −3

2
.

Calculate now the value of the cut time at the point m. Note that τ e0 (m̄3) = π
2
and

|m| =
√

− I1η

η+4
. Hence tcut(m) = π

√
I1

√
−η+4

η
.

Consider now different cases of the parameter η.
When η 6 −2 the cut time has no local minima (Proposition 13) and the injectivity

radius is equal to tcut(n). We get case (1), see Figure 5(a).
When −2 < η 6 −3

2
the cut time has a local minimum at the point m which is the

global minimum (Proposition 13). We get case (2), Figure 5(b).
When η > −3

2
we need to compare

tcut(n) = 2π
√
I1
√
−(1 + η) and tcut(m) = π

√
I1

√
−η + 4

η
.

After elementary transformations it is easy to see that tcut(n) < tcut(m) if and only if

4η2 +3η− 4 < 0. This inequality is equivalent to η ∈ (−3−
√
73

8
, −3+

√
73

8
). It remains to use

the inequalities:

−3

2
<

−3−
√
73

8
< −1 <

−3 +
√
73

8
, η < −1.

Thus when η ∈ (−3
2
, −3−

√
73

8
] we have case (2) presented in Figure 5(c), and when η ∈

(−3−
√
73

8
,−1) we have case (3), see Figure 5(d). �

Remark 7. The injectivity radius is a continuous function of the variable η.

8 Left-invariant Riemannian problem on SL2(R)

We use the same method of finding the cut locus as in the case of PSL2(R). Firstly notice
that the exponential map is described by formulas (6, 7, 8). Secondly the symmetry group
of the exponential map is the same that in the case of PSL2(R). The difference is that
the set Exp(M0) is not a Maxwell stratum on SL2(R). In the case of PSL2(R) there
are two geodesics that come to some point of this set at the same time, but in the lift
to SL2(R) these geodesics at that time are located in the different leaves of the covering
SL2(R) → PSL2(R).

The set of the first conjugate points and the first conjugate time are described in
the same way as in the case of PSL2(R). Thus for application of the Hadamard global
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diffeomorphism theorem we need to compare the Maxwell time corresponding to the
Maxwell strata Exp(M12) and Exp(M3) and the first conjugate time. The proposition
below gives an answer for this question.

Proposition 15. (1) If η 6 −3
2
, then for all p̄3 ∈ [1,+∞] there holds the inequality

τ e3 (p̄3) 6 π.
(2) If η > −3

2
, then τ e3 (p̄3) > π for p̄3 ∈ [1,− 2

η
) and τ e3 (p̄3) 6 π for p̄3 ∈ [− 2

η
,+∞).

See Figure 6.

Figure 6: Function τ e3 and π.

η < −3
2 η = −3

2 −3
2
< η

Proof. (1) Note that qe3(0) = 0 and

∂qe3
∂τ

= −(1 + ηp̄23) sin τ sin(τηp̄3) + p̄3(1 + η) cos τ cos(τηp̄3)

for τ = 0 is equal to p̄3(1 + η) < 0. The function qe3 of variable τ is differentiable. Thus
for all p̄3 > 1 there exists an arbitrarily small τ > 0 such that qe0(τ, p̄3) < 0. Hence it is
enough to find θ ∈ (0, π] such that qe3(θ) > 0. Then due to continuity of the function qe3
of variable τ there exists a root of qe3 at the interval (0, θ], i.e., a root that is less than or
equal to π. Let us take

θ =

{
π
2
, for− ηp̄3 < 2,

− 2π
ηp̄3
, for− ηp̄3 > 2.

For −ηp̄3 > 2 we have − 2π
ηp̄3

6 π. Next

qe3(θ) =

{
p̄3 cos(

π
2
ηp̄3), for− ηp̄3 < 2,

p̄3 sin(− 2π
ηp̄3

), for− ηp̄3 > 2.

In the first case −π < π
2
ηp̄3 6 −3π

4
, thus cos(π

2
ηp̄3) > 0. In the second case 0 6 − 2π

ηp̄3
6 π,

it follows sin(− 2π
ηp̄3

) > 0. Consequently qe3(θ) > 0.
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(2) First we prove the second part of the statement. For p̄3 > − 2
η
we have −ηp̄3 > 2.

We can take the same θ as in the proof of statement (1).
To prove the first part of statement (2) notice that for p̄3 = 1 we have qe3(τ) =

sin(τ(1 + η)). The first positive root of this function is equal to − π
1+η

> π. Assume (by

contradiction) that there exists p̄′3 ∈ [1,− 2
η
) such that τ e3 (p̄

′
3) < π. The function τ e3 is

continuous, thus there exists p̂3 ∈ (0, p̄′3) such that qe3(π, p̂3) = − sin(πηp̂3) = 0. Hence
p̂3 =

k
η
, k ∈ Z. It is clear that for all k ∈ Z the point p̂3 lies outside of the interval [1,− 2

η
).

We get a contradiction. �

For the symmetric left-invariant Riemannian problem on the group SL2(R) we describe
below the cut locus and the geometric interpretation of its image under the projection Π
to the group of proper isometries of the hyperbolic plane.

Theorem 4. (1) When η 6 −3
2
, the cut locus is the plane

H := {q ∈ SU1,1 | q3 = 0},

that maps to the plane of hyperbolic isometries corresponding to the sheafs of ultra-parallel
lines that are symmetric in the diameters of the Poincaré disk model.
(2) When η > −3

2
, the cut locus is a stratified manifold

H ∪ Tη,

where Tη = {q = ±(cos(2πp̄3) + sin(2πp̄3)k) | p̄3 ∈ [1,− 2
η
]} is the interval that maps to

the interval consisting of some rotations around the center of the Poincaré disk model.

Proof. The proof is similar to the proof of Theorem 3. This follows from Proposition 15
and the geometric interpretation of the subsets of the group of proper isometries of the
hyperbolic plane described in Section 2.4. �

9 Connection with left-invariant sub-Riemannian

problem

Identifying the Lie algebra g with the space of pure imaginary split-quaternions, consider
a decomposition

g = k⊕ p, (15)

where k = Rk and p = Ri⊕ Rj.
Let ∆ be the distribution of 2-dimensional planes in TG that is produced by the left

shifts of the subspace p of the Lie algebra. Endow the distribution ∆ with the positive
definite quadratic form rg(v) = (g−1v, g−1v), where g ∈ G, v ∈ ∆g = gp and (·, ·) is the

33



Killing form. Let X1, X2 be vector fields that form an orthonormal basis (with respect to
the form rg) in the distribution ∆ at every point.

Consider the following left-invariant sub-Riemannian problem:

ġ = u1X1 + u2X2, g(0) = id, g(t1) = g1,
1

2

∫ t1

0

(u21 + u22) dt→ min . (16)

Theorem 5. For the left-invariant sub-Riemannian problem (16) on PSL2(R) (or SL2(R))
defined by decomposition (15) and the Killing form
(1) the parametrization of geodesics,
(2) the conjugate time,
(3) the conjugate locus,
(4) the cut time,
(5) the cut locus
are produced from the same objects of the left-invariant Riemannian problem on PSL2(R)
(or SL2(R) respectively) with I1 = I2 by passing to the limit I3 → ∞.

Figure 7 presents the cut loci for the sub-Riemannian and the Riemannian metrics for
η > −3

2
(the surfaces of revolution of the plotted contours).

Figure 7: Cut loci in sub-Riemannian and Riemannian cases.

sub-Riemannian metric Riemannian metric, η > −3
2

Proof. (1) Theorem 1 implies that the parametrization of geodesics on the considered
groups have the form

g(t) = exp

(
t

I1
p

)
exp

(
tηp3
I1

k

)
,

where p ∈ g and p = p1i+ p2j + p3k is its split-quaternion representation. When η → −1
(it is equivalent to I3 → ∞) we get

g(t) = exp

(
t

I1
(p1i+ p2j) +

t

I1
p3k

)
exp

(
− t

I1
p3k

)
.

This coincides with the known parametrization of sub-Riemannian geodesics (the proof
could be found in V. Jurdjevic’s book [21]):

g(t) = exp(t(Ap + Ak)) exp(−tAk),
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where Ak ∈ k, Ap ∈ p, rid(Ap) = 1. In V. N. Berestovskii’s paper [2] a similar parametriza-
tion was got in Theorem 3:

γ(t) = exp (t(cosϕ0a+ sinϕ0b− βc)) exp (tβc),

where γ is a geodesic, a, b, c is a basis of the Lie algebra, the distribution is generated by
the vectors a and b, the parameters ϕ0 and β define the initial covector.

For the sub-Riemannian problem on SL2(R) the same formula of parametrization of
geodesics holds (V. N. Berestovskii, I. A. Zubareva [4], Theorem 2).

The formulas relating the coordinates of initial covector in this paper and in papers [2],
[4] are

|p|2 = β2 − 1, p̄3 =
β√

|β2−1|
.

(2) The conjugate time for the sub-Riemannian problems on PSL2(R) and SL2(R) is
finite for β > 1 and is equal to 2π√

β2−1
([2], [4]). In the Riemannian problem the conjugate

time is finite only for time-like initial covectors and it is equal to 2πI1
|p| (Proposition 9), for

I1 = 1 it coincides with the sub-Riemannian conjugate time.
(3) The set of the first conjugate points is the circle S1 = exp(Rk) both for the

sub-Riemannian and the Riemannian cases.
(4) The cut time in the sub-Riemannian problem on PSL2(R) was computed in [2]

(Proposition 5). Below we give references (in brackets) for the corresponding formulas
from that paper. For time-like initial covectors (|β| > 1) the cut time is equal to 2π√

β2−1

for |β| > 3√
5
(52). For 1 < |β| 6 3√

5
the cut time is the first positive root of the equation

(formulas (54), (55)):

− cot
|β|t
2

=
|β|√
β2 − 1

tan
t
√
β2 − 1

2
.

For light-like initial covectors (|β| = 1) the cut time is the first positive root of the equation
(formulas (50), (51)):

− cot
t

2
=
t

2
.

For space-like initial covectors (|β| < 1) the cut time is the first positive root of the
equation (formulas (48), (49)):

− cot
|β|t
2

=
|β|√
1− β2

tanh
t
√

1− β2

2
.

Note that p̄3 = − 3
2η

corresponds to β = 3√
5
. Thus, the Riemannian cut time for

light-like initial covectors for p̄3 > − 3
2η

converges to the cut time of the sub-Riemannian
problem when η → −1.
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Clearly |β|√
|β2−1|

= p̄3, for I1 = 1 we have |β|t
2

= τ p̄3,
t
√

β2−1

2
= τ . Thus for initial

covectors of the other types the equation q0 = 0 converges to one of the equations above
(depending on the type of initial covector). Those equations and the equations qe0 =
0, qp0 = 0, qh0 = 0 for different values of η do not have multiple roots. Hence the first
positive roots of the equations qe0 = 0, qp0 = 0, qh0 = 0 converge to the sub-Riemannian
cut time when η → −1.

For the sub-Riemannian problem on SL2(R), similar equations for the cut time were
presented in Theorem 6 of paper [4]. Those equations are obtained from the equations
qe3 = 0, qp3 = 0, qh3 = 0 of the Riemannian cut time on SL2(R) (Theorem 4) by passing
to the limit η → −1. Note that for |β| > 2√

3
the sub-Riemannian cut time is equal to

2π√
β2−1

. The initial covectors of such geodesics correspond to light-like p with p̄3 > − 2
η
.

(5) When η → −1 the components Rη and Tη of the Riemannian cut loci on PSL2(R)
and SL2(R) converge to the circle S1 = exp(Rk) which is the component of the sub-
Riemannian cut locus. The ”global” part of the cut locus Z (H in case of SL2(R)) is the
same for the Riemannian and the sub-Riemannian cases. The sub-Riemannian cut loci in
PSL2(R) and SL2(R) were described in papers of V. N. Berestovskii and I. A. Zubareva [2],
[4], U. Boscain and F. Rossi [5]. �

Appendix. Some facts of hyperbolic geometry

In this appendix we give some useful facts of the hyperbolic geometry. The proofs can be
found for example in book [22].

Definition 10. The Poincaré disk model of the hyperbolic plane is the open unit disk
{z ∈ C | |z| < 1}. The boundary circle of the unit disk is called the absolute. Points
of the open unit disk are points of the hyperbolic plane. Consider Euclidean lines and
circles that are orthogonal to the absolute. Arcs inside of the open unit disk are lines of
the hyperbolic plane. Clearly there are infinite number of lines parallel to a fixed line and
passing through the point outside that fixed line.

Definition 11. The distance ρ(z1, z2) between two points z1 and z2 of the hyperbolic
plane is defined as ρ(z1, z2) =

c
2
| ln |[u, v, z1, z2]||, where u and v are the intersection points

of the line z1z2 and the absolute and

[u, v, z1, z2] =
z1 − u

z1 − v
:
z2 − u

z2 − v

is the anharmonic ratio of four points.

Remark 8. The parameter c defines the eigenvalues I1 = I2 = c of the Riemannian
metric on the group of proper isometries of the hyperbolic plane.
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Theorem 6. (1) Any proper isometry of the hyperbolic plane is determined by a Möbius
transformation preserving the unit disk

z 7→ w1z + w2

w̄2z + w̄1

, |w1|2 − |w2|2 = 1, w1, w2 ∈ C.

(2) Proper isometries form the group SU1,1.
(3) Any proper isometry is a composition of two reflections in lines.
(4) There are three types of proper isometries: elliptic, parabolic and hyperbolic ones. The
type is defined by the configuration of two lines. They can be intersecting, parallel one to
another (the intersection point belongs to the absolute) and ultra-parallel one to another
(non-intersecting).
(5) Orbits of these isometries are located on the curves that are orthogonal to the lines
of elliptic, parabolic or hyperbolic sheaf respectively. Those curves are circle, oricircles or
equidistants respectively.

Remark 9. In the Poincaré half-plane model {z ∈ C | Imz > 0} of the hyperbolic plane
the group of proper isometries is the group of Möbius transformations of the form

z 7→ az + b

cz + d
, ad− bc = 1, a, b, c, d ∈ R,

that is isomorphic to PSL2(R). The transformation z 7→ i1+z
1−z

maps the Poincaré disk
model to the Poincaré half-plane model.
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