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1 Introduction

In this work we complete our study of the sub-Riemannian problem on the Lie group SH(2) which is the group of
motions of pseudo Euclidean plane. The work was initiated in [1] where we defined the sub-Riemannian problem.
The control system comprises two 3-dimensional left invariant vector fields and a 2-dimensional linear control
vector. We applied PMP to the control system and obtained the corresponding Hamiltonian system. In [2] we
proved the Liouville integrability of the Hamiltonian system. We calculated the Hamiltonian flow such that the
extremal trajectories were parametrized in terms of Jacobi elliptic functions [1]. Since PMP states only the
first order optimality conditions, the trajectory resulting from PMP are only potentially optimal called extremal
trajectories or geodesics. Further analysis based on second order optimality conditions is then needed to segregate
the optimal trajectories or the minimizing geodesics. It is well known that the candidate optimal trajectories lose
optimality either at the Maxwell points or at the conjugate points [3],[4],[5]. Based on the optimality analysis
one is able to state the time of loss of global optimality known as the cut time. Rigorous techniques for this
optimality analysis have evolved over the years from research on related sub-Riemannian problems on various
Lie groups, see e.g., [4], [5], [6], [7]. These techniques were employed in [1] and [8] to compute the Maxwell strata
and the conjugate locus in the problem under investigation. An effective upper bound on the cut time was also
computed.
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In this paper we extend the global optimality analysis similar to [9]. We decompose the image M = SH(2)
and the preimage of the exponential mapping into open dense sets based on the Maxwell strata and conjugate loci
and prove that the exponential mapping between these sets is a diffeomorphism. This leads naturally to the proof
that the cut time is equal to the first Maxwell time. Finally, we analyze the global structure of the exponential
mapping and obtain explicit characterization of the cut locus and the optimal synthesis on the manifold SH(2).

The paper is organized as follows. In Section 2, we review the results from [1] and [8] as ready reference. Sec-
tions 3 and 4 contain the main results of this work. In Section 3 we state and prove the conditions for exponential
mapping being a diffeomorphism and compute the cut time. Section 4 pertains to explicit characterization of the
Maxwell strata and the cut locus in terms of a stratification of SH(2). In Section 5 we conclude this work.

2 Previous Work

2.1 Problem Statement

The Lie group SH(2) is a 3-dimensional group of roto-translations of the pseudo Euclidean plane [10]. The
sub-Riemannian problem on the Lie group SH(2) reads as follows [1]:

ẋ = u1 cosh z, ẏ = u1 sinh z, ż = u2, (2.1)

q = (x, y, z) ∈M = SH(2) ∼= R3, x, y, z ∈ R, (u1, u2) ∈ R2, (2.2)

q(0) = (0, 0, 0), q(t1) = q1 = (x1, y1, z1), (2.3)

l =

ˆ t1

0

√
u2

1 + u2
2 dt→ min . (2.4)

By Cauchy-Schwarz inequality, the sub-Riemannian length functional l minimization problem (2.4) is equivalent
to the problem of minimizing the following action functional with fixed t1 [11]:

J =
1

2

t1ˆ

0

(u2
1 + u2

2)dt→ min . (2.5)

2.2 Known Results

We now briefly review the results from [1] and [8] as a ready reference in this paper. System (2.1) satisfies the
bracket generating condition and is hence globally controllable [12],[13]. Existence of optimal trajectories for the
optimal control problem (2.1)–(2.5) follows from Filippov’s theorem [3]. We applied PMP [3] to (2.1)–(2.5) to
derive the normal Hamiltonian system. It turns out that the vertical part of the normal Hamiltonian system is a
double covering of a mathematical pendulum. The normal Hamiltonian system is given as:

γ̇ = c, ċ = − sin γ, λ = (γ, c) ∈ C ∼= (2S1
γ)×Rc, 2S1

γ = R/(4πZ), (2.6)

ẋ = cos
γ

2
cosh z, ẏ = cos

γ

2
sinh z, ż = sin

γ

2
. (2.7)

The total energy integral of the pendulum (2.6) is given as:

E =
c2

2
− cos γ, E ∈ [−1,+∞). (2.8)

The initial cylinder of the vertical subsystem is decomposed into the following subsets based upon the pendulum
energy that correspond to various pendulum trajectories:

C =
5⋃
i=1

Ci,

where,

C1 = {λ ∈ C |E ∈ (−1, 1)} , (2.9)

C2 = {λ ∈ C |E ∈ (1,∞)} , (2.10)

C3 = {λ ∈ C |E = 1, c 6= 0} , (2.11)

C4 = {λ ∈ C |E = −1, c = 0} = {(γ, c) ∈ C | γ = 2πn, c = 0} , n ∈ N, (2.12)

C5 = {λ ∈ C |E = 1, c = 0} = {(γ, c) ∈ C | γ = 2πn+ π, c = 0} , n ∈ N. (2.13)
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Fig. 1 Stratification of the Phase Cylinder C of the Pendulum

We defined elliptic coordinates (ϕ, k) for λ ∈ ∪3
i=1Ci ⊂ C and proved that the flow of the pendulum is

rectified in these coordinates. Note that k was defined as the reparametrized energy and ϕ was defined as the
reparametrized time of motion of the pendulum [1]. Integration of the horizontal subsystem in elliptic coordinates
follows from integration of the vertical subsystem and the resulting extremal trajectories are parametrized by
the Jacobi elliptic functions sn(ϕ, k), cn(ϕ, k), dn(ϕ, k), E(ϕ, k) =

´ ϕ
0

dn2(t, k)dt (Theorems 5.1–5.5 [1]). The
results of integration for λ ∈ Ci, i = 1, . . . , 5, are summarized as:

– Case 1 : λ = (ϕ, k) ∈ C1

xt
yt
zt

 =


s1
2

[(
w + 1

w(1−k2)

)
[E(ϕt)− E(ϕ)] +

(
k

w(1−k2)
− kw

)
[snϕt − snϕ]

]
1
2

[(
w − 1

w(1−k2)

)
[E(ϕt)− E(ϕ)]−

(
k

w(1−k2) + kw
)

[snϕt − snϕ]
]

s1 ln [(dnϕt − kcnϕt).w]

 , (2.14)

where w = 1
dnϕ−kcnϕ , s1 = sgn

(
cos γ2

)
and ϕt = ϕ+ t.

– Case 2 : λ = (ψ, k) ∈ C2

xt =
1

2

(
1

w(1− k2)
− w

)[
E(ψt)− E(ψ)− k′2 (ψt − ψ)

]
+

1

2

(
kw +

k

w(1− k2)

)
[snψt − snψ] ,

yt = −s2
2

(
1

w(1− k2)
+ w

)[
E(ψt)− E(ψ)− k′2(ψt − ψ)

]
+
s2
2

(
kw − k

w(1− k2)

)
[snψt − snψ] ,

zt = s2 ln [(dnψt − kcnψt) .w] , (2.15)

where ψ = ϕ
k , ψt = ϕt

k = ψ + t
k and w = 1

dnψ−kcnψ , s2 = sgn c, k′ =
√

1− k2.
– Case 3 : λ = (ϕ, k) ∈ C3 xt

yt
zt

 =

 s1
2

[
1
w (ϕt − ϕ) + w (tanhϕt − tanhϕ)

]
s2
2

[
1
w (ϕt − ϕ)− w (tanhϕt − tanhϕ)

]
−s1s2 ln[w sechϕt]

 , (2.16)

where w = coshϕ.
– Case 4 : λ = (ϕ, k) ∈ C4 x

y

z

 =

 sgn
(
cos γ2

)
t

0
0

 . (2.17)

– Case 5 : λ = (ϕ, k) ∈ C5 x

y

z

 =

 0
0

sgn
(
sin γ

2

)
t

 . (2.18)
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The phase portrait of the pendulum admits a discrete group of symmetries G = {Id, ε1, . . . , ε7}. The symme-
tries εi are reflections and translations about the coordinates axes (γ, c). The reflection symmetries in the phase
portrait of a standard pendulum are given as:

ε1 : (γ, c)→ (γ,−c),

ε2 : (γ, c)→ (−γ, c),

ε3 : (γ, c)→ (−γ,−c),

ε4 : (γ, c)→ (γ + 2π, c),

ε5 : (γ, c)→ (γ + 2π,−c),

ε6 : (γ, c)→ (−γ + 2π, c),

ε7 : (γ, c)→ (−γ + 2π,−c).

(2.19)

According to Proposition 6.3 [1], the action of reflections on endpoints of extremal trajectories can be defined as
εi : q 7→ qi, where q = (x, y, z) ∈M, qi = (xi, yi, zi) ∈M and,

(x1, y1, z1) = (x cosh z − y sinh z, x sinh z − y cosh z, z),

(x2, y2, z2) = (x cosh z − y sinh z, −x sinh z + y cosh z, −z),

(x3, y3, z3) = (x, −y, −z),

(x4, y4, z4) = (−x, y, −z), (2.20)

(x5, y5, z5) = (−x cosh z + y sinh z, x sinh z − y cosh z, −z),

(x6, y6, z6) = (−x cosh z + y sinh z, −x sinh z + y cosh z, z),

(x7, y7, z7) = (−x, −y, z).

These symmetries are exploited to state the general conditions on Maxwell strata in terms of the functions zt
and Ri(q) given as:

R1 = y cosh
z

2
− x sinh

z

2
, R2 = x cosh

z

2
− y sinh

z

2
. (2.21)

We define the Maxwell sets MAXi, i = 1, . . . , 7, resulting from the reflections εi of the extremals in the
preimage of the exponential mapping N as:

MAXi =
{
ν = (λ, t)∈N = C ×R+ | λ 6= λi, Exp(λ, t) = Exp(λi, t)

}
,

where λ = εi(λ). The corresponding Maxwell strata in the image of the exponential mapping are defined as:

Maxi = Exp(MAXi) ⊂M.

In [8] Proposition 3.7 we proved that the first Maxwell points corresponding to the reflection symmetries of the
vertical subsystem lie on the plane z = 0 and the corresponding Maxwell time tMax

1 (λ) is given as :

λ ∈ C1 =⇒ tMax
1 (λ) = 4K(k), (2.22)

λ ∈ C2 =⇒ tMax
1 (λ) = 4kK(k), (2.23)

λ ∈ C3 ∪ C4 ∪ C5 =⇒ tMax
1 (λ) = +∞. (2.24)

Similarly we proved that the first conjugate time tconj
1 (λ) is bounded as (Theorems 4.1–4.3) [8]:

λ ∈ C1 =⇒ 4K(k) ≤ tconj
1 (λ) ≤ 2p1

1(k), (2.25)

λ ∈ C2 =⇒ 4kK(k) ≤ tconj
1 (λ) ≤ 2k p1

1(k), (2.26)

λ ∈ C4 =⇒ tconj
1 (λ) = 2π, (2.27)

λ ∈ C3 ∪ C5 =⇒ tconj
1 (λ) = +∞. (2.28)

where p1
1(k) is the first positive root of the function f1(p) = cnpE(p) − snpdnp, which is bounded as p1

1(k) ∈
(2K(k), 3K(k)). Note that we defined:

ϕt = τ + p, ϕ = τ − p =⇒ τ =
1

2
(ϕt + ϕ) , p =

t

2
when ν = (λ, t) ∈ N1 ∪N3, (2.29)

ψt =
ϕt
k

= τ + p, ψ =
ϕ

k
= τ − p =⇒ τ =

1

2k
(ϕt + ϕ) , p =

t

2k
when ν = (λ, t) ∈ N2. (2.30)

Here and below Ni = Ci ×R+.
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3 Upper Bound on Cut Time

In this section we describe the basic properties of the upper bound on cut time obtained in [8].
Define the following function t : C → (0,+∞],

t(λ) = min
(
tMax
1 (λ), tconj

1 (λ)
)
, λ ∈ C.

Equalities (2.22)–(2.28) yield the explicit representation of this function:

λ ∈ C1 =⇒ t(λ) = 4K(k), (3.1)

λ ∈ C2 =⇒ t(λ) = 4kK(k), (3.2)

λ ∈ C4 =⇒ t(λ) = 2π, (3.3)

λ ∈ C3 ∪ C5 =⇒ t(λ) = +∞. (3.4)

In [8] we proved the upper bound:

tcut(λ) ≤ t(λ), λ ∈ C. (3.5)

We now prove that inequality (3.5) is in fact an equality (see Theorem 4.2). The general scheme of the proof
is as follows [5], [7]:

1. The exponential mapping Exp : N = C × R+ → M parametrizes all optimal geodesics, but also all non-
optimal ones, since all the geodesics Exp(λ, t) with t > t(λ) are not optimal.

2. We reduce the domain of the exponential mapping so that it does not include these a priori non-optimal
geodesics:

N̂ = {(λ, t) ∈ N | t ≤ t(λ)} .

We also reduce the range of the exponential mapping so that it does not contain the initial point for which
the optimal geodesic is trivial:

M̂ = M\ {q0} .

Then Exp : N̂ → M̂ is surjective, but not injective, due to Maxwell points.
3. We exclude Maxwell points in the image of Exp:

M̃ =
{
q ∈M | εi(q) 6= q

}
,

and reduce respectively the preimage of Exp:

Ñ = Exp−1
(
M̃
)
.

The mapping Exp : Ñ → M̃ is injective. Moreover, it is non-degenerate since tconj
1 (λ) ≥ t(λ).

4. We take connected components in preimage and image of Exp :

Ñ = ∪Di, M̃ = ∪Mi.

Each of the mappings Exp : Di → Mi is non-degenerate and proper. Moreover, all Di and Mi are smooth
3-dimensional manifolds, connected and simply connected. By Hadamard’s global diffeomorphism theorem
[14], each Exp : Di →Mi is a diffeomorphism. Thus Exp : Ñ → M̃ is a diffeomorphism as well.

5. Further, we consider the action of the exponential mapping on the boundary of the 3-dimensional diffeomor-
phic domains:

Exp : N ′ → M ′, N ′ = N̂\Ñ , M ′ = M̂\M̃.

We construct a stratification in the preimage and the image of Exp :

N ′ = ∪N ′i , M ′ = ∪M ′i ,
dim N ′i , dim M ′i ∈ {0, 1, 2} ,

where all N ′i are disjoint, while some M ′i coincide with others. Further, we prove that all Exp : N ′i →M ′i are
diffeomorphisms by the same argument.
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6. On the basis of the global diffeomorphic structure of the exponential mapping thus described, we get the
following results:

tcut(λ) = t(λ), λ ∈ C,
Max = ∪

{
M ′i | ∃ j 6= i such that M ′j = M ′i

}
,

Cut = cl(Max)\ {q0} ,
Cut ∩Conj = ∂(Max)\ {q0} .

We show that the optimal synthesis is double valued on the Maxwell set Max, and is one valued on M̂\Max.
The central notion of our approach is the stratification in the preimage and in the image of Exp :

N̂ = (∪Di) ∪
(
∪N ′i

)
,

M̂ = (∪Mi) ∪
(
∪M ′i

)
,

dim(Di) = dim(Mi) = 3,

dim(N ′i), dim(M ′i) ∈ {0, 1, 2} ,

such that all the corresponding strata are diffeomorphic via the exponential mapping, i.e., Exp : Di → Mi

and Exp : N ′i →M ′i are diffeomorphisms.

It is well known [7],[14] that for any smooth manifolds X and Y of equal dimensions, a smooth mapping
f : X → Y is a diffeomorphism if f , X and Y satisfy the following conditions P1 – P4:

P1 - X is connected,
P2 - Y is connected and simply connected,
P3 - f is non-degenerate,
P4 - f is proper, i.e., for any compact set K ⊂ Y the inverse image f−1(K) ⊂ X is also compact.
We now consider the invariance properties of the function t with respect to the reflections εi ∈ G and the

vertical part of the Hamiltonian vector field:

−→
Hν = c

∂

∂γ
− sin γ

∂

∂c
∈ Vec(C).

Proposition 3.1

(1) The function t is invariant w.r.t. the reflections εi ∈ G and the flow of
−→
Hν :

t ◦ εi(λ) = t ◦ et
−→
Hν (λ) = t(λ), λ ∈ C, εi ∈ G, t ∈ R.

(2) The function t : C → (0,+∞] is in fact a function t(E) of the energy E = c2

2 −cos γ of pendulum (2.6).

Proof The reflections εi ∈ G (2.19) and the flow of
−→
Hν preserve the subsets Ci of the cylinder C and on each of

these subsets, the function t is expressed as a function of the energy E of the pendulum since we have equalities
(3.1)–(3.4) and,

λ ∈ C1 =⇒ k =

√
E + 1

2
,

λ ∈ C2 =⇒ k =

√
2

E + 1
,

λ ∈ C4 =⇒ E = −1,

λ ∈ C3 ∪ C5 =⇒ E = 1.

This proves item (2) of this proposition. Item (1) follows since the energy E is invariant w.r.t. εi and
−→
Hν . �

A plot of t(E) is shown in Figure 2. Regularity properties of the function t(E) visible in its plot are proved
in the following statement.

Proposition 3.2

(1) The function t(λ) is smooth on C1 ∪ C2.
(2) limE→−1 t(E) = 2π, limE→1 t(E) = +∞, limE→+∞ t(E) = 0.
(3) The function t : C → (0,+∞] is continuous.
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Fig. 2 Plot of the function t(E)

Proof Item (1) follows from (3.1) and (3.2). The limits in item (2) follow from (3.1) and (3.2), and from the limits
limk→+0K(k) = π

2 , limk→1−K(k) = +∞. Then continuity of t(λ) follows on C4:

λ→ λ̄ ∈ C4 =⇒ E(λ)→ E(λ̄) = −1 =⇒ t(λ)→ 2π = t(λ̄).

Continuity on C3 ∪ C5 follows since

λ→ λ̄ ∈ C3 ∪ C5 =⇒ E(λ)→ E(λ̄) = 1 =⇒ t(λ)→ +∞ = t(λ̄).

Thus t(λ) is continuous on C and item (3) is proved. �

3.1 Decompositions in the Image of the Exponential Mapping

Consider the set M̂ = M\{q0}. From Filippov’s theorem and Pontryagin’s Maximum Principle [3], we already
know that any point q ∈ M̂ can be joined with q0 by an optimal trajectory q(s) = Exp(λ, s) such that q(t) =

q, (λ, t) ∈ N . Then Exp(N) ⊃ M̂ . However the Maxwell points q ∈ M̂ have non unique preimage under the
exponential mapping. Hence the mapping Exp : N → M̂ is surjective, but not injective. In order to separate
Maxwell points we consider the set that contains all such points:

M ′ =
{
q ∈M | z = 0, x2 + y2 6= 0

}
,

and its complement M̃ in M̂ :

M̃ = {q ∈M | z 6= 0} ,

M̂ = M̃ tM ′,

where t is the union of disjoint sets.

3.1.1 Decompositions in M̃

The plane z = 0 cuts the domain M̃ into two half spaces as:

M̃ = M1 tM2,

M1 = {q ∈M | z > 0} , (3.6)

M2 = {q ∈M | z < 0} . (3.7)

Note that the decomposition of the manifold M is simpler in description of cut time on SH(2) than similar
decomposition of M in related problems on SE(2) [5] and on the Engel group [7].
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Id,ε1,ε6,ε7 ε2,ε3,ε4,ε5
M1 M2

M2 M1

Table 1 Action of εi on Mj

Fig. 3 Projections of Di to Phase Cylinder C of the Pendulum at t = 0

Proposition 3.3 Reflections εj ∈ G permute the domains M1 and M2 according to Table 1.

Proof Follows immediately from the definitions of the actions of reflections (2.20). �

Proposition 3.4 The domains M1,M2 are open, connected and simply connected.

Proof From the definition of the sets M1, M2 (3.6)–(3.7) it follows that the domains Mi are homeomorphic to
R3 and therefore they are open, connected and simply connected. �

3.2 Decomposition in the Preimage of the Exponential Mapping

We now consider the following set N̂ ⊂ N corresponding to all potentially optimal geodesics:

N̂ = {(λ, t) ∈ N | t ≤ t(λ)} .

By existence of the optimal geodesics, Exp(N̂) ⊃ M̂ . In order to separate the Maxwell points in the preimage of
the exponential mapping, introduce further the sets:

N̂ = Ñ tN ′,

N ′ =
{

(λ, t) ∈ ∪3
i=1N̂i | t = t(λ) or sin

γt/2

2
= 0

}
∪ N̂4,

N̂i = Ni ∩ N̂ , i = 1, . . . , 4,

Ñ =
{

(λ, t) ∈ ∪3
i=1Ni | t < t(λ), sin

γt/2

2
6= 0

}
∪N5.

3.2.1 Decomposition in Ñ

We now introduce the connected components Di of the set Ñ :

Ñ = D1 tD2,

D1 =
{

(λ, t) ∈ ∪3
i=1Ni | t < t(λ), sin

(γt/2
2

)
> 0
}
,

D2 =
{

(λ, t) ∈ ∪3
i=1Ni | t < t(λ), sin

(γt/2
2

)
< 0
}
,

where Di are defined explicitly in coordinates in Table 2 (in the sets N1, N2, N3). Projections of the sets Di to
the initial phase cylinder are shown in Figure 3. We note that for t < t(λ) = tMax

1 (λ) the values of p are given
from formulas (2.29)–(2.30), and the values of tMax

1 (λ) are given in (2.22)–(2.24). The values of τ in Table 2 were
calculated by using the definition of elliptic coordinates [1], formulas for Jacobi elliptic functions [?] and values
of γ and c from Figure 1. Note that enumeration of the sets Di is chosen to correspond to the sets Mi for further
analysis.

We now establish an important fact about the domains Di that is vital in proving that the exponential
mapping transforms Di diffeomorphically.

Proposition 3.5 Reflections εj ∈ G permute the domains D1 and D2 as shown in Table 3.
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Di D1 D2

λ
p
τ

C0
1

(0, 2K)
(0, 2K)

C1
1

(0, 2K)
(2K, 4K)

C0
1

(0, 2K)
(2K, 4K)

C1
1

(0, 2K)
(0, 2K)

λ
p
τ

C+
2

(0, 2K)
(0, 2K)

C−2
(0, 2K)
(−2K, 0)

C+
2

(0, 2K)
(2K, 4K)

C−2
(0, 2K)
(0, 2K)

λ
p
τ

C0+
3 ∪ C1−

3
(0,+∞)
(0,+∞)

C0−
3 ∪ C1+

3
(0,+∞)
(−∞, 0)

C0+
3 ∪ C1−

3
(0,+∞)
(−∞, 0)

C0−
3 ∪ C1+

3
(0,+∞)
(0,+∞)

Table 2 Decomposition Ñ = ∪2
i=1Di

Id,ε1,ε6,ε7 ε2,ε3,ε4,ε5
D1 D2

D2 D1

Table 3 Action of εi on Dj ⊂ Ñ

Proof In paper [1] we defined the action of reflections εj : N → N so that it satisfies the following properties:

εj(λ, t) =

(
εj ◦ et

−→
Hν (λ), t

)
, if εj∗

−→
Hν = −

−→
Hν ,

εj(λ, t) =
(
εj(λ), t

)
, if εj∗

−→
Hν =

−→
Hν ,

where εj∗
(−→
Hν

)
is the pushforward of

−→
Hν under the reflection εj . Recall that εj∗

−→
Hν = −

−→
Hν , for j = 1, 2, 5, 6

because these symmetries reverse the direction of time and εj∗
−→
Hν =

−→
Hν , for j = 3, 4, 7 because these symmetries

preserve the direction of time [1]. Hence, it is sufficient to prove the case ε2(D1) = D2 as proof of all other cases
εj(Di) = Dk is similar. In order to prove the inclusion εj(D1) ⊂ D2 we take any (λ, t) = (γ, c, t) ∈ D1 and prove
that

ε2 : (λ, t) 7→ (λ2, t) = (γ2, c2, t) ∈ D2.

By Proposition 3.1,

t(λ2) = t ◦ ε2 ◦ et
−→
Hν (λ) = t(λ).

Thus t < t(λ). Moreover, at instant t/2 the trajectories of the vertical subsystem are given as:

λt/2 = (γt/2, ct/2) = e
−→
Hνt/2(λ),

λ2
t/2 =

(
γ2
t/2, c

2
t/2

)
= e
−→
Hνt/2

(
λ2
)
,

Since λ2 = ε2 ◦ e
−→
Hνt(λ), we have

λ2
t/2 = e

−→
Hνt/2 ◦ ε2 ◦ e

−→
Hνt(λ) = ε2 ◦ e−

−→
Hνt/2 ◦ e

−→
Hνt(λ) = ε2 ◦ e

−→
Hνt/2(λ) = ε2(λt/2). (3.8)

In proof of (3.8) we used the fact that for any diffeomorphism F : M → M and a vector field
−→
V on a manifold

M , F∗
−→
V = −

−→
V ⇐⇒ F ◦ et

−→
V = e−t

−→
V ◦ F . Clearly, ε2(λt/2) =

(
γ2
t/2, c

2
t/2

)
and from (6.3) [1] we have:(

γ2
t/2, c

2
t/2

)
=
(
−γt/2, ct/2

)
.

Thus sin
γ2
t/2

2 = sin
−γt/2

2 < 0. We proved that (λ2, t) ∈ D2, thus ε2(D1) ⊂ D2. Similarly it follows that
ε2(D2) ⊂ D1. Since ε2 ◦ ε2 = Id, then ε2 ◦ ε2(D1) = D1 =⇒ ε2(D1) = D2. �

Proposition 3.6 The domains D1, D2 ⊂ Ñ are open and connected.

Proof Since ε2 : N → N is a diffeomorphism and ε2(D1) = D2 it suffices to prove that D1 is open and connected.
Consider a vector field

P =
t

2

(
c
∂

∂γ
− sin γ

∂

∂c

)
∈ Vec(N).

The flow of this vector field eP is given as:

eP (γ, c, t) = eP (λ, t) =

(
e
t
2

−→
Hν (λ), t

)
=
(
γt/2, ct/2, t

)
.
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Thus eP (D1) = D̃1 where

D̃1 =
{

(λ, t) ∈ N | sin
γ

2
> 0, t < t(λ)

}
.

The set D̃1 is a subgraph of a continuous function λ 7→ t(λ) on an open connected 2-dimensional domain
{(γ, c) ∈ C | γ ∈ (0, 2π), c ∈ R}, thus D̃1 is open and connected. Since D1 = e−P (D̃1) therefore D1 is also
open and connected. �

Proposition 3.7 There hold the inclusions:

(1) Exp(Di) ⊂Mi, i = 1, 2,

(2) Exp(Ñ) ⊂ M̃,

(3) Exp(N ′) ⊂M ′.

Proof

(1) It suffices to prove only that Exp(D1) ⊂M1, in view of the reflections εj . Notice the decomposition:

D1 = (D1 ∩N1) t (D1 ∩N2) t (D1 ∩N3) t (D1 ∩N5) . (3.9)

Let (λ, t) ∈ D1 ∩N1 =
{

(λ, t) ∈ N1 | t < t(λ), sin
γt/2

2 > 0
}
, thus p = t

2 ∈ (0, 2K(k)). Further, from
formula (5.3) [1] we have s1snτ > 0. Now recall formula (3.2) [8]:

sinh zt = s1
2k snp snτ

∆
, ∆ = 1− k2sn2p sn2τ. (3.10)

Then we get sinh zt > 0, thus zt > 0, i.e., Exp(λ, t) ∈ M1. We proved that Exp(D1 ∩N1) ⊂ M1. All other
required inclusions Exp(D1∩Nj) ⊂M1, j = 2, 3, 5, are proved similarly, and the inclusion Exp(D1) ⊂M1

follows.
(2) Since Ñ = D1 ∪D2 and M̃ = M1 ∪M2, the inclusion Exp(Ñ) ⊂ M̃ follows from item (1).
(3) We have N ′ =

(
N ′ ∩N1

)
t
(
N ′ ∩N2

)
t
(
N ′ ∩N3

)
tN4.

Let (λ, t) ∈ N ′ ∩N1 =
{

(λ, t) ∈ N̂1 | t = t(λ) or sin
γt/2

2 = 0
}
, then similarly to the proof of item (1)

we get p = 2K(k) or snτ = 0, thus zt = 0 by (3.10). From (3.6) [8] we get R2(qt) = 2s1
1−k2 dnτ f2(p) 6= 0,

and therefore x2 + y2 6= 0. We proved that Exp(N ′ ∩ N1) ⊂ M ′. It follows similarly that Exp(N ′ ∩ Nj) ⊂
M ′, j = 2, 3. Finally, if (λ, t) ∈ N̂4, then

qt = (xt, yt, zt) = (t, 0, 0) ∈M ′.

Consequently, Exp(N ′) ⊂M ′. �

Theorem 3.1 For λ ∈ ∪5
i=1Ci, we have tconj

1 (λ) ≥ tMax
1 (λ).

Proof Apply equations (2.22)–(2.24) and (2.25)–(2.28). �

Proposition 3.8 The restriction Exp : Ñ → M̃ is non-degenerate.

Proof From Theorem 3.1, tconj
1 (λ) ≥ tMax

1 (λ). Since for any ν = (λ, t) ∈ Ñ we have t < t(λ) and therefore
exponential mapping is non-degenerate ∀ν = (λ, t) ∈ Ñ . �

Hence we proved properties P1, P2 and P3 for the exponential mapping Exp : Di →Mi. It only remains to
prove condition P4 now to establish that the exponential mapping Exp : Di →Mi is indeed a diffeomorphism.

3.3 Diffeomorphic Properties of the Exponential Mapping

In this subsection we prove that the exponential mapping Exp : Di → Mi, i = 1, 2, is proper. First we recall
an equivalent formulation of the properness property.

Definition 1 Let X be a topological space and {xn} ⊂ X a sequence. We write xn → ∂X if there is no compact
K ⊂ X such that xn ∈ K for any n ∈ N.

Remark 1 Let X,Y be topological spaces and F : X → Y a continuous mapping. The mapping F is proper iff
for any sequence {xn} ⊂ X there holds the implication:

xn → ∂X =⇒ F (xn)→ ∂Y.

Below we apply this properness test to the mapping Exp : D1 →M1.
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Lemma 1 Let {qn} ⊂ M1. We have qn → ∂M1 iff there is a subsequence {nk} on which one of the conditions
holds:

(1) z → 0,
(2) z → +∞,
(3) x→∞,
(4) y →∞.

Proof Any compact set in M1 is contained in a compact set
{
q ∈M1 | ε ≤ z ≤ 1

ε , |x| ≤ 1
ε , |y| ≤ 1

ε

}
for

some ε ∈ (0, 1). �

Lemma 2 Let {νn} ⊂ D1, then νn → ∂D1 iff there is a subsequence {nk} on which one of the following
conditions hold:

(1) γt/2 → 0,
(2) γt/2 → 2π,
(3) ct/2 →∞,
(4) t→ 0,
(5) t→ +∞,
(6) t(λ)− t→ 0.

Proof Any compact set in D1 is contained in a compact set{
ν ∈ N | γt/2 ∈ [ε, 2π − ε] ,

∣∣ct/2∣∣ ≤ 1

ε
, t ∈ [ε,

1

ε
], t(λ)− t ≥ ε

}
,

for some ε ∈ (0, 1). �

Proposition 3.9 The mapping Exp : Di →Mi, i = 1, 2, is proper.

Proof In view of the reflections εj , it suffices to consider the case Exp : D1 → M1. Let {νn} ⊂ D1, νn → ∂D1,
we have to show that qn = Exp(νn)→ ∂M1. Taking into account decomposition (3.9), we can consider the cases
{νn} ⊂ D1 ∩Nj , j = 1, 2, 3, 5.

Let {νn} ⊂ D1∩N1, νn → ∂D1. We will need the following formulas for the extremals λt = et
−→
H (λ), λ ∈ C1,

obtained in [1] and [8]:

sin
γt
2

= s1k sn(ϕt),

ct
2

= k cn(ϕt),

sinh zt = s1
k snp snτ

∆
, ∆ = 1− k2sn2p sn2τ,

R2(qt) = f2(p)
2s1

1− k2
dnτ, f2(p) = dnpE(p)− k2snp cnp.

Notice that p = t
2 , τ = ϕ+ t

2 , and consider all the cases (1)–(6) of Lemma 2.

(1) If γt/2 → 0, then sin
γt/2

2 = s1k snτ → 0, thus sinh zt → 0, so zt → 0, hence qn → ∂M1(Lemma 1, (1)).
(2) If γt/2 → 2π, then sin

γt/2
2 = s1k snτ → 0, thus sinh zt → 0, so zt → 0, hence qn → ∂M1.

(3) The case ct/2 →∞ is impossible.
(4) If t→ 0, then p→ 0, thus zt → 0.
(5) Let t→ +∞, then p→ +∞. Since p ∈ (0, 2K(k)) then k → 1. Denote u = am(p) ∈ (0, π). On a subsequence

we have u→ ū ∈ [0, π] and we will suppose so in the sequel.
(a) If ū ∈ [0, π), then p = F (u, k)→ F (ū, 1) =

´ ū
0

dt
cos(t) < +∞, a contradiction.

(b) Let ū = π
2 , thus snp = sinu→ 1, cnp = cos(u)→ c.

i. If snτ → 1, then ∆→ 0, thus zt →∞.
ii. Let snτ → s̄ 6= 1, then dnτ →

√
1− s̄2 6= 0. Denote

g2(u) = f2(F (u, k)) =
√

1− k2 sin2 uE(u, k)− k2 sin(u) cos(u).

We prove now that g2(u)
1−k2 → +∞, then f2(u)

1−k2 → +∞, thus R2(qt)→∞, so x2
t +y2

t +z2
t →∞, whence

qt → ∂M1. Denote k′ =
√

1− k2 → 0. We can suppose that on a subsequence cosu
k′ → α ∈ [0,+∞].

We have

k2 sin(u) cos(u) = sin(u) cos(u) + o(k′2),√
1− k2 sin2 u =

√
cos2 u+ k′2 − k′2 cos2 u.
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Now we estimate E(u, k) from below:

E(u, k)− sin(u) =

û

0

√
1− k2 sin2 tdt−

û

0

cos(t)dt =

û

0

1− k2 sin2 t− cos2 t√
1− k2 sin2 t+ cos t

dt

>
1− k2

2

û

0

sin2 t dt

=
1− k2

4

(
u− sin(2u)

2

)
=
π

8
k′2(1 + o(1)).

Thus,
E(u, k) > sin(u) +

π

8
k′2(1 + o(1)).

A. Let α ∈ [0,+∞). Then cos(u) = αk′ + o(k′), sin(u) = 1 + o(1), thus

k2 sin(u) cos(u) = αk′ + o(k′),√
1− k2 sin2(u) =

√
1 + α2k′ + o(k′),

E(u, k) = 1 + o(1),√
1− k2 sin2 uE(u, k) =

√
1 + α2k′ + o(k′),

g2(u) =
(√

1 + α2 − α
)
k′ + o(k′),

g2(u)

k′2
=

(√
1 + α2 − α

)
k′

(1 + o(1))→∞,

and the claim follows.
B. Let α = +∞, thus k′ = o(cos(u)). Then

k2 sin(u) cos(u) = sin(u) cos(u)− k′2 cos(u) + o
(
k′2 cos(u)

)
,

√
1− k2 sin2 u = cos(u)

√
1 +

k′2

cos2 u
+ o

(
k′2

cos2 u

)
= cos(u) +

1

2

k′2

cos(u)
+ o

(
k′2

cos(u)

)
,√

1− k2 sin2 uE(u, k) > cos(u) sin(u) +
1

2

k′2

cos(u)
+ o

(
k′2

cos(u)

)
,

g2(u) >
1

2

k′2

C
(1 + o (1)),

g2(u)

k′2
>

1

2C
(1 + o (1))→ +∞,

and the claim follows.
iii. Let u ∈ (0, π), then f2(p) = g2(u)→ |cos ū| (E(ū, 1) + sin ū) > 0, thus

f2(p)√
1− k2

→ +∞.

Since dnτ√
1−k2

≥ 1, then R2(qt)→∞, so x2
t + y2

t + z2
t →∞, whence qt → ∂M1.

iv. If ū = π, then snp = sin(u)→ 0, thus zt → 0.
(6) Let t(λ) − t → 0. Recall that t(λ) = 4K(k) for λ ∈ C1, thus 4K(k) − t → 0. Since k ∈ (0, 1), then there is

a subsequence {nm} on which k → k̄ ∈ [0, 1]. If k̄ ∈ [0, 1), then K(k) → K(k̄) < +∞, thus t → 4K(k̄), so
p = 2K(k̄). Consequently, sinh zt → 0, whence qn → ∂M1 (Lemma 1, (1)). If k̄ = 1, then K(k)→ +∞, thus
t→ +∞, qn → ∂M1 by item (5).

Consequently, in each of the cases (1)–(6) of Lemma 2 we get qn → ∂M1 for a sequence {νn} ⊂ D1 ∩
N1, νn → ∂D1. All the rest cases {νn} ⊂ D1 ∩Nj , j = 2, 3, 5, are considered similarly.

Summing up, for any sequence {νn} ⊂ D1 with νn → ∂D1 we have Exp(νn) → ∂M1. Thus the mapping
Exp : D1 →M1 is proper. �

Now we get the main result of this section.
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Theorem 3.2 The mapping Exp : Di →Mi, i = 1, 2, is a diffeomorphism.

Proof All of the conditions P1–P4 are satisfied for the mapping Exp : D1 →M1:

– D1 ⊂ N and M1 ⊂M are open subsets thus 3-dimensional manifolds (Proposition 3.6, Proposition 3.4),
– P1 - D1 is connected (Proposition 3.6),
– P2 - M1 is connected and simply connected (Proposition 3.4),
– P3 - Exp|D1

is non-degenerate (Proposition 3.8),
– P4 - Exp : D1 →M1 is proper (Proposition 3.9).

Thus Exp : D1 → M1 is a diffeomorphism. By virtue of the reflections, Exp : D2 → M2 is a diffeomorphism as
well.

�

Corollary 1 The exponential mapping Exp : Ñ → M̃ is a diffeomorphism.

Proof Follows from Theorem 3.2. �

3.4 Cut Time

Now we can prove that inequality (3.5) is in fact an equality for λ ∈ C\C4.

Theorem 3.3 If λ ∈ C\C4, then tcut(λ) = t(λ).

Proof Let λ ∈ C\C4 = ∪3
i=1Ci ∪ C5. In view of inequality (3.5), it remains to prove that tcut(λ) ≥ t(λ). Take

any t1 ∈ (0, t(λ)).We need to prove that the geodesic Exp(λ, t) is optimal on the segment t ∈ [0, t1].

Consider first the case λ ∈ ∪3
i=1Ci. If sin

γt1/2
2 6= 0, then (λ, t1) ∈ Ñ , and q1 = Exp(λ, t1) ∈ M̃ . By virtue of

Proposition 3.7 and Theorem 3.2, the point q1 has a unique preimage under the mapping Exp : N̂ → M̂ . Thus
the geodesic Exp(λ, t) is optimal on the segment t ∈ [0, t1].

If λ ∈ ∪3
i=1Ci and sin

γt1/2
2 = 0, then we can choose t2 ∈ (t1, t(λ)) such that sin

γt2/2
2 6= 0. By the

argument of the preceding paragraph, the geodesic Exp(λ, t) is optimal at the segment [0, t2], thus at the segment
[0, t1] ⊂ [0, t2] as well.

Finally, if λ ∈ C5, then (λ, t1) ∈ Ñ , and the geodesic Exp(λ, t), t ∈ [0, t1], is optimal as above.
We proved that tcut(λ) ≥ t(λ), thus tcut(λ) = t(λ) for any λ ∈ C\C4. �

We will be able to prove the equality tcut(λ) = t(λ) for λ ∈ C4 below after the description of the structure
of the exponential mapping Exp : N ′ →M ′. The geodesic Exp(λ, t), λ ∈ C4, requires a separate study since it
belongs to the set M ′ for all t > 0.

Intuitively, Theorem 3.3 establishes the fact that since Exp : Ñ → M̃ is a diffeomorphism, hence upto time
t < t(λ) there is a unique point ν = (λ, s) ∈ Ñ that is mapped to a unique extremal trajectory qs = Exp(λ, s) ∈
M̃ that joins q0 ∈ M to q1 ∈ M̃ ⊂ M . Hence, the trajectory qs = Exp(λ, s) ∈ M̃ is optimal and therefore
tcut(λ) = t(λ). It therefore follows that optimal synthesis in the domain M̃ is given by:

ui(q) = hi(λ), i = 1, 2, (λ, t) = Exp−1(q) ∈ Ñ , q ∈ M̃,

where ui are the control variables (i.e., translational and rotational velocities) and hi are the optimal controls
defined in (4.8) [1].

4 Exponential Mapping on the Boundary of Diffeomorphic Domains

Until now we have studied the mapping Exp : Ñ → M̃ and proved that it is a diffeomorphism. This allowed us
to prove that the cut time tcut(λ) = tMax

1 (λ), λ ∈ C\C4. In this section we obtain the global structure of the
exponential mapping in order to characterize the cut locus and the Maxwell strata and to construct the optimal
synthesis. Specifically we study the mapping Exp : N ′ →M ′ where:

N ′ =
{

(λ, t) ∈ ∪3
i=1Ni | t = tMax

1 (λ) or sin
(γt/2

2

)
= 0

}
∪
{

(λ, t) ∈ N4 | t ≤ 2π = tconj
1 (λ)

}
,

M ′ =
{
q ∈M | x2 + y2 6= 0, z = 0

}
.
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j λ p τ k

1 C0
1 2K (0,K) (0, 1)

9 C+
2 2K (0,K) (0, 1)

17 C0
1 2K K (0, 1)

21 C0
1 2K 0 (0, 1)

25 C+
2 2K 0 (0, 1)

29 C+
2 2K K (0, 1)

Table 4 Decomposition N ′j , j ∈ {1, 9, 17, 21, 25, 29}

λ p τ k

C0
1 (0, 2K) 0 (0, 1)

C+
2 (0, 2K) 0 (0, 1)

C0+
3 (0,+∞) 0 1

Table 5 Decomposition N ′j , j = 35

j λ t

33 C0
4 2π

39 C0
4 (0, 2π)

Table 6 Decomposition N ′j , j ∈ {33, 39}

Fig. 4 The sets N ′j with t = tMax
1 (λ) or sin

(
γt/2

2

)
= 0

4.1 Stratification of N ′

We define subsets N ′j ⊂ N
′, j = 1, . . . , 40, as follows:

– for j ∈ {1, 9, 17, 21, 25, 29} the sets N ′j are given by Table 4, for j = 35 by Table 5 and for j ∈ {33, 39} by
Table 6,

– for all the rest j the set N ′j are defined by the action of reflections εi as in (4.1)–(4.4):

εi
(
N ′j
)

= N ′j+i, i = 1, . . . , 7, j = 1, 9, (4.1)

ε2i
(
N ′17

)
= N ′17+i, i = 1, 2, 3, (4.2)

ε2+i (N ′j) = N ′j+i, i = 1, 2, 3, j = 21, 25, 29, 35, (4.3)

ε4
(
N ′j
)

= N ′j+1, j = 33, 39. (4.4)

The following stratification of the set N ′ follows from the definition of the sets N ′j .

Lemma 3 The stratification of N ′ shown in Figures 4,5 is given as:

N ′ = t40
j=1N

′
j . (4.5)

From Figures 4, 5 we see the sets N ′j given in Tables 4, 5, 6 pertain to the quadrant of the phase portrait of
vertical subsystem for which λ = (γ, c) ∈ C such that γ ∈ [0, π] and c ∈ [0,∞). For λ = (γ, c) in other parts of
phase portrait, the sets N ′j are obtained by the reflection symmetries (4.1)–(4.4) of the vertical subsystem.
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Fig. 5 The sets N ′j with t < tMax
1 (λ), sin

γt/2
2

= 0

Fig. 6 Stratification of the quadrant Q

4.2 Stratification of a Quadrant of the Plane z = 0

Define the following curves and points in the quadrant Q =
{

(x, y) ∈ R2 | x ≥ 0, y ≤ 0
}
(see Figure 6):

γ1 : x = 0, y = y1(k) = − 4a(k)√
1− k2

, k ∈ (0, 1),

γ2 : x = x2(k) =
4k a(k)

1− k2
, y = y2(k) = − 4a(k)

1− k2
, k ∈ (0, 1),

γ3 : x = x3(k) =
4

1− k2
E(k), y = y3(k) = − 4k

1− k2
E(k), k ∈ (0, 1),

γ4 : x = x4(t) = t, y = 0, t ∈ (0, 2π),

γ5 : x = x5(k) =
4√

1− k2
E(k), y = 0, k ∈ (0, 1),

P : x = 2π, y = 0,

O : x = 0, y = 0,

where a(k) = E(k)− (1− k2)K(k), k ∈ (0, 1). The curves γ1, . . . , γ5 result from substitution of t = tMax
1 (λ),

and ϕ = τ − p from Table 4 in the equations of extremal trajectories for λ ∈ ∪5
i=1Ci. The curves γ1, . . . , γ5 and

the point P are the images of certain sets Exp
(
N ′j
)
under the projection

p : {q ∈M | z = 0} → R2
x,y, (x, y, 0) 7→ (x, y). (4.6)
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γ1 =p ◦ Exp
(
N ′29

)
,

γ2 =p ◦ Exp
(
N ′25

)
,

γ3 =p ◦ Exp
(
N ′21

)
,

γ4 =p ◦ Exp
(
N ′39

)
,

γ5 =p ◦ Exp
(
N ′17

)
,

P =p ◦ Exp
(
N ′33

)
.

These equalities can be verified easily. From [8] we know that the first Maxwell points with t = tMax
1 (λ) and

conjugate points with t = tMax
1 (λ) and snτ cnτ = 0 lie in the plane z = 0. Hence, the curves γ1, . . . , γ5 decompose

the fourth quadrant of the plane z = 0 into various regions (see Figure 6). The regularity and mutual disposition
of the curves γ1, . . . , γ5 are described in the following lemmas.

Lemma 4 The function a(k) satisfies the following properties:

a : (0, 1) → (0, 1) is a diffeomorphism, (4.7)

k → 0 =⇒ a(k) =
π

4
k2 + o(k2), (4.8)

k → 1− 0 =⇒ a(k) = 1− 1

2
k′2 ln

(
1

k′

)
+O(k′2) (4.9)

where k′ =
√

1− k2. Moreover, the function a(k) is convex.

Proof If k → 0, then

K(k) =
π

2

(
1 +

k2

4

)
+ o(k2),

E(k) =
π

4

(
1− k2

4

)
+ o(k2),

which gives asymptotics (4.8). If k → 1− 0, then

K(k) = ln

(
1

k′

)
+ o(k′),

E(k) = 1 +
1

2
k′2 ln

(
1

k′

)
+O(k′2),

which gives asymptotics (4.9). Finally, property (4.7) follows since

da

dk
= kK(k) > 0,

lim
k→0

a(k) = 0,

lim
k→1−0

a(k) = 1.

The function a(k) is convex since da
dk = kK(k) increases ∀k ∈ (0, 1). �

Lemma 5 The function y = y1(k) defines a diffeomorphism y1 : (0, 1)→ (−∞, 0). Moreover,

lim
k→0+

y1(k) = 0, (4.10)

lim
k→1−

y1(k) = −∞. (4.11)

Proof The function y = y1(k) is a strictly decreasing function with:

dy1

dk
=
−4kE(k)

(1− k2)
3
2

< 0, k ∈ (0, 1).

Further, Lemma 4 yields the asymptotics:

k → 0 =⇒ y1(k) =
−4a(k)√

1− k2
→ 0,

k → 1− 0 =⇒ y1(k) ∼ − 4

k′
→ −∞,

and the statement of this lemma follows. �
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Lemma 6 The function x = x4(t) defines a diffeomorphism x4 : (0, 2π)→ (0, 2π). Moreover,

lim
t→0+

x4(t) = 0,

lim
k→2π−

x4(t) = 2π.

Proof Clearly x4(t) is a smooth bijection with a smooth inverse. Hence it is a diffeomorphsim. The limits can be
calculated by direct substitution in x4(t). �

Lemma 7 The function x = x5(k) defines a diffeomorphism x5 : (0, 1)→ (2π,+∞). Moreover,

lim
k→0+

x5(k) = 2π,

lim
k→1−

x5(k) = +∞.

Proof The function x = x5(k) is a strictly decreasing function with:

dx5

dk
=

4a(k)

k(1− k2)
3
2

> 0,

and

k → 0 =⇒ E(k)→ π

2
=⇒ x5(k)→ 2π,

k → 1− 0 =⇒ E(k)→ 1 =⇒ x5(k)→ +∞,

and the statement of the lemma follows. �

Lemma 8 The functions x = x2(k), y = y2(k) k ∈ (0, 1), define parametrically a function x = x2(y) which
is a diffeomorphism x2 : (−∞, 0)→ (0,+∞) with limy→−∞ x2(y) = +∞, limy→0− x2(y) = 0. Moreover,

− y − 2 < x2(y) < −y, y ∈ (−∞, 0). (4.12)

The curve γ2 is convex, has near the origin the asymptotics

y = −π
1
3 x

2
3 + o

(
x

2
3

)
, x→ 0, (4.13)

and has an asymptote y + x+ 2 = 0 as x→∞.

Proof Notice that

k → 0 =⇒ x2(k)→ 0, y2(k)→ 0,

k → 1 =⇒ x2(k)→ +∞, y2(k)→ −∞.

Also,

dx2

dk
=

4
((

1 + k2
)
E(k)− (1− k2)K(k)

)
(1− k2)2

=
4
(
a(k) + k2E(k)

)
k (1− k2)2

> 0,

dy2

dk
= −

4k
(
2E(k)− (1− k2)K(k)

)
(1− k2)2

= −4k (a(k) + E(k))

(1− k2)2
< 0,

thus the functions x2(k) and y2(k) define diffeomorphisms x2 : (0, 1) → (0,+∞) and y2 : (0, 1) → (−∞, 0). So
these functions define parametrically the diffeomorphism

x = x2(y), y ∈ (−∞, 0), x ∈ (0,+∞),

y = y2(x), x ∈ (0,+∞), y ∈ (−∞, 0).

Notice that

lim
y→−∞

x2(y) = lim
k→1

x2(k) = +∞,

lim
y→0−

x2(y) = lim
k→0−

x2(k) = 0.
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Fig. 7 The curve γ2 and its bounds y + x = −2, y + x = 0.

Now we show that the curve γ2 is convex. We have

dy2

dx
=

dy2/dk

dx2/dk
= α(k),

α(k) = −k 2E(k)− (1− k2)K(k)

(1 + k2)E(k)− (1− k2)K(k)
, (4.14)

dα

dk
= −

(
1− k2

) 3E2(k)− (5− k2)E(k)K(k) + 2(1− k2)K2(k)

((1 + k2)E(k)− (1− k2)K(k))
2

. (4.15)

Since a(k) = E(k) −
(
1− k2

)
K(k) ∈ (0, 1), then E(k)

K(k) ∈
((

1− k2
)
, 1
)
. But the numerator of the function

t = E(k)
K(k) 7→ 3t2 −

(
5− k2

)
t+ 2

(
1− k2

)
is negative for t ∈

((
1− k2

)
, 1
)
thus the numerator of fraction (4.15)

is positive. Therefore, dαdk > 0, i.e., dy2dx is increasing for k ∈ (0, 1) and also increasing for x ∈ (0,+∞). Thus the
function y2(x) and its graph, i.e., the curve γ2, are convex. The second inequality in (4.12) follows since

x2(k)

y2(k)
= −k > −1, k ∈ (0, 1).

The first inequality in (4.12) and existence of the asymptote y + x+ 2 = 0 follows from equalities:

lim
k→1−

y2(k)

x2(k)
= −1,

lim
k→1−

(y2(x) + x2(y)) = −2,

(y2(x) + x2(y)) + 2 =
2

1 + k
(1 + k − 2a(k)) > 0,

since a(k) < k < 1+k
2 for k ∈ (0, 1). Finally asymptotics (4.13) follows since

x2(k) = πk3 + o(k3), y2(k) = −πk2 + o(k2), k → 0.

�
A plot of the curve γ2 with its bounds given by (4.12) is shown in Figure 7.

Lemma 9 The functions x = x3(k), y = y3(k), define parametrically a function x = x3(y) which is a diffeo-
morphism x3 : (−∞, 0)→ (2π,+∞) with limy→−∞ x3(y) = +∞, limy→0+ x3(y) = 2π. Moreover,

x3(y) > 2π, x3(y) > 2− y, y ∈ (−∞, 0). (4.16)

The curve γ3 is convex and has an asymptote y + x = 2 as x→∞.
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Fig. 8 The curve γ3 and its bounds y + x = 2, x = 2π.

Proof Notice that

k → 0 =⇒ x3(k)→ 2π, y3(k)→ 0,

k → 1 =⇒ x3(k)→ +∞, y3(k)→ −∞.

Furthermore,

dx3

dk
=

4
((

1 + k2
)
E(k)− (1− k2)K(k)

)
k (1− k2)2

=
4
(
a(k) + k2E(k)

)
k (1− k2)2

> 0,

dy3

dk
= −

4
(
2E(k)− (1− k2)K(k)

)
k (1− k2)2

= −4 (a(k) + E(k))

k (1− k2)2
< 0,

thus the functions x3(k) and y3(k) define diffeomorphisms x3 : (0, 1)→ (2π,+∞) and y3 : (0, 1)→ (−∞, 0). So
these functions define parametrically a diffeomorphism

x = x3(y), y ∈ (−∞, 0), x ∈ (2π,+∞).

Notice that

lim
y→−∞

x3(y) = lim
k→1

x3(k) = +∞,

lim
y→0+

x3(y) = lim
k→0+

x3(k) = 2π.

Since dx3

dk > 0, therefore x3(k) > 2π for k ∈ (0, 1), which gives the first inequality in (4.16). The second inequality
in (4.16) and existence of the asymptote y + x = 2 follow from the equalities:

lim
k→1

y3(k)

x3(k)
= −1,

lim
k→1

(y3(x) + x3(y)) = 2,

(y3(x) + x3(y))− 2 =
4

1 + k

(
E(k)− 1 + k

2

)
> 0.

Finally, convexity of the curve γ3 follows since

dy3

dx
=
dy3/dk

dx3/dk
= α(k),

where α(k) is given by (4.14), which is increasing by the proof of Lemma 8. �
A plot of the curve γ3 with its bounds given by (4.16) is shown in Fig 8.

Lemma 10 For any y ∈ (−∞, 0), we have x2(y) < x3(y).
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j y x z

1 (−∞, 0) (x3(y),+∞) 0
9 (−∞, 0) (0, x2(y)) 0
17 0 (2π,+∞) 0
21 (−∞, 0) x3(y) 0
25 (−∞, 0) x2(y) 0
29 (−∞, 0) 0 0
33 0 2π 0
35 (−∞, 0) (x2(y), x3(y)) 0
39 0 (0, 2π) 0

Table 7 Definition of M ′j ⊂ p−1(Q).

Proof It follows from Lemmas 8 and 9 that x2(y) < −y < 2− y < x3(y), y ∈ (−∞, 0). �

Lemmas 5–10 allow us to define the following domains in the plane Q ⊂ R2
x,y:

m1 =
{

(x, y) ∈ R2 | y < 0, 0 < x < x2(y)
}
,

m2 =
{

(x, y) ∈ R2 | y < 0, x2(y) < x < x3(y)
}
,

m3 =
{

(x, y) ∈ R2 | y < 0, x3(y) < x
}
,

see Figure 6.

Lemma 11 The domains m1,m2,m3 ⊂ R2
x,y are open, connected and simply connected, with the following

boundaries:

∂m1 = γ1 ∪ γ2 ∪ {O},
∂m2 = γ2 ∪ γ3 ∪ γ4 ∪ {O,P},
∂m3 = γ3 ∪ γ5 ∪ {P}.

Moreover, the quadrant Q has the following decomposition into disjoint subsets:

Q =
(
∪3
i=1mi

)
∪
(
∪5
i=1γi

)
∪ {O,P}.

Proof Follows from the definition of the domains mi and from Lemmas 5–10. �

Define the inverse images of the sets mi, γi, and P via the projection p (4.6):

M ′9 = p−1(m1), M ′35 = p−1(m2), M ′1 = p−1(m3),

M ′29 = p−1(γ1), M ′25 = p−1(γ2), M ′21 = p−1(γ3),

M ′39 = p−1(γ4), M ′17 = p−1(γ5), M ′33 = p−1(P ).

Explicitly, these sets are defined in Table 7.
Now we aim to prove that all the mappings Exp : N ′j → M ′j are diffeomorphisms for the sets N ′j and M ′j

defined by Tables 4, 5, 6, 7.

Lemma 12 For any j ∈ {17, 21, 25, 29, 33, 39} the mapping Exp : N ′j →M ′j is a diffeomorphism.

Proof Follows immediately from above lemmas:

– Lemma 7 for j = 17,
– Lemma 9 for j = 21,
– Lemma 8 for j = 25,
– Lemma 5 for j = 29,
– Lemma 6 for j = 39,
– and it is obvious for j = 33. �

Now we consider the mappings of 2-dimensional domains.

Lemma 13 The mapping Exp : N ′9 →M ′9 is a diffeomorphism.
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Proof In the coordinates p = t
2k and τ =

(
ϕ+ t

2

)
/k, the domain N ′9 is given as follows:

N ′9 : λ ∈ C+
2 , s2 = 0, p = 2K(k), τ ∈ (0,K(k)), k ∈ (0, 1).

Introduce further the coordinate u = am(τ), then,

N ′9 : s2 = 0, p = 2K(k), u ∈
(

0,
π

2

)
, k ∈ (0, 1).

In these coordinates the exponential mapping Exp(λ, t) = (x, y, z) is given as follows:

x = x9(u, k) =
4ka(k) cos(u)

1− k2
,

y = y9(u, k) = −4a(k)
√

1− k2 sin2(u)

1− k2
,

z = 0.

Consider the mapping:

f9 : Du,k → R2
x,y, (u, k) 7→ (x9, y9),

Du,k =
(

0,
π

2

)
u
× (0, 1)k.

We have to show that the mapping f9 : D → m1 is a diffeomorphism.

(1) First we show that f9(D) ⊂ m1.
We fix any k ∈ (0, 1) and show that the curve Γ : u → (x9, y9), u ∈

(
0, π2

)
, is contained in m1. Compute

first the boundary points of Γ :

u → 0 =⇒ Γ (u)→ (x2(k), y2(k)) ∈ γ2,

u → π

2
=⇒ Γ (u)→ (0, y2(k)) ∈ γ1.

Further, since

∂x9

∂u
= −4ka(k)

1− k2
sin(u) < 0,

∂y9

∂u
=

4k2a(k)

1− k2

sin(u) cos(u)√
1− k2 sin2(u)

> 0,

then the curve Γ is a graph of the smooth function x 7→ y9(x). Since

dy9

dx
=
∂y9/∂u

∂x9/∂u
= − k cos(u)√

1− k2 sin2(u)
, for u ∈

(
0,
π

2

)
,

then the curve Γ is concave. Moreover,

dy9

dx

∣∣∣∣
u=0

= −k > α(k) =
dy2

dx
,

where α(k) is given by (4.14). Since the curve γ2 is convex, it follows that the curve Γ lies below the curve
γ2. Thus Γ ⊂ m1. Consequently, f9(D) ⊂ m1.

(2) Since
∂(x9, y9)

∂(u, k)
=

16k2E(k)a(k) sin(u)

(1− k2)2
√

1− k2 sin2(u)
> 0, (4.17)

then the mapping f9 : D → m1 is non-degenerate.
(3) Finally we show that the mapping f9 : D → m1 is proper.

It is obvious that a sequence (un, kn)→ ∂D iff it has a subsequence on which at least one of the conditions
hold:

u→ 0, u→ π

2
, k → 0, k → 1. (4.18)

On the other hand, a sequence (xn, yn)→ ∂m1 iff it has a subsequence on which at least one of the conditions
hold:

x→ 0, x→ +∞, y → 0, y → −∞, x2(y)− x→ 0. (4.19)

We show that in each of the cases (4.18) we have one of the cases (4.19). If k → 0, then x9 → 0 and y9 → 0.
We can assume below that k → k̄ ∈ (0, 1].
Let k̄ ∈ (0, 1). If u→ 0, then (x9, y9)→ (x2(k), y2(k)) ∈ γ2 thus x2(y)− x→ 0. If u→ π

2 , then x9 → 0. Let
k̄ = 1. If u→ 0, then x9 →∞. If u→ π

2 , then y9 →∞.
We proved that the mapping f9 : D → m1 is proper.
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(4) The sets D, m1 ⊂ R2 are open, connected and simply connected.
Thus f9 : D → m1 is a diffeomorphism, as well as Exp : N ′9 →M ′9. �

Lemma 14 The mapping Exp : N ′1 →M ′1 is a diffeomorphism.

Proof In the coordinates p = t
2 and τ = ϕ+ t

2 , the domain N ′1 is given as follows:

N ′1 : λ ∈ C0
1 , s1 = 0, p = 2K(k), τ ∈ (0,K(k)), k ∈ (0, 1).

Introduce further the coordinate u = am(τ), then

N ′1 : s1 = 0, p = 2K(k), u ∈
(

0,
π

2

)
, k ∈ (0, 1).

In these coordinates the exponential mapping Exp(λ, t) = (x, y, z) is given as follows:

x = x1(u, k) =
4E(k)

√
1− k2 sin2(u)

1− k2
,

y = y1(u, k) = −4k E(k) cos(u)

1− k2
,

z = 0.

Consider the mapping:

f1 : Du,k → R2
x,y, (u, k) 7→ (x1, y1),

Du,k =
(

0,
π

2

)
u
× (0, 1)k.

We have to show that the mapping f1 : D → m3 is a diffeomorphism.

(1) First we show that f1(D) ⊂ m3.
If (u, k) ∈ D, then x1(u, k) > 0, y1(u, k) < 0, thus f1(D) ⊂ R2

+− =
{

(x, y) ∈ R2 | x > 0, y < 0
}
.

The boundary of the domain m3 in R2
+− is the curve γ3 and along this curve we have y4(k)

x4(k) = −k. Thus

γ3 =

{
(x, y) ∈ R2

+− | x =
4E
(
− yx
)

1− y2

x2

}
,

so

m3 =

{
(x, y) ∈ R2

+− | x >
4E
(
− yx
)

1− y2

x2

}
.

Consider the function

ϕ1(u, k) = x−
4E
(
− yx
)

1− y2

x2

∣∣∣∣∣
x=x1(u,k), y=y1(u,k)

.

We have to show that ϕ1(u, k) > 0 for (u, k) ∈ D. Since

ϕ1(u, k) =
4E(k)

√
1− k2 sin2(u)

1− k2
− 4E(k̄)

1− k2 cos2 u
1−k2 sin2 u

=
4
√

1− k2 sin2(u)

1− k2

(
E(k)− E(k̄)

√
1− k2 sin2(u)

)
,

where k̄ = k cos(u)√
1−k2 sin2 u

, we have to show that

ϕ2(u, k) = E(k)− E(k̄)

√
1− k2 sin2(u) > 0, (u, k) ∈ D.

Since ϕ2(0, k) = 0 and
∂ϕ2

∂u
=

tan(u)√
1− k2 sin2(u)

ϕ3(u, k),

where ϕ3(u, k) =
(
1− k2 sin2(u)

)
E(k̄) −

(
1− k2

)
K(k̄), it is sufficient to show that ϕ3(u, k) > 0 for all

(u, k) ∈ D. By Lemma 4, we have

a(k) = E(k)−
(

1− k2
)
K(k) > 0, k ∈ (0, 1),
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thus

a(k̄) = E(k̄)−
(

1− k̄2
)
K(k̄)

=

(
1− k2 sin2(u)

)
E(k̄)−

(
1− k2

)
K(k̄)

1− k2 sin2(u)
> 0.

That is, ϕ3(u, k) > 0, ∀(u, k) ∈ D. Thus it follows that f1(D) ⊂ m3, i.e., Exp(N ′1) ⊂M ′1.
(2) Since

∂(x1, y1)

∂(u, k)
= − 16E(k) a(k) sin(u)

(1− k2)2
√

1− k2 sin2(u)
< 0,

then the mapping f1 : D → m3 is non-degenerate.
(3) Finally we show that the mapping f1 : D → m3 is proper.

In order to show that the mapping f1 : D → m3 is proper, we show that if a sequence (un, kn) ∈ D satisfies
one of the conditions:

u→ 0, u→ π

2
, k → 0, k → 1,

then its image (xn, yn) = f1(un, kn) satisfies one of the conditions:

x→ 0, x→ +∞, y → 0, y →∞, x3(y)− x→ 0.

We can assume that k → k̄ ∈ (0, 1], u ∈ ū ∈ [0, π2 ]. If k̄ = 0, then y1 → 0.
Let k̄ ∈ (0, 1). If ū→ 0, then (x1, y1)→ (x3(k), y3(k)) ∈ γ3, thus x3(y)− x→ 0. If ū = π

2 , then y1 → 0. Let
k̄ = 1. If ū ∈ [0, π2 ), then x1 →∞, y1 →∞. Let ū = π

2 , then

y1 ∼ −
4 cos(u)

1− k2
,

x1 ∼ 4

√
1

1− k2
+ k2

(
cos(u)

1− k2

)2

.

We can assume that cos(u)
1−k2 → d ∈ [0,+∞). If d ∈ [0,+∞), then x1 → +∞, and if d = +∞, then y1 →∞.

We proved that the mapping f1 : D → m3 is proper.
(4) The sets D, m3 ⊂ R2 are open, connected and simply connected.

Thus f1 : D → m3 is a diffeomorphism, as well as the mapping Exp : N ′1 →M ′1. �

Lemma 15 The mapping Exp : N ′35 →M ′35 is a diffeomorphism.

Proof It follows from Tables 5, 7 that

N ′35 =
{

(λ, t) ∈ N | γ t
2

= 0, c t
2
> 0, t ∈ (0, t(λ))

}
,

M ′35 = {q ∈M | z = 0, y < 0, x2(y) < x < x3(y)} .

Further we have an obvious decomposition

N ′35 = N ′35,1 tN ′35,2 tN ′35,3,

N ′35,j = N ′35 ∩Nj , j = 1, 2, 3.

(1) We show first that Exp(N ′35) ⊂M ′35.
Consider the set N ′35,2. In the coordinates p = t

2k and τ =
(
ϕ+ t

2

)
/k, the domain N ′35,2 is given as follows:

N ′35,2 : λ ∈ C+
2 , s2 = 1, p = (0, 2K(k)), τ = 0, k ∈ (0, 1).

Introduce further the coordinate u = am(p), then

N ′35,2 : λ ∈ C+
2 , s2 = 1, u = (0, 2π), τ = 0, k ∈ (0, 1).

In these coordinates the exponential mapping Exp(λ, t) = (x, y, z), (λ, t) ∈ N ′35,2 is given as follows:

x = x35(u, k) =
2k

1− k2

[
sin(u)

√
1− k2 sin2(u)− cos(u)α(u, k)

]
,

y = y35(u, k) = − 2

1− k2

[√
1− k2 sin2(u)α(u, k)− k2 sin(u) cos(u)

]
,

z = 0,
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where α(u, k) = E(u, k) −
(
1− k2

)
F (u, k). Thus Exp(N ′35,2) ⊂ {q ∈M | z = 0}. Now we show that

x35(u, k) > 0, y35(u, k) < 0 for (u, k) ∈ (0, π2 )× (0, 1). We have to prove the double inequality

α1(u, k) < α(u, k) < α2(u, k), (u, k) ∈ (0,
π

2
)× (0, 1),

α1(u, k) =
k2 sin(u) cos(u)√

1− k2 sin2(u)
,

α2(u, k) =
sin(u)

√
1− k2 sin2(u)

cos(u)
.

This double inequality follows since

α1(0, k) = α(0, k) = α2(0, k) = 0,

∂

∂u
(α(u, k)− α1(u, k)) =

(
1− k2

)
sin2(u) > 0,

∂

∂u
(α2(u, k)− α(u, k)) = 1− k2 > 0.

Thus x35(u, k) > 0, y35(u, k) < 0 for (u, k) ∈
(
0, π2

)
× (0, 1). If u ∈ [π2 , π), k ∈ (0, 1), then sin(u) >

0, cos(u) ≤ 0, α(u, k) > 0, thus x35(u, k) > 0, y35(u, k) < 0. We proved that
Exp(N ′35,2) ⊂ {q ∈M | z = 0, x > 0, y < 0}. The sets N ′35,1 and N ′35,3 are considered similarly.
Thus it follows that

Exp(N ′35) ⊂ R2
+− := {q ∈M | z = 0, x > 0, y < 0} .

We now show that Exp(N ′35) ⊂M ′35. Notice the decomposition

R2
+− = M ′1 tM ′9 tM ′21 tM ′25 tM ′35.

By contradiction, let Exp(N ′35) 6⊂M ′35, then Exp(N ′35)∩
(
M ′1 tM ′9 tM ′21 tM ′25

)
3 q. Let q ∈ Exp(N ′35)∩

M ′1 (the cases of intersection with M ′9,M
′
21,M

′
25 are considered similarly). Then there exist (λ35, t35) ∈ N ′35,

(λ1, t1) ∈ N ′1 such that q = Exp (λ35, t35) = Exp (λ1, t1). Notice that

(λ35, t35) ∈ N ′35 =⇒ t35 < tcut (λ35) , (4.20)

(λ1, t1) ∈ N ′1 =⇒ t1 < tcut (λ1) . (4.21)

If t35 < t1, then the trajectory Exp (λ1, t) , t ∈ [0, t1], is not optimal which contradicts to (4.21) . If t35 ≥ t1,
then the trajectory Exp(λ35, t), t ∈ [0, t35 + ε] is not optimal for small ε > 0 which contradicts to (4.20).
Thus Exp(N ′35) ∩M ′1 = ∅. Then it follows that Exp(N ′35) ⊂M ′35.

(2) We now prove that Exp : N ′35 →M ′35 is non-degenerate.
Let ν = (λ, t) ∈ N ′35,2. In the coordinates (p, τ, k) on N ′35,2, we have p ∈ (0, 2K(k)), τ = 0, k ∈ (0, 1).
Since t < 4K(k) = tcut(λ) ≤ tconj

1 (λ), therefore the Jacobian ∂q
∂ν (ν) 6= 0. We have

∂q

∂ν
=
∂(x, y, z)

∂(p, τ, k)
=

∣∣∣∣∣∣
xp xτ xk
yp yτ yk
zp zτ zk

∣∣∣∣∣∣ .
Since Exp

(
N ′i,2

)
⊂ {q ∈M | z = 0} , then zp(ν) = zk(ν) = 0, thus

∂q

∂ν
(ν) =

∂(x, y)

∂(p, k)
(ν) zτ (ν) 6= 0,

so ∂(x,y)
∂(p,k) (ν) 6= 0. Since ν ∈ N ′35,2 is arbitrary, then Exp|N ′35,2 is non-degenerate. Similarly it follows that

Exp is non-degenerate at any point ν ∈ N ′35,1 ∪N ′35,3.
(3) The mapping Exp : N ′35 →M ′35 is proper. This follows similarly to the proof of properness of Exp : D1 →M1.
(4) It is obvious that M ′35 is a connected, simply connected 2-dimensional manifold. In order to prove the same

property for N ′35, consider the vector field

−→
P = c

∂

∂γ
− sin γ

∂

∂c
∈ Vec(N).

Since
et/2
−→
P (N ′35

)
= {(λ, t) ∈ N | γ = 0, c > 0, t < t(λ)}

is a connected, simply connected 2-dimensional manifold, the same properties hold for the set N ′35.
Then it follows that Exp : N ′35 →M ′35 is a diffeomorphism. �
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i 1 2 3 4 5 6 7
x x x x −x −x −x −x
y −y y −y y −y y −y

Table 8 Action of εi in the plane {z = 0}

Fig. 9 Stratification of M ′

4.3 Stratification of the set M ′

Define subsets M ′j ⊂M
′, j = 1, . . . , 40, as follows:

– For j ∈ {1, 9, 17, 21, 25, 29, 33, 35, 39} , the sets Mj are given by Table 7,
– For the rest j the sets M ′j are given by equalities (4.22)–(4.25):

εi
(
M ′j
)

= M ′j+i, i = 1, . . . , 7, j = 1, 9, (4.22)

ε2i
(
M ′17

)
= M ′17+i, i = 1, 2, 3, (4.23)

ε2+i (M ′j) = M ′j+i, i = 1, 2, 3, j = 21, 25, 29, 35, (4.24)

ε4
(
M ′j
)

= M ′j+1, j = 33, 39. (4.25)

Lemma 16 A stratification of M ′ is given as:

M ′ = t40
j=1M

′
j . (4.26)

Proof Follows from Lemma 11 and the description of the action of reflections εi in the plane {z = 0}, see Table
8.

�

Stratification (4.26) is shown in Figure 9.

Theorem 4.1 For any i = 1, . . . , 40, the mapping Exp : N ′i →M ′i is a diffeomorphism.

Proof Follows from Lemmas 12–15 via the symmetries εi of the exponential mapping. �

Define the following important sets:
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Fig. 10 Cut Locus

– the cut locus Cut = {Exp(λ, tcut(λ)) | λ ∈ C} ,
– the first Maxwell set

Max =
{
q1 ∈M | ∃ minimizers q′(t) 6≡ q′′(t), t ∈ [0, t1], such that q′(t1) = q′′(t1) = q1

}
.

– the first conjugate locus Conj =
{

Exp(λ, tconj
1 (λ)) | λ ∈ C

}
,

– the rest of the points in M ′ compared with Cut, i.e., Rest = M ′\Cut.

We have the following explicit description of these sets:

Cut = ∪
{
M ′i | i = 1, . . . , 34

}
,

Max = ∪
{
M ′i | i = 1, . . . , 20, 29, . . . , 32

}
,

Conj ∩ Cut = ∪
{
M ′i | i = 21, . . . , 28, 33, 34

}
,

Rest = ∪
{
M ′i | i = 35, . . . , 40

}
,

Thus we get the following decomposition of the sets M ′:

M ′ = Cut t Rest,

Cut = Max t (Conj ∩ Cut).

The global structure of the cut locus is shown in Figure 10. From our analysis of the exponential mapping, we
get the following description of the cut time and the optimal synthesis on SH(2).

Theorem 4.2 We have the following explicit description of the cut time, tcut(λ) = t(λ) for any λ ∈ C. In detail:

λ ∈ C1 =⇒ tcut(λ) = tMax
1 (λ) = 4K(k),

λ ∈ C2 =⇒ tcut(λ) = tMax
1 (λ) = 4kK(k),

λ ∈ C4 =⇒ tcut(λ) = tconj
1 (λ) = 2π,

λ ∈ C3 ∪ C5 =⇒ tcut(λ) = +∞.
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Proof If λ ∈ C\C4, then we know from Theorem 3.3 that tcut(λ) = t(λ) = tMax
1 (λ). It remains to consider

the case λ ∈ C0
4 ∪ C1

4 . Let λ ∈ C0
4 , then qt = Exp(λ, t) = (t, 0, 0). For any t ∈ [0, t1], t1 = t(λ) = 2π,

the point qt is connected with q0 by a unique geodesic Exp(λ1, s), s ∈ (0, s1], with (λ1, s1) ∈ N̂ , namely
(λ1, s1) = (λ, t) ∈ N ′39 for t ∈ (0, 2π), and (λ1, s1) = (λ, t) ∈ N ′33 for t = 2π. Thus the geodesic qt, t ∈ [0, t1]
is a minimizer.

It follows that tcut(λ) = t(λ) = tconj
1 (λ) = 2π for λ ∈ C0

4 . By applying a reflection εi, we get a similar
equality for λ ∈ C1

4 . �

From the above description of the structure of the exponential mapping, we get the following statement.

Theorem 4.3

1. For every point q1 ∈ M̃ ∪ Rest, there exists a unique minimizer q(t), t ∈ [0, t1], for which the endpoint
q(t1) = q1 is neither a cut point nor a conjugate point.

2. For any point q1 ∈Max, there exist exactly two minimizers that connect q0 to q1 for which q1 is a cut point
but not a conjugate point.

3. For any point q1 ∈ Conj ∩ Cut, there exists a unique minimizer that connects q0 to q1 for which q1 is both
a cut and a conjugate point, but not a Maxwell point.

5 Sub-Riemannian Caustics and Sphere

In [8] we presented plots of sub-Riemannian sphere and sub-Riemannian wavefront in the rectifying coordinates
(R1, R2, z). Here we perform another graphic study of the essential sub-Riemannian objects, i.e., sub-Riemannian
caustic and sub-Riemannian sphere. Recall that the sub-Riemannian caustic which is the first conjugate locus is
given as:

Conj =
{

Exp
(
λ, tconj

1 (λ)
)
| λ ∈ C

}
.

The caustic is presented in Figure 11. The component starting at (0, 0, 0) is the local component of the caustic
whereas other two parts on right and left side are the parts of the global component of the first caustic. The red
colored surface inside the local and global components of the caustic is the cut locus whereas we see that the
boundary of cut locus forms the boundary of the caustic. A zoomed version of the local component of the caustic
is separately shown in Figure 12. It is evident that it is a four cusp surface as predicted in [?]. A combined plot
of first and second caustic is also shown in Figure 13. Note that in the local component of the caustic, the first
caustic is solid and the second caustic is transparent whereas in the global component of the caustic, the second
caustic is solid and the first caustic is transparent. The sub-Riemannian sphere SR(q0;R) at q0 is the set of
end-points of minimizing geodesics of sub-Riemannian length R and starting from q0:

SR = {Exp(λ,R) ∈M | λ ∈ C, tcut(λ) ≥ R} = {q ∈M | d(q0, q) = R} .

The following plots are presented:

1. Sphere of radius R = π (Figure 14),
2. Sphere of radius R = 2π (Figure 15),
3. Intersection of the cut locus with the hemisphere z < 0 of radius R = π (Figure 16),
4. Intersection of the cut locus with the hemisphere z < 0 of radius R = 2π (Figure 17),
5. Intersection of the cut locus with the hemisphere z < 0 of radius R = 3π (Figure 18),
6. Matryoshka of hemispheres z < 0 of radii R = π and R = 2π (Figure 19).

6 Conclusion

The global optimality analysis and structure of exponential mapping for the sub-Riemannian problem on the
Lie group SH(2) was considered. We cutout open dense domains by Maxwell strata in the preimage and in
the image of exponential mapping and prove that restriction of the exponential mapping to these domains is a
diffeomorphism. This fact leads to the proof that the cut time in the sub-Riemannian problem on the Lie group
SH(2) is equal to the first Maxwell time. We then describe the global structure of the exponential mapping
and obtain a stratification of the cut locus in the plane z = 0. Consequently, the problem of finding optimal
trajectories from any initial point q0 ∈M to another point q1 ∈M, z 6= 0 is reduced to solving a set of algebraic
equations. Summing up, a complete optimal synthesis for the sub-Riemannian problem on the Lie group SH(2)
was constructed.
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Fig. 11 Sub-Riemannian caustic and cut locus

Fig. 12 Local component of sub-Riemannian caustic and cut locus
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Fig. 13 Sub-Riemannian first and second caustic

Fig. 14 Sub-Riemannian sphere of radius R = π

Fig. 15 Sub-Riemannian sphere of radius R = 2π
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Fig. 16 Intersection of the cut locus with the hemi-
sphere z < 0 of radius R = π

Fig. 17 Intersection of the cut locus with the hemi-
sphere z < 0 of radius R = 2π

Fig. 18 Intersection of the cut locus with the hemisphere z < 0 of radius R = 2π

Fig. 19 Matryoshka of hemispheres z < 0 of radii R = π and R = 2π
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