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INTRODUCTION

In computer vision it is common to extract salient curves via
minimal paths or geodesics [1]. These geodesics minimize a
length functional based on a cost function on the image do-
main that has a low value at locations with high curve saliency.
Inspired by [2], we proposed a computational framework [3] for
tracking of lines in flat images via data-driven sub-Riemannian
(SR) geodesics on the Euclidean motion group SE(2).

In [3]: For given boundary
conditions on a 2D plane
to find a curve minimizing
the compromise between
length and curvature. Ex-
ternal cost is included for
adaptation to flat image.

Now we extend the framework for tracking of lines in spherical
images. This requires a SR manifold structure in the group
SO(3) of 3D-rotations acting transitively on the 2-sphere S2.

CURVE MINIMIZATION PROBLEM Pcurve

Pcurve : For given boundary
conditions on a 2D sphere
(positions and velocities)
to find a curve minimiz-
ing the functional compro-
mising length and geodesic
curvature. External cost in
optimization functional is in-
duced by spherical image.

Given: constant ξ > 0,
n0 ∈ S2, n′0 ∈ Tn0(S

2),
n1 ∈ S2, n′1 ∈ Tn1(S

2),
external cost C : S2 → R+.

Find: n(·) : [0, l]→ S2, s.t.
n(0) = n0, n(l) = n1,
n′(0) = n′0, n′(l) = n′1,∫ l

0C(n(s))
√
ξ2 + k2

g(s)ds→min .

3D ROTATIONS GROUP SO(3)

Lie group SO(3) 3 g ∼ R(x, y, θ) = Ry
e3

R−x
e2

Rθe1
,

where Rϕa is a 3D rotation around axis a ∈ S2 by angle ϕ.
Basis left-invariant vector fields
A1|g = cos θ ∂x|g − sec x sin θ ∂y|g + tan x sin θ ∂θ|g = (Lg)∗ ∂x|e ,
A2|g = ∂θ|g = (Lg)∗ ∂θ|e ,
A3|g = sin θ ∂x|g + sec x cos θ ∂y|g − tan x cos θ ∂θ|g = (Lg)∗ ∂y|e ,

where (Lg)∗ is push-forward of left multiplication Lgh = gh.
Basis left-invariant one forms 〈ωi,Aj〉 = δj

i

SUB-RIEMANNIAN (SR) PROBLEM Pmec

Left-invariant distribution ∆ = span{A1,A2} ⊂ T(SO(3))

Metric tensor G|g = C2(g)
(
ξ2ω1 ⊗ ω1 + ω2 ⊗ ω2)∣∣

g on ∆,
with external cost C : SO(3)→ [δ,+∞), δ > 0, and ξ > 0.

SR-distance: Inf among Lipschitzian curves γ : R→ SO(3)

d(e, g) = inf{
T∫
0

√
G|γ(t)(γ̇(t), γ̇(t))d t | γ(0) = e,

γ(T) = g, γ̇(t) ∈ ∆|γ(t)}.

SR-minimizers are solutions to the optimal control problem

Pmec : γ(0) = e, γ(T) = g,

γ̇(t) = u1(t)A1|γ(t) + u2(t)A2|γ(t) ,∫ T

0
C(γ(t))

√
ξ2u1(t)2 + u2(t)2 d t→min .

Optimal motion of Reeds-Shepp car
on a sphere. Admissible motions
forward/backward and rotations on a
place are controlled by (u1, u2) ∈ R2.

RELATION BETWEEN Pmec AND Pcurve

Theorem. Let γ(t), t ∈ [0,T ], be a minimizer of Pmec para-
metrized by SR-arclength t. Let u1(t) > 0 for all t ∈ [0,T ].
Set n0 = e1, n′0 = e3, n1 = γ(T) e1, n′1 = γ(T) e3. Then for
such boundary conditions Pcurve has a minimizer n(s), along

which n(s) = γ(t(s)) e1, u1(t) =
ds
dt

(t), u2(t) = kg(s(t))
ds
dt

(t),

and t(s)=

∫ s

0
C(n(σ))

√
ξ2 + k2

g(σ)dσ.

GEODESICS IN PROBLEM Pmec FOR C = 1

By applying Pontryagin Maximum Principle we provide explicit
formulas for SR geodesics. This allows us to describe the set
of end points in SO(3) reachable by geodesics whose spherical
projections do not have cusps. We parameterize such “cusp-
less” SR geodesics by spherical arclength s and present new
simpler formulas, which only involve a single elliptic integral.

SUB RIEMANNIAN WAVE FRONT

End points of all the geodesics of the same length form SR
wave front. When the wavefront intersect itself a geodesic is
not longer a SR-minimizer (it loses optimality).

SR-MINIMIZERS IN PROBLEM Pmec

Theorem. LetW(g) be a viscosity solution of eikonal system{√
1
ξ2 (A1|g(W))2 + (A2|g(W))2 = C(g), for g 6= e,

W(e) = 0.

Then St ={g∈SO(3) |W(g) = t} are SR-spheres of radius t.
SR-minimizer γ(t) starting from e and ending at g is given by
γ(t)=γb(W(g)−t), which is found by integration for t ∈ [0,W(g)]

γ̇b(t) = −u1(t)A1|γb(t) − u2(t)A2|γb(t) , γb(0) = g,

where u1(t) =
A1|γb(t)(W)

(ξ C(γb(t)))2 and u2(t) =
A2|γb(t)(W)

(C(γb(t)))2 .

Similarly to [4] we provide SR Fast Marching (SR-FM) method.

VALIDATION FOR UNIFORM COST C = 1
Comparison of the exact SR-geodesics and the SR-minimizers
computed numerically shows an accurate result of SR-FM.

Existence of nonoptimal cuspless geodesics (contra SE(2)).

APPLICATION IN RETINAL IMAGING

The retinal vasculature enables non-invasive observation of
the human circulatory system. A variety of eye-related and
systematic diseases affect the vasculature and may cause
functional or geometric changes. Vascular tree must be de-
tected for automated quantification of these defects.

SPHERICAL IMAGES OF RETINA

Optical retinal images are mostly acquired by flat cameras,
and as a result distortion appears. Such distortion comes from
the central projection of the physical retinal surface to the im-
age plane. It can lead to questionable geometrical features
(e.g. vessel curvature) that are used as biomarkers [5] for dif-
ferent diseases. We show that the distortion can play a signif-
icant role in the quantitative analysis of the vascular structure.

VESSEL TRACKING

Experiment in a spherical image of the retina shows that
SO(3) geodesics are less eager to take short cuts than SE(2)
geodesics [3] in vessel tracking. The results are stable w.r.t.
choice of distance 1 < η < 2 from the camera to the eye ball.

VESSEL CURVATURE MEASUREMENT

The effect of considering geodesic curvature κ
SO(3)
g in object

coordinates on S2 rather than planar curvature κSO(3) in photo
coordinates on projection on R2 is visible. A bigger difference
comes from using SO(3) than SE(2) SR-geometry.

RESULTS

We present new explicit formulas for SR geodesics in SO(3)
with cuspless spherical projection, simpler than for general
geodesics. Furthermore we propose a PDE theory, that al-
lows us to numerically compute the SR-minimizers for general
external cost and general ξ > 0. Our numerical solution was
verified by comparison with exact geodesics for C = 1.
We use these results in a vessel tracking algorithm in spher-
ical images of the retina, without central projection distortion.
Experiments show considerable difference in vessel curvature
measurement via SE(2) geodesics and SO(3) geodesics.
As in retinal imaging applications curvature is considered as
a relevant biomarker for detection of diabetic retinopathy and
other systemic diseases, the data-driven SR geodesic model
in SO(3) is a relevant extension of our model [3] in SE(2).
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