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Preface

This book presents some facts and methods of the Mathematical Control
Theory treated from the geometric point of view. The book is mainly based
on graduate courses given by the first coauthor in the years 2000-2001 at
the International School for Advanced Studies, Trieste, Italy. Mathematical
prerequisites are reduced to standard courses of Analysis and Linear Algebra
plus some basic Real and Functional Analysis. No preliminary knowledge of
Control Theory or Differential Geometry is required.

What this book i1s about? The classical deterministic physical world is
described by smooth dynamical systems: the future in such a system is com-
pletely determined by the initial conditions. Moreover, the near future changes
smoothly with the initial data. If we leave room for “free will” in this fatalistic
world, then we come to control systems. We do so by allowing certain param-
eters of the dynamical system to change freely at every instant of time. That
is what we routinely do in real life with our body, car, cooker, as well as with
aircraft, technological processes etc. We try to control all these dynamical
systems!

Smooth dynamical systems are governed by differential equations. In this
book we deal only with finite dimensional systems: they are governed by ordi-
nary differential equations on finite dimensional smooth manifolds. A control
system for us 1s thus a family of ordinary differential equations. The family
1s parametrized by control parameters. All differential equations of the family
are defined on one and the same manifold which 1s called the state space of the
control system. We may select any admissible values of the control parameters
(i.e. select any dynamical system from the family) and we are free to change
these values at every time instant. The way of selection, which is a function
of time, is called a control or a control function.

As soon as a control is fixed, the control system turns into a nonau-
tonomous ordinary differential equation. A solution of such an equation is
uniquely determined by the initial condition and is called an admissible tra-
jectory of the control system (associated with a given control). Thus, an ad-
missible trajectory is a curve in the state space. The initial condition (initial
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state) is just a starting point of the trajectory; different controls provide, gen-
erally speaking, different admissible trajectories started from a fixed state. All
these trajectories fill the attainable (reachable) set of the given initial state.

To characterize the states reachable from a given initial one is the first
natural problem to study in Control Theory: the Controllability Problem. As
soon as the possibility to reach a certain state is established, we try to do it in
the best way. Namely, we try to steer the initial state to the final one as fast
as possible, or try to find the shortest admissible trajectory connecting the
initial and the final states, or to minimize some other cost. This is the Optimal
Control Problem. These two problems are our leading lights throughout the
book.

Why Geometry? The right-hand side of the ordinary differential equation
i1s a vector field and the dynamical system governed by the equation is the
flow generated by this vector field. Hence a control system is a family of vector
fields. The features of control systems we study do not change under trans-
formations induced by smooth transformations of the state space. Moreover,
our systems admit a wide class of reparametrizations of the family of vector
fields, which are called feedback transformations in Control Theory and gauge
transformations in Geometry and Mathematical Physics. This is a formal rea-
son why the intrinsic geometric language and geometric methods are relevant
to Control Theory.

There is another more fundamental reason. As we mentioned, a dynami-
cal system is a flow (a one-parametric group of transformations of the state
space) generated by a vector field. An admissible trajectory of the control
system associated to a constant control is a trajectory of the corresponding
flow. Admissible trajectories associated with a piecewise constant control are
realized by the composition of elements of the flows corresponding to the
values of the control function. The arbitrary control case is realized via an
approximation by piecewise constant controls. We see that the structure of
admissible trajectories and attainable sets is intimately related to the group of
transformations generated by the dynamical systems involved. In turn, groups
of transformations form the heart of Geometry.

Now, what could be the position of Control techniques and the Control
way of thinking in Geometry and, more generally, in the study of basic struc-
tures of the world around us? A naive infinitesimal version of attainable set
1s the set of admissible velocities formed by velocities of all admissible trajec-
tories passing through the given state. It is usual in Control Theory for the
dimension of attainable sets to be essentially greater than the dimension of
the sets of admissible velocities. In particular, a generic pair of vector fields
on an n-dimensional manifold provides n-dimensional attainable sets, where n
is as big as we want. In other words, constraints on velocities do not imply
state constraints. Such a situation is traditionally indicated by saying that
constraints are “nonholonomic”. Control theory is a discipline that systemat-
ically studies various types of behavior under nonholonomic constraints and
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provides adequate methods for the investigation of variational problems with
nonholonomic constraints.

The first chapter of the book is of introductory nature: we recall what
smooth manifolds and ordinary differential equations on manifolds are, and
define control systems. Chapter 2 is devoted to an operator calculus that
creates great flexibility in handling of nonlinear control systems. In Chapters 3
and 4 we introduce a simple and extremely popular in applications class of
linear systems and give an effective characterization of systems that can be
made linear by a smooth transformation of the state space. Chapters 5-7
are devoted to the fundamental Orbit Theorem of Nagano and Sussmann
and 1its applications. The Orbit Theorem states that any orbit of the group
generated by a family of flows is an immersed submanifold (the group itself
may be huge and wild). Chapter 8 contains general results on the structure
of attainable sets starting from a simple test to guarantee that these sets are
full dimensional. In Chapter 9 we introduce feedback transformations, give a
feedback classification of linear systems, and effectively characterize systems
that can be made linear by feedback and state transformations.

The rest of the book is mainly devoted to the Optimal Control. In Chap-
ter 10 we state the optimal control problem, give its geometric interpretation,
and discuss the existence of solutions. Chapter 11 contains basic facts on differ-
ential forms and Hamiltonian systems; we need this information to investigate
optimal control problems. Chapter 12 is devoted to the intrinsic formulation
and detailed proof of the Pontryagin Maximum Principle, a key result in the
Optimal Control Theory. Chapters 13-16 contain numerous applications of
the Pontryagin Maximum Principle including a curious property of Hamilto-
nian systems with convex Hamiltonians and more or less complete theories of
linear time-optimal problems and linear—quadratic problems with finite hori-
zons. In Chapter 17 we discuss a Hamiltonian version of the theory of fields
of extremals, which is suitable for applications in the Optimal Control, and
introduce the Hamilton—Jacobi equation. Chapters 18 and 19 are devoted to
the moving frames technique for optimal control problems and to problems
on Lie groups. The definition and basic facts on Lie groups are given in Chap-
ter 18: they are simple corollaries of the general geometric control techniques
developed in previous chapters. Chapters 20 and 21 contain the theory of
the Second Variation with second order necessary and sufficient optimality
conditions for regular and singular extremals. The short Chapter 22 presents
an instructive reduction procedure, which establishes a connection between
singular and regular extremals. In Chapter 23 we introduce and compute (in
simplest low dimensional cases) the curvature, a remarkable feedback invari-
ant of optimal control problems. Finally in Chapter 24 we discuss the control
of a classical nonholonomic system: two bodies rolling one on another without
slipping or twisting. The Appendix contains proofs of some results formulated
in Chapter 2.

This is a very brief overview of the contents of the book. In each chapter
we try to stay at textbook level, i.e. to present just the first basic results with
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some applications. The topic of practically every chapter has an extensive de-
velopment, sometimes rather impressive. In order to study these topics deeper
the reader is referred to research papers.

Geometric Control Theory is a broad subject and many important top-
ics are not even mentioned in the book. In particular, we do not study the
feedback stabilization problem and the huge theory of control systems with
outputs including fundamental concepts of Observability and Realization. For
this and other material see books on Control listed in the Bibliography.

Acknowledgments.

We wish to thank our Teachers Professor R. V. Gamkrelidze and Professor
A.F. Filippov for their Lessons on Mathematics and Control Theory, and for
encouragement during our work on this book.

We acknowledge support of this project by the International School for
Advanced Studies (Trieste, Ttaly), Steklov Mathematical Institute (Moscow,
Russia), and Program Systems Institute (Pereslavl-Zalessky, Russia).

We are grateful to the participants of the seminar on geometric control
theory at the International School for Advanced Studies, Trieste, especially
to Ulysse Serres, Igor Zelenko, and Sergio Rodrigues, for valuable remarks
that helped us to improve exposition.

We are indebted to Irina and Elena: without patience and constant support
of our wives, this book could not be written.

Moscow — Pereslavl-Zalessky — Trieste A. A. Agrachev
October 2003 Yu. L. Sachkov



Contents

1 Vector Fields and Control Systems on Smooth Manifolds .. 1

1.1 Smooth Manifolds .......... .. ... . . ... . . 1
1.2 Vector Fields on Smooth Manifolds ........................ 4
1.3 Smooth Differential Equations and Flows on Manifolds .. ..... 8
1.4 Control Systems. .......... .. .. . . . 12
2  Elements of Chronological Calculus ........................ 21
2.1  Points, Diffeomorphisms, and Vector Fields ............. .. .. 21
2.2 Seminorms and C*°(M)-Topology ............ ... ... . ... 25
2.3 Families of Functionals and Operators. ..................... 26
2.4 Chronological Exponential ........ ... .. .. ... . . 28
2.5 Action of Diffeomorphisms on Vector Fields............. .. .. 37
2.6 Commutationof Flows . .......... ... ... .. .. .. ... ....... 40
2.7 Variations Formula ........ ... .. ... ... ... .. ... ........ 41
2.8  Derivative of Flow with Respect to Parameter........... .. .. 43
3  Linear SyStems ............... it 47
3.1 Cauchy’s Formula for Linear Systems ...................... 47
3.2 Controllability of Linear Systems . ......................... 49
4 State Linearizability of Nonlinear Systems ................. 53
4.1 Local Linearizability .......... .. .. .. .. ... ... .. .. .. ...... 53
4.2 Global Linearizability ... ...... .. ... .. ... ... .. .. .. ...... 57
5 The Orbit Theorem and its Applications................... 63
5.1 Formulation of the Orbit Theorem ...................... ... 63
5.2 Immersed Submanifolds . ............. ... ... .. ... ... ... .. 64
5.3 Corollaries of the Orbit Theorem .......................... 66
5.4 Proof of the Orbit Theorem........... ... ... .. ... ....... 67
5.5 AnalyticCase . ... ... .. . 72

5.6 Frobenius Theorem ....... ... ... .. . .. . . . . . 74



10

11

12

Contents
5.7 State Equivalence of Control Systems ...................... 76
Rotations of the Rigid Body ............................... 81
6.1 State Space . ... ... .. 81
6.2 Euler Equations . ....... .. .. .. .. .. 84
6.3 Phase Portrait ......... .. .. .. ... 88
6.4 Controlled Rigid Body: Orbits ........ ... ... .. .. ... ... 90
Control of Configurations ................. ... . ........... 97
T.1 Model. .. oo 97
7.2 TwoFree Points........ .. . .. .. ... .. .. . .. . 100
7.3 Three Free Points ...... ... .. .. ... .. .. .. .. .. ... ... 101
7.4 Broken Line ... ... ... .. .. 104
Attainable Sets ........ ... 109
8.1 Attainable Sets of Full-Rank Systems ...................... 109
8.2 Compatible Vector Fields and Relaxations .................. 113
8.3 Poisson Stability .......... .. .. ... 116
8.4 Controlled Rigid Body: Attainable Sets ................. ... 118
Feedback and State Equivalence of Control Systems ....... 121
9.1 Feedback Equivalence ........ ... ... .. .. .. .. .. ... ... .... 121
9.2 Linear Systems........... ... 123
9.3 State-Feedback Linearizability ............................ 131
Optimal Control Problem...... ... ... .. ... ............... 137
10.1 Problem Statement ......... .. .. ... ... .. .. 137
10.2 Reduction to Study of Attainable Sets ..................... 138
10.3 Compactness of Attainable Sets ............ .. .. .......... 140
10.4 Time-Optimal Problem .. ... ... .. ... .. ... ... .. .......... 143
10.5 Relaxations . ... 143
Elements of Exterior Calculus and Symplectic Geometry .. 145
11.1 Differential 1-Forms......... .. .. ... ... ... .. .. .. .. ...... 145
11.2 Differential k-Forms . ....... .. .. ... ... .. ... .. .. .. ... ... 147
11.3 Exterior Differential ........ .. .. ... ... ... .. . . .. 151
11.4 Lie Derivative of Differential Forms ........................ 153
11.5 Elements of Symplectic Geometry ......................... 157
Pontryagin Maximum Principle........ ... ... .. ... ... .. 167
12.1 Geometric Statement of PMP and Discussion ............... 167
12.2 Proof of PMP . .. ... . 172
12.3 Geometric Statement of PMP for Free Time ................ 177
12.4 PMP for Optimal Control Problems ....................... 179

12.5 PMP with General Boundary Conditions ................... 182



13

14

15

16

17

18

19

20

Contents

Examples of Optimal Control Problems................ .. ..
13.1 The Fastest Stop of a Train at a Station....................
13.2 Control of a Linear Oscillator ........ ... ... ... ... ........
13.3 The Cheapest Stop of a Train .............................
13.4 Control of a Linear Oscillator with Cost ....................
135 Dubins Car ...

Hamiltonian Systems with Convex Hamiltonians...........

Linear Time-Optimal Problem .............................
15.1 Problem Statement ......... .. .. ... ... .
15.2 Geometry of Polytopes .. ...... .. ... ... ...
15.3 Bang-Bang Theorem ......... ... ... .. .. i
15.4 Uniqueness of Optimal Controls and Extremals..............
15.5 Switchings of Optimal Control ....... .. .. ... ... .. ... ..

Linear-Quadratic Problem . ... .............................
16.1 Problem Statement ......... .. .. ... ... ... .
16.2 Existence of Optimal Control ........... ... ... .. .. .. ......
16.3 Extremals . ... ...
16.4 Conjugate Points ... .. ..

Sufficient Optimality Conditions, Hamilton-Jacobi

Equation, and Dynamic Programming .....................
17.1 Sufficient Optimality Conditions...........................
17.2 Hamilton-Jacobi Equation ............ .. ... .. .. .. ........
17.3 Dynamic Programming............. ...

Hamiltonian Systems for Geometric Optimal Control

Problems .. ... ... .
18.1 Hamiltonian Systems on Trivialized Cotangent Bundle .......
18.2 Lie Groups . ..ottt
18.3 Hamiltonian Systems on Lie Groups .......................

Examples of Optimal Control Problems on Compact Lie

GLOUPS . oo
19.1 Riemannian Problem ....... .. .. ... ... ... .. .. ... .....
19.2 A Sub-Riemannian Problem ..............................
19.3 Control of Quantum Systems .............. ... .. ..........
19.4 A Time-Optimal Problem on SO(3) ........................

Second Order Optimality Conditions ......................
20.1 HesSlan ... ...t
20.2 Local Openness of Mappings .. ........... .. .. ... .. ... ....
20.3 Differentiation of the Endpoint Mapping ...................
20.4 Necessary Optimality Conditions . .........................



XII Contents
20.5 Applications ... ... 318
20.6 Single-Input Case ....... .. . 321
21 Jacobi Equation .......... ... ... . ... 333
21.1 Regular Case: Derivation of Jacobi Equation ................ 334
21.2 Singular Case: Derivation of Jacobi Equation ............... 338
21.3 Necessary Optimality Conditions . ......................... 342
21.4 Regular Case: Transformation of Jacobi Equation............ 343
21.5 Sufficient Optimality Conditions........................... 346
22 Reduction ........... ... .. . ... 355
22.1 Reduction ...... ... ... . 355
22.2 Rigid Body Control ...... .. .. .. 358
22.3 Angular Velocity Control ......... ... .. .. .o . 359
23 Curvature ........ ... 363
23.1 Curvature of 2-Dimensional Systems ....................... 363
23.2 Curvature of 3-Dimensional Control-Affine Systems .. ........ 373
24 Rolling Bodies ........ ... ... i 377
24.1 Geometric Model ....... .. . . 377
24.2 Two-Dimensional Riemannian Geometry ................... 379
24.3 Admissible Velocities. ....... ... ... ... . 383
24.4 Controllability ....... ... . .. . 384
24.5 Length Minimization Problem...... ... ... ... .. .. ... ... 387
A Appendix .. ... 393
A.1 Homomorphisms and Operators in C®°(M) ................. 393
A.2 Remainder Term of the Chronological Exponential ........... 395
References ... ... . .. . . 399
List of Figures . ... ... 407



1

Vector Fields and Control Systems
on Smooth Manifolds

1.1 Smooth Manifolds

We give just a brief outline of basic notions related to the smooth manifolds.
For a consistent presentation, see an introductory chapter to any textbook on
analysis on manifolds, e. g. [146].

In the sequel, “smooth” (manifold, mapping, vector field etc.) means C'.

Definition 1.1. A subset M C R" is called a smooth k-dimensional subman-
ifold of R™, k < n, if any point x € M has a neighborhood Oy in R™ in which
M s described in one of the following ways:

(1) there exists a smooth vector-function

dF
F : Op - R"F rank —| =n—k
da:q

such that
O, N M = F~0);

(2) there exists a smooth vector-function
f A —R"

from a neighborhood of the origin 0 € Vo C R* with

df
f(0) = &, rank Te = k
such that
O, N M = f(Vo)

and f : Vo = O, N M 1s a homeomorphism;
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(3) there exists a smooth vector-function
& 0, >0 CR"
onto a neighborhood of the origin 0 € Oy C R™ with

dP
rank —| =n

dzx

xr

such that
&0, N M) =R NO,.

Exercise 1.2. Prove that three local descriptions of a smooth submanifold
given in (1)—(3) are mutually equivalent.

Remark 1.3. (1) There are two topologically different one-dimensional mani-
folds: the line R! and the circle S*. The sphere S? and the torus T? = S' x S!
are two-dimensional manifolds. The torus can be viewed as a sphere with a
handle. Any compact orientable two-dimensional manifold is topologically a
sphere with p handles, p =0,1,2,... .

(2) Smooth manifolds appear naturally already in the basic analysis. For
example, the circle ST and the torus T2 are natural domains of periodic and
doubly periodic functions respectively. On the sphere S2, it is convenient to
consider restriction of homogeneous functions of 3 variables.

So a smooth submanifold is a subset in IR™ which can locally be defined by a
regular system of smooth equations and by a smooth regular parametrization.

In spite of the intuitive importance of the image of manifolds as subsets of
a Euclidean space, 1t 1s often convenient to consider manifolds independently
of any embedding in IR”. An abstract manifold is defined as follows.

Definition 1.4. A smooth k-dimensional manifold M is a Hausdorff para-
compact topological space endowed with a smooth structure: M is covered by
a system of open subsets

M =U,0,

called coordinate neighborhoods, in each of which is defined a homeomorphism
Do 1 Oy - RF
called a local coordinate system such that all compositions
Psod;t 1 0,(0,N05) CRF = &5(0,N0O0s) CRE
are diffeomorphisms, see Fig. 1.1.

As a rule, we denote points of a smooth manifold by ¢, and its coordinate
representation in a local coordinate system by x:
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CI)@ ot

(a4

M R¥

Fig. 1.1. Coordinate system in smooth manifold M

g€ M, D, 1 Oy = RF & =d(g) € R

For a smooth submanifold in IR”, the abstract Definition 1.4 holds. Con-
versely, any connected smooth abstract manifold can be considered as a
smooth submanifold in R”. Before precise formulation of this statement, we
give two definitions.

Definition 1.5. Let M and N be k- and l-dimensional smooth manifolds re-
spectively. A continuous mapping

f: M—=>N

15 called smooth if it 1s smooth in coordinates. That 1s, let M = U,0, and
N =UgVjs be coverings of M and N by coordinate neighborhoods and

o Oy = RF Wy 0 V5 R
the corresponding coordinate mappings. Then all compositions
Wsofody! : @a(0anfH(Vs)) CR" = Ws(f(0a) NV) C B!
should be smooth.

Definition 1.6. A smooth manifold M is called diffeomorphic to a smooth
manifold N if there exists a homeomorphism

f: M—=>N

such that both f and its inverse f~1 are smooth mappings. Such mapping f
15 called a diffeomorphism.
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The set of all diffeomorphisms f : M — M of a smooth manifold M is
denoted by Dift M.

A smooth mapping f : M — N is called an embedding of M into N if
f M — f(M) is a diffecomorphism. A mapping f : M — N is called proper
if f~1(K) is compact for any compactum K & N (the notation K @ N means
that K is a compact subset of N).

Theorem 1.7 (Whitney). Any smooth connected k-dimensional manifold
can be properly embedded into R?F+1,

Summing up, we may say that a smooth manifold is a space which looks
locally like a linear space but without fixed linear structure, so that all smooth
coordinates are equivalent. The manifolds, not linear spaces, form an adequate
framework for the modern nonlinear analysis.

1.2 Vector Fields on Smooth Manifolds

The tangent space to a smooth manifold at a point is a linear approximation
of the manifold in the neighborhood of this point.

Definition 1.8. Let M be a smooth k-dimensional submanifold of R™ and
x € M its point. Then the tangent space to M at the point x 1s a k-dimensional
linear subspace

.M CR"”

defined as follows for cases (1)-(3) of Definition 1.1:

dF
1) TM =Ker &2 |
(1) o |

d
@ M=

dz |,

do

Remark 1.9. The tangent space is a coordinate-invariant object since smooth
changes of variables lead to linear transformations of the tangent space.

In an abstract way, the tangent space to a manifold at a point is the set
of velocity vectors to all smooth curves in the manifold that start from this
point.

Definition 1.10. Let y( - ) be a smooth curve in a smooth manifold M starting
from a point ¢ € M :

y i (—e,6) = M a smooth mapping, ¥(0) = ¢.

The tangent vector
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to the curve v(-) at the point q is the equivalence class of all smooth curves
m M starting from q and having the same 1-st order Taylor polynomial as
(), for any coordinate system in a neighborhood of q.

Fig. 1.2. Tangent vector ¥(0)

Definition 1.11. The tangent space to a smooth manifold M at a point q €
M 1is the set of all tangent vectors to all smooth curves in M starting at q:

T M=< —
E {dt

|y @ (—e,e) > M smooth,(0) = q} .
t=0

Fig. 1.3. Tangent space T,M

Exercise 1.12. Let M be a smooth k-dimensional manifold and ¢ € M. Show
that the tangent space T; M has a natural structure of a linear k-dimensional
space.
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Definition 1.13. A smooth vector field on a smooth manifold M is a smooth
mapping
geM—V(g) e T,M

that associates to any point ¢ € M a tangent vector V(q) at this point.

In the sequel we denote by Vec M the set of all smooth vector fields on a
smooth manifold M.

Definition 1.14. A smooth dynamical system, or an ordinary differential
equation (ODE), on a smooth manifold M is an equation of the form

dq

v M
) (q), g€ M,

or, equivalently,

q=Viq), q €M,

where V(q) is a smooth vector field on M. A solution to this system is a
smooth mapping

vy:I—=-M,

where I C IR is an interval, such that

S vy Yiel
Vi

v(t)

-—
(t))

v

r S

T

Fig. 1.4. Solution to ODE ¢ =V (q)
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Definition 1.15. Let & : M — N be a smooth mapping between smooth
manifolds M and N. The differential of & at a point ¢ € M 1is a linear

mapping
Dy : TyM — Te ) N

)_i
t=0 di =

v (—e,8) = M, q(0) = ¢,

defined as follows:

dy
D& | —
E (dt

2(v(1)),

where

15 a smooth curve in M starting at the point q, see Fig. 1.5.

Fig. 1.5. Differential D,

Now we apply smooth mappings to vector fields. Let V € Vec M be a
vector field on M and

§=V(q) (1.1)
the corresponding ODE. To find the action of a diffeomorphism
¢ : M — N, G g x=9(q)

on the vector field V(g¢), take a solution ¢(¢) of (1.1) and compute the ODE
satisfied by the image z(t) = ®(q(?)):

i(t) = %@(Q(t)) = (Dg®) (1) = (Dg®) V(4(t)) = (Dg-1()®) V(™ (x(1))).

So the required ODE is
& = (Dg-1()®) V(9™ (2)). (1.2)

The right-hand side here is the transformed vector field on N induced by the
diffeomorphism @:
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(@.V)(2) L (Dgor (@) V(@ (2).

The notation @,, is used, along with D,®, for differential of a mapping ¢
at a point q.

Remark 1.16. In general, a smooth mapping @ induces transformation of tan-
gent vectors, not of vector fields. In order that D@ transform vector fields to
vector fields, @ should be a diffeomorphism.

1.3 Smooth Differential Equations and Flows
on Manifolds

Theorem 1.17. Consider a smooth ODE
§=V(g), g¢€MCR" (1.3)

on a smooth submanifold M of R™. For any initial point qo € M, there exists
a unique solution

q(t,q0), t€(ab), a<0<b,
of equation (1.3) with the initial condition
4(0, 0) = qo,
defined on a sufficiently short interval (a,b). The mapping
(t,0) = q(t, q0)

is smooth. In particular, the domain (a,b) of the solution q( -, qo) can be chosen
smoothly depending on qq.

Proof. We prove the theorem by reduction to its classical analog in R”.
The statement of the theorem is local. We rectify the submanifold M in
the neighborhood of the point gg:
D Oqu CR”-}OOCR”,
(04 N M) = RE.

Consider the restriction ¢ = @|3r. Then a curve ¢(t) in M is a solution to (1.3)
if and only if its image (¢) = ¢(q(t)) in R¥ is a solution to the induced system:

¢ =0, V(x), z€RF
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Theorem 1.18. Let M C R™ be a smooth submanifold and let
¢=V(g), qeRr, (1.4)
be a system of ODEs in R™ such that
geM = Vig) € T,M.

Then for any initial point gy € M, the corresponding solution q(t, qu) to (1.4)
with ¢(0, q0) = qo belongs to M for all sufficiently small |t|.

Proof. Consider the restricted vector field:
f=Vlu.
By the existence theorem for M, the system
¢=/fe), gqeM,
has a solution ¢(¢, o), ¢(0, go) = qo, with
q(t,q0) € M for small |¢|. (1.5)

On the other hand, the curve ¢(¢, ¢o) is a solution of (1.4) with the same initial
condition. Then inclusion (1.5) proves the theorem. O

Definition 1.19. A vector field V € Vec M 1s called complete, if for all ¢y €
M the solution q(t, qo) of the Cauchy problem

1s defined for allt € R.

Ezample 1.20. The vector field V(z) = =z is complete on R, as well as on
R\ {0}, (=00, 0), (0,400), and {0}, but not complete on other submanifolds
of R. The vector field V(z) = z? is not complete on any submanifolds of R
except {0}.

Proposition 1.21. Suppose that there exists € > 0 such that for any qo € M
the solution q(t,qo) to Cauchy problem (1.6) is defined fort € (—e,¢). Then
the vector field V(q) is complete.

Remark 1.22. In this proposition it is required that there exists ¢ > 0 common
for all initial points qo € M. In general, ¢ may be not bounded away from
zero for all ¢qo € M. E.g., for the vector field V(z) = 2? we have ¢ — 0 as
g — O0.
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Proof. Suppose that the hypothesis of the proposition is true. Then we can
introduce the following family of mappings in M:

P': M — M, t € (—¢,¢e),
P g0 = q(t, q0).
P*(qo) is the shift of a point ¢y € M along the trajectory of the vector field
V(q) for time ¢.
By Theorem 1.17, all mappings P! are smooth. Moreover, the family { P! |
t € (—¢,¢) } is a smooth family of mappings.
A very important property of this family is that it forms a local one-pa-
rameter group, i.e.,

PY(P*(q)) = P*(P'(q)) = P'™(q), q€ M, t, s t+s€(—ce).
Indeed, the both curves in M:
t— PY(P*(q)) and t P'(q)

satisfy the ODE ¢ = V/(¢) with the same initial value P°(P*(q)) = P**(q) =
P*(q). By uniqueness, P'(P*(q)) = P'*(g). The equality for P*(P*(q)) is
obtained by switching ¢ and s.

So we have the following local group properties of the mappings P!:

PtoP® =Pfopt=pits, t, s, t+s€(—¢¢),

P =1d,
P toP'=PlopP " =1d, t € (—¢,e),
p~t = (Pt)_l, t€(—¢,¢).

In particular, all P! are diffeomorphisms.
Now we extend the mappings P for allt € R. Any ¢ € IR can be represented
as

t:%K—i—T, 0§r<%, K=0,%+1,%£2,....

We set
pt Y propEelio. o pe/2 4 —gont.

|K| times

Then the curve
t = P'(qo), teR,

is a solution to Cauchy problem (1.6). O
Definition 1.23. For a complete vector field V € Vec M, the mapping
t— P teR,

15 called the flow generated by V.
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Remark 1.24. 1t is useful to imagine a vector field V' € Vec M as a field of
velocity vectors of a moving liquid in M. Then the flow P! takes any particle
of the liquid from a position ¢ € M and transfers it for a time ¢t € R to the
position P'(q) € M, see Fig. 1.6.

Fig. 1.6. Flow P’ of vector field V

Simple sufficient conditions for completeness of a vector field are given in
terms of compactness.

Proposition 1.25. Let K C M be a compact subset, and let V € Vec M.
Then there exists exg > 0 such that for all qo € K the solution q(t,qo) to
Cauchy problem (1.6) is defined for allt € (—ck,ek).

Proof. By Theorem 1.17, domain of the solution ¢(, ¢p) can be chosen con-
tinuously depending on ¢qg. The diameter of this domain has a positive infi-
mum 2¢x for ¢y in the compact set K. a

Corollary 1.26. If a smooth manifold M is compact, then any vector field
V € Vec M is complete.

Corollary 1.27. Suppose that a vector field V. € Vec M has a compact
support:

supp V' £ {qe M |V(qg) £0} is compact.

Then V s complete.

Proof. Indeed, by Proposition 1.25, there exists ¢ > 0 such that all trajectories
of V' starting in supp V' are defined for ¢ € (—¢,¢). But V|ynsuppv = 0, and
all trajectories of V starting outside of supp V' are constant, thus defined for
all £ € R. By Proposition 1.21, the vector field V is complete. a
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Remark 1.28. Tf we are interested in the behavior of (trajectories of) a vector
field V' € Vec M in a compact subset K C M, we can suppose that V is
complete. Indeed, take an open neighborhood O of K with the compact
closure Ok . We can find a function a € C* (M) such that

_ 1, g€ K,
0 ={, crion

Then the vector field a(q)V(q) € Vec M is complete since it has a compact
support. On the other hand, in K the vector fields a(¢)V (¢) and V(q) coincide,
thus have the same trajectories.

1.4 Control Systems

For dynamical systems, the future ¢(¢, q0), t > 0, is completely determined by
the present state go = ¢(0, ¢o). The law of transformation gg — ¢(, qo) is the
flow P!, i.e., dynamics of the system

=V, qeM, (1.7)

it is determined by one vector field V(g).
In order to be able to affect dynamics, to control it, we consider a family
of dynamical systems

q=Vulg), geEM, uwel, (1.8)

with a family of vector fields V,, parametrized by a parameter v € U. A
system of the form (1.8) is called a control system. The variable u is a control
parameter, and the set U is the space of control parameters. A priori we do
not impose any restrictions on U, it is an arbitrary set, although, typically U
will be a subset of a smooth manifold. The variable ¢ is the state, and the
manifold M is the state space of control system (1.8).

In control theory we can change dynamics of control system (1.8) at any
moment of time by changing values of u € U. For any u € U, the corresponding
vector field V,, € Vec M generates the flow, which is denoted by P!.

A typical problem of control theory is to find the set of points that can be
reached from an initial point ¢o € M by choosing various values of u € U and
switching from one value to another time to time (for dynamical system (1.7),
this reachable set is just the semitrajectory ¢(¢, qo) = P*(q0), ¢ > 0). Suppose
that we start from a point gy € M and use the following control strategy for
control system (1.8): first we choose some control parameter u; € U, then
we switch to another control parameter us € U. Which points in M can be
reached with such control strategy? With the control parameter u;, we can
reach points of the form

{Pii(g0) 111 >0},
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and the whole set of reachable points has the form
{PizoPit(q0) [t1,t2 >0},

a piece of a 2-dimensional surface:

ta
Ph -
U1

qo

A natural next question is: what points can be reached from ¢y by any
kind of control strategies?

Before studying this question, consider a particular control system that
gives a simplified model of a car.

Ezample 1.29. We suppose that the state of a car is determined by the position
of its center of mass ¢ = (z!,#?) € R? and orientation angle § € S! relative
to the positive direction of the axis 2. Thus the state space of our system is

a nontrivial 3-dimensional manifold, a solid torus
M={q¢=(z,0)|z€R? 65"} =R?x 5"

Suppose that two kinds of motion are possible: we can drive the car forward
and backwards with some fixed linear velocity u; € R, and we can turn the
car around its center of mass with some fixed angular velocity uy; € R. We
can combine these two kinds of motion in an admissible way.

The dynamical system that describes the linear motion with a velocity
u; € R has the form

&' = wuy cos b,
@‘2 = uy sin 6, (1.9)
6 =0.

Rotation with an angular velocity us € R is described as

i =0, (1.10)
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The control parameter u = (uy, uz) can take any values in the given subset
U C RZ If we write ODEs (1.9) and (1.10) in the vector form:

¢ =u1Vi(q), g = u2Va(q),

where
cos 6 0
Vi(g) = | sind |, Valg) = 1 0 |, (1.11)
0 1

then our model reads

G =Vulg) = u1Vi(q) +u2Va(q), geM, uwel.
This model can be rewritten in the complex form:

r=zl+ix? €C
7= wue?,
0= uz,

(ur,us) €T, (2,0) € Cx S*.
Remark 1.30. Control system (1.8) is often written in another form:

We prefer the notation V,,(g¢), which stresses that for a fixed v € U, V,, is a
single object — a vector field on M.

Now we return to the study of the points reachable by trajectories of a
control system from an initial point.

Definition 1.31. The attainable set (or reachable set ) of control system (1.8)
with piecewise-constant controls from a point qo € M for a time t > 0 1s

defined as follows:

k
Ag(t)={Plto.. .oPT(q) |7 >0, > 7=t wel, keN}.
i=1
The attainable set from qq for arbitrary nonnegative time of motion has the
form

AQD = U Aqu (t)’

t>0
see Fig. 1.7.
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Fig. 1.7. Attainable set .Ag,

For simplicity, consider first the smallest nontrivial space of control pa-
rameters consisting of two indices:

U=1{1,2}

(even this simple case shows essential features of the reachability problem).
Then the attainable set for arbitrary nonnegative times has the form:

Aqu:{P{konk_lo...oPZTQOPfl(qO) | >0, keN}.

This expression suggests that the attainable set Ay, depends heavily upon
commutator properties of the flows P! and Ps.
Consider first the trivial commutative case, i.e., suppose that the flows

commute:
PloPs=PoP Vt scRk.

Then the attainable set can be evaluated precisely: since

Psz oplTk—l o.. .0P27—2 OP17'1 — Psz-l-...-I—Tg OplTk_l-I—...-I—Tl

bl

then
Ago ={Ps 0 Pi(qo) |, s>0}.

So in the commutative case the attainable set by two control parameters is
a piece of a smooth two-dimensional surface, possibly with singularities. It
is easy to see that if the number of control parameters is & > 2 and the
corresponding flows Pltl, e Pék commute, then .4,, is, in general, a piece
of a k-dimensional manifold, and, in particular, dim Ay, < k.

But this commutative case is exceptional and occurs almost never in real
control systems.

Ezample 1.32. In the model of a car considered above the control dynamics is
defined by two vector fields (1.11) on the 3-dimensional manifold M = R2x S}.
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q1

Fig. 1.8. Initial and final configurations of the car

Vi
P
-

- ~

Vs . N
Pt2 ’ \

~o ,
‘\\\\\/qo

Fig. 1.9. Steering the car from ¢o to q1

It is obvious that from any initial configuration ¢ = (¢, 6y) € M we can drive
the car to any terminal configuration ¢; = (x1,6;) € M by alternating linear
motions and rotations (both with fixed velocities), see Fig. 1.9.

So any point in the 3-dimensional manifold M can be reached by means
of 2 vector fields V7, V2. This is due to noncommutativity of these fields (i.e.,
of their flows).

Given an arbitrary pair of vector fields V1, Vo € Vec M, how can one rec-
ognize their commuting properties without finding the flows Pf, P explicitly,
i.e., without integration of the ODEs ¢ = V1(q), ¢ = Va(q) 7

If the flows P}, P{ commute, then the curve

¥(s,t) = Pl_t oPjo Pf(q) = Pj(q), t, seR, (1.12)

does not depend on t. It 1s natural to suggest that a lower-order term in
the Taylor expansion of (1.12) at ¢ = s = 0 is responsible for commuting
properties of flows of the vector fields Vi, V5 at the point ¢. The first-order
derivatives
9 9
ot ’ Js

are obviously useless, as well as the pure second-order derivatives

= Va(g)

s=t=0

s=t=0

0
e

0
=0, it =52

2
s=t=0 88

Va(Py(q))-

s=0

s=t=0
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The required derivative should be the mixed second-order one

9%y
Otds

s=t=0

It turns out that this derivative is a tangent vector to M. It is called the Lie

bracket of the vector fields V1, V5 and is denoted by [V1, V2](q):

aer_0°

% Pl_tOP;OPf(q)ETqM. (113)

t=s=0

Vi, Va](q)

The vector field [V7, V2] € Vec M determines commuting properties of V; and
V4 (it is often called commutator of vector fields V1, V5).

An effective formula for computing Lie bracket of vector fields in local
coordinates is given in the following statement.

Proposition 1.33. Let Vi, Vo be vector fields on R™. Then
Vi, Val(x) = ——Vi(2) — =——Va(z). (1.14)

The proof is left to the reader as an exercise.
Another way to define Lie bracket of vector fields V7, V5 is to consider the
path
y(t) = Pyt o PT o Py o P(q),

see Fig. 1.10.

Py

Pt

Vi, Va](q)

Fig. 1.10. Lie bracket of vector fields Vi, V2

Exercise 1.34. Show that in local coordinates

y(t) =z + [V, Vo) (@)t? +o(t?),  t—0,
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i.e., [V1, Va](z) is the velocity vector of the C'' curve y(+/%). In particular, this
proves that [V7, Va](x) is indeed a tangent vector to M:

[Vl, Vz](l‘) e, M.

In the next chapter we will develop an efficient algebraic way to do similar
calculations without any coordinates.

In the commutative case, the set of reachable points does not depend on the
number of switches of a control strategy used. In the general noncommutative
case, on the contrary, the greater number of switches, the more points can be
reached.

Suppose that we can move along vector fields V7 and £+V>. Then, in-
finitesimally, we can move in the new direction %[V7, V3], which is in general
linearly independent of the initial ones Vi, £V5. Using the same switching
control strategy with the vector fields £V; and £[Vi, V2], we add one more
infinitesimal direction of motion +[V}, [V4, Va]]. Analogously, we can obtain
+[Va, [V1, V3]]. Tterating this procedure with the new vector fields obtained
at previous steps, we can have a Lie bracket of arbitrarily high order as an
infinitesimal direction of motion with a sufficiently large number of switches.

Ezample 1.35. Compute the Lie bracket of the vector fields

cos 0 1
Vi) = [ sin0 |, Valg)= (0], q=|u|er: ., x5}
0 1 6

appearing in the model of a car. Recall that the field V; generates the forward
motion, and Va2 the counterclockwise rotation of the car. By (1.14), we have

00 —sind 0
dV: d 'V
[Vl,Vz](fJ):d—2V1(q)—d—1V2(q):— 00 cosf 0
1 g 00 0 1
sin 6
= | —cosf

0

The vector field [Vi, Va] generates the motion of the car in the direction per-
pendicular to orientation of the car. This is a typical maneuver in parking a
car: the sequence of 4 motions with the same small amplitude of the form

motion forward — rotation counterclockwise — motion backward —

— rotation clockwise

results in motion to the right (in the main term), see Fig. 1.11.
We show this explicitly by computing the Lie bracket [Vi, V5] as in Exer-
cise 1.34:
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\ Pzt
. %’

Fig. 1.11. Lie bracket for a moving car

x 21+ t(cos @ — cos(f + 1))
PytoP ' oPloPl | &y | = [ @2 +t(sinf —sin(d + 1))
6 6
1 sin 6
= 2y | +t%| —cost | +o(t?), t—0,
6 0
and we have once more
sin 6
[Vi,Val(q) = | —cos?d
0

19

(1.15)

Of course, we can also compute this Lie bracket by definition as in (1.13):

x 21+ t(cosf — cos(f + s))
PitoPsoPl | xy | = [ @2 +1t(sinf —sin(0 + s))
0 f+s
1 0 sin

= |2 | +s| 0] +ts| —cosb —|—O(t2—|—52)3/2, t,s — 0,

6 1 0

and the Lie bracket (1.15) follows.






2

Elements of Chronological Calculus

We introduce an operator calculus that will allow us to work with nonlinear
systems and flows as with linear ones, at least at the formal level. The idea
is to replace a nonlinear object, a smooth manifold M, by a linear, although
infinite-dimensional one: the commutative algebra of smooth functions on M
(for details, see [19], [22]). For basic definitions and facts of functional analysis
used in this chapter, one can consult e.g. [144].

2.1 Points, Diffeomorphisms, and Vector Fields

In this section we identify points, diffeomorphisms, and vector fields on the
manifold M with functionals and operators on the algebra C*(M) of all
smooth real-valued functions on M.
Addition, multiplication, and product with constants are defined in the
algebra C'°° (M), as usual, pointwise: if a,b € C*®° (M), ¢ € M, o € R then
(a+0)(g) = alg) + b(q),
(a-b)(q) = alq) - b(g),
(- a)(q) = a-a(q).
Any point ¢ € M defines a linear functional
q:C®(M) >R, qa = a(q), a € C*(M).
The functionals ¢ are homomorphisms of the algebras C*° (M) and R:
qla+b) = qa+ ¢b, a, b e C*(M),
q(a-b) = (ga) - (gb), a, b€ C* (M),
J(a-a) = o qa, a€eR, ae C®(M).
So to any point ¢ € M, there corresponds a nontrivial homomorphism of

algebras ¢ : C°°(M) — R.Tt turns out that there exists an inverse correspon-
dence.
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Proposition 2.1. Let ¢ : C®°(M) — R be a nontrivial homomorphism of
algebras. Then there exists a point ¢ € M such that ¢ = 7.

We prove this proposition in the Appendix.

Remark 2.2. Not only the manifold M can be reconstructed as a set from the
algebra C'°°(M). One can recover topology on M from the weak topology in
the space of functionals on C*°(M):

lim ¢, =¢ ifand only if lim gpa=ga Vae C®(M).

Moreover, the smooth structure on M is also recovered from C'*° (M), actually,
“by definition”: a real function on the set {q | ¢ € M} is smooth if and only
if it has a form ¢ — qa for some a € C*(M).

Any diffeomorphism P : M — M defines an automorphism of the algebra
C®(M):

P C™®(M)—=C®(M), P eAut(C™(M)),
(Pa)(q) = a(P(q)), q€M, a€C™(M),

le., P acts as a change of variables in a function a. Conversely, any automor-
phism of C°°(M) has such a form.

Proposition 2.3. Any automorphism A : C*(M) — C*®(M) has a form of
P for some P € Difft M.

Proof. Let A € Aut(C™(M)). Take any point ¢ € M. Then the composition
GoA : C®(M) =R

is a nonzero homomorphism of algebras, thus it has the form ¢; for some
q1 € M. We denote ¢; = P(q) and obtain

e

quA:P(q):ﬁoﬁ Vge M,

1.e.

A=P

bl

and P is the required diffeomorphism. a

Now we characterize tangent vectors to M as functionals on C*°(M).
Tangent vectors to M are velocity vectors to curves in M, and points of
M are identified with linear functionals on C°*°(M); thus we should obtain
linear functionals on C*° (M), but not homomorphismsinto R. To understand,
which functionals on C'*°(M) correspond to tangent vectors to M, take a
smooth curve ¢(t) of points in M. Then the corresponding curve of functionals

JE—

q(t) = q(t) on C*(M) satisfies the multiplicative rule
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Q(t)(a-b) = G0y, a, be C=(M).

We differentiate this equality at ¢ = 0 and obtain that the velocity vector to
the curve of functionals

& = — , £:C%(M) =R,

satisfies the Leibniz rule:

§(ab) = £(a)b(¢(0)) + a(q(0))£(b).

Consequently, to each tangent vector v € T, M we should put into corre-
spondence a linear functional

E:C°(M)—>R
such that

§(ab) = (€a)b(q) + alg)(E0),  a, be C™(M). (2.1)

But there is a linear functional £ = ¥ naturally related to any tangent vector
v € T,M, the directional derivative along v:

d

fa= - tzoa(q(t)), ¢(0)=4q, 4(0) =,

and such functional satisfies Leibniz rule (2.1).
Now we show that this rule characterizes exactly directional derivatives.

Proposition 2.4. Let £ : C°(M) — R be a linear functional that satisfies
Leibniz rule (2.1) for some point ¢ € M. Then £ =V for some tangent vector
velgM.

Proof. Notice first of all that any functional £ that meets Leibniz rule (2.1)
is local, 1.e., it depends only on values of functions in an arbitrarily small
neighborhood O, of the point g¢:

alg, = alp, = &a=¢&a, a, a€CT(M).

Indeed, take a cut function b € C°°(M) such that b|M\Oq =1 and b(¢q) = 0.
Then (@ — a)b = @ — a, thus

So the statement of the proposition 1s local, and we prove it in coordinates.
Let (#1,...,2,) be local coordinates on M centered at the point ¢. We
have to prove that there exist aq,...,a, € R such that
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- 0
€ = &y — .
iZ:; 0 Tilg
First of all,
1) =¢£01-1) = (&) - 1+ 1-(£1) = 2¢(1),

thus £(1) = 0. By linearity, £(const) = 0.
In order to find the action of € on an arbitrary smooth function, we expand
it by the Hadamard Lemma:

a(z) = a(0) + Z/O 5; (tw)as dt = a(0) + 3 _bi(w)wi,

where .
da
bi(x) = Ny (te)dt

are smooth functions. Now
n n n 6
Sa= Y €(biwi) = Y ((€bi)wi(0) +bi(0) (€wi) = Y i (0),
i=1 i=1 i=1 ’

where we denote o; = x; and make use of the equality b;(0) = 5; (0). O

So tangent vectors v € T, M can be identified with directional derivatives
v C°(M) — R, i.e., linear functionals that meet Leibniz rule (2.1).

Now we characterize vector fields on M. A smooth vector field on M is a
family of tangent vectors vy € T,M, ¢ € M, such that for any a € C°(M)
the mapping ¢ — vga, ¢ € M, is a smooth function on M.

To a smooth vector field V € Vec M there corresponds a linear operator

Vo C®(M) = C®(M)
that satisfies the Leibniz rule
Viab) = (Va)b+a(Vh),  a, beC®(M),

the directional derivative (Lie derivative) along V.

A linear operator on an algebra meeting the Leibniz rule is called a deriva-
tion of the algebra, so the Lie derivative V is a derivation of the algebra
C*(M). We show that the correspondence between smooth vector fields on
M and derivations of the algebra C'°°(M) is invertible.

Proposition 2.5. Any derivation of the algebra C* (M) is the directional
derivative along some smooth vector field on M.
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Proof. Let D : C*®°(M) — C*(M) be a derivation. Take any point ¢ € M.
We show that the linear functional

d, ¥ GoD : C*(M) >R

is a directional derivative at the point g, i.e., satisfies Leibniz rule (2.1):

dg(ab) = q(D(ab)) = g((Da)b + a(Db)) = g(Da)b(q) + a(q)g(Db) =
(dqa)b(q) + alg)(dgb),  a, be C™(M).

O

So we can identify points ¢ € M, diffeomorphisms P € Diff M| and vector
fields V' € Vec M with nontrivial homomorphisms ¢ : C®°(M) — R, auto-
morphisms P C®(M) = C*(M), and derivations Vo C®(M) = C=(M)
respectively. R

For example, we can write a point P(q) in the operator notation as go P.
Moreover, in the sequel we omit hats and write ¢ o P. This does not cause
ambiguity: if ¢ is to the right of P, then ¢ is a point, P a diffeomorphism,
and P(q) is the value of the diffecomorphism P at the point ¢. And if ¢ is to
the left of P, then ¢ 18 a homomorphism, P an automorphism, and g o P a
homomorphism of C°(M). Similarly, V(¢) € T, M is the value of the vector
field V' at the point ¢, and o V : C°°(M) — R is the directional derivative
along the vector V(q).

2.2 Seminorms and C*°(M )-Topology

We introduce seminorms and topology on the space C*(M).

By Whitney’s Theorem, a smooth manifold M can be properly embedded
into a Euclidean space RY for sufficiently large N. Denote by h;, i =1,... N,
the smooth vector field on M that is the orthogonal projection from RY to M
of the constant basis vector field 6ix, € Vec(RY). So we have N vector fields
hi,...,hy € Vec M that span the tangent space T; M at each point ¢ € M.

We define the family of seminorms || - ||s k on the space C'°°(M) in the
following way:

||a||8,Kzsup{|hilO"'Ohila(Q)||q€[(a 1§i1a~~~ail§Na OSZSS}a
aeC*®(M), s>0, KEcM.

This family of seminorms defines a topology on C'*°(M). A local base of this
topology is given by the subsets

1
{oec=n lahr. <1} nem

where K,, n € N, is a chained system of compacta that cover M:



26 2 Elements of Chronological Calculus
oQ
Ky C Kpyq1, U Ko =M.
n=1

This topology on C°°(M) does not depend on embedding of M into R¥.
It is called the topology of uniform convergence of all derwatives on compacta,
or just C°°(M)-topology. This topology turns C'*° (M) into a Fréchet space
(a complete, metrizable, locally convex topological vector space).
A sequence of functions ai € C°° (M) converges to a € C™°(M) as k = >
if and only if
lim ||ax —a|ls k=0 Vs>0, K M.
k—o0

For vector fields V € Vec M | we define the seminorms
VIls,x = sup{[[Valls  [llalls41,x =1}, s>0, KeM. (22

One can prove that any vector field V' € Vec M has finite seminorms ||V|s &,
and that there holds an estimate of the action of a diffecomorphism P € Diff M
on a function a € C*°(M):

1Pallox < Copllalopuy,  5>0, KM, (2.3)

Thus vector fields and diffeomorphisms are linear continuous operators on the
topological vector space C'*°(M).

2.3 Families of Functionals and Operators

In the sequel we will often consider one-parameter families of points, diffeo-
morphisms, and vector fields that satisfy various regularity properties (e.g.
differentiability or absolute continuity) with respect to the parameter. Since
we treat points as functionals, and diffeomorphisms and vector fields as oper-
ators on C°° (M), we can introduce regularity properties for them in the weak
sense, via the corresponding properties for one-parameter families of functions

tesa,  a € CP(M), teR.

So we start from definitions for families of functions.

Continuity and differentiability of a family of functions a; w.r.t. parameter
t are defined in a standard way since C'°°(M) is a topological vector space.
A family a; is called measurable w.r.t. t if the real function ¢ — a:(q) is
measurable for any ¢ € M. A measurable family a; is called locally integrable
if

t1

/ [|at||s,x dt < oo Vs>0, KEeEM, ty t1 €R.

to

A family a; is called absolutely continuous w.r.t. t if
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t
at:atu—l—/ b, dr
to

for some locally integrable family of functions b;. A family a; is called Lips-
chitzian w.r.t. t if

[la: — ar||s,x < Cs gt — 7| Vs >0, KEM, t teR,
and locally bounded w.r.t. ¢ if
laells x < Cscr, - V>0, KeM, T€R, tel,

where C; g and C i 1 are some constants depending on s, K, and I.
Now we can define regularity properties of families of functionals and oper-
ators on C°(M). A family of linear functionals or linear operators on C*° (M)

t'—)At, tER,

has some regularity property (i.e., is continuous, differentiable, measurable,
locally integrable, absolutely continuous, Lipschitzian, locally bounded w.r.t. 1)
if the family

t— Ata, t e R,

has the same property for any a € C*(M).
A locally bounded w.r.t. ¢ family of vector fields

t— Vi, Vi €Vec M, t1eR,

is called a nonautonomous vector field, or simply a vector field, on M. An
absolutely continuous w.r.t. ¢t family of diffeomorphisms

t— P Pt eDiff M, teRR,

is called a flow on M. So, for a nonautonomous vector field V;, the family of
functions ¢t — Via is locally integrable for any ¢ € C'*°(M). Similarly, for a
flow P!, the family of functions (P'a)(q) = a(P?(q)) is absolutely continuous
w.r.t. t for any a € C*(M).

Integrals of measurable locally integrable families, and derivatives of dif-
ferentiable families are also defined in the weak sense:

t1 t1
/ A, dt :ab—)/ (Ara) dt, a€ C™(M),
to to
Ly vam Liaa € C™(M)
a1 t - a a1 ta), a .

One can show that if A; and B; are continuous families of operators on
C (M) which are differentiable at ¢y, then the family A; o B; is continuous,
moreover, differentiable at tq, and satisfies the Leibniz rule:
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d

d
(At OBt) = (E N At) OBtD +At0 o (E N Bt) s
see the proof in the Appendix.

If families A; and B; of operators are absolutely continuous, then the
composition A; o B; is absolutely continuous as well, the same is true for
composition of functionals with operators. For an absolute continuous family
of functions a;, the family A;a; is also absolutely continuous, and the Leibniz
rule holds for it as well.

di

to

2.4 Chronological Exponential

In this section we consider a nonautonomous ordinary differential equation of
the form

g=Vi(a),  ¢(0) = qo, (2.4)
where V; 1s a nonautonomous vector field on M, and study the flow determined

d
by this field. We denote by ¢ the derivative d—(i, so equation (2.4) reads in the

expanded form as

)

2.4.1 ODEs with Discontinuous Right-Hand Side

To obtain local solutions to the Cauchy problem (2.4) on a manifold M, we
reduce 1t to a Cauchy problem in a Euclidean space. For details about nonau-
tonomous differential equations in R™ with right-hand side discontinuous in
t, see e.g. [138].

Choose local coordinates = = (z',...,z") in a neighborhood Oy, of the
point ¢p:

@04 CM— Oy, CR", @ gz,
@(QQ)ZI‘Q.

In these coordinates, the field V; reads

n

~ 0
(qs*vt)(x):vt(x):;w(t,x)w, r€ 0, teR, (2.5)
and problem (2.4) takes the form
i=Vi(x), 2(0)==0, x€O0, CR" (2.6)

Since the nonautonomous vector field V; € Vec M 1s locally bounded, the
components v; (¢, ), ¢ = 1,...,n, of its coordinate representation (2.5) are:
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(1) measurable and locally bounded w.r.t. ¢ for any fixed « € O,
(2) smooth w.r.t.  for any fixed t € R,
(3) differentiable in z with locally bounded partial derivatives:

8.
‘ Ui <Crg, 1€EIER 2€KE0,, i=1,.. . n

Oz (t,2)

By the classical Carathéodory Theorem (see e.g. [8]), the Cauchy prob-
lem (2.6) has a unique solution, i.e., a vector-function #(¢, zp), Lipschitzian
w.r.t. t and smooth w.r.t. g, and such that:

(1) ODE (2.6) is satisfied for almost all ¢,
(2) initial condition holds: (0, zg) = 0.

Then the pull-back of this solution from R™ to M
Q(ta (]0) = @_1(l‘(t, xo))a

is a solution to problem (2.4) in M. The mapping ¢(¢, ¢o) is Lipschitzian
w.r.t. ¢ and smooth w.r.t. qp, it satisfies almost everywhere the ODE and the
initial condition in (2.4).

For any gy € M, the solution ¢(¢,qp) to the Cauchy problem (2.4) can
be continued to a maximal interval ¢ € J,, C R containing the origin and
depending on ¢g.

We will assume that the solutions ¢(¢, ¢o) are defined for all ¢o € M and
allt € R ie., Jg, = R for any ¢o € M. Then the nonautonomous field V; is
called complete. This holds, e.g., when all the fields V;, ¢ € R, vanish outside
of a common compactum in M (in this case we say that the nonautonomous
vector field V; has a compact support).

2.4.2 Definition of the Right Chronological Exponential

Equation (2.4) rewritten as a linear equation for Lipschitzian w.r.t. ¢ families
of functionals on C'*°(M):

§(t) = q(t) o Ve, ¢(0) = qo, (2.7)
1s satisfied for the family of functionals
q(t,q0) : C° (M) = R, g €EM, teR

constructed in the previous subsection. We prove later that this Cauchy prob-
lem has no other solutions (see Proposition 2.9). Thus the flow defined as

P' g0+ q(t, q0) (2.8)

is a unique solution of the operator Cauchy problem
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Pt=PtoV,  P'=1d, (2.9)

(where Id is the identity operator) in the class of Lipschitzian flows on M.
The flow P* determined in (2.8) is called the right chronological exponential
of the field V; and is denoted as

t
Pt:e_x_f)/ V, dr.
0]

Now we develop an asymptotic series for the chronological exponential, which
justifies such a notation.

2.4.3 Formal Series Expansion

We rewrite differential equation in (2.7) as an integral one:
¢
q(t) = Qo+/ q(r)o Vrdr (2.10)
0

then substitute this expression for ¢(¢) into the right-hand side

t T1
:fJo-l-/ (f]o-l-/ q(m2) 0 Vy, de) oVy dm
0
=qpo0 (Id—l—/ Vs dt) // q(m2) o Vo, o Vi, dradmy,

0<72 <1<t

repeat this procedure iteratively, and obtain the decomposition:

t
q(t) = qoo Id—i—/ VTdT—i—//VTQOVﬁdedﬁ-l-...-l-
0
Ag(t)

/ / o0 o Vo dr, o.oodmy | +
()

n(t
/ / Tn+1 VTn+1 O~~~OV7-1 dTn+1 dTl. (211)
An+1

Here
A”(t):{(T1a~~'aTn)€]Rn|0§TnS"'STlgt}

is the n-dimensional simplex. Purely formally passing in (2.11) to the limit
n — 0o, we obtain a formal series for the solution ¢(¢) to problem (2.7):
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g 0 Id+Z/~~~/VTn0"'°VndTn coodm |,
n=1 An(t)

thus for the solution P to problem (2.9):
Id+Z/~~~/VTno~~~oVTldTn...dTl. (2.12)
n=1 An(t)

Exercise 2.6. We obtained the previous series expansion under the condition
t > 0, although the chronological exponential is defined for all values of {. Show
that the flow e_x_f) fot V; dt admits for ¢t < 0 the series expansion

Id—l—Z/"'/(_Vrn)O"'O(_Vﬁ)dTn oo dr.
"=Hau-n)

This series is similar to (2.12), so in the sequel we restrict ourselves by the
study of the case ¢ > 0.

2.4.4 Estimates and Convergence of the Series

Unfortunately, these series never converge on C'°(M) in the weak sense (if
Vi # 0): there always exists a smooth function on M, on which they diverge.
Although, one can show that series (2.12) gives an asymptotic expansion for

the chronological exponential P? :e_x_f) fot V; dr. There holds the following
bound of the remainder term: denote the m-th partial sum of series (2.12) as

m—1
Sm(t):Id+Z/~~~/VTno~~~oVTldTn coodry,
n=1 An(t)

then for any a € C°(M), s >0, K € M

H (e_x_f) /Ot V, dr — Sm(t)) a

. 1/ "
< CeChallVrllone i (/ IVellstm—1,57 dT) llalls4m,x (2.13)
. 0

=0t™), t—0,

s, K

where K’ € M is some compactum containing K. We prove estimate (2.13)
in the Appendix. It follows from estimate (2.13) that
H(exp/ Vs dr—an(t))a =0(£™), e =0,
0 s, K
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where S, (t) is the m-th partial sum of series (2.12) for the field £V;.
Thus we have an asymptotic series expansion:

t [e%e)
e_X_IB/VrdTNId+Z/~~/VTn0~~~0V71d7'n...drl. (2.14)
0 n=1 An(t)

In the sequel we will use terms of the zeroth, first, and second orders of
the series obtained:

t t
&Zf)/VTdrmld+/ V, dr + // V, oV drydr 4 .
’ 0 0<72<m1 <t

We prove that the asymptotic series converges to the chronological expo-
nential on any normed subspace L C C*°(M) where V; is well-defined and
bounded:

ViLCL,  |Vill=sup{|lViall |a € L, llall <1} <oo.  (215)

We apply operator series (2.14) to any a € L and bound terms of the series
obtained:

a-|—Z/~~~/VTnO~~~OVTladTn...dTl. (2.16)
n=1 An(t)

We have
/~~~/Vrn0"'ovnad7'n ...dn
An(t)

S A L e L P

0SS ST St

by symmetry w.r.t. permutations of indices o : {1,... ,n} = {1,... n}

= [ Wl vl dn )

075 (n) < L7 1) <t

passing to the integral over cube

1 t t
E/o /0 NVell - o Ve |l drn - .. dry - |]al]

1 [/ "
= ([ war)
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So series (2.16) is majorized by the exponential series, thus the operator se-
ries (2.14) converges on L.
Series (2.16) can be differentiated termwise, thus it satisfies the same ODE
as the function Pla:
a; = Viay, ag = a.

Consequently,
Pta:a+2/~~~/VTno~~~oVTladTn coodrm.
n=1 An(t)

So in the case (2.15) the asymptotic series converges to the chronological
exponential and there holds the bound

[Pal| < els IV lmfla)l, ae L,

Moreover, one can show that the bound and convergence hold not only for
locally bounded, but also for integrable on [0, ] vector fields:

¢
/ [|V|] dr < 0.
0

Notice that conditions (2.15) are satisfied for any finite-dimensional V;-
invariant subspace L C C°°(M). In particular, this is the case when M = R”™
L 1s the space of linear vector fields, and V; is a linear vector field on R”.

If M, V;, and a are real analytic, then series (2.16) converges for sufficiently
small ¢, see the proof in [19].

2.4.5 Left Chronological Exponential

Consider the inverse operator Q! = (Pt)_1 to the right chronological expo-
nential P! = e_x_f) fot V, dr. We find an ODE for the flow Q! by differentiation
of the identity

PloQi=1d.

Leibniz rule yields

Plo@+P o0 =0,
thus, in view of ODE (2.9) for the flow P,
PtoVioQ' + PloQt = 0.
We multiply this equality by @Q° from the left and obtain
VioQ +Q" =0.

That is, the flow @ is a solution of the Cauchy problem
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d
EQt =—V,0Q", Q° =1d, (2.17)

which is dual to the Cauchy problem (2.9) for P'. The flow @Q° is called the
left chronological exponential and i1s denoted as

t
Qt:&ﬁ/o (=Vy)dr.

We find an asymptotic expansion for the left chronological exponential
in the same way as for the right one, by successive substitutions into the

right-hand side:
¢
Q' = Id—l—/ (=V3)o Q7 dr
0

t
- Id+/ (_VT) dr+ //(_Vn) o (_VTz) © QT2 dTZ dTl =
0
Ag(t)

m—1
:Id—|—Z/"'/(_Vn)O"'O(_VTn)dTn ... dmy
"= A
-|-/.~~/(—V7.1)o~~~o(—V,.m)oQT’"dTm . dn.
An(t)

For the left chronological exponential holds an estimate of the remainder term
as (2.13) for the right one, and the series obtained is asymptotic:

+ [
&E)/ (_VT)dTNId+Z/.../(_VTl)O"'O(_VTn)dT" "'dTl'
0 n=1 An(t)

Remark 2.7. (1) Notice that the reverse arrow in the left chronological expo-
nential &E} corresponds to the reverse order of the operators (—V;)o - o
(=Vi), T <o < my

(2) The right and left chronological exponentials satisfy the corresponding
differential equations:

d _ t _ t
—ex_f)/ VTdT:eX_f)/ V.dro Vg,
dt 0 0

d _ t _ t
— &p/ (=Vy)dr=-V; 0 &p/ (=V;)dr.

The directions of arrows correlate with the direction of appearance of opera-
tors Vi, —V; in the right-hand side of these ODEs.

(3) If the initial value is prescribed at a moment of time g # 0, then the
lower limit of integrals in the chronological exponentials is g.
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(4) There holds the following obvious rule for composition of flows:
_ t1 _ ta _ ta
exp / V. dro exp / Vydr = exp / Vi, dr.
to t1 to

Exercise 2.8. Prove that

1

t1 to - to
e_x_f)/ V, dr = (5@/ v, dr) = &1)/ (=V,)dr. (2.18)
to t1 t1

2.4.6 Uniqueness for Functional and Operator ODEs

We saw that equation (2.7) for Lipschitzian families of functionals has a so-

lution ¢(¢) = qgo e_x_f) fot V; d7. We can prove now that this equation has no
other solutions.

Proposition 2.9. Let V; be a complete nonautonomous vector field on M.
Then Cauchy problem (2.7) has a unique solution in the class of Lipschitzian
families of functionals on C*°(M).

Proof. Let a Lipschitzian family of functionals ¢; be a solution to prob-

lem (2.7). Then

d _ d
E(QtO(Pt) 1):E(Qt0Qt):f]tOVtOQt—QtOVtOQt:O,

thus ¢; o Q' = const. But Qg = Id, consequently, ¢; o @' = ¢, hence

t
Qt:(JOOPt:(JOOgX_f)/ Vydr
0

is a unique solution of Cauchy problem (2.7). O

Similarly, the both operator equations Pt = PtoV, and Qt = —V,o @
have no other solutions in addition to the chronological exponentials.

2.4.7 Autonomous Vector Fields
For an autonomous vector field
Vi=V eVecM,

the flow generated by a complete field is called the ezponential and is denoted
as €'V, The asymptotic series for the exponential takes the form

= ¢ 12
tVN —_ n— —_— e
e N§ nlv _Id+tV—|—2VoV—|— ,

n=0



36 2 Elements of Chronological Calculus

1.e, 1t is the standard exponential series.
The exponential of an autonomous vector field satisfies the ODEs

d

EetvzetVoV:Vo etv, etV =1d.

t=0

We apply the asymptotic series for exponential to find the Lie bracket of
autonomous vector fields V, W &€ Vec M. We compute the first nonconstant
term in the asymptotic expansion at ¢ = 0 of the curve:

q(t) =qgoeV o™ o™ o™V

2 12
=gqo (Id+tV+5v2+...) o <1d+tW+5W2+...)
2 12
o <1d—tv+5v2+~.) o <Id—tw+5wz+m)
t2
=qo (Id—l—t(V—l—W)+5(V2+2V0W—|—W2)—|—m)
t2
o<Id—t(v+W)+5(V2+2vow+wz)+...)

=gqo(Id+t* (VoW —WoV)+---).

So the Lie bracket of the vector fields as operators (directional derivatives) in
C*(M) is
VW]=VoW -WoV.

This proves the formula in local coordinates: if

"y "9 N
V= E aiﬁ—l‘i’ W = E blﬁ—xl’ a;, b, e C (M),
i=1 i=1

then

u db; da;\ & dw dv
[V’W]—Z(“fa—@‘bfaxj)am—ﬁv—aw

i,7=1
Similarly,
goeVoeWoe™V =qgo(Id+tV+--)o(Id+sW+--)o(Id—tV +---)
=qo (Id+sW +ts[V,W]+---),

and

32
qo [V, W] = D50t L goeV oetWoe W,
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2.5 Action of Diffeomorphisms on Vector Fields

We have already found counterparts to points, diffeomorphisms, and vector
fields among functionals and operators on C'*°(M). Now we consider action
of diffeomorphisms on vector fields.

Take a tangent vector v € T, M and a diffeomorphism P € Diff M. The
tangent vector P.v € Tp(qyM is the velocity vector of the image of a curve
starting from ¢ with the velocity vector v. We claim that

Pov=wvoP, veT,M, PeDiff M, (2.19)

as functionals on C°°(M). Take a curve

d
atyeM,  q0)=q¢ - at)=v,
t=0
then
d d
Powa= 71 . a(P(q(®))) = (E . q(t)) o Pa
= v o Pa, a€ C™(M).

Now we find expression for P.V, V € Vec M, as a derivation of C'*°(M). We
have

qoPoP.V =P(q)o P,V = (P.V)(P(q)) = P.(V(¢q)) =V(g) o P
=qoVoP qeM,

thus
PoPV =VoP,

1.e.

P.V=P'oVoP, PeDiffM, V€ VecM.

So diffecomorphisms act on vector fields as similarities. In particular, diffeo-
morphisms preserve compositions:

P.(VoW) =P 'o(VoW)oP = (P 'oVoP)o(P 'oWoP)= P.VoP.W,
thus Lie brackets of vector fields:
PV, W]=P(VoW —=WoV)=PVoP.W—P,WoP,V =[P.V,P.W].

If B: C®(M)— C®(M) is an automorphism, then the standard alge-
braic notation for the corresponding similarity is Ad B:

(AdB)YV ¥ BovoB .

That 1s,
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P,=Ad P!, P € Diff M.

Now we find an infinitesimal version of the operator Ad. Let P! be a flow
on M,

d
PY=1d, —| P'=V €E€VecM.
di t=0
Then 4
a7 =
di t=0
SO

d d
—| (AdPYW = —| (PoWo(P)y )=VoW-WoV
dt,_, dt|,_,

=[V,W], W e VecM.

Denote

Ad P!,

t=0

adV:ad(—

A o) ar d
dt|,_, dt

then
(ad VYW = [V, W], W &€ Vec M.

Differentiation of the equality
AdP'[X,Y] = [AdP' X, Ad P'Y] X,Y € Vec M,

at t = 0 gives Jacobi identity for Lie bracket of vector fields:

(ad V)[X, Y] = [(ad V)X, Y]+ [X, (ad V)Y,
which may also be written as

V[ X, Y=V, X],Y] + [X, [V, Y]], V,X,Y € Vec M,
or, in a symmetric way
X, [V, 2]+ [V, [Z, X1+ [Z,[X,Y]] =0, X,Y, 7 € Vec M. (2.20)

The set Vec M is a vector space with an additional operation — Lie
bracket, which has the properties:

(1) bilinearity:

[aX + BY, Z) = o[ X, Z] + BY, Z],
[X,aY + 8Z] = a[X, Y]+ B[X,Z), X.Y.Z€VecM, a,feR,

(2) skew-symmetry:

[X,Y]=-[Y,X], X,Y € VecM,
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(3) Jacobi identity (2.20).

In other words, the set Vec M of all smooth vector fields on a smooth manifold
M forms a Lie algebra.

t
Consider the flow P! = e_x_f) / V: d7 of a nonautonomous vector field V;.
0

We find an ODE for the family of operators Ad P! = (P%); ! on the Lie algebra
Vec M.

d d
—(AdP)X = — (P'o X o(PH!
AP = 5 (ProX o (P)7)
=PloVioXo(P)Y ' —PoXoV,o(P)!
= (Ad P)[V;, X] = (Ad P ad V; X, X € Vec M.
Thus the family of operators Ad P! satisfies the ODE

d
T AdP = (Ad P oadV, (2.21)

with the initial condition
AdP’ =1d. (2.22)
So the family Ad P! is an invertible solution for the Cauchy problem
Ay = AyoadVy, Ag=1d

for operators A; : Vec M — Vec M. We can apply the same argument as for
the analogous problem (2.9) for flows to derive the asymptotic expansion

t
AdPtNId—I—/ adV,dr+---
0

_|_/.../adVTno~~~oadVTldTn...d7'1+"' (2.23)
An(t)

then prove uniqueness of the solution, and justify the following notation:
— /" def — "
exp / adVydr = AdP'=Ad (exp / V: dr) .
0 0
Similar identities for the left chronological exponential are
— [ def — [
exp / ad(=V;)dr = Ad (exp / (=V+) dr)
0 0

~ Id + —adV;)o---o(—adV, Tn .. AT1.
d dv;, av, )d d
n=1 An(t)
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For the asymptotic series (2.23), there holds an estimate of the remainder
term similar to estimate (2.13) for the flow P’. Denote the partial sum

m—1
Tm:Id—i—Z/~~~/adVTno~~~oadVTldTn oo dr,
n=1 An(t)

then for any X € Vec M, s >0, K e M

t
H (Ad e_x_f)/ V. dr—Tm)X
0 s, K

i 1 ! ”
< 01601 SolWVelleqr, kv d7 — (/ ||Vr||s+m,K’ dT) ||X||s+m,K’
: 0

(2.24)

=0(t"), t—0,

where K’ @ M is some compactum containing K.
For autonomous vector fields, we denote

def
6tadV < Ad etV’

tadV

thus the family of operators e : Vec M — Vec M is the unique solution

to the problem .
At:AthdV, AQZId,

which admits the asymptotic expansion

t2
2V yTId+tadV + Ead2V+~~~ .

Exercise 2.10. Let P € Diff M, and let V; be a nonautonomous vector field
on M. Prove that

t t
Po e_x_f)/ v, dToP_lze_x_f)/ Ad PV, dr. (2.25)
0 0

2.6 Commutation of Flows

Let V, € Vec M be a nonautonomous vector field and P? :e_x_f) fot V: dr the
corresponding flow. We are interested in the question: under what conditions
the flow P! preserves a vector field W € Vec M:

PLW =W Vi,
or, which is equivalent,

(PH'W =W vt
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Proposition 2.11.
P*tW:W Vi < [V, W]=0 Vi

Proof. We have

d 1., d tor A — ¢
E(Pt)* W = thdP W = (dt exp/0 adVTdT)W
Y ot
= (exp/ ad V; droadVT) W = (exp/ ad V; dr) Vi, W]
0 0
= (P Ve, W,
thus (PY)7'W = W if and only if [V, W] = 0. O

In general, flows do not commute, neither for nonautonomous vector fields

‘/ta Wt:
- t1 N ta N ta N t1
exp/ Vydro exp/ W, dr #exp/ W, dro exp/ Vi, dr,
0 0 0 0

nor for autonomous vector fields V| W:

etlv OetQW ;é etQW o t1V.

(&

In the autonomous case, commutativity of flows 1s equivalent to commutativity
of vector fields:

1V toW

eV oe =e oV ity eR, = [V,W]=0.

We already showed that commutativity of vector fields is necessary for com-
mutativity of flows. Let us prove that it 1s sufficient. Indeed,

(Ade"V) W = eV W = W.

Taking into account equality (2.25), we obtain

1V o pl2W o mtaV 6t2(Adet1V)W — pt2W
2.7 Variations Formula
Consider an ODE of the form
§=Vilq) + Wi(q). (2.26)

We think of V; as an initial vector field and W; as its perturbation. Our aim
is to find a formula for the flow Q! of the new field V; + W, as a perturbation
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of the flow P! = e_x_f) fot V; d7 of the initial field V;. In other words, we wish
to have a decomposition of the form

t
Q' :e_x_f)/ (Vs + W,)dr = Cy o P
0

We proceed as in the method of variation of parameters; we substitute the
previous expression to ODE (2.26):

TQ =q ety

= CyoP 4+ CioPloV,

=Cio P 4+ Q' oV,
cancel the common term Q¢ o V;:

Q' oW, =Cyo PP,
and write down the ODE for the unknown flow Cf:

Ci=Q oW;o (P

= CioPloW,o(P)™"
= Cyo (Ad PY) W,

t
—Cy o (5@/ ad V; dr) We,
0]
Co=1d.

This operator Cauchy problem is of the form (2.9), thus it has a unique solu-

tion: . N
Ct:&(_f)/ (5@/ adwde) W, dr.
0 0

Hence we obtain the required decomposition of the perturbed flow:
ot Lt T gt
exp / (Vr + W) dr =exp / (exp / ad Vp db’) W, dro exp / V., dr.
0 0 0 0
(2.27)

This equality is called the variations formula. It can be written as follows:
gt gt
exp / (Vr + W) dr =exp / (Ad PT)W, dr o P".
0 0

So the perturbed flow is a composition of the initial flow P! with the flow of
the perturbation W, twisted by P*.

Now we obtain another form of the variations formula, with the flow P?
to the left of the twisted flow. We have
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t t
b — T t
exp/ (VT—i—WT)dT:exp/ (AdP")W,dr o P
0 0

¢
=Plo (Pt)_lo e_x_f)/ (AdPT)W, dro P!
0

t
— P'o e_x_f)/ (Ad(P)™ o Ad P7) W, dr

0

t
= pt ‘*/ Ad (P oP7)) W, dr.
oexpo( ((P)orm))W,dr

Since ,
(Pt)_loPT:e_x_f)/ Vy df,

¢
we obtaln

t t T
e_x_f)/ (Vs + W;) dr = Plo e_x_f)/ (5@/ adwda) W, dr
0] 0] t

t t T
:e_x_f)/ V. dro e_x_f)/ (5@/ adwda) W, dr.
0] 0] t

(2.28)

For autonomous vector fields V, W € Vec M, the variations formulas (2.27),

(2.28) take the form:
Lt Lt
et VW) :exp/ e VW droeV =etVo exp/ 7= 2d Vi g (2.29)
0 0
In particular, for ¢ = 1 we have

1
—
eV+W:exp/ eV Wdroe.
0

2.8 Derivative of Flow with Respect to Parameter
Let Vi(s) be a nonautonomous vector field depending smoothly on a real

parameter s. We study dependence of the flow of V;(s) on the parameter s.
We write

exp /Ot Vi (s +¢)dr =exp /Ot (Vi (s) + dv, (s,¢)) dr (2.30)

with the perturbation dy_(s,e) = V(s + ¢) — V;(s). By the variations for-
mula (2.27), the previous flow is equal to

t T t
e_x_f)/ (e_x_f)/ ad Vp(s) db’) dv.(s,e)dro e_x_f)/ Vi (s)dr.
0 0 0



44 2 Elements of Chronological Calculus

Now we expand in ¢:
Sv,(s,e) = e=—V.(s) +0(c?), e =0,
Wi (s,€) ef ( Xp / ad Vy(s) d@) dv.(s,€)
0

= £

TN

e_x_f)/ adw(s)da) §v7(5)+0(52), e —0,
0

S

thus

t
eXp/W(SEdT—Id+ W, (s,¢)dr 4+ O(e?)
0

0
— 0 9
=1Id+e exp adVe (s)do EVT(S)CZT—FO(E ).
0

Finally,

t t
e_x_f)/ Vi(s+¢)d T—ex_f) W g)dro exp/ Vi(s)dr
0 0

o

t T t
—1—6/ (e_x_f)/ ad Vp(s) db’) aiVT(s) dro e_x_f)/ Vi (s)dr 4+ O(e?),
0 0 s 0

t T t
_ / (gﬁ)/ ad Vi (s) da) 9y (s)dro e_x_f)/ V,(s)dr. (231)
0 0 Js 0
Similarly, we obtain from the variations formula (2.28) the equality
t
% e_x_f)/o Vi(s)dr

—é&xp /Ot vV, (s) dro/ot (e_x_f) /t ad Vj (s) da) %VT(S) dr. (2.32)

For an autonomous vector field depending on a parameter V(s), formula
(2.31) takes the form

t
9 v :/ redvin) IV v
Js 0
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and at ¢t = 1:

Js
Proposition 2.12. Assume that

t
[/ der,vt]:o vi. (2.34)
0

1
gews):/ radvin OV v (2.33)
0]

Then .
e_x_f)/ Vr dr = elo Vrdr Vt.
0

That is, we state that under the commutativity assumption (2.34), the chrono-
logical exponential e_x_f) fot V, d7 coincides with the flow Q¢ = elo Vr a7 defined
as follows:

t t
Q: 1»

¢ ¢
aQs:/VTdToQi, Q) =1d.
Js 0

Proof. We show that the exponential in the right-hand side satisfies the same
ODE as the chronological exponential in the left-hand side. By (2.33), we have

d t 1 t t
EefDVTdT: eTadengGthToefuv,.dT.
0

In view of equality (2.34),
o7 ad [ Ve df V, = Vi,
thus

%efutv,.dr :Vtoefutv,.dr.

By equality (2.34), we can permute operators in the right-hand side:

%efutv,.dr :ethV,.dTOVt.

Notice the initial condition

t
efo Vrdr =1d.
t=0

Now the statement follows since the Cauchy problem for flows
Ar= AroVi,  Ag=1d

has a unique solution:

t
A = efo Vrdr :e_x_f)/ V. dr.
0
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Linear Systems

In this chapter we consider the simplest class of control systems — linear
systems
m
i‘:Am—i—c—i—Zuibi, reR™  w=(uy,...,un) ER™, (3.1)
i=1
where A is a constant real n x n matrix and ¢, by, ..., b,, are constant vectors
in R™.

3.1 Cauchy’s Formula for Linear Systems

Let wu(t) = (u1(?), ..., um(t)) be locally integrable functions. Then the solu-
tion of (3.1) corresponding to this control and satisfying the initial condition

z(0,20) = xg

is given by Cauchy’s formula:

t m
x(t,xo) — oA (l‘o-i-/ e~ TA (Zuz(T)bz -|—cd7')) , teR.
0 i=1

Here we use the standard notation for the matrix exponential:
t? "
etA:Id—I—tA—|—§A2—|—~~~—|——'A”—|—~~ .
! n!
Cauchy’s formula is verified by differentiation. In view of uniqueness, it gives

the solution to the Cauchy problem.
Linear system (3.1) is a particular case of a control-affine system:

t==xo0 (fo-I—ZUifi) ; (3.2)
i=1
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in order to obtain (3.1) from (3.2), one should just take
folz) = Az + ¢, file) =8, i=1,... m. (3.3)

Let us show that Cauchy’s formula is actually a special case of the general
variations formula.

Proposition 3.1. Cauchy’s formula specializes the variations formula for lin-
ear systems.

Proof. We restrict ourselves with the case ¢ = 0.
The variations formula for system (3.2) takes the form

exXp /Ot (fo + iuz(ﬂfz) dr

t T m t
:e_x_f)/o ( e_x_f)/o adfode) oZui(T)fi) dro e_x_f)/o fodr

=1
Zui(r)eT adf”fi) droetfo. (3.4)

We assume that ¢ = 0, i.e., fo(#) = Az. Then
roelfo — et4p. (3.5)

Further, since (ad fo) fi = [fo, fi] = [Az, b] = —Ab then

e fi = fi 4+ 7(ad fo) fi + ;—T(ad fo)’fi4 -+ ;—T(adfo)”fi +--
7_2 ™
= 6_TAbZ'.

In order to compute the left flow in (3.4), recall that the curve
. t m N t m
Tpo exp/ (Z ui(T)e” adf”fi) dr = zg0 exp/ (Z ui(r)e_TAbi) dr
0 0 \iz1

= (3.6)

is the solution to the Cauchy problem

E(t) = Zui(t)e_“‘bi, 2(0) = o,

i=1

thus (3.6) is equal to
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x(t) = xo + /Ot (e_TA :1 ui(r)bi) dr.

Taking into account (3.5), we obtain Cauchy’s formula:
0 exp/ fo-l-ZUi(T)fz’ dr
0 i=1
t m
xo—i—/ 6_TAZUZ'(T)I)Z' dr | oetfo
0 i=1
t m
4 (xo —1—/ (e_TA ZUZ(T)I)Z) dr) :
0 i=1

Notice that in the general case (¢ # 0) Cauchy’s formula can be written
as follows:

t m ;
2(t, xo) = 6tAl‘o+6tA/ e_TAZui(T)bi d7—+etA/ Ao dr
0 i=1 0

(1)

O

¢ " et4 —1d
:etAl‘o—l—etA/ o TA Zui(r)bi dr + Tc, (3.7)
0 i=1
where
et4 —1Id 12 o, oo
Tc:tc+§Ac+§Ac+~~+5A c4 -

3.2 Controllability of Linear Systems

Cauchy’s formula (3.7) yields that the mapping
u = z(t, u, 2o),

which sends a locally integrable control « = wu(-) to the endpoint of the
corresponding trajectory, is affine. Thus the attainable set A; (¢) of linear
system (3.1) for a fixed time ¢ > 0 is an affine subspace in R™.

Definition 3.2. A control system on a state space M 1is called completely
controllable for timet > 0 if

.Axo(t) =M Voo € M.
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This definition means that for any pair of points zg, 21 € M exists an
admissible control u(-) such that the corresponding solution z(-,u,zq) of
the control system steers xy to x1 in ¢ units of time:

(0, u, 20) = xg, a(t,u,x0) = 1.

The study of complete controllability of linear systems is facilitated by the
following observation. The affine mapping

et4 —1d t “
urs ey + Tc—i—em/ 6_TAZUZ'(T)I)Z' dr
0 i=1

is surjective if and only if 1ts linear part
t m
w4 / e~74 Z ui(7)b; dr (3.8)
0 i=1

is onto. Moreover, (3.8) is surjective iff the following mapping is:

t m
u / e~74 Zui(r)bi dr. (3.9)
0 i=1
Theorem 3.3. The linear system (3.1) is completely controllable for a time
t > 0 if and only of
span{Aib; |j=0,...,n—1,i=1,...,m}=R" (3.10)

Proof. Necessity. Assume, by contradiction, that condition (3.10) is violated.
Then there exists a covector p € R™ p #£ 0, such that

pATb; =0, j=0,....,n—1,i=1,...,m. (3.11)

By the Cayley-Hamilton theorem,

n—1
AT =) oy AT
=0

for some real numbers «q, ..., a,_1, thus

n—1
k _ k Ad
AR =3 g
7=0

for any k& € N and some ﬁf € R. Now we obtain from (3.11):

n—1
pARb; =" BipAlb; =0, k=0,1,...,i=1,...,m.

7=0
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That is why
pe”T4b; =0, t=1,...,m,

and finally

t m t m
p/ 6_TAZUi(T)bidT:/ Zui(T)pe_TAbidTZO,
0 i=1 0 =1

i.e., mapping (3.9) is not surjective. The contradiction proves necessity.

Sufficiency. By contradiction, suppose that mapping (3.9) is not surjective.
Then there exists a covector p € R™ p #£ 0, such that

pﬂ;E:uxTﬁfTA@dT:() Vu(-) = (ur(-), .. um(-)). (3.12)

Choose a control of the form:
u(r) =(0,...,0,vs(7),0,...,0),

where the only nonzero i-th component 1s

1,0< 7 <5,
vs(7) = 0, >

Then equality (3.12) gives
p/ e A dr =0, seR, 21=1,...,m,
0

thus
pe” b =0, seR, 2=1,...,m.
We differentiate this equality repeatedly at s = 0 and obtain
pA*Db; = 0, k=0,1,..., i=1,...,m,
a contradiction with (3.10). Sufficiency follows. O

So if a linear system is completely controllable for a time ¢ > 0, then it
is completely controllable for any other positive time as well. In this case the
linear system 1is called controllable.
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State Linearizability of Nonlinear Systems

The aim of this chapter is to characterize nonlinear systems
0= fol)+ > uifile), w=(u,... ,um) ER™ g€M (4.1)
i=1

that are equivalent, locally or globally, to controllable linear systems. That is,
we seek conditions on vector fields fy, f1, ..., fn that guarantee existence of
a diffeomorphism (global ¢ : M — R” or local & : Oy, C M — Oy C R")
which transforms nonlinear system (4.1) into a controllable linear one (3.1).

4.1 Local Linearizability

We start with the local problem. A natural language for conditions of local
linearizability is provided by Lie brackets, which are invariant under diffeo-
morphisms:

B[V, W] = [0V, 8. W],  V,W € Vec M.

The controllability condition (3.10) can easily be rewritten in terms of Lie
brackets: since

(=AY bi = (ad fo) fi = [fo, [...[fo, £i] - 1]

for vector fields (3.3), then the controllability test for linear systems (3.10)
reads

span{zgo (ad fo)/ fi | =0,...,n—1,i=1,... ,m} =Ty, R"

Further, one can see that the following equality is satisfied for linear vector

fields (3.3):
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[(ad fo)7 fi,, (ad fo)72 fi,] = [(—A) b, , (—A)Y2bi,] = 0,
0<71, jo, 1<i, i2<m.

It turns out that the two conditions found above give a precise local char-
acterization of controllable linear systems.

Theorem 4.1. Let M be a smooth n-dimensional manifold, and let fq, f1,
., Jm € Vec M. There exists a diffeomorphism

@20q0—>00

of a neighborhood Oy C M of a point qo € M to a neighborhood Oy C R™ of
the origin 0 € R™ such that

(@ fo)(x) = Az + ¢, z € Oy,
(@ fi) () = by, x €0y, i=1,...,m,

for some n x n matriz A and ¢, by, ..., b, € R™ that satisfy the controllability
condition (3.10) if and only if the following conditions hold:

span{goo (ad fo) fi | i =0,...,n—1,i=1,...,m} =T, M, (4.2)
qo [(ad fo)jlfila (adfo)j2fi2] = Oa
qEOqua Ogjl, jzgn, 1§i1, Zzgm (43)

Remark 4.2. In other words, the diffecomorphism @ from the theorem trans-
forms a nonlinear system (4.1) to a linear one (3.1).

Before proving the theorem, we consider the following proposition, which
we will need later.

Lemma 4.3. Let M be a smooth n-dimensional manifold, and let Y1, ...
Yr € Vec M. There exists a diffeomorphism

@200—>Oq0

of a neighborhood Oy C R" to a neighborhood Ogqy C M, qo € M, such that

0
D, | — ) =Y, i =1,...,k,
<8l‘l) !

of and only if the vector fields Y1, ..., Yy commute:
Vi Y1=0, =1,
and are linearly independent:

dimspan(goo Y1,...,qo 0 Yy) = k.
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Proof. Necessity is obvious since Lie bracket and linear independence are in-
variant with respect to diffeomorphisms.

Sufficiency. Choose Yiy1,...,Yn € Vec M that complete Yi,... Y} to a
basis:
span(qoYi,...,qo0Y,) =T, M, q € Oy,

The mapping

D(s1,...,80) =qooe™mo...0e N

is defined on a sufficiently small neighborhood of the origin in R"™. We have

d aet O G,
o, | — =
( 382' 5:0) 382'

P(s) = P
Hence @.|,_, is surjective and ¢ is a diffeomorphism of a neighborhood of
0 in R™ and a neighborhood of ¢y in M, according to the implicit function
theorem.
Now we prove that @ rectifies the vector fields Yi,..., Y. First of all,
notice that since these vector fields commute, then their flows also commute,
thus

qooeYi =qyoV;.
e=0

s=0

k
eskYk 0.0 elel — eEz:l 5:Yy

and
k
@(81, R ,Sn) =qpo PEES PN SSR ORI DL £

Then fori=1,... )k

0 0
b, | — = — D(s1,...,8 +E ... ,8n)
8‘% B(s) de e=0
9 $nY, s Y, Sk sy ey,
:3_ qooe’m mo...oe FFtiEtl g plaj=1731d g g5t
2
=0
kv, O
= gooe’ ™Yoottt o e Xhm1 5iYi o i
86 =0
=P(s)o Y.

O

Now we can prove Theorem 4.1 on local equivalence of nonlinear systems
with linear ones.

Proof. Necessity is obvious since Lie brackets are invariant with respect to
diffeomorphisms, and for controllable linear systems conditions (4.2), (4.3)

hold.

Sufficiency. Select a basis of the space Ty, M among vectors of the form

g0 0 (ad fo)? fi:
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oc (adfo) fla’ 0[21,...,71, OSJOCSn_la 1§za§m,
span(qooY1,...,qo0Y,) =T, M.

By Lemma 4.3, there exists a rectifying diffeomorphism:

0

@ : Oy, — O, @*Yazﬁxa’ a=1...,n.
We show that @ is the required diffeomorphism.
(1) First we check that the vector fields @, f;, i = 1,...,m, are constant. That
is, we show that in the decomposition
@*fizznzﬁi(x) 0 i=1,...,m,
a=1 : 6l’
the functions 3¢ (z) are constant. We have
op 0
D] , 4.4
[3 o 1= Z Jx; Oxq (4.4)

on the other hand

d
[3xa

by hypothesis (4.3). Now we compare (4.4) and (4.5) and obtain

(B fi] = [BuYa, B fi] = Bu[Ya, fil = Du[(ad fo)* fi,, fi] =0 (4.5)

08, 0 :
=0 = !'=const, i=1,...m a=1... n,
31‘j3xa 6a
le., @.f;,i=1,...,m, are constant vector fields b;, i =1,...,m.

(2) Now we show that the vector field @, fy is linear. We prove that in the
decomposition

. fo = Zﬁz M

all functions fg;(z), ¢ = 1,...,n, are linear. Indeed,
98 0 0 0
— Jradrp Ox; Oy aes 5 P foll
:[@ YOH[Q5 Yﬁa@ fo]]_ [YOM[Yﬁ fo]]

[(adfO) fla’[(a‘dfo)]ﬂflﬂafo]]
®.[(ad fo)= fi, [fo. (ad fo)?* £, ]]

®.[(ad fo)= fi.,, (ad fo)7#t1 £i,]
=0, a, f=1,...,n
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by hypothesis (4.3). Thus

3 0 _ . B
8l‘a@xﬁaxi:0, 2, a,ﬁ—l,...,n’

1e., @, fo is a linear vector field Az + c.
For the linear system # = Ax +c+ ;v uib;, hypothesis (4.2) implies the
controllability condition (3.10). O

4.2 Global Linearizability

Now we prove the following statement on global equivalence.

Theorem 4.4. Let M be a smooth connected n-dimensional manifold, and let
fo, fi,--- fm € Vec M. There exists a diffeomorphism

b M- TFxR*

of M to the product of a k-dimensional torus T* with R"™* for some k < n
such that

(@ fo)(z) = Aw + ¢, reThx RMF
(P, f:)(x) = by, reTrF xRk i=1,... m,

for some n x n matriz A with zero first k rows:
Ae; =0, t=1,... )k, (4.6)

and ¢, by, ... by, € R™ that satisfy the controllability condition (3.10) if and
only if the following conditions hold:

(ad fo)! fi, j=0,1,...,n—1, i=1,...,m,

are complete vector fields, (4.7
span{qo(adfo)jfi |j=0,...,n=1,i=1,...,m}=T,M, (4.8)
go(ad fo)* fir, (ad fo)?2 fi,] = 0,

gEM, 0<ji, ja<n, 1<ii, in<m. (4.9)

Remark 4.5. (1) If M is additionally supposed simply connected, then it is
diffeomorphic to R” i.e., k = 0.

(2) If, on the contrary, M is compact, i.e., diffeomorphic to T™ and m < n,
then there are no globally linearizable controllable systems on M . Indeed, then
A =0, and the controllability condition (3.10) is violated.
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Proof. Sufficiency. Fix a point ¢o € M and find a basis in T,; M of vectors of
the form

Y. = (ad fo)?« fi, a=1,...,n,
span(gooY1,... ,qooY,) =Ty M.

(1) First we show that the vector fields Y7,... Y, are linearly independent
everywhere in M. The set

O={qe M |span(qoYi, ... ,qoY,)=T,M}
is obviously open. We show that it is closed. In this set we have a decompo-
sition

n

go(adfol/ fi=qo) afYa, ¢€O0, j=0,....n=1 i=1....m,
a=1

(4.10)

for some functions a%/ € C°°(0). We prove that actually all @/ are constant.

We have

n

0=[Yp, Z aijYoc]

a=1

by Leibniz rule [X,aY] = (Xa)Y + a[X,Y]
= i [Vs, Yol + > (Vsai)Ya
a=1 a=1
=Y (Ysal)Ya, B=1....n, j=0,....n—1 i=1..m,
a=1

thus

Y@aiaj =0 = aio(j|o = const,

a=1,...,n, j=0,...,n—=1, ¢t=1,... m.
That is why equality (4.10) holds in_the closure O. Thus the vector fields
Y1,...,Y, are linearly independent in O (if this is not the case, then the whole
family (ad fo)' fi, j = 0,...,n—1,¢=1,...,m, is not linearly independent
in O). Hence the set O is closed. Since it is simultaneously open and M is
connected,

O=M,
i.e., the vector fields Y7, ... Y, are linearly independent in M.
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(2) We define the “inverse” ¥ of the required diffeomorphism as follows:

(xy,...,¢0) =qooe" M o...0e"m¥n
since the vector fields Y, commute
— gp 0 eloa=1 TaVa = (x1,...,2,) ER",

(3) We show that the (obviously smooth) mapping ¥ : R™ — M is regular,
e., its differential is surjective. Indeed,

ow d
P (a:):d—6 Uy, .., a+E ..., %)
o e=0
d S wpYsteY,
- — Go 0 e~ p=1 Btp o
de e=0

= qpoexp=1"8Y5 5 Y,

=U(x) oYy, a=1,...,n,

thus
U (R?) = Ty oy M.

The mapping ¥ is regular, thus a local diffeomorphism. In particular, ¥ (R™)
1s open.

(4) We prove that W(IR") is closed. Take any point ¢ € ¥(IR7). Since the vector
fields Y7, ...,Y, are linearly independent, the image of the mapping

(yla"'ayn)'_)qoezzzlyayaa y:(ylaayn)ERna
contains a neighborhood of the point ¢. Thus there exists y € R™ such that
Jo cTimteYe ¢ U(B),

1.e.

qer ly""—qooez aVa

for some = = (z1,...,%,) € R™. Then
g = qooela=iTeYe g™ Dami¥a¥a — g0 o e2ami(Ta—Ya)Va
=U(x—y).

In other words, ¢ € ¥(IR"™).
That is why the set W(IR") is closed. Since it is open and M is connected,

W(R") = M.
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(5) Tt is easy to see that the preimage
U (qo) = {z € R" | ¥(z) = qo}
is a subgroup of the Abelian group R”. Indeed, let
W(x) = gooeXamt TV = (y) = gpoeamiate = gq,

then

n

U(r+y)=qoo el a=1(Tatva)Ya — qooe a=1TaYa g ooy YaYa — 7.
Analogously, if
U(a) = g0 Tims Ve = g,

then

W(—2) = qooe” ZamTeYe = gq.

Finally,

(6) Moreover, Gy = W~1(qo) is a discrete subgroup of R, i.e., there are no
nonzero elements of ¥~1(gg) in some neighborhood of the origin in R, since ¥
is a local diffeomorphism.

(7) The mapping ¥ is well-defined on the quotient R™/Gy. Indeed, let y € Gy.
Then

U(z +y) = qo o eza=mTatva)Vo — g6 e2lamiVaVa o pllami TaVa
=qpo eXa=1TaYa — (z).
So the mapping
W R"/Go— M (4.11)
1s well-defined.
(8) The mapping (4.11) is one-to-one: if

U(z) =¥ (y), x, ye R

then

N TaYa " YaY.
qoerQ_l o a_qoera_l ato

thus

Za=1Ta=ya)Y.

qooe “ = qo,

le,z—y € Go.
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(9) That is why mapping (4.11) is a diffcomorphism. By Lemma 4.6 (see
below), the discrete subgroup Gy of R™ is a lattice:

k
Go = {an | ni € Z},
i=1
thus the quotient is a cylinder:
R"/Gy =Tk x R"*
Hence we constructed a diffeomorphism
o=w"1: M= THx R

Equalities (4.8) and (4.9) follow exactly as in Theorem 4.1.
The vector field @. fo = Az + ¢ is well-defined on the quotient T* x R?~%,
that is why equalities (4.6) hold. The sufficiency follows.

Necessity. For a linear system on a cylinder T* x R"~* conditions (4.7)
and (4.9) obviously hold. If a linear system is controllable on the cylinder,
then it is also controllable on R™  thus the controllability condition (4.8) is

also satisfied. O

Now we prove the following general statement used in the preceding argu-
ment.

Lemma 4.6. Let I' be a discrete subgroup in R”. Then it is a lattice, 1.e.,
there exist linearly independent vectors e1, ... e, € R™ such that

k
= {anel |77,Z EZ}.
i=1

Proof. We prove by induction on dimension n of the ambient group R”.

(1) Let n = 1. Since the subgroup I' C IR is discrete, it contains an element
e1 # 0 closest to the origin 0 € IR. By the group property, all multiples
tey e t---teg ==xne;,n=0,1,2,..., are also in I'. We prove that I
contains no other elements.

By contradiction, assume that there is an element x € I" such that ne; <
z < (n+ 1)ey, n € Z. Then the element y =  — ne; € I' is in the interval
(0,e1) C R.So y # 0 is closer to the origin than e;, a contradiction. Thus
I'=Zey = {ney |n €Z}, qed.

(2) We prove the inductive step: let the statement of the lemma be proved for
some n — 1 € N, we prove it for n.

Choose an element e; € I', e; # 0, closest to the origin 0 € R". Denote
by [ the line Rey, and by [y the lattice Zey; C I'. We suppose that I' # [}
(otherwise everything is proved).
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Fig. 4.1. Lattice generated by vectors e1, e

Now we show that there is an element eo € I'\ I'1 closest to (:
dist(eq, ) = min{dist(x,l) | € '\ }. (4.12)

Take any segment I = [ney, (n + 1)e1] C I, and denote by m : R” — [ the
orthogonal projection from R™ to [ along the orthogonal complement to [
in R™. Since the segment [ is compact and the subgroup I is discrete, the
n-dimensional strip #=!(I) contains an element e5 € I'\ [ closest to I

dist(es, I) = min{dist(x, I) | € ("' \{) N7~ (I)}.

Then the element es is the required one: it satisfies equality (4.12) since any
element that satisfies (4.12) can be translated to the strip 7=1(I) by elements
of the lattice I7.

That is why a sufficiently small neighborhood of { is free of elements of
I'\ I'1. Thus the quotient group I'/I is a discrete subgroup in R"?/[ = R"~1,
By the inductive hypothesis, I'/T" is a lattice, hence I' is also a lattice. O
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The Orbit Theorem and its Applications

5.1 Formulation of the Orbit Theorem

Let F C Vec M be any set of smooth vector fields. In order to simplify no-
tation, we assume that all fields from F are complete. Actually, all further
definitions and results have clear generalizations to the case of noncomplete
fields; we leave them to the reader.

We return to the study of attainable sets: we study the structure of the
attainable sets of F by piecewise constant controls

AqD:{qooetlflo~~~oetkfk |t; >0, f; € F, ke N}, g0 € M.

But first we consider a larger set — the orbit of the family F through a
point:

(’)qD:{qooetlflo~~~oetkfk |t; eR, f; € F, ke N}, g0 € M.

In an orbit Oy,, one is allowed to move along vector fields f; both forward and
backwards, while in an attainable set Ay, only the forward motion is possible,
see Figs. 5.1, 5.2.

Although, if the family F is symmetric F = —F (i.e., f € F = —f € F),
then attainable sets coincide with orbits: Oy, = Ay, o € M.

In general, orbits have more simple structure that attainable sets. It is
described in the following fundamental proposition.

Theorem 5.1 (Orbit Theorem, Nagano—Sussmann). Let F C Vec M
and qo € M. Then:

(1) Oy, is a connected immersed submanifold of M,

(2) T,04, = span{go (AdP)f | PP, f€F}, g € Oy.

Here we denote by P the group of diffeomorphisms of M generated by
flows in F:

P={cfro...oefk |, € R, f; € F, keN}C Diff M.

We define and discuss the notion of immersed manifold in the next section.
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q0

Fig. 5.1. Attainable set A, Fig. 5.2. Orbit O,

5.2 Immersed Submanifolds

Definition 5.2. A subset W of a smooth n-dimensional manifold is called an
immersed k-dimensional submanifold of M, k < n, if there exists a one-to-one
immersion

¢ N—>M, Ker®,, =0 VgeN

of a k-dimensional smooth manifold N such that
W =®(N).

Remark 5.3. An immersed submanifold W of M can also be defined as a
manifold contained in M such that the inclusion mapping

W —= M, g gq,
1S an immersion.

Sufficiently small neighborhoods O, in an immersed submanifold W of M
are submanifolds of M, but the whole W is not necessarily a submanifold of
M in the sense of Definition 1.1. In general, the topology of W can be stronger
than the topology induced on W by the topology of M.

Example 5.4. Let @ : R — R? be a one-to-one immersion of the line into
the plane such that lim;_, 1o @(¢) = ¢(0). Then W = $(R) is an immersed
one-dimensional submanifold of R?, see Fig. 5.3. The topology of W inherited
from R is stronger than the topology induced by R% The intervals &(—¢, ¢),
¢ > 0 small enough, are open in the first topology, but not open in the second
one.

The notion of immersed submanifold appears inevitably in the description
of orbits of families of vector fields. Already the orbit of one vector field (i.e.,
its trajectory) is an immersed submanifold, but may fail to be a submanifold
in the sense of Definition 1.1.
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w

®(0)

Fig. 5.3. Immersed manifold

Ezxample 5.5. Oscillator with 2 degrees of freedom is described by the equa-
tions:

i+ a’r =0, reR,
j+0y=0, yeRr.
In the complex variables
z=a—it/a, w=y—iy/p
these equations read

Z=laz, z €C,

w=1fw, w € C, (5-1)

and their solutions have the form

z(t) = eif”z(O),
w(t) = elmw(O).

Any solution (z(t), w(t)) to equations (5.1) belongs to an invariant torus
T? = {(2,w) € C* | |z| = const, |w|= const}.

Any such torus is parametrized by arguments of z, w modulo 27, thus it is a
group: T? ~ R?/(2x Z)*%.

We introduce a new parameter 7 = at, then trajectories (z,w) become
images of the line {(r, (3/a)7) | 7 € R} under the immersion

(7,(B/a)T) — (T + 21 Z, (B/a)T+ 27 Z) € R/ (21 Z)?,

thus immersed submanifolds of the torus.

If the ratio 8/« is irrational, then trajectories are everywhere dense in
the torus: they form the irrational winding of the torus. In this case, trajec-
tories, 1.e., orbits of a vector field, are not submanifolds, but just immersed
submanifolds.
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Remark 5.6. Immersed submanifolds inherit many local properties of sub-
manifolds. In particular, the tangent space to an immersed submanifold
W =Im® C M, ¢ an immersion, is given by

To)W = Imd,,.
Further, it is easy to prove the following property of a vector field V' € Vec M:
V(i) eT,W YqgeW = qoeVeW VgeW,

for all ¢ close enough to 0.

5.3 Corollaries of the Orbit Theorem

Before proving the Orbit Theorem, we obtain several its corollaries.

Let Og4, be an orbit of a family F C Vec M.

First of all, if f € F, then f(¢q) € T,0,, for all ¢ € Og. Indeed, the
trajectory q o ¢!/ belongs to the orbit Oy, , thus its velocity vector f(g) is in
the tangent space 150, .

Further, if f1, fo € F, then [f1, f2](¢) € T,0, for all ¢ € O,,. This follows
since the vector [f1, f2](¢q) is tangent to the trajectory

t—qoetftioetlzoemtioet/ ¢ Oy,

Given three vector flelds f1, fa, fa € F, we have [f1,[fs, f3]](¢) € T304,
g € Og,. Indeed, it follows that [fs, f3](q) € T,O04,, ¢ € Oy,, then all trajecto-
ries of the field [f2, f3] starting in the immersed submanifold O, do not leave
it. Then we repeat the argument of the previous items.

We can go on and consider Lie brackets of arbitrarily high order

U, U= fe] - 10(9)

as tangent vectors to Og, if f; € F. These considerations can be summarized
in terms of the Lie algebra of vector fields generated by F:

Lie F = span{[fi,[.. . [fs—1, fx] ... )] | i € F, k € N} C Vec M,
and its evaluation at a point ¢ € M:
Lie, F={qoV |V € Lie F} C T, M.
We obtain the following statement.
Corollary 5.7.
Lieg F C T304, (5.2)

forall g € Oy,.



5.4 Proof of the Orbit Theorem 67

Remark 5.8. We show soon that in many important cases inclusion (5.2) turns
into equality. In the general case, we have the following estimate:

dim Lie, 7 < dim Oy, g€ Oy

Another important corollary of the Orbit Theorem is the following propo-
sition often used in control theory.

Theorem 5.9 (Rashevsky—Chow). Let M be a connected smooth manifold,
and let F C Vec M. If the family F s completely nonholonomic:

Lieq F =T, M VqgeM, (5.3)
then
Op =M VgoeM. (5.4)

Definition 5.10. A family F C Vec M that satisfies property (5.3) is called
completely nonholonomic or bracket-generating.

Now we prove Theorem 5.9.

Proof. By Corollary 5.7, equality (5.3) means that any orbit O, is an open
set in M.
Further, consider the following equivalence relation in M:

g1~ g2 & q2 €04, q1, q2 € M. (5.5)

The manifold M is the union of (naturally disjoint) equivalence classes. Each
class 1s an open subset of M and M is connected. Hence there is only one
nonempty class. That is, M is a single orbit Oy, . a

For symmetric families attainable sets coincide with orbits, thus we have
the following statement.

Corollary 5.11. A symmetric bracket-generating family on a connected man-
ifold 1s completely controllable.

5.4 Proof of the Orbit Theorem

Introduce the notation:

(AdP)F & ((AdP)f|PEP, feF}C Vec M.

Consider the following subspace of T, M:
I, = span{q o (AdP)F}.

This space is a candidate for the tangent space 1,0, .
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Lemma 5.12. dim If, = dim I, for all g € Oy, qo € M.

Proof. If ¢ € O, then ¢ = gg 0 Q for some diffeomorphism @ € P.
Take an arbitrary element ¢o 0 (Ad P)f in II,,, P € P, f € F. Then

Q«(q00(AdP)f) =qoo(AdP)foQ=gooPofoP toQ
—(10Q)0 (@ oPofoPoQ)
:qud(Q_loP)fEHq

since Q"o P € P.
We have Q.Il,, C I, thus diml,, < dim/Il,. But ¢ and ¢ can be

switched, that is why dim /7, < dim I1,,. Finally, dim I1, = dim I{,,. a
Now we prove the Orbit Theorem.

Proof. The manifold M is divided into disjoint equivalence classes of rela-
tion (5.5) — orbits O . We introduce a new “strong” topology on M in which
all orbits are connected components.

For any point ¢ € M, denote m = dim [/, and pick elements Vi,...,V,, €
(AdP)F such that

span(Vi(q),...,Vim(q)) = ;. (5.6)
Introduce a mapping:
Gy @ (t,...  tm) > qoeVio . oetmVm teR
We have
%iq =il

thus in a sufficiently small neighborhood Oq of the origin 0 € R™ the vectors
dG, dG,
Aty Oty

The sets of the form G4(Oy), ¢ € M, are candidates for elements of a
topology base on M. We prove several properties of these sets.

are linearly independent, i.e., G|, is an immersion.
0

(1) Since the mappings Gy are regular, the sets G,(0g) are m-dimensional
submanifolds of M, may be, for smaller neighborhoods Oy.

(2) We show that G4(Op) C O4. Any element of the basis (5.6) has the form
Vi=(AdPR)fi, P, €P, fi € F. Then

-1
Vi = HAAP)S:  (tPofioPTt _ pgothi g pml e p

bl

thus
Gq(t):qoetv’ € 0y, t € Oyp.
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(3) We show that G.,(T;R™) = Ilg@), t € Op. Since rank G*t|OD = m and

= m, 1t remains to prove that %?q‘ € llg, ) for t € Og. We
an

dim e |OD

have

tm Vi

d 0 —
atqu(t)_@tiqoe o

=gqgo etlvl 0.0 et,V, ° ‘/Z ° et,+1V,+1 o0---0 ethm

oe

=qo Vio. . oetiVigelittVidi 5. g tmVm

o e—thm 6---0 e—tz+1V1+1 oV;o etz+1V1+1 6---0 ethm

(introduce the notation @ = eli+1Vi+1 o ... 0 elmVm ¢ P)

= Gy(t) 0oQ loVioQ = Gy(t) o AdQ7V; € g,m-

(4) We prove that sets of the form G4(Op), ¢ € M, form a topology base
in M. It is enough to prove that any nonempty intersection G4(Og) N G4(Op)

contains a subset of the form Gq(@o), i.e., this intersection has the form as at
the left figure, not at the right one:

Let a point ¢ belong to G4(Og). Then dim II; = dim [T, = m. Consider
the mapping

Gq : (tl,...,tm)H(jO
span((jof/l,...,(jof/m):ﬂq.

It is enough to prove that for small enough (¢1,... ,ty)
Gg(t1, ... tm) € G4(On),

then we can replace G4(Op) by Gq(éo). We do this step by step. Consider
the curve ¢; ++ goe’1V1. By property (3) above, ‘Z(q’) € Il for ¢' € G4(Op)
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and sufficiently close to . Since G4(Oq) is a submanifold of M and II, =

T,G4(0q), the curve go etV belongs to G4 (Oy) for sufficiently small [t1]. We
repeat this argument and show that

(Foe*™) 06?2 € G,y (Oy)
for small |¢1], |t2]. We continue this procedure and obtain the inclusion
(Go Vig. ..o etm—1‘7m—1) oelmVm ¢ G4(Oy)

for (¢1,...,tm) sufficiently close to 0 € R™.

Property (4) follows, and the sets G4(Oq), ¢ € M, form a topology base
on M. We denote by M7 the topological space obtained, i.e., the set M
endowed with the “strong” topology just introduced.

(5) We show that for any ¢o € M, the orbit Oy, is connected, open, and closed
in the “strong” topology.

Connectedness: all mappings ¢ — g o et/ f € F, are continuous in the
“strong” topology, thus any point ¢ € 0,4, can be connected with ¢ by a path
continuous in M.

Openness: for any ¢ € Oy, a set of the form G,(Oy) C Oy, is a neighbor-
hood of the point ¢ in M7 .

Closedness: any orbit is a complement to a union of open sets (orbits),
thus it is closed.

So each orbit O, is a connected component of the topological space M7,

(6) A smooth structure on each orbit O, is defined by choosing G4(Oy) to
be coordinate neighborhoods and Gq_1 coordinate mappings. Since Gq|OD are
immersions, then each orbit O, is an immersed submanifold of M. Notice
that dimension of these submanifolds may vary for different ¢q.

(7) By property (3) above, T,04, = II,, ¢ € Og,.
The Orbit Theorem is proved. a

The Orbit Theorem provides a description of the tangent space of an orbit:
1,04, = span(q o (AdP)F).

Such a description is rather implicit since the structure of the group P is quite
complex. However, we already obtained the lower estimate

Liey F C span(q o (AdP)F) (5.7)

from the Orbit Theorem. Notice that this inclusion can easily be proved di-
rectly. We make use of the asymptotic expansion of the field Ad elf f=etadf g
Take an arbitrary element ad f; o---oad fi,f € LieF, f;, f € F. We have
Ad(eft/r 0.0 el k) f € (AdP)F, thus
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6k

— | Ad tifi o ... thfr) 7
q03t1~~~3tk (e 1o oe'kik)f

0

ok -~
| (€ e o f
AR

=qoadfio---oadfs fe span(q o (AdP)F).

=qo

Now we consider a situation where inclusion (5.7) is strict.

Example 5.13. Let M = R?, F = i, a(xl)ﬂ , where the function
0al 0a?

a € C*(R), a # 0, has a compact support.
It is easy to see that the orbit @, through any point € R? is the whole
plane R2 Indeed, the family F U (—F) is completely controllable in the plane.

Given an initial point zo = (x}, z3) and a terminal point z; = (2}, 2}), we

can steer zg to zy: first we go from g by a field iF to a point (#1, 22) with
T
0
a(#') # 0, then we go by a field :I:a(i‘l)ﬁ to a point (&', 27), and finally
T
0 .
we reach (x},z?) along iF’ see Fig. 5.4.
T
22
A
0
4y
Ox!
——>—o I
0
ia(i‘l)ﬁxz A

Fig. 5.4. Complete controllability of the family F

On the other hand, we have

. . 1, z! ¢ suppa,
dim Lie(z1 »2y(F) = {2’ a%xl) £0.

That is, o (Ad P)F = T, R? # Lie, F if ' ¢ supp a.

Although, such example is essentially non-analytic. In the analytic case,
inclusion (5.7) turns into equality. We prove this statement in the next section.
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5.5 Analytic Case

The set Vec M is not just a Lie algebra (i.e., a vector space close under the
operation of Lie bracket), but also a module over C'*°(M): any vector field
V € Vec M can be multiplied by a function a € C°° (M), and the resulting
vector field aV € Vec M. If vector fields are considered as derivations of
C (M), then the product of a function a and a vector field V' is the vector
field

(aV)b=a-(Vb), beC™(M).

In local coordinates, each component of V at a point ¢ € M is multiplied

by a(q).

Exercise 5.14. Let X,Y € Vec M, a € C*(M), P € Diff M. Prove the
equalities:

(ad X)(aY) = (Xa)Y + a(ad X)Y,
(Ad P)(aX) = (Pa) AdP X.

A submodule V C Vec M is called finitely generated over C°° (M) if it has
a finite global basis of vector fields:

k
IVi,...,Vx € Vec M such that V = {ZaiVHai EC’OO(M)}.

i=1

Lemma 5.15. Let V C Vec M be a finitely generated submodule over C*(M).
Assume that

(ad X)V ={(ad X)V |V EV}CV
for a vector field X € Vec M. Then
(AdeX)y =V.

Proof. Let Vi,..., Vi be a basis of V. By the hypothesis of the lemma,

(X, Vil =) ai;V; (5.8)

j=1
for some functions a;; € C°° (M ). We have to prove that the vector fields
Vit) = (Ad ™)V =Xy, e,

can be expressed as linear combinations of the fields V; with coefficients from

C>*(M).
We define an ODE for V;(¢):
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k
Vl(t) — etadX[X’ Vz] — ctadX Zaijvj

j=1
k
= Z ((BtXaZ'j) V](t)
j=1
For a fixed ¢ € M, define the £ x k matrix:
A(t) = (aij(t)), aij(t) = etXaij, i, _] = 1, N ,k’.
Then we have a linear system of ODEs:

Vi) = Y aij(t)V; (2). (5.9)

j=1
Find a fundamental matrix I” of this system:
I'= AW,  I(0)=1d.
Since A(t) smoothly depends on ¢, then I' depends smoothly on ¢ as well:
I'(t) = (v;5 (1)), vi;(t) e C¥ (M), 4, j=1,...k teR.

Now solutions of the linear system (5.9) can be written as follows:
k
Vi(t) =Y i ()V;(0).
j=1
But V;(0) = V; are the generators of the module, and the required decompo-

sition of V;(t) along the generators is obtained. O

A submodule V C Vec M is called locally finitely generated over C'* (M)
if any point ¢ € M has a neighborhood O C M in which the restriction F|,
is finitely generated over C'™°(0), i.e., has a basis of vector fields.

Theorem 5.16. Let F C Vec M. Suppose that the module Lie F is locally
finitely generated over C°(M). Then

1404, = Liey F, q € Oy, (5.10)
for any orbit Oy, qo € M, of the family F.

We prove this theorem later, but now obtain from it the following conse-
quence.

Corollary 5.17. If M and F are real analytic, then equality (5.10) holds.
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Proof. In the analytic case, Lie F is locally finitely generated. Indeed, any
module generated by analytic vector fields is locally finitely generated. This
is Notherian property of the ring of germs of analytic functions, see [140]. O

Now we prove Theorem 5.16.
Proof. By the Orbit Theorem,
1,04, :Span{qC’Ad<etlfl °"'°6tkfk)f| fi, J?E F, tr R, k EN}.
(5.11)
By definition of the Lie algebra Lie F,
(ad f)Lie F C Lie F VfeF.

Apply Lemma 5.15 for the locally finitely generated C°°(M)-module V =
Lie 7. We obtain

(Ade')LieF C LieF  V feF.
That is why
Ad (etlfl o- ~~oetkfk) f: Adelrf1 o ~~oAdetkfkf€ Lie F

for any f;, fe F, ty € R.In view of equality (5.11),
T,0,, C Lie, F

But the reverse inclusion (5.7) was already obtained. Thus T,0,, = Lie, F.
Another proof of the theorem can be obtained via local convergence of the
exponential series in the analytic case. a

5.6 Frobenius Theorem

We apply the Orbit Theorem to obtain the classical Frobenius Theorem as a
corollary.

Definition 5.18. A distribution A C TM on a smooth manifold M is a
famaly of linear subspaces Ay C Ty, M smoothly depending on a point ¢ € M.
Dimension of the subspaces A,, ¢ € M, s assumed constant.

Geometrically, at each point ¢ € M there is attached a space A, C T, M,
i.e., we have a field of tangent subspaces on M.

Definition 5.19. A distribution A on a manifold M is called integrable if
for any point ¢ € M there exists an immersed submanifold Ny C M, ¢ € Ny,
such that

Tq/Nq = Aq/ Y q/ € Nq,
see Iig. 5.5. The submanifold N, ts called an integral manifold of the distri-
bution A through the point q.
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Fig. 5.5. Integral manifold N, of distribution A

In other words, integrability of a distribution A C T'M means that through
any point ¢ € M we can draw a submanifold N, whose tangent spaces are
elements of the distribution A.

Remark 5.20. 1f dimA, = 1, then A is integrable by Theorem 1.17 on ex-
istence and uniqueness of solutions of ODEs. Indeed, in a neighborhood of
any point in M, we can find a base of the distribution A, 1.e., a vector field
V € Vec M such that A, = span(V (¢)), ¢ € M. Then trajectories of the ODE
¢ = V(q) are one-dimensional submanifolds with tangent spaces A,.

But in the general case (dimA, > 1), a distribution A may be noninte-
grable. Indeed, consider the family of vector fields tangent to A:

A={VeVeeM|V(g)eld, YVqge M}

Assume that the distribution A is integrable. Any vector field from the fam-
ily A is tangent to integral manifolds Ny, thus the orbit O, of the family A re-
stricted to a small enough neighborhood of ¢ is contained in the integral man-
ifold Ny. Moreover, since dimQ, > dim A, = dim N, then locally O, = Ng:
we can go in Ny in any direction along vector fields of the family A. By the
Orbit Theorem, 17,0, D Lie, A, that is why

Lie, A= Ay
This means that
[Vi,Vole A Y Vi, Va e A (5.12)

Let dim A, = k. In a neighborhood Oy, of a point gy € M we can find a base
of the distribution A:

Ay =span(fi(q),..., fr(q)) V q€ Og.

Then inclusion (5.12) reads as Frobenius condition:
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k
[fi, 1= D _cihi, iy € C%(0g,). (5.13)
=1
We have shown that integrability of a distribution implies Frobenius condition
for 1ts base.
Conversely, if condition (5.13) holds in a neighborhood of any point ¢ €
M, then Lie(A) = A. Thus Lie(4) is a locally finitely generated module over
C*(M). By Theorem 5.16,

1504, = Lieg A, q € Oy,.
So
quqo = Aqa q € Oqua
i.e., the orbit O, is an integral manifold of A through ¢q. We proved the

following proposition.

Theorem 5.21 (Frobenius). A distribution A C T'M is integrable if and
only if Frobenius condition (5.13) holds for any base of A in a neighborhood
of any point qo € M.

Remark 5.22. (1) In view of the Leibniz rule
[f, ag] = (fa)g + a[f, g], [, g€VecM, acC™(M),

Frobenius condition is independent on the choice of a base fi,..., fg: if it
holds in one base, then it also holds in any other base.

(2) One can also consider smooth distributions A with non-constant dim A,.
Such a distribution is defined as a locally finitely generated over C°°(M)
submodule of Vec M. For such distributions Frobenius condition implies inte-
grability; but dimension of integrable manifolds becomes, in general, different,
although it stays constant along orbits of A. This is a generalization of phase
portraits of vector fields. Although, notice once more that in general distri-
butions with dim A, > 1 are nonintegrable.

5.7 State Equivalence of Control Systems

In this section we consider one more application of the Orbit Theorem — to
the problem of equivalence of control systems (or families of vector fields).
Let U be an arbitrary index set. Consider two families of vector fields on
smooth manifolds M and N parametrized by the same set U:
Ju ={fu | u€ U} C Vec M,
gv ={gu |u €U} C VecN.

Take any pair of points xg € M, yo € N, and assume that the families fir, g
are bracket-generating:

Lieg, fu = Te, M, Liey, gu = Ty, V.
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Definition 5.23. Families fy and gy are called locally state equivalent if
there exists a diffeomorphism of neighborhoods

D : 0,y CM—= 0Oy, CN,
d : xg> o,
that transforms one family to another:

DPufu = Gu Yuel.

Notation: (fu, zo) ~ (9u, Yo)-

Remark 5.24. Here we consider only smooth transformations of state  — y,
while the controls u do not change. That is why this kind of equivalence is
called state equivalence. We already studied state equivalence of nonlinear
and linear systems, both local and global, see Chap. 4.

Now, we first try to find necessary conditions for local equivalence of sys-
tems fy and gy. Assume that

(frr,x0) = (9u, w0).

By invariance of Lie bracket, we get

@*[fu1afu2] = [@*fu1a@*fu2] = [gu1agu2]’ Uy, Uz € Ua

1.e., relations between Lie brackets of vector fields of the equivalent families fir
and gy must be preserved. We collect all relations between these Lie brackets
at one point: define the systems of tangent vectors

€u1...uk = [fuu [ .. ank] . ](l‘o) € Tl‘uMa
Uul...uk = [guu [ . agUk] M ](yO) E TyuN'
Then we have
@*|x0 gul...uk = Nuq.. uks Uty ..., Ug € Ua ke N.

Now we can state a necessary condition for local equivalence of families
fu and gy in terms of the linear isomorphism

Bo|,, = A : To,M ¢ Ty, N.
If (fu,x0) =~ (gu,yo), then there exists a linear isomorphism
A Ty M & Ty, N

that maps the configuration of vectors {&,,. ., } to the configuration {9y, ., }
It turns out that in the analytic case this condition is sufficient. I.e., in the
analytic case the combinations of partial derivatives of vector fields f,, v € U,
that enter {&,,. u, }, form a complete system of state invariants of a family fi .
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Theorem 5.25. Let fy and gy be real analytic and bracket-generating fam-
tlies of vector fields on real analytic manifolds M and N respectively. Let
zg € M, yo € N. Then (fu,x0) =~ (g9u,yo) if and only if there exists a linear
1somorphism

A TyyM &1y N
such that
Ay un} = 0uy. un Youy,...,u, €U, keN. (5.14)

Remark 5.26. If in addition M, N are simply connected and all the fields f,,
gy, are complete, then we have the global equivalence.

Before proving Theorem 5.25, we reformulate condition (5.14) and provide
a method to check it.
Let a family fir be bracket-generating:

span{&u,. u, |u1,... ,up €U, k€ N} =T, M.
We can choose a basis:
span(€ay, ... €a,) = Tuo M, & = (U1, ..., ug), t=1,...,n, (5.15)

and express all vectors in the configuration & through the base vectors:
n
€U1~~~Uk = Zczl...uk&j&z' (516)
i=1

If there exists a linear isomorphism A : Ty M < T, N with (5.14), then the
vectors
Na,s izla"'ana

should form a basis of Ty, NV:
span(na,, - .- Na,) = Ty, N, (5.17)

and all vectors of the configuration i should be expressed through the base
vectors with the same coefficients as the configuration &, see (5.16):

Nuy. up = ZC'ZLuukn&l' (518)
i=1

It is easy to see the converse implication: if we can choose bases in T, , M
and Ty, N from the configurations £ and 7 as in (5.15) and (5.17) such that
decompositions (5.16) and (5.18) with the same coefficients ¢, ,, hold, then
there exists a linear isomorphism A with (5.14). Indeed, we define then the
isomorphism on the bases:

A &a, &> nay, t=1,...,n.
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We can obtain one more reformulation via the following agreement. Con-
figurations {&y, .} and {7, u,} are called equivalent if the sets of rela-
tions K (fy) and K (gu) between elements of these configurations coincide:
K(fu) = K(gv). We denote here by K(fr) the set of all systems of coeffi-
cients such that the corresponding linear combinations vanish:

[{(fU) = {(buluk) | Z bul...ukgul...uk == 0} .

Then Theorem 5.25 can be expressed in the following form.

Nagano Principle. All local information about bracket-generating families
of analytic vector fields is contained in Lie brackets.

Notice, although, that the configuration &,, ., and the system of relations
K(fu) are, in general, immense and cannot be easily characterized. Thus
Nagano Principle cannot usually be applied directly to describe properties of
control systems, but it is an important guiding principle.

Now we prove Theorem 5.25.

Proof. Necessity was already shown. We prove sufficiency by reduction to the
Orbit Theorem. For this we construct an auxiliary system on the Cartesian
product

MxN={(z,y) |lr €M, ye N}.

For vector fields f € Vec M, g € Vec N, define their direct product f x g €
Vec(M x N) as the derivation

(f x g)alie = Fay)|, + (9az)|,,  a€C™(M x N), (5.19)

where the families of functions ay, € C*(M), ai € C*(N) are defined as
follows:

aglj Cxeale,y), @ oy a(e,y), reM, ye N.

xr

So projection of f x g to M is f, and projection to N is g. Finally, we define
the direct product of systems fy and gy as

fuxgu ={fuXgu|ueU} C Vec(M x N).

We suppose that there exists a linear isomorphism A : T; M < T, N that
maps the configuration £ to 5 as in (5.14), and construct the local equivalence
(fu,z0) =~ (9u, vo)-

In view of definition (5.19), Lie bracket in the family fy X gu is computed
as

[fu1 X gu1afu2 X gu2] = [fu1afu2] X [gu1agu2]’ Uy, Uz € Ua
thus
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[fur X guss [ s fur X gui] - ](@0, o)
= [furs [+ s furl -1 (®0) X [guss [+ s Gus] - - - 1(%0)
= gul...uk X Nuyoup = gul...uk X Agul...uka Up, ... U € Ua ke N.

That is why
dim Lie(g, y0) (frr X gu) = n,

where n = dim M. By the analytic version of the Orbit Theorem (Corol-
lary 5.17) for the family fir X gu C Vec(M x N), the orbit O of fu X gu
through the point (%o, yo) is an n-dimensional immersed submanifold (thus,
locally a submanifold) of M x N. The tangent space of the orbit is

T(xg,yg)o = Span(gul...uk X Aguluk)
=span{v x Av |v € Ty} C Tz yaM x N =10 M x Ty, N,

i.e., the graph of the linear isomorphism A. Consider the canonical projections
onto the factors:

m o MxN—>M, (e, y) = x,

my t M x N — N, ma(z,y) = y.

The restrictions m],, 72|y are local diffeomorphisms since the differentials

7T1*|(x07y0) : (v, Av) & o, v €Ty M,

7T2*|(x07y0) o (v, Av) = Aw, v €T M,

are one-to-one.
Now @ = my 0 (71'1|O)_1 is a local diffeomorphism from M to N with the
graph O, and

@*:71'2*0(771|O)*_1 T uel.

Consequently, (fu,xo) ~ (9u, yo)- O
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Rotations of the Rigid Body

In this chapter we consider rotations of a rigid body around a fixed point.
That is, we study motions of a body in the three-dimensional space such that:

e distances between all points in the body remain fixed (rigidity), and
e there is a point in the body that stays immovable during motion (fixed
point).

We consider both free motions (in the absence of external forces) and con-
trolled motions (when external forces are applied in order to bring the body
to a desired state).

Such system is a very simplified model of a satellite in the space rotating
around its center of mass.

For details about ODEs describing rotations of the rigid body, see [135].

6.1 State Space

The state of the rigid body is determined by its position and velocity.

We fix an orthonormal frame attached to the body at the fixed point (the
moving frame), and an orthonormal frame attached to the ambient space at
the fixed point of the body (the fixed frame), see Fig. 6.1. The set of positions
of the rigid body is the set of all orthonormal frames in the three-dimensional
space with positive orientation. This set can be identified with SO(3), the
group of linear orthogonal orientation-preserving transformations of B3, or,
equivalently, with the group of 3 x 3 orthogonal unimodular matrices:

SO(3) =1{Q : BR* = R3| (Qz,Qy) = (x,y), det @ =1}
={Q  R*SR?| QQ"=1d, det Q = 1}.
The mapping @ : R® — R3 transforms the coordinate representation of a

point in the moving frame to the coordinate representation of this point in
the fixed frame.
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>

Jeao

-

Fig. 6.1. Fixed and moving frames

Remark 6.1. We denote above the standard inner product in R3 by (-, -). If
a pair of vectors z,y € R have coordinates * = (z1,22,23), ¥y = (Y1, Y2, ¥3)
in some orthonormal frame, then (z,y) = 2151 + z2y2 + 23ys.

Notice that the set of positions of the rigid body SO(3) is not a linear
space, but a nontrivial smooth manifold.

Now we describe velocities of the rigid body. Let @; € SO(3) be position
of the body at a moment of time . Since the operators @; : R® — R3 are
orthogonal, then

(thaQty):($ay)a €T, yERSa tER

We differentiate this equality w.r.t. ¢ and obtain

(Qez, Quy) + (Qex, Qry) = 0. (6.1)
The matrix .
2 = Qt_th
is called the body angular velocity. Since
Qt = QtQta

then equality (6.1) reads
(Qef2ia, Qry) + (Quw, Qui2iy) = 0,
whence by orthogonality
(e, y) + (2, 2y) = 0,

1.e.

Q;F = —Qt,

the matrix £2; is antisymmetric. So velocities of the rigid body have the form
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Qi = Q:12;, 02F = -0,
In other words, we found the tangent space
ToS0(3) ={QN2 | 2" = -2}, @ € 50(3).

The space of antisymmetric 3 x 3 matrices is denoted by so(3), it is the tangent
space to SO(3) at the identity:

so(3) = {02 : R? 5 B3| 2* = —2} = T14 SO(3).

The space so(3) is the Lie algebra of the Lie group SO(3).
To each antisymmetric matrix £2 € so(3), we associate a vector w € R3:

0 —W3 W2 Wi
2~ W, 2= W3 0 —W1 s W = Wo . (62)
—Wy Wi 0 W3

Then the action of the operator §2 on a vector 2 € R? can be represented via
the cross product in B3:

Qr=wxuzx, e R3

Let z be a point in the rigid body. Then its position in the ambient space R3
18 Q¢x. Further, velocity of this point is

Qe = Q2 = Qi(w; X ).

wy 18 the vector of angular velocity of the point # in the moving frame: if we fix
the moving frame @; at one moment of time ¢, then the instantaneous velocity
of the point  at the moment of time ¢ in the moving frame is Qt_thl‘ =i =
wy X @, 1.e., the point x rotates around the line through w; with the angular
velocity ||we||-

Introduce the following scalar product of matrices £2 = (£2;;) € so(3):

<91,92>:—2 r(2'027) = 29192 >l
i,j=1 i<

This product is compatible with identification of 3 x 3 antisymmetric matrices
and 3-dimensional vectors (6.2):

<91’ 92> — (wl’WZ)’
2~ Wt 2 €s0(3), weR? i=12
Moreover, this product is invariant in the following sense:

(AdQ)2',(AdQ)2%) = (Y, 2%, Q€S0(3), £' 27 ¢eso(3),
(6.3)
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ie, AdQ : so(3) — so(3) is an orthogonal transformation w.r.t. (-, -). In-
deed:

tr((Ad Q)Ql(Ad Q)Qz) = tr(QQlQ_lQQZQ_l) = tr(Q.QlQZQ_l)
= tr(Qlﬂz)

by invariance of trace.

Now we derive the infinitesimal version of invariance (6.3). Take an arbi-
trary {2 € so(3) and consider a smooth curve @ € SO(3) that starts from
identity with the velocity §2:

Qo= Qo=1Id.

Then

d
—| AdQ;=ad?
dt o Qt a )

and differentiation of (6.3) w.r.t. ¢ at ¢ = 0 yields the equality:
{((ad 2)02', Q%) + (2" (ad 2)2%) =0, 02, 2", 2% €s0(3), (6.4)

e, ad 2 : s0(3) = so(3) is antisymmetric w.r.t. (-, - ).

The vector w; X wa € R3 corresponds to the matrix [£21, 5] € so(3)
via isomorphism (6.2), thus equality (6.4) can be rewritten in terms of cross
product:

(wx wh wh) + (Wwhwxw?) =0, w, whw? eR3,

6.2 Euler Equations

We derive equations of motion of the rigid body from the least action principle.

Let the distribution of mass in the rigid body have density p(z), where
p : R3 = R, is an integrable nonnegative function with compact support.
Let Q¢ € SO(3) be position and £2; € so(3) angular velocity of the body so
that

Qi = Q2. (6.5)

Take a point z in the body. Then position of this point in the ambient space
is Qyx, and velocity of this point is Q;x. Distribution of the kinetic energy
in the body has density %p(x)(th, Q:x), thus the total kinetic energy of the
body at a moment of time ¢ is

J(2) = 1/]Ra p()(Qefpx, Qe ) da = %/ p(2) (2, 2p2) d,

2 s

i.e., a quadratic form j = j({£2) on the space so(3). The corresponding bilinear
form can be written as
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/ plx)(2'x, %) de = (AQY, 2%), 2 27 € s0(3)
R?)

for some linear symmetric positive definite operator
A 1 s0(3) = s0(3), A= A" >0,

called inertia tensor of the rigid body. Finally, the functional of action has the
form

n 1 [t

where 0 and t; are the initial and terminal moments of motion.

Let Qo and @, be the initial and terminal positions of the moving body.
By the least action principle, the motion @, ¢ € [0,11], of the body should be
an extremal of the following problem:

J(£2.) — min,
Qr = Qi L2, Qo, @, fixed.

We find these extremals.
Let £2, be angular velocity along the reference trajectory @y, then

(6.6)

t1
Q7 o Qy, :e_x_f)/ 0, dt.
0
Consider an arbitrary small perturbation of the angular velocity:

Qt+6Ut+O(62), e —=0.

In order that such perturbation was admissible, the starting point and end-
point of the corresponding trajectory should not depend on ¢:

t1
QaloQtl :e_x_f)/ (Qt+6Ut+O(62)) dt,
0

thus

0=

iz Qy'oQ:, =

e=0

t1
9 e_x_f)/ (2: 4+ U+ 0O(e?)) dt.  (6.7)
del._g 0

By formula (2.31) of derivative of a flow w.r.t. parameter, the right- hand side
above 1s equal to

ty t ty
/ Ad(&?f)/ .QTdr) Uy dto e_x_f)/ 2, dt
0 0 0
t1
:/ Ad(Qy' oQ:) Urdto Q5 o Qs
0

t1
= le/ Ad Q. U, dt o Q.
0
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Taking into account (6.7), we obtain
t1
0
Denote
¢
Vi = / Ad Q. U, dr, (6.8)
0

then admissibility condition of a variation U; takes the form
Vo=V, =0. (6.9)

Now we find extremals of problem (6.6).

d f
0= 52| (95):/0 (A2, T,) dt
by (6.3)
_ /t1<(Ad Q)AL (A QUL dt
by (6.8)

- /t1<(Ad Q)AL Vi) dt
0

integrating by parts with the admissibility condition (6.9)

t1 d
— _/0 <E(Ath)A.Qt,Vt> dt.

So the previous integral vanishes for any admissible operator V;, thus

d
E(Ad Qt)AQt == 0, i c [O,tl]
Hence .
Ad Qt([Qt,AQt] —|— Agt) — 0, t E [O,tl],
that is why

A8, = [Ay, 2], te[0,t1]. (6.10)

Introduce the operator

Mt = Agta
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called kinetic momentum of the body, and denote
B=A"1

We combine equations (6.10), (6.5) and come to Euler equations of rotations
of a free rigid body:

{Mt = [M¢, BM], M; € s0(3),
Qr = Qe BM;, Q: € SO(3).

Remark 6.2. The presented way to derive Euler equations can be applied to
the curves on the group SO(n) of orthogonal orientation-preserving n x n
matrices with an arbitrary n > 0. Then we come to equations of rotations of
a generalized n-dimensional rigid body.

Now we rewrite Euler equations via isomorphism (6.2) of so(3) and R3,
which is essentially 3-dimensional and does not generalize to higher dimen-
sions. Recall that for an antisymmetric matrix

0 —p3 po
M = M3 0 —H1 € SO(3),
—p2 1 0

the corresponding vector p € R3 is

#1
p=\ p2 |, M~ p.
K3

Now Euler equations read as follows:

{ﬂ.t:ﬂt iﬁﬂt, pe € B3,
Qr = Qi P, Q: € SO(3),

where 4 : R3 — R3 and B : R3 — s0(3) are the operators corresponding to
B : s0(3) — so(3) via the isomorphism so(3) + R3 (6.2).

Eigenvectors of the symmetric positive definite operator 8 : R3 — R3 are
called principal axes of inertia of the rigid body. In the sequel we assume that
the rigid body is asymmetric, i.e., the operator [ has 3 distinct eigenvalues
A1, A2, As. We order the eigenvalues of j3:

A1 > Aa > As,

and choose an orthonormal frame e, €5, e3 of the corresponding eigenvectors,
i.e., principal axes of inertia. In the basis e, e, e3, the operator [ is diagonal:

M1 /\1ﬂ1
Bl pa | =1 Aepz |,
H3 /\3ﬂ3
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and the equation fiy = py X Gy reads as follows:

f1 = (Az — Az)papis,
fro = (A — Az)papes, (6.11)
f3 = (A2 — A1 )papia.

6.3 Phase Portrait
Now we describe the phase portrait of the first of Euler equations:

f = pr X B, pe € R3, (6.12)

This equation has two integrals: energy

(e, ) = const

and moment of momentum

(e, Bpe) = const .

Indeed:

d
E(ﬂt,ﬂt) = 2(pe X B, pre) = —=2(Bpe, pe X pe) = 0,

d
E(ﬂtaﬁﬂt) = (pe X Bue, Bpie) + (pe, Blpe x Bpue)) = 2(pe X Bpae, Bpie)

= _Q(Nt,ﬁﬂt X 5%) =0

by the invariance property (6.4) and symmetry of 5.
So all trajectories y; of equation (6.12) satisfy the restrictions
2 2 2
+ ps + = const,
M1 2/"2 /’L23 ) (613)
Apy + Aaps + Asp; = const,

i.e., belong to intersection of spheres with ellipsoids. Moreover, since the differ-
ential equation (6.12) is homogeneous, we draw its trajectories on one sphere
— the unit sphere

pi s s =1, (6.14)

and all other trajectories are obtained by homotheties.
First of all, intersections of the unit sphere with the principal axes of
inertia, i.e., the points
:|:61, :|:62, :|:63

are equilibria, and there are no other equilibria, see equations (6.11).
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€3

€2
€1

Fig. 6.2. Phase portrait of system (6.12)

Further, the equilibria e, des corresponding to the maximal and min-
imal eigenvalues Aj, A3 are stable, more precisely, they are centers, and the
equilibria £ey corresponding to A; are unstable — saddles. This is obvious
from the geometry of intersections of the unit sphere with ellipsoids

ALt 4 Ao + Azpi = C.

Indeed, for C' < A3 the ellipsoids are inside the sphere and do not intersect it.
For C' = A3, the ellipsoid touches the unit sphere from inside at the points +es.
Further, for C' > A3 and close to Az, the ellipsoids intersect the unit sphere by
2 closed curves surrounding ez and —es respectively. The behavior of intersec-
tions is similar in the neighborhood of C' = A;. If C' > Ay, then the ellipsoids
are big enough and do not intersect the unit sphere; for C' = Ay, the small
semiaxis of the ellipsoid becomes equal to radius of the sphere, so the ellipsoid
touches the sphere from outside at £eq; and for C' < A; and close to Ay the
intersection consists of 2 closed curves surrounding te;. If C' = A5, then the
ellipsoid touches the sphere at the endpoints of the medium semiaxes =es,
and in the neighborhood of each point ey, —es, the intersection consists of
four separatrix branches tending to this point. Equations for the separatrices
are derived from the system

i+ s+ p3 =1
A 4 Aop3 + Asps = As.

We multiply the first equation by As and subtract it from the second equation:

(A1 = A2)uf — (A2 — As)u3 = 0.
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Thus the separatrices belong to intersection of the unit sphere with two planes

def
Iy = {(p1, p2,ps) € B? | VAL — Ao pin = £/ A0 — Az s},

thus they are arcs of great circles.

It turns out that separatrices and equilibria are the only trajectories be-
longing to a 2-dimensional plane. Moreover, all other trajectories satisfy the
following condition:

pe e, pgRe; = pApAi#0, (6.15)

1.e., the vectors pu, ft, and ji are linearly independent. Indeed, take any trajec-
tory g on the unit sphere. All trajectories homothetic to the chosen one form
a cone of the form

Cui + 15 + 13) = Mipd 4+ dopis + Xapiz, As < C <A (6.16)

But a quadratic cone in 3 is either degenerate or elliptic. The conditions
p & Iy, p ¢ Re; mean that C' #£ Ay, ¢ = 1,2,3, i.e., cone (6.16) is elliptic.
Now inequality (6.15) follows from the next two facts. First, uAg # 0, i.e., the
trajectory pe is not tangent to the generator of the cone. Second, the section
of an elliptic cone by a plane not containing the generator of the cone is an
ellipse — a strongly convex curve.

In view of ODE (6.12), the convexity condition (6.15) for the cone gener-
ated by the trajectory is rewritten as follows:

uéﬂi,uﬁ%eijw\(uXﬁu)/\((uXBu)Xﬁu+u><ﬁ(u><ﬁu))7(50~)
6.17

The planar separatrix curves in the phase portrait are regular curves on
the sphere, hence

peEly, pgRes= pAp#0,
or, by ODE (6.12),

p€ My, pi ¢ Reg = A (e x Bp) # 0. (6.18)

6.4 Controlled Rigid Body: Orbits

Assume that we can control rotations of the rigid body by applying a torque
along a line that is fixed in the body. We can change the direction of torque
to the opposite one in any moment of time.

Then the control system for the angular velocity is written as

pe = pe X Bpe £ 1, e € R, (6.19)

and the whole control system for the controlled rigid body is
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{ﬁft:ﬂt X B £ 1, pe € B3,
Q1 = Qu B, Q: € S0O(3),

where { # 0 is a fixed vector along the chosen line.
Now we describe orbits and attainable sets of the 6-dimensional control sys-
tem (6.20). But before that we study orbits of the 3-dimensional system (6.19).

(6.20)

6.4.1 Orbits of the 3-Dimensional System

System (6.19) is analytic, thus dimension of the orbit through a point u € R3
coincides with dimension of the space

Lie,(p x fp £1) = Lie,(u x Su,l).
Denote the vector fields:
F(p) =px B, g(p) =1,
and compute several Lie brackets:

d d
MJmozggmm—E%ﬂm:dxﬁu+uxm,

[9,1g, F(p) =1 x BL+1x Bl =20 x L,

1

Slla g, S g, fINw) = Ux B Bl) + (1% BE) < L.
We apply (6.17) with [ = p and obtain that three constant vector fields g,
l9. 1, [l9,1g, f1, [g, £]] are linearly independent:

o) A 5l 106) A 5119 T, 1 o, 1)
=IALx BLA((Ix Bl) x Bl+1x B(I x Bl)) #0
ifl¢ [y, l¢Re

We obtain the following statement for generic disposition of the vector [.
Case 1.1 ¢ 111, | ¢ Re,.

Proposition 6.3. Assume that | ¢ Iy, | ¢ Re;. Then Lie,(f,g) = R® for
any p € R3. System (6.19) has one 3-dimensional orbit, R3.

Now consider special dispositions of the vector [.

Case 2. Let [ € Iy, | ¢ Res. Since the plane [T is invariant for the free
body (6.12) and [ € IT;, then the plane I74 is also invariant for the controlled
body (6.19), i.e., the orbit through any point of I7; is contained in IT;. On
the other hand, implication (6.18) yields

LA (L x Bl) #0.



92 6 Rotations of the Rigid Body

But the vectors { = g(p) and [ x gl = %[g, lg, f1](1) form a basis of the
plane 17, thus I1; is in the orbit through any point p € I7;. Consequently,
the plane [Ty is an orbit of (6.19). If an initial point po ¢ I11, then the
trajectory gz of (6.19) through gy is not flat, thus

So the orbit through pg is 3-dimensional. We proved the following statement.

Proposition 6.4. Assume that | € II; \ Res. Then system (6.19) has one
2-dimensional orbit, the plane IIy, and two 3-dimensional orbits, connected
components of R3\ IT.

The case | € II_ \ Res is completely analogous, and there holds a similar
proposition with [Ty replaced by I7_.

Case 3. Now let [ € Rey \ {0}, i.e., [ = ceq, ¢ # 0. First of all, the line Re; is
an orbit. Indeed, if p € Rey, then f(u) = 0, and g(p) = { is also tangent to
the line Re;.

To find other orbits, we construct an integral of the control system (6.19)
from two integrals (6.13) of the free body. Since g(p) =1 = cey, we seek for
a linear combination of the integrals in (6.13) that does not depend on p.
We multiply the first integral by Ay, subtract from it the second integral and
obtain an integral for the controlled rigid body:

(A= A2)ps + (A = As)p3 = C. (6.21)

Since A; > Ay > A3, this is an elliptic cylinder in R3.

So each orbit of (6.19) is contained in a cylinder (6.21). On the other hand,
the orbit through any point gy € R3\ Re; must be at least 2-dimensional.
Indeed, if g ¢ Res U Res, then the free body has trajectories not tangent to
the field ¢; and if gy € Rey or Reg, this can be achieved by a small translation
of pp along the field g. Thus all orbits outside of the line Re; are elliptic
cylinders (6.21).

Proposition 6.5. Let [ € Rey \ {0}. Then all orbits of system (6.19) have the
form (6.21): there is one 1-dimensional orbit — the line Rey (C'=0), and an
infinite number of 2-dimensional orbits — elliptic cylinders (6.21) with C' > 0,
see Fig. 6.3.

The case | € Reg\ {0} is completely analogous to the previous one.

Proposition 6.6. Let | € Reg\{0}. Then system (6.19) has one 1-dimensional
orbit — the line Res, and an infinite number of 2-dimensional orbits — elliptic
cylinders

A= Aa)pf + (A2 = Xa)p3 =C, O >0.
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Fig. 6.3. Orbits in the case I € Re; \ {0}

Case 4. Finally, consider the last case: let [ € Res\ {0}. As above, we obtain
an integral of control system (6.19):

(A= A2)pf — (A2 = Aa)p3 = C. (6.22)

If C'" # 0, this equation determines a hyperbolic cylinder. By an argument
similar to that used in Case 3, we obtain the following description of orbits.

Proposition 6.7. Let | € Res\ {0}. Then there is one 1-dimensional orbit —
the line Res, and an infinite number of 2-dimensional orbits of the following
form:

(1) connected components of hyperbolic cylinders (6.22) for C' £ 0;
(2) half-planes — connected components of the set (IT4 U IT_) \ Res,

see Fig. 6.4.

Fig. 6.4. Orbits in the case | € Re; \ {0}
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So we considered all possible dispositions of the vector I € R3\ {0}, and in
all cases described orbits of the 3-dimensional system (6.19). Now we study
orbits of the full 6-dimensional system (6.20).

6.4.2 Orbits of the 6-Dimensional System

The vector fields in the right-hand side of the 6-dimensional system (6.20) are
— QBN ) — (0) 3
’ - ) ) — s s c SO(3) x R~.
(@) (ﬂ % By 9(@m) =1, (@ 1) (3)

Notice the commutation rule for vector fields of the form that appear in
our problem:

~

i@, ) = (wai(“)) € Vec(SO(3) x R3),

i (1)

[flaf?](Qa/‘L) =
81)2 81)1
—3u V1 — —3u U2

We compute first the same Lie brackets as in the 3-dimensional case:

_ QB
0= (1 e 1)

0l 1= (100

0
(lg, g, f1]; g, ] = (1 x B(1 x Bl) + (I x Bl) x ﬁl) '

Further, for any vector field X € Vec(SO(3) x R3) of the form

N = N =

X = (0) , x — a constant vector field on R3, (6.23)

X

we have
(X, f] = (Qfl’) (6.24)

To study the orbit of the 6-dimensional system (6.20) through a point
(@, 1t) € SO(3) x R3, we follow the different cases for the 3-dimensional sys-
tem (6.19) in Subsect. 6.4.1.

Case 1.1 ¢ Iy, | ¢ Re;. We can choose 3 linearly independent vector
fields in Lie(f, ¢) of the form (6.23):
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Xi=g,  Xe=3lolesl Y=gl b 10

By the commutation rule (6.24), we have 6 linearly independent vectors in

Lieg, ) (£, 9):
X1 AXo AX A X, [TA X, fIA[XS, f1# 0.

Thus the orbit through (@, y) is 6-dimensional.

Case 2.1 € II1 \ Res.

Case 2.1. pu ¢ ITy. First of all, Lie(f, g) contains 2 linearly independent
vector fields of the form (6.23):

1

Xlzga X2:§[ga[gaf]]

Since the trajectory of the free body in R through p is not flat, we can assume
that the vector v = p x Sy 18 linearly independent of [ and [ x 3l. Now our
aim is to show that Lie(f, g) contains 2 vector fields of the form

Y1:<QM1), Y2:<QM2), My A Ms £ 0, (6.25)

v1 V2

where the vector fields v; and vs vanish at the point u. If this is the case, then
Lie(g, ) (f, g) contains 6 linearly independent vectors:

Xu(@Q.p), X2(Qp), [(Q,p),
v =(9"). v@w=(%").

v vel(@. = Q0T

and the orbit through the point (@, p) is 6-dimensional.

Now we construct 2 vector fields of the form (6.25) in Lie(f, g). Taking
appropriate linear combinations with the fields Xy, X5, we project the second
component of the fields [g, f] and %[f, [9,[g, f]] to the line Rv, thus we obtain

the vector fields
() (27 evitraoan

If both ky and ks vanish at pu, these vector fields can be taken as Y1, Y3
in (6.25). And if k; or ky does not vanish at p, we construct such vector fields
Y1, Y, taking appropriate linear combinations of fields (6.26) and f with the
fields g, [g,[g, f1]-

So in Case 2.1 the orbit is 6-dimensional.

Case 2.2. p € Il1. There are b linearly independent vectors in the space

Lie(Qyu)(f,g):
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Xi=g, Xo=olg Do/l (X7 [Xafl (X0 7] X 1

2
Since the orbit in R3 is 2-dimensional, the orbit in SO(3) x R3 is 5-dimensional.

Case 3.1 € Rey \ {0}.

Case 3.1. p ¢ Rey. The argument is similar to that of Case 2.1. We can
assume that the vectors [ and v = pu X S are linearly independent. The orbit
in R? is 2-dimensional and the vectors {, v span the tangent space to this
orbit, thus we can find vector fields in Lie(f, ¢) of the form:

Vi=1lg,f] - Cig— Cof = (Qﬁ“ro(fsQﬁu)’

Yo = Y1, f] = (Q[@ﬁﬂlg 04625#)

for some real functions C;, ¢ = 1,... ;4. Then we have 5 linearly independent
vectors in Lieg,,)(f, 9):

g, fa Yla YZa [YlaY2]~

So the orbit of the 6-dimensional system (6.20) is 5-dimensional (it cannot
have dimension 6 since the 3-dimensional system (6.19) has a 2-dimensional
orbit).

Case 3.2. y € Re;. The vectors

rem=(9"). waean=(9"),

are linearly dependent, thus dim Lie(g ,)(f,g) = dim span(f,g)|(Qyu) =2. 5o
the orbit is 2-dimensional.

The cases | € Re; \ {0}, ¢ = 1,2, are similar to Case 3.

We completed the study of orbits of the controlled rigid body (6.20) and
now summarize it.

Proposition 6.8. Let (Q, p) be a point in SO(3) x R>. If the orbit O of the 3-
dimensional system (6.19) through the point y is 3- or 2-dimensional, then the
orbit of the 6-dimensional system (6.20) through the point (Q, i) is SO(3) x O,
1.e., respectively 6- or b-dimensional. If dim O = 1, then the 6-dimensional
system has a 2-dimensional orbit.

We will describe attainable sets of this system in Sect. 8.4 after acquiring
some general facts on attainable sets.
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Control of Configurations

In this chapter we apply the Orbit Theorem to systems which can be controlled
by the change of their configuration, i.e., of relative position of parts of the
systems. A falling cat exhibits a well-known example of such a control. If a
cat is left free over ground (e.g. if it falls from a tree or is thrown down by
a child), then the cat starts to rotate its tail and bend its body, and finally
falls to the ground exactly on its paws, regardless of its initial orientation over
the ground. Such a behavior cannot be demonstrated by a mechanical system
less skillful in turning and bending its parts (e.g. a dog or just a rigid body),
so the crucial point in the falling cat phenomenon seems to be control by the
change of configuration. We present a simple model of systems controlled in
such a way, and study orbits in several simplest examples.

7.1 Model

A system of mass points, i.e., a mass distribution in R”, is described by a
nonnegative measure p in R”. We restrict ourselves by measures with com-
pact support. For example, a system of points #1,...,2; € R™ with masses
1, ..., pg > 018 modeled by the atomic measure p = Zle 1idy,, where &,
is the Dirac function concentrated at xz;. One can consider points x; free or
restricted by constraints in IR”. More generally, mass can be distributed along
segments or surfaces of various dimensions. So the state space M of a system
to be considered is a reasonable class of measures in R”.

A controller is supposed to sit in the construction and change its configu-
ration. The system is conservative, i.e., impulse and angular momentum are
conserved. Our goal is to study orbits of systems subject to such constraints.

Mathematically, conservation laws of a system come from Nother theorem
due to symmetries of the system. Kinetic energy of our system is

L= %/|i‘|2d/,t, (7.1)
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in particular, for an atomic measure p =3y | p;id,

1k
__§ |2
L_2' 1/,L2|l‘l|.

By Nother theorem (see e.g. [135]), if the flow of a vector field V' € VecR”
preserves a Lagrangian L, then the system has an integral of the form

2

oL
6—93‘/(1‘) = const .

In our case, Lagrangian (7.1) is invariant w.r.t. isometries of the Euclidean
space, 1.e., translations and rotations in R™.
Translations in R™ are generated by constant vector fields:

V(z) =a € R,

and our system 1s subject to the conservation laws

/(i‘, aydu =const Vae€R"

/i‘du = const,

i.e., the center of mass of the system moves with a constant velocity (the total
impulse is preserved). We choose the inertial frame of reference in which the

center of mass 1s fixed:
/i‘ dyp=0.

For an atomic measure p = Zle 1id5,, this equality takes the form

k
E i x; = const,
i=1

which is reduced by a change of coordinates in R” to

k
Z/Jixi =0.
i=1

Now we pass to rotations in R”. Let a vector field

That 1s,

V(x) = Ax, reR"
preserve the Euclidean structure in R”, i.e., its flow

etV(x) — etAl‘



7.1 Model 99

preserve the scalar product:

(", e y) = (2, ), x, y € R™
Differentiation of this equality at ¢ = 0 yields

(Az,y) +(x, Ay) =0, &, yeR",
i.e., the matrix A is skew-symmetric:

AY = —A.
Conversely, if the previous equality holds, then
(etA)* — AT — —tA (etA)_l’

tA tA

i.e., the matrix e** is orthogonal. We proved that the flow e'* preserves
the Euclidean structure in R”™ if and only if A* = —A. Similarly to the 3-
dimensional case considered in Sect. 6.1, the group of orientation-preserving
linear orthogonal transformations of the Euclidean space IR™ is denoted by
SO(n), and the corresponding Lie algebra of skew-symmetric transformations
in R™ is denoted by so(n). In these notations,

et e SO(n) < A €so(n).

Return to derivation of conservation laws for our system of mass points.
The Lagrangian L = %f |#|? dp is invariant w.r.t. rotations in R™ so Nother
theorem gives integrals of the form

Z—LV(l‘) = /{i‘,Ax> dp = const, A € so(n).
@

. k .
For an atomic measure p =3 " | p;d,,, we obtain

k
Z/Ji<l"i, Ax;) = const, A € so(n), (7.2)

i=1

and we restrict ourselves by the simplest case where the constant in the right-
hand side is just zero.

Summingup, we have the following conservation laws for a system of points
z1,...,x, € R™ with masses p1, ..., pg:

k
Zﬂixi = 0, (73)
i=1

ZM@Z», Az) =0,  A€so(n). (7.4)
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The state space is a subset

MCR"x ... xR"
—_———

k

and admissible paths are piecewise smooth curves in M that satisfy constraints
(7.3), (7.4). The first equality (7.3) determines a submanifold in M; in fact,
this equality can obviously be resolved w.r.t. any variable z;, and one can get
rid of this constraint by decreasing dimension of M. The second equality (7.4)
is a linear constraint for velocities z;, it determines a distribution on M. So the
admissibility conditions (7.3), (7.4) define a linear in control, thus symmetric,
control system on M. Notice that a more general condition (7.2) determines
an “affine distribution”, and control system (7.3), (7.2) is control-affine, thus,

in general, not symmetric.

We consider only the symmetric case (7.3), (7.4). Then orbits coincide
with attainable sets. We compute orbits in the following simple situations:

(1) Two free points: k = 2,
(2) Three free points: k = 3,
(3) A broken line with 3 links in R%

7.2 Two Free Points

We have k = 2, and the first admissibility condition (7.3) reads
1Ty + pazs =0, z1, 3 € R".

We eliminate the second point:

_ _ M
1 =, o = ——X,

B2

and exclude collisions of the points:
z £ 0.
So the state space of the system is
M =R"\ {0}.

The second admissibility condition (7.4)

pi{Ey, Azq) + palze, Axs) =0, A € so(n),
1s rewritten as

(1 + 4 fiz) (i, Aay =0, A € soln),

ie.

(z, Az) = 0, A € so(n).

This equation can easily be analyzed via the following proposition.

(7.5)
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Exercise 7.1. If A € so(n), then (Az,x) = 0 for all # € R". Moreover, for
any vector z € R™\ {0}, the space {Ax | A € so(n)} coincides with the whole
orthogonal complement z+ = {y € R" | {y, z) = 0}.

So restriction (7.5) means that
T ANxe =0,

1.e., velocity of an admissible curve is proportional to the state vector. The
distribution determined by this condition is one-dimensional, thus integrable.
So admissible curves have the form

The orbit and admissible set through any point z € R™\ {0} is the ray
O, =Ryz = {az | o >0}

The points 1, £3 can move only along a fixed line in IR”, and orientation of
the system cannot be changed. In order to have a more sophisticated behavior,
one should consider more complex systems.

7.8 Three Free Points

Now k = 3, and we eliminate the third point via the first admissibility condi-

tion (7.3):

T = H1Zy, Y= H2l2,
1
r3=——(z+y).
3 us( )

In order to exclude the singular configurations where the points z1, z2, z3
are collinear, we assume that the vectors z, y are linearly independent. So the

state space 1s
M={(r,y) e R"xR" |z Ay £ 0}.

Introduce the notation

1 .
Pi = —, Z:1a2a3'
Hi

Then the second admissibility condition (7.4) takes the form:
(@, A(pr + p3)x + psy)) + (¥, A((p2 + p3)y + p3x)) =0, A€ so(n).

It turns out then that admissible velocities &, y should belong to the plane
span(z, y). This follows by contradiction from the following proposition.



102 7 Control of Configurations
Lemma 7.2. Let vectors v,w,&,n € R™ satisfy the conditions

vAw#0,  span(v,w,&,n) # span(v, w).

Then there exists A € so(n) such that

(Av, &) + (Aw, ) £ 0.

Proof. First of all, we may assume that
(v,w) = 0. (7.6)

Indeed, choose a vector @ € span(v, w) such that (v, @) = 0. Then w = W+ av
and

(Av, &) + (Aw, n) = (Av,§ + an) + (Aw, n),

thus we can replace w by w.
Second, we can renormalize vectors v, w and assume that

lv| = w| = 1. (7.7)

Now let ¢ ¢ span(v,w), we can assume this since the hypotheses of the
lemma are symmetric w.r.t. £, . Then

E=av+ fw+1

for some vector
[ L span(v, w).

Choose an operator A € so(n) such that

Aw =0,
A ¢ span(v,l) — span(v,!) is invertible.

Then
(Av, &) + (Aw, ) = (Av,1) # 0,
1.e., the operator A is the required one. a
This lemma means that for any pair of initial points (z,y) € M, all ad-
missible curves z; and y; are contained in the plane span(x,y) C R”. So we

can reduce our system to such a plane and thus assume that 2,y € 2.
Thus we obtain the following system:

(&, A((p1 + pa)x + p3y)) + (¥, A((p2 + pa)y + psx)) =0, A €so(2), (7.8)
(z,y) € M = {(v,w) €ER*x R?*| v Aw # 0}.

01
A = const - (_1 0),

Consequently,
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i.e., equality (7.8) defines one linear equation on velocities, thus a rank 3
distribution on a 4-dimensional manifold M. Using Exercise 7.1, it is easy to
see that this distribution is spanned by the following 3 linear vector fields:

0
Vi= ((P1 +p3)l‘+p3y)% = <(p1 —|—p33x+p3y) =B (z) )
0

0
Va = ((p2 —|—p3)y—|—p31‘)% - (psl‘-l- (p2 -I-Ps)y) = b (z) ’

15, 15, x x
= e Ty (y) _Id<y)’

where
P11+ p3 p3 0 0 10)
' ( 0 0)’ ’ <p3p2+p3)’ (01

In order to simplify notations, we write here 4-dimensional vectors as 2-di-
mensional columns: e.g.,

+

<
|
Il

(p1 + p3)x1 + psyr

v ((m + pa)z + psy) _ | (pr 4 p3)xa + p3ye
1 — 0 -

where
Ty Y
r = , = .
() = ()

The rank 3 distribution in question can have only orbits of dimensions 3
or 4. In order to find out, which of these possibilities are realized, compute
the Lie bracket:

[V1, V2] = [By, Bs] (2) :

p3 P2+ p3
B1, Bs| = .
[B1, Ba] = ps <_(P1 +p3) —ps3 )

It is easy to check that
ViAVaAVEA[VI, V] #0 <& By ABy AIdA[By, Ba] # 0.
We write 2 X 2 matrices as vectors in the standard basis of the space gl(2):
(10) (01) (00) (00)
00/’ 00/’ 10)° 01)’

then
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Lpr+ps 0 P3
0 0 +
det(Id, Bl, BZ, [Bla BZ]) = 0 pOS 03 —(pzl +p;3)

1 0 p2t+p3  —ps3
= 2p3(p1p2 + p1p3 + p2p3) > 0.

Consequently, the fields V1, V5, V3, [Vh, V5] are linearly independent everywhere
on M, 1.e., the control system has only 4-dimensional orbits. So the orbits co-
incide with connected components of the state space. The manifold M is de-
composed into 2 connected components corresponding to positive or negative
orientation of the frame (z,y):

M =M, UM._,
My ={(z,y) € RZx R? | det(z,y) = 0}.

So the system on M has 2 orbits, thus 2 attainable sets: M, and M_. Given
any pair of linearly independent vectors (z,y) € R? x R? we can reach any
other nonsingular configuration (z,y) € R? x R? with #,§ € span(z,y) and
the frame (&, §) oriented in the same way as (z,y).

Returning to the initial problem for 3 points @1, 2, 23 € R™: the 2-dimen-
sional linear plane of the triangle (1,22, %3) should be preserved, as well
as orientation and center of mass of the triangle. Except this, the triangle
(1,2, 23) can be rotated, deformed or dilated as we wish.

Configurations of 3 points that define distinct 2-dimensional planes (or
define distinct orientations in the same 2-dimensional plane) are not mutually
reachable: attainable sets from these configurations do not intersect one with
another. Although, if two configurations define 2-dimensional planes having
a common line, then intersection of closures of attainable sets from these
configurations is nonempty: it consists of collinear triples lying in the common
line. Theoretically, one can imagine a motion that steers one configuration into
another: first the 3 points are made collinear in the initial 2-dimensional plane,
and then this collinear configuration is steered to the final one in the terminal
2-dimensional plane.

7.4 Broken Line

Consider a system of 4 mass points placed at vertices of a broken line of 3
segments in a 2-dimensional plane. We study the most symmetric case, where
all masses are equal to 1 and lengths of all segments are also equal to 1, see
Fig. 7.1.

The holonomic constraints for the points
Zo, X1, X2, T3 € RZ =C

have the form
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T3

Ty
T2

Lo

Fig. 7.1. Broken line

> w;=0, le; —z;1| =1, j=1,2,3 (7.9)

Thus

4

wj—xj_y = e’ 6; €S, j=1,2,3

Position of the system is determined by the 3-tuple of angles (61, 0,03), so
the state space is the 3-dimensional torus:

M= 8" xSt x St =T3={(6,,05,05) | 6, € S*, j =1,2,3}.
The nonholonomic constraints on velocities reduce to the equality

<il‘j, l‘]> =0.

3
:0

J

In order to express this equality in terms of the coordinates f;, denote first
Yy = &; — 51, j:1,2,3.

Taking into account the condition 2?20 z; = 0, we obtain:

o UL Y2 Us
0T T T2 Ty
TR R
YD T Ty
B W
=ty T
_% Y 38
=TT

Now compute the differential form:
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(i, dej) = (i ((3/4)y1 + (1/2)y2 + (1/4)ys) , dy)

Mw

+ (@ ((1/2)y1 +y2 + (1/2)ys) , dy=)
+ (1 4)y + (1/2)y2 + (3/4)ys) , dys) .

Since (iy;, dyx) = (€', €% d0.) = cos(0; — 0y )d0y, we have
= ((3/4) 4+ (1/2) cos(02 — 1) + (1/4) cos(b3 — 61)) db

+ ((1/2) cos(fy — 02) + 1+ (1/2) cos(f3 — 63)) df»
+ ((1/4) cos(f1 — 03) + (1/2) cos(fa — 03) + 3/4) dbs.

Consequently, the system under consideration is the rank 2 distribution
A = Kerw on the 3-dimensional manifold M = T3. The orbits can be 2- or
3-dimensional. To distinguish these cases, we can proceed as before: find a
vector field basis and compute Lie brackets. But now we study integrability
of A in a dual way, via techniques of differential forms.

Assume that the distribution A has a 2-dimensional integral manifold
N C M. Then

w|N = Oa

consequently,
0=d(wly) = (dw)ly,

thus
0= dwq|Aq = dwq|Kewq, qEN.

In terms of exterior product of differential forms,
(wAdw)g =0, g€ N.
We compute the differential and exterior product:
dw =sin(fz — 61)d0y A dfiz 4 sin(f3 — 02)dfa2 A dO3 + %sin(ﬁg —01)dby A s,
wAdw= %(sin(@z — 01) +sin(fs — 62))df, A dls A dbs.
Thus w A dw = 0 if and only if
sin(fz — 61) +sin(fz — #2) = 0,

le.

s =61 (7.10)
or

(01 — 02) + (05 — 03) = , (7.11)
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Fig. 7.2. Hard to control configu- Fig. 7.3. Hard to control configu-
ration: §; = 65 ration: (61 —62)+ (03 —62) ==

see Figs. 7.2, 7.3.

Configurations (7.10) and (7.11) are hard to control: if neither of these
equalities is satisfied, then w A dw # 0, i.e., the system has 3-dimensional
orbits through such points. If we choose basis vector fields X7, Xy of the
distribution A, then already the first bracket [X;, X5] is linearly independent
of X1, X3 at points where both equalities (7.10), (7.11) are violated.

Now it remains to study integrability of A at points of surfaces (7.10),
(7.11). Here [X1, X5](¢q) € A,, but we may obtain nonintegrability of A via
brackets of higher order.

Consider first the two-dimensional surface

P={0;=10,}.

If the orbit through a point ¢ € P is two-dimensional, then the distribution A
should be tangent to P in the neighborhood of ¢. But it is easy to see that A
is everywhere transversal to P: e.g.,

T,P ¢ A, qeP

E%q

So the system has 3-dimensional orbits through any point of P.

In the same way one can see that the orbits through points of the second
surface (7.11) are 3-dimensional as well.

The state space M is connected, thus there is the only orbit (and attainable
set) — the whole manifold M. The system is completely controllable.
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Attainable Sets

In this chapter we study general properties of attainable sets. We consider
families of vector fields F on a smooth manifold M that satisfy the property

Lie, F=T,M YqeM. (8.1)

In this case the system F is called bracket-generating, or full-rank. By the
analytic version of the Orbit Theorem (Corollary 5.17), orbits of a bracket-
generating system are open subsets of the state space M.

If a family F C Vec M is not bracket-generating, and M and F are real
analytic, we can pass from F to a bracket-generating family F|,, where O is
an orbit of F. Thus in the analytic case requirement (8.1) is not restrictive in
essence.

8.1 Attainable Sets of Full-Rank Systems

For bracket-generating systems both orbits and attainable sets are full-dimen-
sional. Moreover, there holds the following important statement.

Theorem 8.1 (Krener). If F C Vec M is a bracketl-generating system, then
Agy Cint Ay, for any qo € M.

Remark 8.2. In particular, attainable sets for arbitrary time have nonempty
interior:

int Ay, # 0.
Attainable sets may be:

open sets, Fig. 8.1,
manifolds with smooth boundary, Fig. 8.2,
manifolds with boundary having singularities (corner or cuspidal points),

Fig. 8.3, 8.4.
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Fig. 8.2. Orbit a manifold with

Fig. 8.1. Orbit an open set
smooth boundary

qo0 do

Fig. 8.4. Orbit a manifold with

Fig. 8.3. Orbit a manifold with
nonsmooth boundary

nonsmooth boundary

One can easily construct control systems (e.g. in the plane) that realize these

possibilities.
On the other hand, Krener’s theorem prohibits an attainable set A, of a

bracket-generating family to be:

e a lower-dimensional subset of M, Fig. 8.5,
e aset where boundary points are isolated from interior points, Fig. 8.6.

Now we prove Krener’s theorem.

Proof. Fix an arbitrary point ¢y € M and take a point ¢’ € A,,. We show
that

¢' € int Ag. (8.2)

(1) There exists a vector field f; € F such that fi(¢') # 0, otherwise
Liey (F) = 0 and dim M = 0. The curve

51 ¢ oetrfr, 0<s1 <ey, (8.3)

is a 1-dimensional submanifold of M for small enough £, > 0.
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M M
Fig. 8.5. Prohibited orbit: subset Fig. 8.6. Prohibited orbit: subset
of non-full dimension with isolated boundary points

If dimM = 1, then ¢’ o e*1/r € int Ay, for sufficiently small s; > 0, and
inclusion (8.2) follows.

(2) Assume that dim M > 1. Then arbitrarily close to ¢’ we can find a point ¢;
on curve (8.3) and a field fo € F such that the vector fz(q1) is not tangent
to curve (8.3):

g1=¢o 6t1f1, t1 sufficiently small,
(10 fi)A(qiof2) #0,
otherwise dimLie, F = 1 for ¢ on curve (8.3) with small s;. Then the mapping
(s1,82) o5 o 0 1 0 072 (8.1
t%<51<t%+51, 0 < 52 <eo,

is an immersion for sufficiently small ¢;, thus its image is a 2-dimensional
submanifold of M.
If dim M = 2, inclusion (8.2) is proved.

(3) Assume that dim M > 2. We can find a vector f5(¢), f3 € F, not tangent to

surface (8.4) sufficiently close to ¢’: there exist t3,43 > 0 and f3 € F such that

the vector field f3 is not tangent to surface (8.4) at a point g2 = q’oetéf1 oetalz,
Otherwise the family F is not bracket-generating.
The mapping

(51’ 59, 53) — q/ o eSifi gesafz g esafa’

té<8i<té—|—6i, 1=1,2, 0< s3<es,
is an immersion for sufficiently small ¢;, thus its image is a smooth 3-
dimensional submanifold of M.

If dim M = 3, inclusion (8.2) follows. Otherwise we continue this proce-
dure.

(4) For dim M = n, inductively, we find a point
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(oot thogs o n21) € R tho1 >0
and fields f1,..., fn € F such that the mapping
(51,...,80) = ¢ oet o oeinin,
o <si<t | 4e, i=1,...,n—-1, 0 < sp < €n,

1 2 n—1
Gn—1= q/ o) etn—lfl o etn—1f2 o---0 etn—lfn_l’

is an immersion. The image of this immersion is an n-dimensional submanifold
of M, thus an open set. This open set 1s contained in Ay, and can be chosen
as close to the point ¢’ as we wish. Inclusion (8.2) is proved, and the theorem
follows. O

We obtain the following proposition from Krener’s theorem.

Corollary 8.3. Let F C Vec M be a bracket-generating system. If Ay (F) =
M for some qo € M, then Ay, (F) = M.

Proof. Take an arbitrary point ¢ € M. We show that ¢ € Ay, (F).
Consider the system

—F={-V|VeF}CVeclM.
This system is bracket-generating, thus by Theorem 8.1
Ag(=F) Cint Ay (—F) Vge M.

Take any point ¢ € int A,(—F) and a neighborhood of this point Oy C
A (=F). Since Ay, (F) is dense in M, then

Ag(F)N Oz # 0.
That is why Ag, (F) N Ay(—F) # 0, i.e., there exists a point
¢ € Ay (F) N Ag(—F).

In other words, the point ¢’ can be represented as follows:

¢ =qooeft o oelklk fieF, i >0,

¢ =qoe o 0T H, g €F, s; > 0.
We multiply both decompositions from the right by e*9 0. - -0e®191 and obtain

q = qo oeltfio. . oetkfr g st g g eS101 ¢ Age (F),

q.e.d. a

The sense of the previous proposition is that in the study of controllability,
we can replace the attainable set of a bracket-generating system by its closure.
In the following section we show how one can add new vector fields to a system
without change of the closure of its attainable set.
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8.2 Compatible Vector Fields and Relaxations

Definition 8.4. A vector field f € Vec M is called compatible with a system
F C Vec M f

A F U f) C Ay(F) Vge M.
Easy compatibility condition is given by the following statement.

Proposition 8.5. Let F C Vec M. For any vector fields f1, f» € F, and any
funetions ay,as € C°(M), a1, as > 0, the vector field a1 f1+asfa is compatible
with F.

In view of Corollary 5.11, the following proposition holds.

Corollary 8.6. If F C Vec M s a bracket-generating system such that the
posttive conver cone generated by F

k
cone(F) = {Zaifi | fieF, ai e CF(M), a; >0, k EN} C Vec M
i=1
1s symmetric, then F is completely controllable.
Proposition 8.5 is a corollary of the following general and strong statement.

Theorem 8.7. Let X,,Y,, 7 € [0,t1], be nonautonomous vector fields with a
common compact support. Let 0 < a(r) < 1 be a measurable function. Then
there exists a sequence of nonautonomous vector fields 7% € {X,; Y.}, te.,
7% =Xy orY; for any T and n, such that the flow

—

t t
exp / Zrdr — e_x_f) / (a(T)X; 4+ (1 — a(r))Y;) dr, n — 0o,
0 0

uniformly w.r.t. (t,q) € [0,t1] X M and uniformly with all derivatives w.r.t.
geEM.

Now Proposition 8.5 follows. In the case a1(¢) + a2(q) = 1 it is a corollary
of Theorem 8.7. Indeed, 1t 1s easy to show that the curves

q(t) =qoo0 et(a1f1+a2f2)

and

400 e_x_f)/o (@ (F)fr + as(T) o) dry ailt) = aila(t)),

coincide one with another (hint: prove that the curve

t
0 et(a1f1+a2f2)o &E) / (—Ozl(T)fl - aZ(T)fQ) dr
0
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Fig. 8.7. Approximation of flow, Th. 8.7

is constant). For the case aj(q),az2(¢) > 0 we generalize by multiplication
of control parameters by arbitrary positive function (this does not change
attainable set for all nonnegative times), and the case a1(g),a2(q) > 0 is
obtained by passage to limit.

Remark 8.8. If the fields X, Y, are piecewise continuous w.r.t. 7, then the
approximating fields Z2 in Theorem 8.7 can be chosen piecewise constant.

Theorem 8.7 follows from the next two lemmas.

Lemma 8.9. Under conditions of Theorem 8.7, there exists a sequence of
nonautonomous vector fields ZF € {X, Y, } such that

/Ot Zrdr — /Ot(a(T)XT + (1= a(n)Y,)dr

uniformly w.r.t. (t,q) € [0,t1] X M and uniformly with all derivatives w.r.t.
geEM.

Proof. Fix an arbitrary positive integer n. We can choose a covering of the
segment [0, ;] by subsets

N
U By =[0,41]
i=1

such that

1
Vi=1,...,N3X;, Vi e VecM st. || X;—Xilln.x < =, [[Yr=Yi|ln.x <
n

S|

bl

where K 1s the compact support of X, Y,. Indeed, the fields X,, Y, are
bounded in the norm || - ||n41, x, thus they form a precompact set in the
topology induced by || - ||n, & -
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Then divide F; into n subsets of equal measure:
" 1 .
EiZUEij, [Bijl = 1Bl dj=1....n
j=1
In each Fj;; pick a subset Fj; so that
FZ"CEZ']', |Fij|:/ a(T)dT.
E

13

Finally, define the following vector field:

gn _ | Xro TE Ly,
T Y, TEEij\FZ’j.
Then the sequence of vector fields Z7 is the required one. a

Now we prove the second part of Theorem 8.7.

Lemma 8.10. Let 7", n = 1,2,..., and Z,;, 7 € [0,t1], be nonautonomous
vector fields on M, bounded w.r.t. T, and let these vector fields have a compact
support. If . .
/Zfdr—)/ZTdT, n — 00,
0 0
then

¢ ¢
e_x_f)/ Zrdr %e_x_f)/ Z,dr, n — 00,
0 0

the both convergences being uniform w.r.t. (t,q) € [0,41] x M and uniform
with all derivatives w.r.t. ¢ € M.

Proof. (1) First we prove the statement for the case 7. = 0. Denote the flow
pPr :exp/ Z7 dr.
0
Then

t
Pt”:Id—i-/ P'o 7" dr
0

integrating by parts

t t T
:Id—i—Pt”o/ Zfdr—/ (PT”too/ Z;da) dr.
0 0 0

t
Since / Z7 dr — 0, the last two terms above tend to zero, thus
0
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P —1d,

and the statement of the lemma in the case Z, = 0 is proved.

(2) Now we consider the general case. Decompose vector fields in the sequence
as follows:

t
it =7, + VD, / VIidr — 0, n — 0o.
0

¢
Denote PJ* = e_x_f) / V' dr. From the variations formula, we have
0

—

t t t
exp/ Zfdr:e_x_f)/ (V2 + Z,) dT:e_X_f)/ Ad P Z, dro PP,
0 0 0

Since P* — Id by part (1) of this proof and thus Ad P/* — Id, we obtain the
required convergence:

t t
e_x_f)/ Zrdr %e_x_f)/ Z,dr.
0 0
So we proved Theorem 8.7 and thus Proposition 8.5.

8.3 Poisson Stability

Definition 8.11. Let f € Vec M be a complete vector field. A point ¢ € M
15 called Poisson stable for f if for any t > 0 and any neighborhood O, of q
there exists a point ¢' € Og4 and a time t' >t such that ¢' o et'f e Oy.

In other words, all trajectories cannot leave a neighborhood of a Pois-
son stable point forever, some of them must return to this neighborhood for
arbitrarily large times.

Remark 8.12. If a trajectory ¢ o etf is periodic, then ¢ is Poisson stable for f.

Definition 8.13. A complete vector field f € Vec M is Poisson stable if all
points of M are Poisson stable for f.

The condition of Poisson stability seems to be rather restrictive, but never-
theless there are surprisingly many Poisson stable vector fields in applications,
see Poincaré’s theorem below.

But first we prove a consequence of Poisson stability for controllability.

Proposition 8.14. Let F C Vec M be a bracket-generating system. If a vector
field f € F s Poisson stable, then the field —f is compatible with F.
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Proof. Choose an arbitrary point qg € M and a moment of time ¢ > 0. To
prove the statement, we should approximate the point go o e~/ by reachable
points.
Since F is bracket-generating, we can choose an open set W C int A, (F)
arbitrarily close to go. Then the set W o et/ is close enough to g oe™!/,
By Poisson stability, there exists ¢’ > ¢ such that

B+ (Woe o T NAWoe M =Woel =0 AWoe
But W o elt'=0)f Ago (F), thus
A (FYNWoe™t £ .

So in any neighborhood of ¢g o e~/ there are points of the attainable set

Ago(F), e, qo 0 e~tf ¢ Ago (F). m|

Theorem 8.15 (Poincaré). Let M be a smooth manifold with a volume
form Vol. Let a vector field f € Vec M be complete and its flow e'f preserve
volume. Let W C M, W C int W, be a subset of finite volume, invariant for f:

Vol(W) < oo, Woel cW vt>0.
Then all points of W are Poisson stable for f.

Proof. Take any point ¢ € W and any its neighborhood O C M of finite
volume. The set V' = W N O contains an open nonempty subset int W N O,
thus Vol(V) > 0. In order to prove the theorem, we show that

Voe'' NV #£0 for some large t'.
Fix any ¢t > 0. Then all sets
VoettS n=0,1,2,...,
have the same positive volume, thus they cannot be disjoint. Indeed, if
Voer NV oemts = Vn, m=0,1,2,...,

then Vol(IW) = oo since all these sets are contained in W. Consequently, there
exist nonnegative integers n > m such that

Voe nVoe™ £
We multiply this inequality by e~™%/ from the right and obtain
Voel =t ny £,

Thus the point ¢ 1s Poisson stable for f. Since ¢ € W is arbitrary, the theorem
follows. O



118 8 Attainable Sets

A vector field that preserves volume is called conservative.

Recall that a vector field on BR™ = {(x1,...,2,)} is conservative, i.e.,
preserves the standard volume Vol(V) = fv dzy ... dx, iff 1t is divergence-
free:

. "0 0
lexf: f =0, f:Zflﬁ—x
i=1 ?

T
i=1 6 ’

8.4 Controlled Rigid Body: Attainable Sets

We apply preceding general results on controllability to the control system
that governs rotations of the rigid body, see (6.20):

(9)=rem=s@m  @mesoExE. (9

_( Qbu ) _ (0)
/ (u xpu)  TT\I)
By Proposition 8.5, the vector field f = %(f—i—g) + %(f — g) is compatible with
system (8.5). We show now that this field is Poisson stable on SO(3) x R3.
Consider first the vector field f(Q,p) on the larger space }R% X }Ri,
where }R% is the space of all 3 x 3 matrices. Since div(g,,y f = 0, the field f
is conservative on }R% x R3,

Further, since the first component of the field f is linear in @), it has the
following left-invariant property in @:

A(Q) (@) o (P (FaY g
Q, Qt,PER%, I, ﬂtERf}

In view of this property, the field f has compact invariant sets in }R% X Ri of
the form

W =(SOB)K) x {(u,p) <C}, KEeRy KcCmtK, C>0,

so that W C int W. By Poincaré’s theorem, the field f is Poisson stable on
all such sets W, thus on }R% X }Ri. In view of the invariance property (8.6),
the field f is Poisson stable on SO(3) x R3.

Since f is compatible with (8.5), then —f is also compatible. The vector
fields +¢9 = (f + ¢g) — f are compatible with (8.5) as well. So all vector fields
of the symmetric system

span(f,g) = {af +bg|a, b€ C}

are compatible with the initial system. Thus closures of attainable sets of
the initial system (8.5) and the extended system span(f, ¢) coincide one with
another.
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Let the initial system be bracket-generating. Then the symmetric system
span(f, g) is bracket-generating as well, thus completely controllable. Hence
the initial system (8.5) is completely controllable in the bracket-generating
case.

In the non-bracket-generating cases, the structure of attainable sets is more
complicated. If [ is a principal axis of inertia, then the orbits of system (8.5)
coincide with attainable sets. If | € Ty \ Res, they do not coincide. This
is easy to see from the phase portrait of the vector field f(y) = p x Su in
the plane I7y: the line Res consists of equilibria of f, and in the half-planes
1Ty \ Res trajectories of f are semicircles centered at the origin, see Fig. 8.8.

Rez

]

Fig. 8.8. Phase portrait of f|H:E in the case I € IT1 \ Res

The field f is not Poisson stable in the planes ITy. The case [ € ITy \
Req differs from the bracket-generating case since the vector field f preserves
volume in B3, but not in 4.

A detailed analysis of the controllability problem in the non-bracket-gene-
rating cases was performed in [66].






9

Feedback and State Equivalence
of Control Systems

9.1 Feedback Equivalence

Consider control systems of the form
§=flguv), qe€M, uel. (9.1)

We suppose that not only M, but also U is a smooth manifold. For the right-
hand side, we suppose that for all fixed v € U, f(g, u) is a smooth vector field
on M, and, moreover, the mapping

(u,q) = flg, u)
is smooth. Admissible controls are measurable locally bounded mappings
t—u(t)elU

(for simplicity, one can consider piecewise continuous controls). If such a con-
trol u(t) is substituted to control system (9.1), one obtains a nonautonomous

ODE
¢ = flq u(®)), (9:2)

with the right-hand side smooth in ¢ and measurable, locally bounded in ¢. For
such ODEs, there holds a standard theorem on existence and uniqueness of
solutions, at least local. Solutions ¢( - ) to ODEs (9.2) are Lipschitzian curves
in M (see Subsect. 2.4.1).

In Sect. 5.7 we already considered state transformations of control systems,
1.e., diffeomorphisms of M. State transformations map trajectories of control
systems to trajectories, with the same control. Now we introduce a new class
of feedback transformations, which also map trajectories to trajectories, but
possibly with a new control. R

Denote the space of new control parameters by U. We assume that it is a
smooth manifold.
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Definition 9.1. Let ¢ : M x U — U be a smooth mapping. A transformation
of the form

flou) = flg. ol @),  q€M, uwel, uel,
15 called a feedback transformation.

Remark 9.2. A feedback transformation reparametrizes control u in a way
depending on g¢.

It is easy to see that any admissible trajectory ¢(-) of the system ¢ =
fg,(q,a)) corresponding to a control u( - ) is also admissible for the system
q¢ = f(q,u) with the control u(-) = ¢(q(-),u(-)), but, in general, not vice
versa.

In order to consider feedback equivalence, we consider invertible feedback
transformations with

U=, ¢lyxu € DIff U,
Such mappings ¢ : M x U — U generate feedback transformations
Flg,u) = flg, (g, u)).
The corresponding control systems
§=flg,u) and ¢=f(q,9(q u))

are called feedback equivalent.
Our aim is to simplify control systems with state and feedback transfor-
mations.

Remark 9.3. In mathematical physics, feedback transformations are often
called gauge transformations.

Consider control-affine systems

k
i=1
To such systems, it is natural to apply control-affine feedback transformations:
o= (p1,..., k) : M xRF 5 RF

@i(q,u):ci(q)Jerij(q)uj, i=1,... k. (9.4)

Our aim is to characterize control-affine systems (9.3) which are locally equi-
valent to linear controllable systems w.r.t. state and feedback transforma-
tions (9.4) and to classify them w.r.t. this class of transformations.
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9.2 Linear Systems

First we consider linear controllable systems

k
i‘:Am—i—Zuibi, v €R™ u=(up,...,ug) €R" (9.5)
i=1
where A is an n X n matrix and b;, 7 = 1,... , k, are vectors in R”. We assume
that the vectors by, ..., by are linearly independent:

dimspan(by, ..., bg) = k.

If this is not the case, we eliminate some b;’s. We find normal forms of linear
systems w.r.t. linear state and feedback transformations.

To linear systems (9.5) we apply feedback transformations which have the
form (9.4) and, moreover, preserve the linear structure:

ci(z) = (e, x), ¢ E€R™ i=1,...k,

dij(l‘):dij ceR, ,j=1,... k. (96)
Denote by D : span(by,..., b;) — span(by, ..., by) the linear operator with
the matrix (d;;) in the base b1, ..., by. Linear feedback transformations (9.4),

(9.6) map the vector fields in the right-hand side of the linear system (9.5) as
follows:

k
(Az by, ... by) — (Ax + ) eq,x)bi, Dby, .. ,Dbk) . (9.7)
i=1

Such mapping should be invertible, so we assume that the operator D (or,
equivalently, its matrix (d;;)) is invertible.
Linear state transformations act on linear systems as follows:

(Aw,by, ... by) = (CAC™ 2, Chy, ... Cby), (9.8)

where C' : R” — R™ is an invertible linear operator. State equivalence of linear
systems means that these systems have the same coordinate representation in
suitably chosen bases in the state space R™.

9.2.1 Linear Systems with Scalar Control

Consider a simple model linear control system — scalar high-order control:

n—1
x(")—i—Zaix(i) = u, uelR, zeR, (9.9)
=0
where ag,...,a,_1 € R. We rewrite this system in the standard form in the

variables ; = 20=Y i=1,... n:



124 9 Feedback and State Equivalence of Control Systems

il = T2,
, wER &= (r1,...,2,) € R". (9.10)
LTn—1 = Tn,

. n—1
Tn = =D g MiTit1+ U,

It is easy to see that if we take — Z?:_ll ;%41 +u as a new control, i.e.; apply
the feedback transformation (9.4), (9.6) with

k=1 c¢=(-ag,...,—an_1), d=1,
then system (9.10) maps into the system
il = T2,
. ueR, z=(x1,...,2y) ER" (9.11)
Tp—1 = Tn,
Ty = u,
which is written in the scalar form as
(M) = 4

., ueR, zeR. (9.12)

So system (9.10) is feedback equivalent to system (9.11).

It turns out that the simple systems (9.10) and (9.11) are normal forms
of linear controllable systems with scalar control under state transformations
and state-feedback transformations respectively.

Proposition 9.4. Any linear controllable system with scalar control

* = Az + ub, u€eR, z €R" (9.13)
span(b, Ab, ... K A""b) = R", (9.14)

is state equivalent to a system of the form (9.10), thus state-feedback equivalent
to system (9.11).

Proof. We find a basis ey, ..., e, in R” in which system (9.13) is written in
the form (9.10). Coordinates y1, ..., y, of a point # € R™in a basis ey, ... , e,
are found from the decomposition

n
r = E Y, €.
i=1

In view of the desired form (9.10), the vector b should have coordinates b =
(0,...,0,1)*, thus the n-th basis vector is uniquely determined:

ey = b.
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Now we find the rest basis vectors eq,...,e,_1. We can rewrite our linear
system (9.13) as follows:
= Ax modRb,

then we obtaln in coordinates:

r = Zn:yiei = Zn:yiAei mod IR b,
i=1

i=1
thus
n—1 n—1
Z Yyie; = Z Yir1Aeir1 mod R b.
i=1 =0
The required differential equations:
yi:yi+1a i:l,...,n—l,
are fulfilled in a basis eq, ... , e, if and only if the following equalities hold:
Aeip1 = e + 5;b, t=1,...,n—1, (915)
A61 = ﬁob (916)
for some numbers By, ..., 8,1 € R.
So it remains to show that we can find basis vectors ey, ..., e,_1 which
satisfy equalities (9.15), (9.16). We rewrite equality (9.15) in the form
ei:AeHl—ﬁib, i:l,... ,n—l, (917)
and obtain recursively:
en = b,
en—1 = Ab— ﬁn—lba
en_n = A%b — B,_1 Ab— B,_5b, (9.18)
e = A1y — 671_114”_2[) —_— = 61[)
So equality (9.16) yields
Aeg = A — B 1 A" Yh — . — B Ab = Fyb.
The equality
n—1
A"b =) B AT (9.19)
i=0
is satisfied for a unique n-tuple (5o, ..., Bn—1) since the vectors b, Ab, ...,

A"=1h form a basis of R™ (in fact, 3; are coefficients of the characteristic
polynomial of A).

With these numbers 3;, the vectors ey, ..., e, given by (9.18) form the
required basis. Indeed, equalities (9.15), (9.16) hold by construction. The vec-
tors ey, ..., ey are linearly independent by the controllability condition (9.14).

O
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Remark 9.5. The basis eq, ... , e, constructed in the previous proof is unique,
thus the state transformation that maps a controllable linear system with
scalar control (9.13) to the normal form (9.10) is also unique.

9.2.2 Linear Systems with Vector Control

Now consider general controllable linear systems:

k
b= Ar+ Y uibs, x€R™ u=(u,...,ux) €RF  (9.20)
i=1
span{A7b; | j=0,... ., n—1, i=1,...  k}=R" (9.21)
Recall that we assume vectors by, ..., bg linearly independent.

In the case k = 1, all controllable linear systems in R"™ are state-feedback
equivalent to the normal form (9.11), thus there are no state-feedback invari-
ants in a given dimension n. If & > 1, this is not the case, and we start from
description of state-feedback invariants.

Kronecker Indices
Consider the following subspaces in R™:

D™ =span{Aib; | j=0,... ,m—1,i=1,... k}, m=1...,n.

Invertible linear state transformations (9.8) preserve dimension of these sub-
spaces, thus the numbers
dim D™, m=1,...,
are state invariants.
Now we show that invertible linear feedback transformations (9.7) preserve
the spaces D™ . Any such transformation can be decomposed into two feedback
transformations of the form:

k

(Aw by, be) = (Az+ > (ei, 2)bi by, .. by, (9.23)
i=1

(A, by, ..., by) = (Ax, Dby, ..., Dby). (9.24)

Transformations (9.24), i.e., changes of b;, obviously preserve the spaces D™.
Consider transformations (9.23). Denote the new matrix:

k
Azx = Az + Z<Ci’ z)b;.

i=1
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We have: N ' '
Ale = Az mod D7, j=1,... ,n—1

But D™~! € D™ m = 2,...,n, thus feedback transformations (9.23) pre-
serve the spaces D™ m=1,...,n.

So the spaces D™, m = 1,... n, are invariant under feedback transfor-
mations, and their dimensions are state-feedback invariants.

Now we express the numbers dim D™ m = 1, ... n, through other inte-
gers — Kronecker indices. Construct the following n x k matrix whose elements
are n-dimensional vectors:

by - b
Aby - Abg
. . . (9.25)
APlpy oo ATy
Replace each vector Ab;, j = 0,...,n—1,i=1,... k, in this matrix by

a sign: cross X or circle o, by the following rule. We go in matrix (9.25) by
rows, 1.e., order its elements as follows:

bi, oo b, Aby, oAb, AP b ATy (9.26)

A vector A7b; in matrix (9.25) is replaced by x if it is linearly independent of
the previous vectors in chain (9.26), otherwise it is replaced by o. After this
procedure we obtain a matrix of the form:

X X X X -+ X
X o X X -+ 0
E: X oo X--- 0
0O o0 o X --- 0

Notice that there are some restrictions on appearance of crosses and circles in
matrix X. The total number of crosses in this matrix is n (by the controllability
condition (9.21)), and the first row is filled only with crosses (since b1, ..., by
are linearly independent). Further, if a column of 2 contains a circle, then
all elements below it are circles as well. Indeed, if a vector A7b; in (9.25) is
replaced by circle in X, then

Alb; Espan{Aij |y < i}—i—span{Aﬁbv |B<j, v=1,... k}.

Then the similar inclusions hold for all vectors A7+, ..., A?~1b;, i.e., below
circles are only circles. So each column in the matrix X' consists of a column
of crosses over a column of circles (the column of circles can be absent).
Denote by ny the height of the highest column of crosses in the matrix X,
by ns the height of the next highest column of crosses; ... and by ng the
height of the lowest column of crosses in Y. The positive integers obtained:
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annZZan‘

are called Kronecker indices of the linear control system (9.20). Since the total
number of crosses in matrix X' is equal to dimension of the state space, then

k

Moreover, by the construction, we have
span(by, Aby, ..., A" by b, Abg, ..., AT ) = R™ (9.27)

Now we show that Kronecker indices n; are expressed through the numbers

dim D*. We have:

dim D' = k = number of crosses in the first row of ¥,

dim D? = number of crosses in the first 2 rows of X,

dim D' = number of crosses in the first ¢ rows of ¥,
so that

A7) 4 dim D' — dim DP~! = number of crosses in the i-th row of X.

Permute columns in matrix X so that the first column become the highest
one, the second column becomes the next highest one, etc. We obtain an n x &-
matrix in the “block-triangular” form. This matrix rotated at the angle x/2
gives the subgraph of the function A : {1,... n} —{1,... k}. It is easy to
see that the values of the Kronecker indices is equal to the points of jumps of
the function A, and the number of Kronecker indices for each value is equal
to the height of the corresponding jump of A.

So Kronecker indices are expressed through dim D, i =1,... k, thus are
state-feedback invariants.

Brunovsky Normal Form

Now we find normal forms of linear systems under state and state-feedback
transformations. In particular, we show that Kronecker indices form a com-
plete set of state-feedback invariants of linear systems.

Theorem 9.6. Any controllable linear system (9.20), (9.21) with k control
parameters is state equivalent to a system of the form
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1 1 k _ .k
Y1 =Y, Y1 = Ys,
il _ .1 -k _ .k
yn1—1 _ynla goee ey ynk—l_ynka
1 1 y] ko ky]
Yn, = — OY + ug, Yn, = — XY + ug,
1<j<k 1<j<k
0<i<n,—1 0<i<n,—1
(9.28)
where

r= Z y‘;e;, (9.29)
1<i<k
1) Zn,

and state-feedback equivalent to a system of the form

ygnl) = Ui,
- (9.30)
yl(cnk) = U,
where n;, i = 1,...,k, are Kronecker indices of system (9.20).

System (9.30) is called the Brunovsky normal form of the linear sys-
tem (9.20).
We prove Theorem 9.6.

Proof. We show first that any linear controllable system (9.20) can be written,
in a suitable basis in R™:
e%,...,e}ll;...,;e’f,...,ek (9.31)
in the canonical form (9.28).
We proceed exactly as in the scalar-input case (Subsect. 9.2.1). The re-
quired canonical form (9.28) determines uniquely the last basis vectors in all &
groups:

en, =bi,... en, =by. (9.32)
Denote the space B = span(by, ..., by). Then our system

= Az mod B

reads in coordinates as follows:

. i A

x = E yie; = E y;Ae; mod B.
1<i<k 1<i<k
1<5<n, 1<5<n,

In view of the required equations
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U =Y L1<i<h 1<i<n,

we have

Z i€ = Z y;Acj mod B,

1<i<k 1<i<k
1<j<n; 1<5<n,

or, equivalently,

S o= Y A meds

So the following relations should hold for the required basis vectors:
Ael =¢5_; mod B, 1<i<k, 2<j<n (9.33)
Ael =0 mod B, 1<i<k. (9.34)

We resolve equations (9.33) recursively starting from (9.32), for all ¢ =

1 k:

PR

i p.
en, = bi,

k
el —Ab»—E B, b
ng—1 — £ in—1"7)

y=1
k k
i — A2p. Y Y
€ni—n = A7bi — E ﬁi,n,—lAbW - E :Bi,n,—Zb’Y’
y=1 ~y=1
k k
T An—1p. 2 n;—2 2
ep=A4A b — E :62',71,—114 by — - = E :me%
y=1 ~y=1

while (9.34) yields
k
Aey = Z 6?,0177
y=1

for some constants ﬁ?j, 1 <i<k 0<j<n; 1<y <k Weobtain the

equation
k

k
Ay =Y B AT by e+ B by,
y=1 y=1
which has a unique solution in 623 in view of (9.27).
So we proved that there exists a unique linear state transformation that
maps a linear controllable system (9.20) to the canonical form (9.28).
Choosing new controls

1 J _
— E aijyf»_l_l—i—ul, l=1,... k,
1<j<k
0<i<n;—1
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we see that each of the k subsystems in (9.28) is feedback equivalent to a sys-
tem of the form (9.11), or, equivalently, (9.12). Thus the whole system (9.20)
is state-feedback equivalent to the Brunovsky normal form (9.30). a

9.3 State-Feedback Linearizability

Consider a nonlinear control-affine system:
k
q':f(q)—i—Zujgj(q), w=(uy,... u) ERF ¢€ M. (9.35)
j=1

We are interested, when such a system is locally state-feedback equivalent to
a controllable linear system.

Definition 9.7. System (9.35) is called locally state-feedback equivalent to a
linear system (9.20) in a neighborhood of a point qo € M, if there exist a state
transformation — a diffeomorphism

b : 04— 0CR"

from a neighborhood Oy, of qo in M onto an open subset O C R”, and a
feedback transformation

@ OqDXRk—HRk,

al(Q)
elg,u)=1 -+ | +D(9)u, (9.36)

with an invertible and smooth in ¢ matriz

D(q) = (dij(q)), i, j=1,...k,

such that the state-feedback transformation (®,p) maps system (9.35) re-
stricted to Og, to a linear system (9.20) restricted to O.

We can generalize the construction of the subspaces D™ (9.22) for the case
of nonlinear systems (9.35): consider the families of subspaces

D;”:span{(adf)jgi(q) [j=0,...,m—14i=1 ...k} CT,M.

Notice that, in general, dim Di* # const, thus D™ is not a distribution.
Observe that for controllable linear systems (9.20), the following properties
hold for the family D' = D™ « € R™

1. dim D7 = const,
2. DY = TxR™
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3. the distributions D™, m = 1,...  n, are integrable (since they are spanned
by the constant vector fields A7b;).

Before formulating conditions for state-feedback linearizability of nonlinear
systems, which are given in terms of the families Dj", we prove the following
property of these families.

Lemma 9.8. If the families D™, m = 1,... ,n, are involutive, then they are
feedback-invariant.

Proof. Notice first that feedback transformations (9.36) can be decomposed
into transformations of the two kinds:

(fagla"'agk)H(f—i_ajgjagla"'agk)a (937)
(fagla"'agk)H(faDgla"'ang)a (938)

where D(q) = (dij(¢)), i, = 1,..., k, is invertible and smooth w.r.t. ¢. We
prove the lemma by induction on m.
Let m = 1. The family

D' =span{g; |i=1,... k}

is obviously preserved by the both transformations (9.37) and (9.38).
Induction step: we assume that the statement is proved for m — 1 and
prove 1t for m. The family

D™ = {[f,X]| X € D""'} + D"

is preserved by transformation (9.38). Consider transformation (9.37). We
have

[f +ajg;, XT=[f, X] = [X, ajg;] = [f, X] = (Xa;)g; — ¢;[X, g5].

Further:

XeD™ ! = [f,X]€ D",

(Xaj)g; € D' C D™,

X c Dm_l, 9 c Dl C Dm—l = [X,g]] c Dm—l C Dm,
thus

[f +ajg;,X] € D" ¥ X eD"

So D™ is preserved by feedback transformation (9.37). O

Theorem 9.9. System (9.35) is locally state-feedback equivalent to a control-
lable linear system (9.20) if and only if:

(1)dimD*, m =1,...,n, does not depend on q, i.e., D™ are distributions,
(2) D = T, M,
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(3) the distributions D™, m =1,... ,n, are involutive.

Conditions (1)-(3) are necessary for local state-feedback linearizability, see
discussion before Lemma 9.8.

We prove sufficiency in Theorem 9.10 below only in the case of scalar
control parameter. For & = 1 we have the system

g=f(g) +ugle), uwe€R, g€M, (9.39)
and the corresponding families of subspaces
Dy = span{(ad f)’g(q) |1 =0,1,...,m— 1}, m=1,...,n, g€ M.

In this case it happens that involutivity of D?~! implies involutivity of D™
with smaller m.

Theorem 9.10. System (9.39) is locally state-feedback equivalent to a con-
trollable linear system (9.13) if and only if:

(1) DI = T, M,
(2) the distribution D"~ is involutive.

First we prove the following proposition of general interest: integral man-
ifolds of integrable distributions can be smoothly parametrized.

Lemma 9.11. Let A = span{Xy, ..., Xi} be an integrable distribution on a
smooth n-dimensional manifold M, dim Ay, = k. Then for any point qo € M
there exist a neighborhood qy € Oy, C M and a smooth vector-function

. n—=k
@104 =R

such that:

(D) rank puq =n—k, ¢ € Og,, and
(2) ¢ (y) is an integral manifold of A for any y € ¢(Oy,), or, equivalently,
(2") ker g = Ag, g € Oy,.

Proof. Complete the vector fields X;, ..., Xi to a basis:
span{Y1, ..., Yo_k, X1, ..., Xk} = Vec Oy,

for a sufficiently small neighborhood ¢¢ € Oy, C M. Consider the mapping

uYi4...6 etn—kYn—k o 651X1 60-.-0 eSka’

¥ (t,s)qooe
t=(t1,...,th—k) e R *, s=1(81,...,8k) € R”.

We have
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81/) :Yia i:l,...,n—k,
9t |,

0y = X, t=1,... k,
882'0

thus ¢ is a local diffeomorphism in a neighborhood of 0 € R™.
Further, for fixed ¢ = t°, the set

{v(°5) | s € R"}

is an integral manifold of A.
Finally, locally, by the implicit function theorem, there exists a well-defined
smooth mapping

o Yt s) =t

It is the required vector-function. a
Now we prove Theorem 9.10.

Proof. Necessity is already known since for linear controllable systems both
conditions (1), (2) hold, see discussion before Lemma 9.8.

To prove sufficiency, we construct coordinates in which our system (9.39) is
simplified, and then apply a feedback transformation which maps this system
to the normal form (9.11).

Since the distribution D" ~! is integrable, then by Lemma 9.11 there exists
a smooth function

e1 1 0 = R

such that
dqgol 7& Oa <dq§01a Dg_1> = Oa q € Oqu' (940)
Define the following functions in the neighborhood Oy, :

po = fp1 = <d801,f>,
p3 = feo = o1,

on = fon_1 = fn_1§01

(iterated directional derivatives along the vector field f).
We claim that the functions ¢4, ..., ¢, (which will be the coordinates that
simplify (9.39)) have the following property:

j+i<n,

, 0,
(ad f)]g@l = {:I:(ad f)”_lggm £ 0, j+l=n. (9'41)

First of all, notice that b = (ad f)"~lg¢; |O # 0. Indeed, we have
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Dg_l =span{g(q),...,(ad /)" 2g(q)},
T, M = span{g(q),...,(ad f)"_lg(q)} = span{Dg_l, (ad f)"_lg(q)},
thus the equality (ad f)"~1gp1(g) = 0 is incompatible with properties (9.40).

Now we prove (9.41) by induction on [. If [ = 1, there is nothing to prove.
Assume that equality (9.41) is proved for { — 1 and prove it for [. We have

(ad Y g1 = ((ad f) g o f) i1
= ((ad f)lgo f— fo(adf) g+ fo(adf)g) i1
= (=[f, (ad fY g] + f o (ad ) g) g1
= (—(ad f) g+ fo(ad ) g) i1

If j+1 < n, then j+1—1 < n, and (ad f)7g¢;—1 = 0 by the induction
assumption. Thus

(ad fY gor = —(ad fyI T gy for j+1<m,

and equality (9.41) for [ follows from this equality for [ — 1.
So equality (9.41) is proved for all I. The vectors g(q), ..., (ad f)""1g(q)
span the tangent space T, M for ¢ € O, thus the mapping

¥1
=] : O = R"
Pn
is a local diffeomorphism: the differentials dg¢1, . . . , dgp,, form a basis of T3 M

dual to g(q),...,(ad f)""1g(q) € T, M.

Take @ as a coordinate mapping, then coordinates of a point ¢ € M are
= ¢i(q), l=1,...,n.

Now we write our system ¢ = f(¢) + ug(q) in these coordinates: we differen-
tiate x; with respect to this system.

d d
8= E@l(q@)) = (f+ug)o = for +uger.

If | < n, then g¢; = 0 by equality (9.41), thus

d
E?Clifsﬁl:@lﬂzl‘lﬂ, l=1,...,n—1

And if [ = n, then

d
El’n:fSDn‘i'UgSDn:f@niUba b=gpn #0.

So in coordinates xy, ..., x, our system (9.39) takes the form
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r] = T2,

LTn—1= In,

Zn = fon £ ub.

Now consider the feedback transformation

After this transformation the n-th component of our system reads

. n_u
1‘n:fg0n:|:(ZFMT)b:fgpn—fgpn—l—u:u,

i.e., the whole system takes the required form (9.11).
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Optimal Control Problem

10.1 Problem Statement

Consider a control system of the form
§=fulg)y q€M, welUCR™ (10.1)

Here M is, as usual, a smooth manifold, and U an arbitrary subset of R™.
For the right-hand side of the control system, we suppose that:

g+ fu(q) is a smooth vector field on M for any fixed u € U, (10.2)
(¢,%) + fu(q) is a continuous mapping for ¢ € M, u € U, (10.3)

and moreover, in any local coordinates on M

(q,u) — 66—{;((]) is a continuous mapping for ¢ € M, u € U. (10.4)

Admissible controls are measurable locally bounded mappings
u:tult)el.

Substitute such a control w = wu(t) for control parameter into system (10.1),
then we obtain a nonautonomous ODE ¢ = f,(¢). By the classical Carathéo-
dory’s Theorem, for any point ¢; € M, the Cauchy problem

§=fulg)y  4(0) = qo, (10.5)

has a unique solution, see Subsect. 2.4.1. We will often fix the initial point ¢q
and then denote the corresponding solution to problem (10.5) as ¢q(%).

In order to compare admissible controls one with another on a segment
[0,14], introduce a cost functional:
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I = [ plat),uie) d (10.6)

with an integrand
e MxU—=R

satisfying the same regularity assumptions as the right-hand side f, see (10.2)-
(10.4).

Take any pair of points ¢g,q1 € M. We consider the following optimal
control problem.

Problem 10.1. Minimize the functional J among all admissible controls
u = u(t), t € [0,¢1], for which the corresponding solution ¢, (t) of Cauchy
problem (10.5) satisfies the boundary condition

qu(tl) = q1. (10.7)

This problem can also be written as follows:

g=fule), q€M, uelUCR™, (10.8)
9(0) = qo,  q(t1) = qu, (10.9)
J(u):/olgo(q(t),u(t))dt—>min. (10.10)

We study two types of problems, with fixed terminal time ¢; and free ¢;. A
solution u of this problem is called an optimal control, and the corresponding
curve ¢, (1) is an optimal trajectory.

So optimal control problem is the minimization problem for J(u) with
constraints on u given by control system and the fixed endpoints conditi-
ons (10.5), (10.7). These constraints cannot usually be resolved with respect
to u, thus solving optimal control problems requires special techniques.

10.2 Reduction to Study of Attainable Sets

Fix an initial point go € M. Attainable set of control system (10.1) for time
t > 0 from gy with measurable locally bounded controls is defined as follows:

Ago (t) = {qu(t) | w e L7([0,4],U)}.

Similarly, one can consider the attainable sets for time not greater than ¢:

Ay, = U Age (7)

0<7<t

and for arbitrary nonnegative time:
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A= |J Au(n).

0<7<00

It turns out that optimal control problems on the state space M can be
essentially reduced to the study of attainable sets of some auxiliary control
systems on the extended state space

M=RxM={G=(y,q)|yeR, ge M}.

Namely, consider the following extended control system on M:

di  ~ .
d—zz (@), GEM, uel, (10.11)

with the right-hand side

= (Fns). v uew

where ¢ is the integrand of the cost functional J, see (10.6). Denote by ¢, ()
the solution of the extended system (10.11) with the initial conditions

- y(O)) ( 0 )

«(0) = = .

1 ( ) (fJ(O) qo0
Proposition 10.2. Let q5(t), t € [0,11], be an optimal trajectory in the prob-
lem (10.8)—(10.10) with the fized terminal time t1. Then the corresponding

tragectory qg(t) of the extended system (10.11) comes to the boundary of the
attainable set of this system:

Ga(t1) € OA(g g (t1)- (10.12)

Proof. Solutions g, (t) of the extended system are expressed through solu-
tions ¢, (t) of the original system (10.1) as

il = (100,

Je(u) :/0 o(qu(r), u(r)) dr.

Thus attainable sets of the extended system (10.11) from the point (0, go)
have the form

where

Ao,00) () = {(Je (), gu(t)) | w € L=([0,],U)}.

The set ﬁ(quo)(tl) should not intersect the ray
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qo q1

Fig. 10.1. Optimal trajectory ga(¢)

{wa) el ly< @},

see Fig. 10.1.
Indeed, suppose that there exists a point

(ya (]1) S A(O,qg)(tl)a Yy < Jtl(a)
Then the trajectory of the extended system ¢, (t) that steers (0, qo) to (v, q1):

wo=(2) aw=(1).

gives a trajectory ¢4(t), ¢u(0) = qo, ¢u(t1) = ¢1, with a smaller value of the
cost functional:

Jtl(u) =y < Jtl(a)’

a contradiction with optimality of the trajectory ¢s(¢). The required inclu-
sion (10.12) follows. O

So optimal trajectories (more precisely, their lift to the extended state
space M\) must come to the boundary of the attainable set ﬁ(quu)(tl). In
order to find optimal trajectories, we find those coming to the boundary of
A(0,40)(t1), and then select optimal among them. The first step is much more
important than the second one, so solving optimal control problems essentially
reduces to the study of dynamics of boundary of attainable sets.

10.3 Compactness of Attainable Sets

Due to the reduction of optimal control problems to the study of attainable
sets, existence of optimal solutions to these problems is reduced to compact-
ness of attainable sets.
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For control system (10.1), sufficient conditions for compactness of the at-
tainable sets Ay, (t) for time ¢ and A for time not greater than ¢ are given
in the following proposition.

Theorem 10.3 (Filippov). Let the space of control parameters U € R™ be
compact. Let there erist a compact K @ M such that f,(q) =0 for ¢ ¢ K,
u € U. Moreover, let the velocity sets

fulg) ={fulg) [w e U} CTyM, q €M,

be convexr. Then the attainable sets Ag, (t) and AZD are compact for all qo € M,
t>0.

Remark 10.4. The condition of convexity of the velocity sets fir(¢) is natural
in view of Theorem 8.7: the flow of the ODE

=) fu(0) + (1 —a®)fulg), 0<a(t) <1,

can be approximated by flows of the systems of the form

q¢=fu(q), where v(t) € {ui(t), ua(t)}.
Now we give a sketch of the proof of Theorem 10.3.

Proof. Notice first of all that all nonautonomous vector fields f,(¢) with ad-
missible controls u have a common compact support, thus are complete. Fur-
ther, under hypotheses of the theorem, velocities fyu(q), ¢ € M, u € U, are
uniformly bounded, thus all trajectories ¢(¢) of control system (10.1) start-
ing at gp are Lipschitzian with the same Lipschitz constant. Thus the set of
admissible trajectories is precompact in the topology of uniform convergence.
(We can embed the manifold M into a Euclidean space RY then the space
of continuous curves ¢(t) becomes endowed with the uniform topology of con-
tinuous mappings from [0,%,] to R™.) For any sequence g,(t) of admissible
trajectories:

(jn(t):fun(QH(t))a 0 <t <y, QH(O):QOa
there exists a uniformly converging subsequence, we denote it again by ¢, (¢):
gn(-) = q(-)in C[0,t1] as n — oo.

Now we show that ¢(¢) is an admissible trajectory of control system (10.1).
Fix a sufficiently small € > 0. Then in local coordinates

t+e
S+ —n ) = [ fuaan)r
€ conv U fu(gn(r)) C conv U fo(a),

TE[t,t+e] qEOq(t)(ca)
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where ¢ is the doubled Lipschitz constant of admissible trajectories. Then we
pass to the limit n — oo and obtain

St +e) —g) econe | fulo)

q€0 1y (ce)

Now let ¢ — 0. If ¢ is a point of differentiability of ¢(t), then
q(t) € fulq)

since fy(q) is convex.

In order to show that ¢(¢) is an admissible trajectory of control sys-
tem (10.1), we should find a measurable selection u(t) € U that generates ¢(t).
We do this via the lexicographic order on the set U = {(u1,...,um)} C R™.

The set

Vi={velUlq(t)=fula(®))}
is a compact subset of U, thus of R™. There exists a vector v™™® t) € W
minimal in the sense of lexicographic order. To find y™® (t), we minimize the
first coordinate on V;:

o = min{ v | v=(v1,... ,vm) €V},

then minimize the second coordinate on the compact set found at the first
step:

v = min{ vy | v = (V0 vg, ... 0m) € Vi ),
ete.,
v = min{ v, | v = (@0 o w) €V )
The control v™™(¢) = (vP"(¢t),...,v™"(¢)) is measurable, thus ¢(¢) is an

admissible trajectory of system (10.1) generated by this control.
The proof of compactness of the attainable set Ag, () is complete. Com-
pactness of AZD is proved by a slightly modified argument. a

Remark 10.5. In Filippov’s theorem, the hypothesis of common compact sup-
port of the vector fields in the right-hand side is essential to ensure the uniform
boundedness of velocities and completeness of vector fields. On a manifold,
sufficient conditions for completeness of a vector field cannot be given in terms
of boundedness of the vector field and its derivatives: a constant vector field
is not complete on a bounded domain in R". Nevertheless, one can prove
compactness of attainable sets for many systems without the assumption of
common compact support. If for such a system we have a priori bounds on
solutions, then we can multiply its right-hand side by a cut-off function, and
obtain a system with vector fields having compact support. We can apply
Filippov’s theorem to the new system. Since trajectories of the initial and
new systems coincide in a domain of interest for us, we obtain a conclusion
on compactness of attainable sets for the initial system.
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For control systems on M = R”, there exist well-known sufficient conditi-
ons for completeness of vector fields: if the right-hand side grows at infinity
not faster than a linear field, i.e.,

fu(z)] <CO+2l), z€R" wel, (10.13)

for some constant C', then the nonautonomous vector fields f, (z) are complete
(here |z| = \/2? 4+ .-+ 22 is the norm of a point # = (z1,...,z,) € R").

These conditions provide an a priori bound for solutions: any solution ()
of the control system

&= fu(z), reR" wuel, (10.14)
with the right-hand side satisfying (10.13) admits the bound
()] <> (J2(0)[+ 1),  t>0.

So Filippov’s theorem plus the previous remark imply the following suffi-
cient condition for compactness of attainable sets for systems in R”.

Corollary 10.6. Let system (10.14) have a compact space of control parame-
ters U @ R™ and convex velocity sets fu(x), x € R™. Suppose moreover that
the right-hand side of the system satisfies a bound of the form (10.13). Then
the attainable sets Ay, (t) and AL, are compact for all zy € R, t > 0.

10.4 Time-Optimal Problem

Given a pair of points ¢o € M and ¢1 € Ay, , the time-optimal problem consists
in minimizing the time of motion from ¢y to ¢; via admissible controls of
control system (10.1):

That 1s, we consider the optimal control problem described in Sect. 10.1 with
the integrand ¢(¢q,u) = 1 and free terminal time ¢;.

Reduction of optimal control problems to the study of attainable sets and
Filippov’s Theorem yield the following existence result.

Corollary 10.7. Under the hypotheses of Theorem 10.3, time-optimal prob-
lem (10.1), (10.15) has a solution for any points qo € M, q1 € Ag,.

10.5 Relaxations

Consider a control system of the form (10.1) with a compact set of control
parameters UU. There is a standard procedure called relazation of control sys-
tem (10.1), which extends the velocity set fir(¢) of this system to its convex
hull conv fr(q).
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Recall that the conver hull conv .S of a subset S of a linear space is the
minimal convex set that contains S. A constructive description of convex hull
is given by the following classical proposition: any point in the convex hull of
a set S in the n-dimensional linear space is contained in the convex hull of
some n + 1 points in 5.

Lemma 10.8 (Carathéodory). For any subset S C R", its convex hull has
the form

n n
conv S = {Zail‘i | @; €S, a; >0, Zai = 1}.
3=0 i=0

For the proof of this lemma, one can consult e.g. [143].

Relaxation of control system (10.1) is constructed as follows. Let n =
dim M be dimension of the state space. The set of control parameters of the
relaxed system is

V=A"xUx---xU,

n+1 times

where
A":{(ao,...,anﬂaizo, ZaiZI}CR"H
=0

is the standard n-dimensional simplex. So the control parameter of the new
system has the form

v=(a,ug, ..., uy) €V, a=(ag,...,an) €AY u; € U.

If U is compact, then V is compact as well.
The relared system 1s

q':gv(q):Zaiful(q), v=(a,ug,...,up) €V, q€M. (10.16)
i=0

By Carathéodory’s lemma, the velocity set gy (¢) of system (10.16) is convex,
moreover,

gv(q) = conv fu(q).

If all vector fields in the right-hand side of (10.16) have a common com-
pact support, we obtain by Filippov’s theorem that attainable sets for the
relaxed system are compact. By Theorem 8.7, any trajectory of relaxed sys-
tem (10.16) can be uniformly approximated by families of trajectories of initial
system (10.1). Thus attainable sets of the relaxed system coincide with closure
of attainable sets of the initial system.
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Elements of Exterior Calculus
and Symplectic Geometry

In order to state necessary conditions of optimality for optimal control prob-
lems on smooth manifolds — Pontryagin Maximum Principle, see Chap. 12
— we make use of some standard technique of Symplectic Geometry. In this
chapter we develop such a technique. Before this we recall some basic facts
on calculus of exterior differential forms on manifolds. The exposition in this
chapter 1s rather explanatory than systematic, it is not a substitute to a reg-
ular textbook. For a detailed treatment of the subject, see e.g. [146], [135],
[137].

11.1 Differential 1-Forms

11.1.1 Linear Forms

Let E be a real vector space of finite dimension n. The set of linear forms
on F i.e., of linear mappings & : F — R, has a natural structure of a vector
space called the dual space to E and denoted by E*. If vectors ey,..., e,
form a basis of E, then the corresponding dual basis of E* is formed by the

covectors e}, ..., ey such that

<6?,6]’>:(5ij, i,j:l,...n
(we use the angle brackets to denote the value of a linear form £ € E* on a
vector v € E: (£, v) = £(v)). So the dual space has the same dimension as the
initial one:

dmE* =n=dimE.

11.1.2 Cotangent Bundle

Let M be a smooth manifold and T, M its tangent space at a point ¢ € M.
The space of linear forms on T3 M, i.e., the dual space (TqM)* to T, M, is
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called the cotangent space to M at ¢ and is denoted as Ty M. The disjoint
union of all cotangent spaces is called the cotangent bundle of M:

M € M
geM

The set T* M has a natural structure of a smooth manifold of dimension 2n,
where n = dim M. Local coordinates on T*M are constructed from local
coordinates on M.
Let O C M be a coordinate neighborhood and let
¢ : 0 —R" D(q) = (x1(q), ... ,2nlq)),
be a local coordinate system. Differentials of the coordinate functions
dxi|q€T;M, i=1 n, q¢€ao0,

PR

form a basis in the cotangent space 77 M. The dual basis in the tangent
space Ty M is formed by the vectors

0
er,M, i=1
8l‘iq

0 o
<dxi’3—l‘j>55iﬁ” i, j=1...,n

Any linear form § € T7 M can be decomposed via the basis forms:

§= Z& dx;.
i=1

gy

So any covector £ € T*M is characterized by n coordinates (x1,...,2,) of
the point ¢ € M where £ is attached, and by n coordinates (£1,...,&,) of the
linear form £ in the basis dzq, ..., dz,. Mappings of the form

E (&, V1)

define local coordinates on the cotangent bundle. Consequently, 7% M is an
2n-dimensional manifold. Coordinates of the form (£, z) are called canonical
coordinates on T* M.
If ¥ : M — N is a smooth mapping between smooth manifolds, then the
differential
F. TqM %Tp(q)N

has the adjoint mapping
% def * * *
F* = (F)* TF(q)N—>TqM

defined as follows:
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F*€:€OF*, gETF*‘(q)Na
(F*E,v) = (&, Fov), veT,M.

A vector v € Ty M is pushed forward by the differential F, to the vector
Fiv € Trg N, while a covector & € T;;(q)N i1s pulled back to the covector
F*¢ € Ty M. So a smooth mapping I' : M — N between manifolds induces
a smooth mapping F* : T*N — T*M between their cotangent bundles.

11.1.3 Differential 1-Forms
A differential 1-form on M is a smooth mapping
qrrwg €T, M, qE M,

i.e, a family w = {w,} of linear forms on the tangent spaces T,M smoothly
depending on the point ¢ € M. The set of all differential 1-forms on M has a
natural structure of an infinite-dimensional vector space denoted as A'M.
Like linear forms on a vector space are dual objects to vectors of the
space, differential forms on a manifold are dual objects to smooth curves in
the manifold. The pairing operation is the integral of a differential 1-form
w € A'M along a smooth oriented curve 7y : [tg,t1] — M, defined as follows:

t1
/w déf/ (g, (1)) dt.
i to

The integral of a 1-form along a curve does not change under orientation-
preserving smooth reparametrizations of the curve and changes its sign under
change of orientation.

11.2 Differential k-Forms

A differential k-form on M is an object to integrate over k-dimensional sur-
faces in M. Infinitesimally, a k-dimensional surface is presented by its tangent
space, i.e., a k-dimensional subspace in T, M. We thus need a dual object to
the set of k-dimensional subspaces in the linear space. Fix a linear space F.
A k-dimensional subspace is defined by its basis vy,...,vx € E. The dual
objects should be mappings

(v1,...,v5) P wvy, ..., o) ER

such that w(vy,...,v;) depend only on the linear hull span{vy,... vz}
and the oriented volume of the k-dimensional parallelepiped generated by
v1, ..., vx. Moreover, the dependence on the volume should be linear. Recall
that the ratio of volumes of the parallelepipeds generated by vectors w; =
Z?:l a;;v5,1=1,...,k, and the vectors v1, ..., vy, equals det(aij)fyjzl, and
that determinant of a k& x k matrix is a multilinear skew-symmetric form of
the columns of the matrix. This is why the following definition of the “dual

objects” is quite natural.
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11.2.1 Exterior k-Forms

Let E be a finite-dimensional real vector space, dim E = n, and let & € N. An
exterior k-form on E is a mapping

w:Ex- - xE—->R,
—————

k times
which is multilinear:
1 2
w(vy, ..., 000 + av], ..., Ug)
_ 1 2
=ow(v1, ..,V ) Faaw(Vr, Y ), ar, as €R,
and skew-symmetric:
T T L A 1 (2 PR 17 S T /3
t, j=1,...,k

The set of all exterior k-forms on E is denoted by A* E. By the skew-symmetry,
any exterior form of order k > n is zero, thus A*E = {0} for k > n.

Exterior forms can be multiplied by real numbers, and exterior forms of the
same order k can be added one with another, so each A*F is a vector space.
We construct a basis of AL after we consider another operation between
exterior forms — the exterior product. The exterior product of two forms
w1 € AFME, wy € A*2E is an exterior form wi A ws of order ki + ko.

Given linear 1-forms wy,ws € A'E, we have a natural (tensor) product for
them:

w1 ®@ws ¢ (v1,v2) = wi(v1)wa(va), vi,vs € F.

The result is a bilinear but not a skew-symmetric form. The exterior product
is the anti-symmetrization of the tensor one:

w1 Aws © (v1,v2) = wi(v1)wa(va) — wi(ve)wa(vy), vy, vs € F.

Similarly, the tensor and exterior products of forms w; € A*1 F and wy € A*2E
are the following forms of order ki + ks:

w1 Q@wa ¢ (V1 Vkytden) P W1 (V1o Ok )W (kg 41y -« - s Vkythen ) s

w1 Aws ¢ (V1. Uk k)

1 vio
WZH) D1 (Vo (1) - -+ s Vo)) @2 (Vo (s 41)s - - > Vakrbha))s (11.1)

where the sum is taken over all permutations ¢ of order k1 + k2 and v(o)
1s parity of a permutation o. The factor m normalizes the sum in (11.1)
since it contains k1! ko! identically equal terms: e.g., if permutations ¢ do not
mix the first &y and the last ks arguments, then all terms of the form
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(=1 w1 (Vo(1), - -+ s Vo) )02 (Vo (s $1)5 - -+ » Vor(hy+ha))

are equal to

wi(vi, oo Uk Jwa(Vky 41, - oy Uby ks )-
This guarantees the associative property of the exterior product:
w1 A (wa Aws) = (w1 Awz) Aws, w; € AR E,
Further, the exterior product is skew-commutative:
wz/\wlz(—l)klewl A wo, w; € AME.

Let ey, ..., e, be a basis of the space I and e], ..., e} the corresponding
dual basis of E*. If 1 < k < n, then the following (Z) elements form a basis
of the space A*E:

er N Nej, 1< <ig <o < i <.
The equalities
(ef, Ao ANef ey, o ye) =1,
(ef, Ao Nei (e ooheg) =0, 0f (i, sik) # (G155 k)

for 1 < iy < iy < --- < i < n imply that any k-form w € A*E has a unique
decomposition of the form

* *
w= E Wiy i€, /\~~~/\6ik
1<ii i< <ig<n

with
wh...ik = w(eil, e ,eik).
Exercise 11.1. Show that for any 1-forms wy,...w, € A'F and any vectors
Vi,...,Vp € I there holds the equality
(Wi A Awp) (v, ..., vp) = det ({w;, vj>)f7j:1 : (11.2)

Notice that the space of n-forms of an n-dimensional space F is one-di-
mensional. Any nonzero n-form on £ is a volume form. For example, the value
of the standard volume form e} A...Ae’ on an n-tuple of vectors (vy,...,v,)
is

(e7 A Aef)(vr, ... ug) = det ({e], vj>)?,j:1 ,

the oriented volume of the parallelepiped generated by the vectors vy, ...  v,.
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11.2.2 Differential k-Forms
A differential k-form on M is a mapping

w :q»—)wqukTqM, qge M,

smooth w.r.t. ¢ € M. The set of all differential k-forms on M is denoted
by A*M. It is natural to consider smooth functions on M as 0O-forms, so
AOM = C>=(M).

In local coordinates (z1,...,2,) on a domain O C M, any differential
k-form w € A* M can be uniquely decomposed as follows:

Wy = Z ai, iy (X)deg, Ao N dw,, r €0, a; 5 €CT(0).
1< <ig
(11.3)

Any smooth mapping
F:M—=N

induces a mapping of differential forms
F i AN = A M

in the following way: given a differential k-form w € A* N, the k-form =
AP M is defined as

(ﬁw)q(vl, covg) = wpg) (Fevr, . Faug), ge M, v; e T,M.
For 0-forms, pull-back is a substitution of variables:
Fa(q)=aoF(g), a€C™(M), q€M
The pull-back F is linear w.r.t. forms and preserves the exterior product:
ﬁ(wl Awsy) = ﬁwl A ﬁwz.
Exercise 11.2. Prove the composition law for pull-back of differential forms:
Fyoly = F o Py, (11.4)
where Fy : My — Ms and Fy : My — M3 are smooth mappings.

Now we can define the integral of a k-form over an oriented k-dimensional
surface. Let 7T C R* be a k-dimensional open oriented domain and

@I —o(II)C M

a diffeomorphism. Then the integral of a k-form w € A* M over the k-dimen-
sional oriented surface @(IT) is defined as follows:
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/ L g / B
&(IT) n

it remains only to define the integral over II in the right-hand side. Since

Pw € AFRY is a k-form on R*| it is expressed via the standard volume form
dzi A ... Adz, € AFRE:

(5w)x:a(x)dx1/\~~/\dxk, x e 1l

/QAM def / a(z)dey .. .dey,
by by

a usual multiple integral.
The integral fq‘)(ﬂ) w 18 defined correctly with respect to orientation-preser-

We set

ving reparametrizations of the surface @(IT). Although, if a parametrization
changes orientation, then the integral changes sign.

The notion of integral i1s extended to arbitrary submanifolds as follows.
Let N C M be a k-dimensional submanifold and let w € A* M. Consider a
covering of N by coordinate neighborhoods O; C M:

N =W no).

Take a partition of unity subordinated to this covering:

a; € CF(M), suppa; CO;, 0< o <1,

Then

/ def
w = E oW,
N — Jnno,

The integral thus defined does not depend upon the choice of partition of
unity.

Remark 11.3. Another possible approach to definition of integral of a differen-
tial form over a submanifold is based upon triangulation of the submanifold.

11.3 Exterior Differential

Exterior differential of a function (i.e., a 0-form) is a 1-form:if a € C*°(M) =
AYM , then its differential
dga € Ty M

is the functional (directional derivative)



152 11 Elements of Exterior Calculus and Symplectic Geometry
(dga, v) = va, vel,M, (11.5)

SO

da € A'M.

By the Newton-Leibniz formula, if v C M is a smooth oriented curve
starting at a point go € M and terminating at ¢; € M, then

A da = a(q1) — a(qo).

The right-hand side can be considered as the integral of the function a over
the oriented boundary of the curve: 0y = ¢1 — qo, thus

/da:/a a. (11.6)

In the exposition above, Newton-Leibniz formula (11.6) comes as a conse-
quence of definition (11.5) of differential of a function. But one can go the
reverse way: if we postulate Newton-Leibniz formula (11.6) for any smooth
curve v C M and pass to the limit ¢ — gg, we necessarily obtain defini-
tion (11.5) of differential of a function.

Such approach can be realized for higher order differential forms as well.
Let w € A* M. We define the exterior differential

dw e AF TP M

as the differential (k + 1)-form for which Stokes formula holds:

/Ndw:/an (11.7)

for (k + 1)-dimensional submanifolds with boundary N C M (for simplicity,
one can take here N equal to a diffeomorphic image of a (k + 1)-dimensional
polytope). The boundary 0N is oriented by a frame of tangent vectors
e1,...ex € T,(ON) in such a way that the frame e,,eq1,... ,ex € TuN de-
fine a positive orientation of N, where e, is the outward normal vector to N
at q.

The existence of a form dw that satisfies Stokes formula (11.7) comes
from the fact that the mapping N +— fan i1s additive w.r.t. domain: if
N = N1 U Nz, N1 N N2 = 6N1 N 6N2, then

fo=f -
ON ON1 ONo

(notice that orientation of the boundaries is coordinated: 9N; and dN; have
mutually opposite orientations at points of their intersection). Thus the inte-
gral fan is a kind of measure w.r.t. N, and one can recover (dw), passing
to limit in (11.7) as the submanifold N contracts to a point g.
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We recall some basic properties of exterior differential. First of all, it is
obvious from the Stokes formula that d : A* M — AF+1 M is a linear operator.
Further, if 7 : M — N is a diffeomorphism, then

dFw = Fdw, we AN, (11.8)

Indeed, if W C M, then

/ w:/ ﬁw, we AN,
F(W) W

/dﬁw:/ ﬁw:/ w:/ w:/ dw
w oW F(oW) AF (W) F(W)
:/ ﬁdw,
w

and equality (11.8) follows.
Another basic property of exterior differential is given by the equality

thus

dOd:O’

which follows since d(dN) = @) for any submanifold with boundary N C M.
Exterior differential is an antiderivation:

d(wy Aws) :(dwl)/\wz—i—(—l)klwl/\dwz, w; € AR,

this equality is dual to the formula of boundary 9(Ny x N2).
In local coordinates exterior differential is computed as follows: if

W= Z ai1...ikd$i1A"'Adxik’ Qi ik ECOO’
i1< ik
then
do= Y (dai, ) Ndei, A Adai,,
i1< <k

this formula is forced by above properties of differential forms.

11.4 Lie Derivative of Differential Forms

The “infinitesimal version” of the pull-back P of a differential form by a flow P
is given by the following operation.

Lie derivative of a differential form w € A* M along a vector field f €
Vec M is the differential form L;w € AFM defined as follows:



154 11 Elements of Exterior Calculus and Symplectic Geometry

e d 3
Liw & 72| efw. (11.9)

Since . . .
et (w1 Awa) = etfwy Aetfwa,

Lie derivative L; is a derivation of the algebra of differential forms:
Lf(w1 /\(.Jz) = (wal) ANws +wi A Lf(.dz.

Further, we have
etf od=doett,

thus
Lde:dOLf.

For 0-forms, Lie derivative is just the directional derivative:
Lia = fa, a€ C™(M),

since .
etfa = etf q

1s a substitution of variables.

Now we obtain a useful formula for the action of Lie derivative on differ-
ential forms of an arbitrary order.

Consider, along with exterior differential

d: AFM — AR M
the interior product of a differential form w with a vector field f € Vec M:

ip 2 AFM — AR,

(ipw)(v1,. .., vg—1) Lef w(f,v1,... ,Vk-1), weAM, v e T, M,

which acts as substitution of f for the first argument of w. By definition, for

0-order forms
ifa=0, aeA'M.

Interior product is an antiderivation, as well as the exterior differential:
if(ws /\wz):(ifwl)/\wz—l—(—l)klwl/\ifwz, w; € AF M.

Now we prove that Lie derivative of a differential form of an arbitrary
order can be computed by the following formula:

Ly =doi;+ifod (11.10)

called Cartan’s formula, for short “L = di 4 id”. Notice first of all that the
right-hand side in  (11.10) has the required order:
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dois+ijod: AFM — A" M.

Further, doi; 447 od is a derivation as it is obtained from two antiderivations.
Moreover, this derivation commutes with differential:

do(doif—l—ifod):dOide,
(doif +ifod)od=doi;od.

Now we check formula (11.10) on O-forms: if @ € A°M, then

(dolf)a = 0’
(if od)a={da, f) = fa = Lya.

So equality (11.10) holds for 0-forms. The properties of the mappings Ly and
dois +is od established and the coordinate representation (11.3) reduce the
general case of k-forms to the case of 0-forms. Formula (11.10) is proved.

The differential definition (11.9) of Lie derivative can be integrated, i.e.,
there holds the following equality on A*M:

¢ - ¢
(5@/ der) :e_x_f)/ Ly, dr, (11.11)
0] 0]

in the following sense. Denote the flow
Pttu1 —exp / frdr.
to
The family of operators on differential forms
Pl AM = AP M
is a unique solution of the Cauchy problem

d — — —~
P =PFeoly, B

=1Id 11.12
- , (11.12)

t=0

compare with Cauchy problems for the flow P¢ (2.9) and for the family of
operators Ad P} (2.21), (2.22), and this solution is denoted as

t t
e_x_f)/ Ly dr & (5@/ der)
0] 0]

In order to verify the ODE in (11.12), we prove first the following equality
for operators on forms:

d

y PITw="IL;w, —weAM (11.13)
9

e=0
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This equality is straightforward for 0-order forms:

d — d
— Pltea = — P/*a= fia = Ly,a, a € C™(M).
de e=0 de e=0 '
Further, the both operators j—€|€:0 Pl*e and L, commute with d and satisfy

the Leibniz rule w.r.t. product of a function with a differential form. Then
equality (11.13) follows for forms of arbitrary order, as in the proof of Cartan’s
formula.

Now we easily verify the ODE in (11.12):

d =

d —
=—| Pit=
dt" % de 0

e=0

by the composition rule (11.4)

d| = == = d| ==
= Pto Pf"’a ="Pto e Ptt‘l'a

€ e=0 € e=0
:PSOLft

Exercise 11.4. Prove uniqueness for Cauchy problem (11.12).
For an autonomous vector field f € Vec M, equality (11.11) takes the form
tLy )

etf =e

Notice that the Lie derivatives of differential forms L; and vector fields
(—ad f) are in a certain sense dual one to another, see equality (11.14) below.
That is, the function

(W, X) g {wg, X(q)), q€M,
defines a pairing of A'M and Vec M over C°*°(M). Then the equality
(Pw,X)=Plw,AdP~'X), PeDiff M, X € Vec M, w € A' M,
has an infinitesimal version of the form

(Lyw, X) = Y{w, X) — {w, (ad V) X), X,Y€EVecM, weA'M.
(11.14)

Taking into account Cartan’s formula, we immediately obtain the following
important equality:

dw(Y,X) = Y{w, X) — X{w,Y) —{w,[YV,X]), X, Y €VecM, weA'M.
(11.15)
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11.5 Elements of Symplectic Geometry

We have already seen that the cotangent bundle T M = Ugep Ty M of an n-
dimensional manifold M is a 2n-dimensional manifold. Any local coordinates
z=(x1,...,2,) on M determine canonical local coordinates on T*M of the
form (£, %) = (§1,...,&n; 1,...,%,) in which any covector A € T M has
the decomposition A = >_7_, & d;l,, -

11.5.1 Liouville Form and Symplectic Form
The “tautological” 1-form (or Liouville 1-form) on the cotangent bundle
s € ANT* M)

is defined as follows. Let A € T*M be a point in the cotangent bundle and
w € Th(T*M) a tangent vector to T*M at A. Denote by 7 the canonical
projection from T* M to M:

T T"M — M,
T A g, AeT;M.

Differential of 7 is a linear mapping
T - IN(T*"M) = T, M, q = m(A).

The tautological 1-form s at the point A acts on the tangent vector w in the
following way:

(sx,w) ef (A, mow).

That is, we project the vector w € T\ (T™ M) to the vector m,w € T, M, and
then act by the covector A € Ty M. So

def
L AO?T*.

The title “tautological” is explained by the coordinate representation of the
form s. In canonical coordinates (&, #) on T* M, we have:

A= Giday, (11.16)
i=1

- 0 0
w_;aiﬁ_&—i_ﬁi@—xi'

The projection written in canonical coordinates

T (&)=
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is a linear mapping, its differential acts as follows:

0 .
71'*(6&)_0, r=1,...,n,

o\ o -
T gz, ) = o t=1,...,n.

& d
W = ;626—%’

Thus

consequently,
(sn,w) = (A, maw) = _ &
i=1

But 4; = (dz;, w), so the form s has in coordinates (£, z) exactly the same
expression

5y = Zn:&dl‘l (11.17)
i=1
as the covector A, see (11.16). Although, definition of the form s does not
depend on any coordinates.
Remark 11.5. In mechanics, the tautological form s is denoted as pdg.
Consider the exterior differential of the 1-form s:
o ¥ ds.

The differential 2-form o € A?(T* M) is called the canonical symplectic struc-
ture on T* M. In canonical coordinates, we obtain from (11.17):

o= dé& Adu;. (11.18)
i=1

This expression shows that the form ¢ is nondegenerate, i.e., the bilinear
skew-symmetric form

ox : TA(T*M) x To(T*M) — B
has no kernel:
olw, )=0 = w=0, weD(T"M).
In the following basis in the tangent space Th (7% M)

9 9 9. 2
D20 06 Gen 06,
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the form o, has the block matrix

01
—-10
01
-10
The form o 1s closed:
do=0

since it 1s exact: ¢ = ds, and do d = 0.

Remark 11.6. (1) A closed nondegenerate exterior differential 2-form on a 2n-
dimensional manifold is called a symplectic structure. A manifold with a sym-
plectic structure is called a symplectic manifold. The cotangent bundle T M
with the canonical symplectic structure ¢ is the most important example of
a symplectic manifold.

(2) In mechanics, the 2-form o is known as the form dp A dg.

11.5.2 Hamiltonian Vector Fields

Due to the symplectic structure o € A*(T* M), we can develop the Hamilto-
nian formalism on T*M. A Hamiltonian is an arbitrary smooth function on
the cotangent bundle:

heC®(T*M).

To any Hamiltonian h, we associate the Hamiltonian vector field
h € Vec(T*M)
by the rule:

oa(- h)=dyh, AeT*M. (11.19)

In terms of the interior product éyw(-, -) = w(v, -), the Hamiltonian vector
field is a vector field & that satisfies

ipo = —dh.
Since the symplectic form o is nondegenerate, the mapping
we o, w)
is a linear isomorphism

Th(T* M) — T (T* M),
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thus the Hamiltonian vector field & in (11.19) exists and is uniquely deter-
mined by the Hamiltonian function h.
In canonical coordinates (£, x) on T M we have

"/ Oh doh
dh =" (6—&@ + ﬁdm) ,
i=1

K3

then in view of (11.18)

- 3h 0 3h 0

i=1
So the Hamaltonian system of ODEs corresponding to A
\ = ( ) AeT*M,

reads in canonical coordinates as follows:

i‘i 8% i:l,...,n,

gl_ 6]}2 R

The Hamiltonian function can depend on a parameter: hy, t € R. Then
the nonautonomous Hamiltonian vector field l_{t, t € R 1s defined in the same
way as in the autonomous case.

The flow of a Hamiltonian system preserves the symplectic form o.

Proposition 11.7. Let /_it be a nonautonomous Hamiltonian vector field on

T*M. Then .
t
(e_x_f)/ ﬁTdT) oc=o.
0

Proof. In view of equality (11.11), we have

t
(e_x_f)/ thT) _exp/ Ly dT
0 0

thus the statement of this proposition can be rewritten as

LEtO' =0.

But this Lie derivative is easily computed by Cartan’s formula:

Ly 0'_z~ o d0' +do ZhO' =—dodh; =0.
N

:0
=—dh,
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Moreover, there holds a local converse statement: if a flow preserves o,
then it is locally Hamiltonian. Indeed,

t
(e_x_f)/j’}dr) c=0c <& L;jo=0,
0

further
Lio=1ts 0 do +doiy,o,
:0
thus
Lioc=0 & doifo=0.
If the form if,0 is closed, then it is locally exact (Poincaré’s Lemma), i.e.,

there exists a Hamiltonian h; such that locally f; = /_{t.

Essentially, only Hamiltonian flows preserve o (globally, “multi-valued Ha-
miltonians” can appear). If a manifold M is simply connected, then there holds
a global statement: a flow on T* M is Hamiltonian if and only if it preserves
the symplectic structure.

The Poisson bracket of Hamiltonians a,b € C*°(T* M) is a Hamiltonian

{a,b} € C*(T* M)

defined in one of the following equivalent ways:

- —

{a,b} = @b = (db,@) = o(@,b) = —o(b, @) = —ba.
It is obvious that Poisson bracket is bilinear and skew-symmetric:
{a,b} = —{b,a}.
In canonical coordinates (£, x) on T* M,
" (da Ob da 0b
{a’b}:;<a_&a_m_a_xia_@)' (11.21)
Leibniz rule for Poisson bracket easily follows from definition:
{a,be} = {a,btc+ b{a,c}

(here be is the usual pointwise product of functions b and ¢).

Symplectomorphisms of cotangent bundle preserve Hamiltonian vector
fields; the action of a symplectomorphism P € Diff(T*M), Po = o, on a
Hamiltonian vector field A reduces to the action of P on the Hamiltonian
function as substitution of variables:

B e
AdPh=Ph.
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This follows from the chain
- (X,Adpii) — Po (X,Adpi'{) = Po (AdP—lx, /'{)
= P(dh,AdP™t X) = X(Ph), X € Vec(T™M).

In particular, a Hamiltonian flow transforms a Hamiltonian vector field into
a Hamiltonian vector field:

= — — ¢
Ad P'h, =P'h,,  P'=éxp / a, dr. (11.22)
0

Infinitesimally, this equality implies Jacobi identity for Poisson bracket.

Proposition 11.8.
(o b+ (b {eal}+ e {a b =0, abeeC®(T"M). (1123)

Proof. Any symplectomorphism P € Diff(T* M), Po = o, preserves Poisson
brackets:

Pib,cy = Po (5,6) = Po (AdPEAAPE) =0 (?b, ?c) — {Pb, Pc}.

Taking P = €'? and differentiating at ¢ = 0, we come to Jacobi identity:

{a,{b,c}} = {{a, b}, c} 4+ {b,{a,c}}.
O

So the space of all Hamiltonians C*° (T* M) forms a Lie algebra with Pois-
son bracket as a product. The correspondence

a—d  acC®(T*M), (11.24)

i1s a homomorphism from the Lie algebra of Hamiltonians to the Lie algebra
of Hamiltonian vector fields on M. This follows from the next statement.

-

—
Corollary 11.9. {a,b}= [d, b] for any Hamiltonians a,b € C*(T*M).
Proof. Jacobi identity can be rewritten as

{{aa b}a C} = {aa {ba C}} - {ba {aa C}},

1.e.

- L
{a,b} c=dobe—bodc=1db]e, c e C(T*M).
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It is easy to see from the coordinate representation (11.20) that the kernel
of the mapping a +— @ consists of constant functions, i.e., this is isomorphism
up to constants. On the other hand, this homomorphism is far from being
onto all vector fields on 7% M. Indeed, a general vector field on T* M 1s locally
defined by arbitrary 2n smooth real functions of 2n variables, while a Hamil-
tonian vector field is determined by just one real function of 2n variables, a
Hamiltonian.

Theorem 11.10 (Nother). A function a € C°(T*M) is an integral of a
Hamultonian system of ODEs

A=h()), AeT*M, (11.25)

1€
eha=a teR,
of and only if it Potsson-commutes with the Hamiltonian:
{a,h} =0.

Proof. et"a=a < 0= ha={h,a}. O

Corollary 11.11. ethp = h, i.e., any Hamiltonian h € C*(T*M) is an in-
tegral of the corresponding Hamiltonian system (11.25).

Further, Jacobi identity for Poisson brackets implies that the set of inte-
grals of the Hamiltonian system (11.25) forms a Lie algebra with respect to
Poisson brackets.

Corollary 11.12. {h,a} = {h,b} = 0= {h,{a,b}} = 0.

Remark 11.13. The Hamiltonian formalism developed generalizes for arbitrary
symplectic manifolds.

Now we introduce a construction that works only on 7% M. Given a vector
field X € Vec M, we define a Hamiltonian function

X* e C®(T*M),
which is linear on fibers T3 M, as follows:
X*(A) =\ X(q)), AeT*M, q=m(A).

In canonical coordinates (£, x) on T*M we have:

- 0
X = Zai(r)@x"
i=1 ¢

X* = Z&ai(aj). (11.26)
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This coordinate representation implies that
{X, Y} =[X, Y], XY € Vec M,

, Poisson brackets of Hamiltonians linear on fibers in 7% M contain usual
L1e brackets of vector fields on M

The Hamiltonian vector field X* € Vec(T* M) corresponding to the Hamil-
tonian function X* is called the Hamailtonian [ift of the vector field X €
Vec M. Tt is easy to see from the coordinate representations (11.26), (11.20)

that
—
T (X*) = X.

Now we pass to nonautonomous vector fields. Let X; be a nonautonomous
vector field and

P,y =exp /txe do
the corresponding flow on M. The flow P = P, ; acts on M:
P:M-=M, P g0 q,
its differential pushes tangent vectors forward:
P ToM =T, M,
and the dual mapping P* pulls covectors back:
P T M — Ty M.
Thus we have a flow on covectors (i.e., on points of the cotangent bundle):
Py T"M —1T"M.

Let Vi be the nonautonomous vector field on 7" M that generates the flow
Pr,:

d *
Vi = 71z . Pliye
Then
Epr,t:d_gazopr,wa:d_gazopt,wa Tt—VtOP

so the flow P7, is a solution to the Cauchy problem

d

P =ViePr,  Pro=1d,

e., it is the left chronological exponential:
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ot
P, =exp / Ve db.
T

It turns out that the nonautonomous field V; is simply related with the
Hamiltonian vector field corresponding to the Hamiltonian X;:

—

Vi=— X . (11.27)
Indeed, the flow P, preserves the tautological form s, thus
LVtS =0.

By Cartan’s formula,

iv,0 = —d{s, 4},
1.e., the field V; 1s Hamiltonian:

—
Vi =(s, Vi) .
But n,V; = — X, consequently,
(s, Vi) = =X¢,

and equality (11.27) follows. Taking into account relation (2.18) between the
left and right chronological exponentials, we obtain

_ t — _ T
", =éxp / — X} df =éxp / X7 do.
T t
We proved the following statement.

Proposition 11.14. Let X; be a complete nonautonomous vector field on M.

Then
N t * . T o
(exp/ Xy db’) :exp/ X; d6.
T t

In particular, for autonomous vector fields X € Vec M,

—

(etX)* _ e—tX* )

11.5.3 Lagrangian Subspaces

A linear space X endowed with a bilinear skew-symmetric nondegenerate
form o is called a symplectic space. For example, X = T, (T*M) with the
canonical symplectic form ¢ = o is a symplectic space.

Any subspace L of a symplectic space X has the skew-orthogonal comple-
ment

L4 ={x € Y|o(x, L) =0}
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A subspace L C X is called isotropic if
LC L~
Since the symplectic form o 1s nondegenerate, then
dim L4 = codim L.

In particular, if a subspace L is isotropic, then dim L < %dim Y. Isotropic
subspaces of maximal dimension:

1
LcC L% dimL = §dim2 & L=1L%

are called Lagrangian subspaces.

For example, in canonical coordinates (p,q) on X, the vertical subspace
{¢ = 0} and the horizontal subspace {p = 0} are Lagrangian.

There exists a standard way to construct a Lagrangian subspace that con-
tains any given isotropic subspace. Let I' C X be an isotropic subspace and
A C ¥ a Lagrangian subspace. Then the subspace

AT Anré 4 r=(A+r)nr (11.28)
is Lagrangian (check!). Tt is clear that
Ao T

In particular, any line in X' is contained in some Lagrangian subspace.
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Pontryagin Maximum Principle

In this chapter we prove the fundamental necessary condition of optimality
for optimal control problems — Pontryagin Maximum Principle (PMP). In
order to obtain a coordinate-free formulation of PMP on manifolds, we apply
the technique of Symplectic Geometry developed in the previous chapter. The
first classical version of PMP was obtained for optimal control problems in R™
by L.S. Pontryagin and his collaborators [15].

12.1 Geometric Statement of PMP and Discussion

Consider the optimal control problem stated in Sect. 10.1 for a control system
i=/fulg), qeM, wuecUCR™, (12.1)

with the initial condition
q(0) = qo. (12.2)
Define the following family of Hamiltonians:
hu(A) = (A, fu()), AETIM, ge M, ueU.
In terms of the previous section,
hu(A) = fi(A).

Fix an arbitrary instant ¢; > 0.

In Sect. 10.2 we reduced the optimal control problem to the study of
boundary of attainable sets. Now we give a necessary optimality condition in
this geometric setting.

Theorem 12.1 (PMP). Let a(t), t € [0,t1], be an admissible control and
4(t) = qa(t) the corresponding solution of Cauchy problem (12.1), (12.2). If
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q(t1) € 0Ag, (1),
then there exists a Lipschitzian curve in the cotangent bundle
/\tEqu(t)M, 0<t<ty,
such that
A # 0,
A= ﬁﬂ(t)(/\t),
hao () = maxhy ()

uelU

for almost all t € [0,t1].

(12.3)
(12.4)
(12.5)

If u(t) is an admissible control and A; a Lipschitzian curve in 7*M such
that conditions (12.3)-(12.5) hold, then the pair (u(t), A;) is said to satisfy
PMP. In this case the curve A; is called an extremal, and its projection §(¢) =

m(A¢) is called an extremal trajectory.
Remark 12.2. Tf a pair (4(t), A¢) satisfies PMP, then
ha(ey(Ae) = const, t€[0,14].

(12.6)

Indeed, since the admissible control #(¢) is bounded, we can take maximum
in (12.5) over the compact {u(t) | ¢ € [0,¢1]} = U. Further, the function

w(A) = meaf;( hy(A)

is Lipschitzian w.r.t. A € T* M. We show that this function has zero derivative.

For any admissible control u(t),

30(/\t) > hu(T)(/\t)a 30(/\7') = hu(T)(/\T)’

thus h A h A
pA) = p(Ar) o uiy(Ae) = huo) r)’ te
t—1 - t—1
Consequently,
d
7 o(Ae) > {hury, hu)} =0
t=71
if 7 is a differentiability point of ¢(A;). Similarly,
- hu T At) — hu T A7'
p(A) = p(Ar) _ hur)(Ae) = huo) )’ f<r
t—1 - t—1
thus
d (M) <0
dt t=1 P
So 4
L o0 =
dtgo( t) =0,

and identity (12.6) follows.
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The Hamiltonian system of PMP
A = Pouey(Ae) (12.7)

is an extension of the initial control system (12.1) to the cotangent bundle.
Indeed, in canonical coordinates A = (£, 2) € T*M, the Hamiltonian system

yields
. Ohup
t= g = fuy().

That is, solutions A; to (12.7) are Hamiltonian lifts of solutions ¢(¢) to (12.1):
() = qu(?).

Before proving Pontryagin Maximum Principle, we discuss its statement.

First we give a heuristic explanation of the way the covector curve A,
appears naturally in the study of trajectories coming to boundary of the at-
tainable set. Let

g1 = q(t1) € A, (t1). (12.8)

The idea is to take a normal covector to the attainable set A, (¢1) near
g1, more precisely — a normal covector to a kind of a convex tangent cone
to Ag, (t1) at ¢1. By virtue of inclusion (12.8), this convex cone is proper.

Thus it has a hyperplane of support, i.e., a linear hyperplane in 7,, M
bounding a half-space that contains the cone. Further, the hyperplane of sup-
port is a kernel of a normal covector Ay, € T M, Ay, # 0, see Fig. 12.1. The
covector A, is an analog of Lagrange multipliers.

In order to construct the whole curve A, ¢ € [0,t4], consider the flow

generated by the control @(-):

t1
Pt,tl :e_x_f) / fa(,—) dT, t e [O,tl].
¢
It is easy to see that
Pt,h('Aqu (t)) C Aqo (tl)a te [Oatl]'

Indeed, if a point ¢ € A, (¢) is reachable from ¢o by a control u(r), 7 € [0, 1],
then the point P; ;, (¢) is reachable from ¢ by the control

o(r) = {u(r), 7 €1[0,1],

a(r), T € [t, t1].
Further, the diffecomorphism P ;, : M — M satisfies the condition
P (@) =q(t1) =q,  t€0,4].

Thus if §(t) € intAg (¢), then ¢1 € int Ay (¢1). By contradiction, inclu-
sion (12.8) implies that
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Aty

y

Fig. 12.1. Hyperplane of support and normal covector to at-
tainable set Ag, (1) at the point ¢

qo

qN(t) € 8"4% (t)a te [Oatl]'
The tangent cone to Ag,(t) at the point §(¢) = P, +(¢1) has the normal
covector Ay = P (Ar,). By Proposition 11.14, the curve A;, t € [0,%1], is a

trajectory of the Hamiltonian vector field ﬁa(t), i.e., of the Hamiltonian system
of PMP.

One can easily get the maximality condition of PMP as well. The tangent
cone to Ag, (1) at ¢1 should contain the infinitesimal attainable set from the
point ¢1:

fulqr) = faey (@),

1.e., the set of vectors obtained by variations of the control @ near t;. Thus
the covector Ay, should determine a hyperplane of support to this set:

</\t1afu_fﬂ(t1)>§0a u € U.
In other words,
hu(/\tl) = </\t1a fu> S </\t1, fa(t1)> == hﬂ(tl)(/\tl), u e U

Translating the covector Ay, by the flow P, , we arrive at the maximality
condition of PMP:

hu(At) S hﬂ(t)(At)a uc Ua te [Oatl]'

The following statement shows the power of PMP.
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Proposition 12.3. Assume that the mazrimized Hamiltonian of PMP

H(A):ma{}(hu(/\), AeT*M,
ue

is defined and C*-smooth on T* M \ {\ = 0}.
If a pair (a(t), Ar), t € [0,t1], satisfies PMP, then

M=HO),  tel0,t] (12.9)

Conversely, if a Lipschitzian curve Ay # 0 1s a solution to the Hamiltonian
system (12.9), then one can choose an admissible control 4(t), t € [0,t1], such
that the pair (4(t), A\¢) satisfies PMP.

That is, in the favorable case when the maximized Hamiltonian H is C*-
smooth, PMP reduces the problem to the study of solutions to just one Hamil-
tonian system (12.9). From the point of view of dimension, this reduction
i1s the best one we can expect. Indeed, for a full-dimensional attainable set
(dim Ay, (t1) = n) we have dimdAy, (t1) = n — 1, i.e., we need an (n — 1)-
parameter family of curves to describe the boundary d.Ay, (¢1). On the other
hand, the family of solutions to Hamiltonian system (12.9) with the initial
condition m(Ag) = ¢ is n-dimensional. Taking into account that the Hamil-
tonian H is homogeneous:

H(eA) = cH(N), e >0,
thus
etﬁ(c/\o) = cetﬁ(/\o), To etﬁ(c/\o) =7o etﬁ(/\o),

we obtain the required (n — 1)-dimensional family of curves.
Now we prove Proposition 12.3.

Proof. We show that if an admissible control @(t) satisfies the maximality
condition (12.5), then

—

hayNe) = HO\),  t€[0,4]. (12.10)
By definition of the maximized Hamiltonian H,
H(/\)—ha(t)(/\)zo AeT*M, te]l0,t].

On the other hand, by the maximality condition of PMP (12.5), along the
extremal A; this inequality turns into equality:

H(At) = ha@y(Ae) =0, t€[0,14].

That is why
d)\tH = d)\thﬂ(t)a te [Oatl]
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But a Hamiltonian vector field is obtained from differential of the Hamiltonian
by a standard linear transformation, thus equality (12.10) follows. .

Conversely, let A\; # 0 be a trajectory of the Hamiltonian system A; =
ﬁ(At). In the same way as in the proof of Filippov’s theorem, one can choose
an admissible control @(t) that realizes maximum along A;:

H(A) = hay(Ae) = Ijlea[}(hu(/\t)~

As we have shown above, then there holds equality (12.10). So the pair
(a(t), A¢) satisfies PMP. O

12.2 Proof of PMP

We start from two auxiliary propositions.
Denote the positive orthant in R™ as

RT = {(x1,... ,2m) ER™ | 2; >0, i =1,...,m}.

Lemma 12.4. Let a vector-function F : R™ — R" be Lipschitzian, F/(0) =0,

and differentiable at 0:
dF

3 Fé = — .
dz |,
Assume that
F(RT) =R".
Then for any neighborhood of the origin Oy C R™

Remark 12.5. (1) The statement of this lemma holds if the orthant R7 is
replaced by an arbitrary convex cone C' C R™. In this case the proof given
below works without any changes.

(2) For a smooth vector-function | the statement this lemma follows from
the implicit function theorem.

Proof. Choose points yo, ... ,y, € R" that generate an n-dimensional simplex

centered at the origin:
1 n
; = 0.
R

Since the mapping Fy : R}’ — R™ is surjective and the positive orthant R’
1s convex, it is easy to show that restriction to the interior Fé|int]Rr 1s also

surjective:

Ju; €intRY  such that  Fioy =y, i=0,...,n.
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The points yo, ... ,y, are affinely independent in R”, thus their preimages
vg, ..., U, are also affinely independent in R™. The mean

1 n
v:n—l—lgvi

belongs to int R’} and satisfies the equality

Flv=0.
Further, the subspace
W =span{vy; —v |i=0,... ,n} CR™

i1s n-dimensional. Since v € int R’?, we can find an n-dimensional ball Bs C W
of a sufficiently small radius § centered at the origin such that

v+ Bs CintRY.

Since Fj(v; — v) = Fjv;, then F{W = R", i.e., the linear mapping Fjj : W —
R™ is invertible.
Consider the following family of mappings:

Go: Bs »R",  a€l0,a),
1

Go(w) = =F(a(v+w)), a >0,
o

Go(w) = Fjw.

By the hypotheses of the proposition,
F(z) = Fjz + o(z), reR™ x—0,
thus

Go(w) = Fjw + o(1), a—0, we€ Bs. (12.11)

Since the mapping F' 1s Lipschitzian, all mappings GG, are Lipschitzian with
a common constant. Thus the family G is equicontinuous. Equality (12.11)
means that

G — Gy, a— 0,

pointwise, thus uniformly.

So the continuous mapping G, o GO_1 : Go(Bs) — R™ is uniformly close
to the identity mapping, hence the difference Id -G, o GO_1 is uniformly close
to the zero mapping. For any # € R” sufficiently close to the origin, the
continuous mapping

d—GooGy' + &
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transforms the set Go(Bj) into itself. By Brower’s fixed point theorem, this
mapping has a fixed point # € Gy(Bs):

r—GooGyl(x)+ &=,

1.e.

Gao oGal(x) =I.

It follows that int G, o G5'(Bs) 3 0, consequently, int F'(aBs) 3 0 for small
a>0. O

Now we start to compute a convex approximation of the attainable
set Ag, (£1) at the point ¢1 = §(¢1). Take any admissible control u(t) and
express the endpoint of a trajectory via Variations Formula (2.28):

t1 t1
qu(t1) = qoo e‘%/ fu(ry dT = qo0 e@/ Jary + (fuiry = fagry) dr

0 0
t1 t1

= goo e_ﬁ)/ fa(r) dro eﬁ)/ (PrY), (fuer) = fagm) dr
0 0
t1

- ne e_ﬁ)/ (P1), (fuiry = fagr) dr.
0

Introduce the following vector field depending on two parameters:

9ru=(P2), (fu = farm)s  TEOH], uel. (12.12)

We showed that

t1
qu(t1) = qio exp / Gr () AT (12.13)

0

Notice that
9ra(r) = 0, TE [Oatl]'
Lemma 12.6. Let T C [0,1;] be the set of Lebesgue points of the control a(-).
If
Ty, M =cone{gr (1) | TET, ve U},

then

q1 € nt Aqu (tl)

Remark 12.7. The set cone{g,.(¢q1) | 7€ T, u € U} C T,, M is alocal convex
approximation of the attainable set Ag, (¢1) at the point ¢;.

Recall that a point 7 € [0,¢1] is called a Lebesque point of a function
u e Ll[O,tl] if

. 1
lim ——
t—r |t — 7]

/ |u(0) — u(7)| df = 0.
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¢
At Lebesgue points of u, the integral / u () df is differentiable and
0

§Z<Atwmd{):uuy

The set of Lebesgue points has the full measure in the domain [0,¢;]. For
details on this subject, see e.g. [145].
Now we prove Lemma 12.6.

Proof. We can choose vectors
Irou () €Ty M,  weT, wel i=1,...k,
that generate the whole tangent space as a positive convex cone:
cone {gr, u,(qn) |i=1,... k} =T, M,

moreover, we can choose points 7; distinct: 7 # 7, ¢ # j. Indeed, if i, = 75 for
some ¢ # j, we can find a sufficiently close Lebesgue point T]/» # 7; such that
the difference gT]'v,uj((h) — 9r;u,;(q1) is as small as we wish. This is possible
since for any 7 € 7 and any € > 0

T meas{t’ € [7,1] | |u(t') —u(r)| <e} > Tlast— T
-7
We suppose that 7 < 7 < -+ < 7%.

We define a family of variations of controls that follow the control @(-)
everywhere except neighborhoods of 7;, and follow u; near 7; (such variations
are called needle-like).

More precisely, for any s = (s1,...,s5) € R’j_ consider a control of the
form
_ Ju, tE€[m T4,
uslt) = {ﬂ(t)a t g Uisy[mi, 7 + si. (12.14)

For small s, the segments [r;, ; 4+ s;] do not overlap since 7; # 75, ¢ # j. In
view of formula (12.13), the endpoint of the trajectory corresponding to the
control constructed is expressed as follows:

t1
QUS(tl) = qoo° e_X_f)/ fus(t) dt
0

N T1+s81 N T2+582
= q0 exp/ Jtu, dt o exp/ Gtu, dt 0

71 T2

N Th+Sk
) exp/ Gt uy, dt.
Tk

The mapping
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Fois={(s1,...,8) — qu,(t1)
is Lipschitzian, differentiable at s = 0, and

OF
8‘% s=0

= gT,,u,(q1)~
By Lemma 12.4,
F(0) = q1 € int F(Op NRE)

for any neighborhood Oy C R*. But the curve g, (t), t € [0,t], is an
admissible trajectory for small s € R%, thus F(Og N R’j_) C Ag(t1) and
q1 € nt 'Aqu (tl) O

Now we can prove the geometric statement of Pontryagin Maximum Prin-
ciple, Theorem 12.1.

Proof. Let the endpoint of the reference trajectory
g1 = q(t1) € 0A4, (1)

By Lemma 12.6, the origin 0 € T, M belongs to the boundary of the convex
set cone{gs u(q1) |t € T, u € U}, so this set has a hyperplane of support at
the origin:

I, € T(;M, At, # 0,
such that

(M1, 9eulgn)) <0 YVae te€[0,41], uel.

Taking into account definition (12.12) of the field g ,,, we rewrite this inequal-
ity as follows:

Oeyy (PL2FL) (1)) < s (P fay) (1)),
B (P Dews Ful@0)) < ((P) Nevs Fany (@(0))).

The action of the flow P/* on covectors defines the curve in the cotangent

bundle: et
A T (P M € T5 M, t€1[0,41].

In terms of this covector curve, the inequality above reads
Ao, ful@(0)) < (s Sa (1))

Thus the maximality condition of PMP (12.5) holds along the reference tra-
jectory:

hy(Ae) < hay(Ae) YuelU Vae tel0t].
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By Proposition 11.14, the curve A; is a trajectory of the nonautonomous
Hamiltonian flow with the Hamiltonian function fg(t) = ha@):

t1 * t
A=A, 0 (e‘%/ fao) de) = A0 e‘%/ has) d6,
t t1

thus it satisfies the Hamiltonian equation of PMP (12.4)

Xt — ﬁﬂ(t) (At)

12.3 Geometric Statement of PMP for Free Time

In the previous section we proved Pontryagin Maximum Principle for the case
of fixed terminal time ¢;. Now we consider the case of free ¢;.

Theorem 12.8. Let @( ) be an admissible control for control system (12.1)
such that

q(t1) € O (Ujpmyj<cAgo ()

for some t; > 0 and ¢ € (0,t1). Then there exists a Lipschitzian curve

AtETg(t)Ma /\t7éoa OStStla
such that

Ae = hagy (M),
ha(t)(/\t) = szlear}(h“(/\t)’

for almost all t € [0,t1].

Remark 12.9. In problems with free time, there appears one more variable,
the terminal time ¢;. In order to eliminate it, we have one additional con-
dition — equality (12.15). This condition is indeed scalar since the previous
two equalities imply that hg(:)(Ar) = const, see remark after formulation of
Theorem 12.1.

Proof. We reduce the case of free time to the case of fixed time by exten-
sion of the control system via substitution of time. Admissible trajectories of
the extended system are reparametrized admissible trajectories of the initial
system (the positive direction of time on trajectories is preserved).

Let a new time be a smooth function
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p:RoR ©>0.
We find an ODE for a reparametrized trajectory:

%qu(gp(t)) = @) fu(oe) (qu(p(t))),

so the required equation is

G = &(t) fuo)) (@)

Now consider along with the initial control system

(j:fu(Q)a uel,

an extended system of the form
qd=vfu(q), uel, |[v—1] <, (12.16)

where § = £/t € (0,1). Admissible controls of the new system are

and the reference control corresponding to the control @(-) of the initial sys-

tem 1is
w(t) = (1, a(t)).

It is easy to see that since §(t1) € 0 (U|t_t1|<€.,4q0 (t)), then the trajectory of
the new system through the point ¢y corresponding to the control @(-) comes
at the moment ¢; to the boundary of the attainable set of the new system for
time t1. Thus @w(t) satisfies PMP with fixed time. We apply Theorem 12.1 to
the new system (12.16). The Hamiltonian for the new system is vhy (A). Then
the maximality condition (12.5) reads

1- ha(t)(At) = ueUn|1Uaz(1|<6vhu (At).

We take v = #(t) under the maximum and obtain
hay(Ae) = 0,
then we restrict the maximum to the set v = 1 and come to

hae) (Ae) = maxhy (Ar).

The Hamiltonian systems along @(-) and #(-) coincide one with another,
thus the proposition follows. a
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12.4 PMP for Optimal Control Problems

Now we apply PMP in geometric form to optimal control problems, starting
from problems with fixed time.
For a control system

¢=fule), q€M, uel, (12.17)
with the boundary conditions

q(0) = qo, q(t1) =q1, qo,q1 € M fixed, (12.18)
t1 > 0 fixed, (12.19)

and the cost functional

t1
J(u) = / e(qu(t), u(t)) dt (12.20)
0
we consider the optimal control problem
J(u) = min. (12.21)

We transform the problem as in Sect. 10.2. We extend the state space:
§= (Z) eR x M,

define the extended vector field fu € Vec(R x M):

2o [ ela, U))
and come to the new control system:

dq _ - ¥ =g, u),
ai ~ M0 {q:n@> —

with the boundary conditions

io=ai=(2). qw=("").

If a control @( ) is optimal for problem (12.17)-(12.21), then the trajectory
qa(t) of the extended system (12.22) starting from gy satisfies the condition

Galt1) € 0Ag, (1),

where .%T% (1) is the attainable set of system (12.22) from the point ¢y for
time ¢1. So we can apply Theorem 12.1.
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But the geometric form of PMP applied to the extended system (12.22)
does not distinguish minimum and maximum of the cost J(u). In order to have
conditions valid only for minimum, we introduce a new control parameter v
and consider a new system of the form

{y:¢@ﬂ0+m

/ v>0, uel. 12.23
q = fulq), - ( )

Now the trajectory of system (12.23) corresponding to the controls @(t) = 0,
a(t), comes to the boundary of the attainable set of this system at time ¢;.
We apply Theorem 12.1 to system (12.23). We have

T(yyq)(}R xM)=RaT,M,
T (X M) =R @& TIM = {(v,\)}.

The Hamiltonian function for system (12.23) has the form

Ry, A) = (A, fu) + V(e +v),

and the Hamiltonian system of PMP is

p:%%:@
y=(gu)+v, (12.24)
A = hay (v, A).

Here ﬁu(y, A) is the Hamiltonian vector field with the Hamiltonian function
hu(v, A) = (A, fu) + ve.
The first of equations (12.24) means that
v = const

along the reference trajectory.
The maximality condition has the form

O fato) + 00, 5(0) = | max (. f) +v(ilt). )+ o).

Since the previous maximum is attained, we have
v <0,
thus we can set v = 0 in the right-hand side of the maximality condition:

(At fa) +ve(a(t), at)) = max ({Ae, fu) + ve(d(t), u)) -

u€

So we proved the following statement.
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Theorem 12.10. Let u(t), t € [0,t1], be an optimal control for problem
(12.17)~(12.21)
J(@) = min{J(u) | qu(t1) = ¢ }.

Define a Hamiltonian function
ho(A) = (N fu) Fve(q, u), AeTTM, wel, velR.
Then there exists a nontrivial pair:
(1/, At) #0, I/ER, At ET(;(t)M’

such that the following conditions hold:

Ao = g (),

hg(t)(/\t) = Zneag he(As) VY ae te€[0,tq],

v <0.

Remark 12.11. (1) If we have a maximization problem instead of minimization
problem (12.21), then the preceding inequality for v should be reversed:

v>0.

(2) For the problem with free time ¢;: (12.17), (12.18), (12.20), (12.21),
necessary optimality conditions of PMP are the same as in Theorem 12.10
plus one additional scalar equality hg(t)(/\t) = 0 (exercise).

There are two distinct possibilities for the constant parameter v in Theo-
rem 12.10:

(a) if v # 0, then the curve A; is called a normal extremal. Since the pair (v, At)
can be multiplied by any positive number, we can normalize v < 0 and assume
that v = —1 in the normal case;

(b) if v = 0, then A; is an abnormal extremal.

So we can always assume that v = —1 or 0.
Now consider the time-optimal problem:

q= fulq), qgeM, wel,
q(0) =q0, q(t1) =q1, qo,q1 fixed,
t1
t1:/ 1dt = min.
0

For the time-optimal problem, Pontryagin Maximum Principle takes the
following form.
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Corollary 12.12. Let an admissible control a(t), t € [0,%1], be time-optimal.
Define a Hamiltonian function

hy(A) = (X, fu), AXeT;M, uwel.
Then there exists a Lipschitzian curve
MET*M, M #0, t €[0,t1],
such that the following conditions hold for almost all t € [0,11]:
A = ﬁﬂ(t)(/\t),
hae) (Ae) = maxhu (Ae),
hay(Ae) > 0. (12.25)

Proof. Apply Theorem 12.10 and the second remark after it, taking ¢ = 1.
Then the Hamiltonian system and the maximality condition follow. Inequal-
ity (12.25) is equivalent to conditions hg(;)(A¢) + v =0 and v < 0.

The inequality A; # 0 is obtained as follows: if A; = 0, then hg ) ()

=0,
thus v = 0. But the pair (v, A;) must be nontrivial, consequently, A\s 0. O

12.5 PMP with General Boundary Conditions

In this section we prove versions of Pontryagin Maximum Principle for optimal
control problems in which boundary points of trajectories belong to prescribed
manifolds.

First consider the following problem:

G=fule), q€M, welUCR™, (12.26)

¢(0) € No,  q(t1) € Ny, (12.27)

t1 > 0 fixed, (12.28)
t1

J(u) = / w(q(t), u(t)) dt = min. (12.29)
0

Here Ny and N; are given immersed submanifolds of the state space M. So
the boundary points ¢(0) and ¢(¢1) are not fixed as before, but should belong
to Ng and Nj respectively.

If a trajectory ¢(t) is optimal for this problem, then it is optimal as well for
the problem with the fixed boundary points §(0), §(¢1) considered in Sect. 12.4.
Consequently, the statement of Theorem 12.10 should be satisfied for §(t).
But now we need additional conditions that select boundary points §(0) € Ny
and ¢(t1) € Ny. It is reasonable to expect that they should be determined
by (dim Ny + dim Ny) scalar equalities. Such conditions can easily be formu-
lated in the Hamiltonian framework, they are called transversality conditions,

see (12.34) below.
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Theorem 12.13. Let @(t), t € [0,t1], be an optimal control in problem
(12.26)-(12.29). Define a family of Hamiltonians:

he(A) = (A fu(@)) + velg, u), AeTZM, ge M, veR, uel.

Then there exists a Lipschitzian curve Ay € Tg(t)M, t €[0,t1], and a number
v € R such that:
v
Ae =hgey (M), (12.30)
ha (Ae) = maxhy (), (12.31)
(A, v) Z(0,0),  tel0,t], (12.32)
(12.33)
(12.34)

v <0,

Ao L T5(0)No, Aty L T,y N1

Fig. 12.2. Transversality conditions (12.34)

Remark 12.14. (1) Any linear functional on a linear space acts naturally on a
subspace by restriction, so transversality conditions (12.34) read respectively
as follows:

(Ao, v) =0, v € T5(0)No,
</\t1,w> = 0, w e Tq(tl)NL

(2) The problem with free time: (12.26), (12.27), (12.29), is reduced to the
case of fixed #; in the same way as in Sect. 12.4, so for this problem holds the
previous theorem with the additional condition hg(t)(/\t) =0.

Now we prove Theorem 12.13.

Proof. The scheme of proof of PMP developed in Theorems 12.1, 12.10 can
be applied to much more general problems after appropriate modifications.
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Now we only indicate how the proofs of these theorems should be changed in
order to cover the new boundary conditions ¢(0) € Ny, ¢(t1) € Ny.
(1) First consider the special case where the initial point is fixed: let

No = {q0}

for some point ¢qg € M.
As in the proof of Theorem 12.10, we introduce an extended system on
R x M:

7= (Z) ERx M,
Pl = (PODTY cp o =R x M
fulq) Fulq) € (y,q)( x M) X Lg,

TG e {y =elau)to, (12.35)

q= fulq),
i =i=(,).

Further, in the case of fixed terminal point ¢(¢1), the necessary condition for
optimality of the trajectory ¢4(¢) was the following:

71 € 0Az, (th). (12.36)

Here A is the attainable set of the extended system (12.35) and ¢1 = ¢5(t1).

Now, when the target manifold N; 1s not a point, we should modify the
argument. In a sense, we reduce the target manifold to a point defining it
locally by an equation @ = 0. Choose a submersion

P 1 Ogyqy, — RP p=dimM — dim Ny,

of a small neighborhood Og,, , C M, so that

o~ H0)=N,NnO

Ga(ty)”

Further, extend the submersion: define the mapping

= . 14+p = Yy _ Yy
5o mx0u o 3(1)= ()

Since the control @(t) is optimal in our problem (12.26)—(12.29), then
(1) € 0P(Az, (1)) (12.37)

So we replace the necessary optimality condition (12.36) by (12.37) and return
to the scheme of proof of Theorems 12.1, 12.10.
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Take any & € N and any needle-like variation (12.14) of the optimal control:
us(t), s€RE wo(t)=a(t), te0,t)

Define the mappings

ty
G:RF SR x M, G(s) = qu.(t1) = goo e_x_f)/ Ju.ydt,  (12.38)
0
1 N
I Rk%RH—p, F(S) :@(G(S)) ={qpo e_x_f)/ fus(t) dt o ®.
0
(12.39)

Then it follows from inclusion (12.37) that
B(G)) = F(0) € IF (RE). (12.40)
By Lemma 12.4,

Fé(}le_) = cone{ ZF
si

|i:1,...,k}¢R1+p,
0
thus there exists a plane of support, i.e.,

Iée (R E£0,

such that
~ OF
— < i=1,... k. 12.41
(€50 Y=o = (1241
We compute the derivative by the chain rule:
fa ~
or) _g 9G1 (12.42)
382' 0 382' 0
and rewrite inequalities (12.41) as follows:
~~ 0G ~~ 0G
&* = D, <0, i=1,... k. 12.43
(0652 )= (ea. 52| Yo, (1243)
Then we denote the covector
X, = &€ = (A” ) €Ty (Rx M) (12.44)
121

and obtain conclusions (12.30)—(12.33) in the same way as in Theorem 12.10.

The only distinction now is that the covector A, is not arbitrary: equal-
ity (12.44) implies the second of the transversality conditions (12.34). Indeed,
we have
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Atl == @*ga € S (Rp)* )
thus

@

(Mevs ToaeyN1) = (D¢, T, () N1) = (6, DTy 1) N1) = 0.
N ——’
:0

The first transversality condition (12.34) is now trivially satisfied, so the proof
of this theorem in the case No = {qo} is complete.

(2) Let now the initial manifold Ny be an arbitrary immersed submanifold
of M. We can modify the scheme presented above to cover this case as well.
Since now the initial point ¢(0) is not fixed, we add variations of ¢(0).

Replace mappings (12.38), (12.39) by the following ones:

t1 N
G NOXRk—HRXM, G(g,8) = qo e_x_f)/ fus(t)dt,
0

~

o R
F : Ny x RF 5 RIFP, F(q,s) = ®(G(q,8)) = qo e_x_f) / Ju, 0y dt o @,
0

where ¢ = (0, ¢) € R x M. Then the necessary optimality condition (12.40) is
replaced by the inclusion

F(§(0),0) € OF (N x RE). (12.45)
Apply Lemma 12.4 to restriction of the mapping F' to the space
R™ 2 Oy x R, m=1+k, [=dimNg,

where Ogy C Np is a small neighborhood of §(0). By the remark after
Lemma 12.4, inclusion (12.45) implies that

Fls0),0)(R' & R}) £ R,
1.e., there exists a covector
fe@y, Er0 €= (1),
such that

~ OF
<€’6_qv> <0, v € T(0)No,

~0F
<£’65i

In the first inequality v belongs to a linear space, thus it turns into equality:

>§o, i=1,... k. (12.46)

~0F
<€, 6—qv> = 0, v E Tq(o)No (1247)
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Compute by Leibniz rule the partial derivative:

a@_F : Th0)No = R'1P,
7 1(q(0),0)
5 (1) [ Fuitet= (o pr.00)
- v = o exp fapydto® = )
0q (4(0),0) v 0 (t) voPliod
0
= (@*P“v) , v E Tq(o)No

Here we applied formula (2.19) to the flow

t1
ph :e_X_f)/ Jag) dt.
0

Then conditions (12.47), (12.46) read as follows:

(¢, 0. P'v) =0, v € Ty(0yNo, (12.48)
<$*€,§G >§0, i=1,... .,k
5 1(4(0),0)

As before, introduce the covector th = (v, At;) by equality (12.44), then
conclusions (12.30)—(12.33) of this theorem and the second transversality con-
dition (12.34) follow.

The first transversality condition is also satisfied: equality (12.48) can be
rewritten as

(Ae,, PIv) =0, v € Ty(0)No.
But Ag = P/ Ay, thus
<A0,U>: <Pt*1At1’v>:0a v ETq(O)NO
The theorem 1s completely proved. a

Now consider even more general problem with mixed boundary conditions,
see inclusion (12.50) below. Pontryagin Maximum Principle easily generalizes
to this case, both in formulation and in proof.

We study optimal control problem of the form:

ig=fulg), q€M, uwelUCR™, (12.49)
(9(0),q(t1)) € N C M x M, (12.50)
t1 > 0 fixed, (12.51)
J(u):/olgp(q(t),u(t))dt_mm, (12.52)

where N 1s a smooth immersed submanifold of M x M.
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Theorem 12.15. Let @ be an optimal control in problem (12.49)-(12.52).
Then there hold all statements of Theorem 12.13 except its transversality con-
dition (12.34), which is replaced now by the relation

(=0, Aty) L Tig(0),4060) V- (12.53)
Remark 12.16. (1) We identify

T(*qu,ql)(M x M) = T;DM@T(;M,

so the transversality condition (12.53) makes sense.
(2) An important particular case of mixed boundary conditions (12.50) is
the case of periodic trajectories:

q(t1) = ¢(0). (12.54)
Indeed, then

N=A ¥ {(¢,9)|¢e M} C M x M, (12.55)

the diagonal of the product M x M. In this case the transversality condi-
tion (12.53) reads

(=20, Aey)s (v, 0)) = =( Ao, v) + (Aey,v) =0, v € TyoyM = Tge) M,

1.e.

AO = Atl.

That is, an optimal trajectory in the problem with periodic boundary condi-
tions (12.54) possesses a periodic Hamiltonian lift (extremal).

Now we prove Theorem 12.15.

Proof. We reduce our problem to the case of separated boundary conditions
by introducing an auxiliary problem on M x M:

q= fu(Q)a
((0),4(0)) € A, (2(t1),9(t1)) € N,

—
{x ’ (z,q) e M x M, wel,

(the diagonal A is defined in (12.55) above)

J(u) = /0 " o(q(), u(t)) di = min.

It is obvious that this problem is equivalent to our problem (12.49)-(12.52).
We apply a version of PMP (Theorem 12.13) to the auxiliary problem. The
Hamiltonian is the same as for the initial problem:
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ha(n, A) = hy(A) = X ful@)) +ve(au), (0 A) € T"M & T M.

The corresponding Hamiltonian system is

"
A (12.56)
At :hg(t) (At)

All required statements of PMP obviously follow, we should only check
transversality conditions.
At the initial instant ¢ = 0 the first of conditions (12.34) reads:

{(n0, Aa), (v, v)) = (no, v) + (Ao, v) =0, v € Tgo)M,

le.
o + A0 = Oa

or, taking into account the first of equations (12.56),

77t1 = —/\0.
And at the terminal instant ¢ = ¢;:

(05 Aer) L Tizen),qe) N,

that is,
(=A0, Aey) L Tigeoy, ey NV,

which is the required transversality condition (12.53). O

Remark 12.17. (1) Needless to say, if the terminal time ¢; is free, then one
should add to statements of Theorem 12.15 the additional equality hg(t)(/\t) =
0.

(2) Pontryagin Maximum Principle withstands further generalizations to
wider classes of cost functionals and boundary conditions. After certain mod-
ifications of argument, the general scheme provides necessary optimality con-
ditions for more general problems.
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Examples of Optimal Control Problems

In this chapter we apply Pontryagin Maximum Principle to solve concrete
optimal control problems.

13.1 The Fastest Stop of a Train at a Station

Consider a train moving on a railway. The problem is to drive the train to a
station and stop it there in a minimal time.

Describe position of the train by a coordinate 21 on the real line; the origin
0 € R corresponds to the station. Assume that the train moves without fric-
tion, and we can control acceleration of the train by applying a force bounded
by absolute value. Using rescaling if necessary, we can assume that absolute
value of acceleration is bounded by 1.

We obtain the control system

izl:ua L1 ER, |U|§1,
or, in the standard form,
{9,“ - v = (xl) cR? |u|< 1. (13.1)
ro = U, 2
The time-optimal control problem is

z(0)==2% x(t) =0, (13.2)
t1 — min. (13.3)

First we verify existence of optimal controls by Filippov’s theorem. The
set of control parameters U = [—1,1] is compact, the vector fields in the

right-hand side
fe= ("), st

U



192 13 Examples of Optimal Control Problems

are linear, and the set of admissible velocities at a point

f(@,U) ={f(x,u) | o] <1}

is convex. By Corollary 10.7, the time-optimal control problem has a solution
if the origin 0 € R? is attainable from the initial point #°. We will show that
any point £ € R? can be connected with the origin by an extremal curve.

Now we apply Pontryagin Maximum Principle. Introduce canonical coor-
dinates on the cotangent bundle:

M =12

T*M:T*RZ:RQ*XRzz{/\:(g,x)|x: (xl), €:(€1,€2)}~

T2

The control-dependent Hamiltonian function of PMP is

hy (€, ) = (&1,€2) (ZZ) =&120 + Eou,

and the corresponding Hamiltonian system has the form

. Ohy
r =
o€’
é = 0 hy
- dx
In coordinates this system splits into two independent subsystems:

lil = T2, éjl :Oa (134)
Ty = u, & ==&

By PMP, if a control @(-) is time-optimal, then the Hamiltonian system has
a nontrivial solution (£(¢), z(¢)), £(¢) # 0, such that
hae)(€(), 2(1) = maxhu (£(1), (1)) 2 0.

From this maximality condition, if £3(¢) # 0, then @(¢) = sgn&a(t). Notice
that the maximized Hamiltonian

max hy (€, ) = & xa + |Es]
lu|<1
i1s not smooth. So we cannot apply Proposition 12.3, but we can obtain de-
scription of optimal controls directly from Pontryagin Maximum Principle,
without preliminary maximization of Hamiltonian.
Since

then &, 1s linear:
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§2(t) = a + G, a, 3 = const,

hence the optimal control has the form
a(t) = sgn(o + Bt).

So @(t) is piecewise constant, takes only the extremal values +1, and has not
more than one switching (discontinuity point).

New we find all trajectories #(t) that correspond to such controls and come
to the origin. For controls v = +1, the first of subsystems (13.4) reads

i‘l = T2,
o = 1.
Trajectories of this system satisfy the equation
d sl +
L= 4,
d 9 2

thus are parabolas of the form

22
x1::|:72—|—0, C = const .

First we find trajectories from this family that come to the origin without
switchings: these are two semiparabolas

2
%3

9 ; i) < 0, iZ > 0, (135)

] —
and
xZ
ry = —72, 9 >0, #9<0, (13.6)

for u = +1 and —1 respectively.

Now we find all extremal trajectories with one switching. Let (215, 225) €
R? be a switching point for anyone of curves (13.5), (13.6). Then extremal
trajectories with one switching coming to the origin have the form

—22/2 4+ 2%, /2 + x5, Xy > ko, s <0,
x| = (13.7)
z2/2 0> x> 2as, a2>0,
and
22/2 — 22 /2 + 215, Zo < Tag, s >0,
] = (13.8)
—x%/? 0<xg <o, x2<0.

Tt is easy to see that through any point (21, z2) of the plane passes exactly
one curve of the forms (13.5)—(13.8). So for any point of the plane there exists
exactly one extremal trajectory steering this point to the origin. Since optimal
trajectories exist, then the solutions found are optimal. The general view of
the optimal synthesis is shown at Fig. 13.1.
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T2

Ty

Fig. 13.1. Optimal synthesis in problem (13.1)—(13.3)

13.2 Control of a Linear Oscillator

Consider a linear oscillator whose motion can be controlled by force bounded
in absolute value. The corresponding control system (after appropriate rescal-
ing) is

& +a = u, lu| <1, =z €R,

or, in the canonical form:

{?1 - | <1, (il) € R2 (13.9)
2

T2 = —%1 + U,
We consider the time-optimal problem for this system:

z2(0)=z" z(t) =0, (13.10)
t1 — min. (13.11)
By Filippov’s theorem, optimal control exists. Similarly to the previous

problem, we apply Pontryagin Maximum Principle: the Hamiltonian function
is

hu(€a$) :€1I2—€2I1 —|—€2U, (€a$) ET*RZZRZ* XRZ,

and the Hamiltonian system reads
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&1 = 29, 51252,
Ty = —x1 + U, §o = —&1.

The maximality condition of PMP yields

E(t)ult) = max &2(t)u,

thus optimal controls satisfy the condition

u(t) =sgnés(t)  if &a(t) # 0.
For the variable £; we have the ODE

£ = —&o,

hence
&y = asin(t+ 3), a, (3 = const .

Notice that « # 0: indeed, if £&2 = 0, then & = —éz(t) = 0, thus £(¢) =
(&1(t),€2(t)) = 0, which is impossible by PMP. Consequently,

a(t) = sgn(asin(t + 7).

This equality yields a complete description of possible structure of optimal
control. The interval between successive switching points of #(¢) has the
length . Let 7 € [0, 7) be the first switching point of @(t). Then

a(t) = sgn @(0), te0,r)U[r+mr+2r)U[r+3m,7+4m)U. ..
= —sgn 4(0), te[rnr+mU[r+2r,7+31)U...

That is, @() is parametrized by two numbers: the first switching time 7 €
[0, ) and the initial sign sgn @(0) € {+1}.

Optimal control @(t) takes only the extremal values +1. Thus optimal
trajectories (x1(t), z2(t)) consist of pieces that satisfy the system

= (13.12)
Lo = —I] + 1,
1.e., arcs of the circles
(x1 £1)* + 23 =C, C = const,

passed clockwise.

Now we describe all optimal trajectories coming to the origin. Let 5 be
any such trajectory. If v has no switchings, then it is an arc belonging to one
of the semicircles
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(21— 1)+ 23 =1, 25 <0, (13.13)
(21 + 1)+ 23 =1, 23>0 (13.14)

and containing the origin. If 4 has switchings, then the last switching can
occur at any point of these semicircles except the origin. Assume that + has
the last switching on semicircle (13.13). Then the part of v before the last
switching and after the next to last switching is a semicircle of the circle
(1 +1)? 4+ 23 = C passing through the last switching point. The next to last
switching of 4 occurs on the curve obtained by rotation of semicircle (13.13)
around the point (—1,0) in the plane (x1,22) by the angle m, i.e., on the
semicircle

(x1 +3)* + 23 =1, x> 0. (13.15)

To obtain the geometric locus of the previous switching of 7, we have to
rotate semicircle (13.15) around the point (1,0) by the angle 7; we come to
the semicircle

(x1 =5 423 =1, zs < 0.

The previous switching of v takes place on the semicircle
(x1—|—7)2—|—x§:1, z9 > 0,

and so on.

The case when the last switching of 4 occurs on semicircle (13.14) is ob-
tained from the case just considered by the central symmetry of the plane
(1, 22) w.r.t. the origin: (x1,22) = (—21, —x2). Then the successive switch-
ings of v (in the reverse order starting from the end) occur on the semicircles

2—1—1‘%:1, xo >0,
Trai=1, zo <0,
Trai=1, x> 0,
2—1—1‘%:1, xo <0,

etc. We obtained the switching curve in the plane (z1, z3):

(x1 — (2k = 1))+ 22 =1, 29 <0, kel
9 5 (13.16)
(x1+ 2k = 1)+ 25 =1, 2o >0, kel
This switching curve divides the plane (x;,22) into two parts. Any ex-
tremal trajectory (z1(t),#2(t)) in the upper part of the plane is a solution
of ODE (13.12) with —1 in the second equation, and in the lower part it is a
solution of (13.12) with +1. For any point of the plane (21, 2) there exists
exactly one curve of this family of extremal trajectories that comes to the
origin (it has the form of a “spiral” with a finite number of switchings). Since
optimal trajectories exist, the constructed extremal trajectories are optimal.
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The time-optimal control problem is solved: in the part of the plane (z1, #2)
over the switching curve (13.16) the optimal control is & = —1, and below this
curve & = +1. Through any point of the plane passes one optimal trajectory
which corresponds to this optimal control rule. After finite number of switch-
ings, any optimal trajectory comes to the origin. The general view of the
optimal synthesis is shown at Fig. 13.2.

T2
6

-6

Fig. 13.2. Optimal synthesis in problem (13.9)—(13.11)

Now we consider optimal control problems with the same dynamics as in
the previous two sections, but with another cost functional.

13.3 The Cheapest Stop of a Train

As in Sect. 13.1, we control motion of a train. Now the goal is to stop the
train at a fixed instant of time with a minimum expenditure of energy, which
is assumed proportional to the integral of squared acceleration.

So the optimal control problem is as follows:



198 13 Examples of Optimal Control Problems

==
! » x:(xl)eRz, uelR,
T9 = U, T2

z(0) = 2% x(t1) =0, ¢t fixed,

I
—/ u? dt — min.
2 /o

Filippov’s theorem cannot be applied directly since the right-hand side
of the control system is not compact. Although, one can choose a new time
t— % fot u?(r) dr + C and obtain a bounded right-hand side, then compactify
it and apply Filippov’s theorem. In such a way existence of optimal control
can be proved. See also the general theory of linear quadratic problems below
in Chap. 16.

To find optimal control, we apply PMP. The Hamiltonian function is

hZ(€,x):£1x2+£2u+gu2, (& 2) e R* x R

Along optimal trajectories
v <0, v=const.
From the Hamiltonian system of PMP, we have
{51 =0 (13.17)
& = =&
Consider first the case of abnormal extremals:
v=20.

The triple (£1,&2, v) must be nonzero, thus

& (t) £ 0.

But the maximality condition of PMP yields

a(t)€2(t) = maxuéa(t). (13.18)
u€eR
Since £3(t) # 0, the maximum above does not exist. Consequently, there are
no abnormal extremals.
Consider the normal case: v # 0, we can take » = —1. The normal Hamil-
tonian function is

hal€,e) = h ' (€,) = Euira+ g —
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Maximality condition of PMP is equivalent to aahu” =0, thus
u(t) = &a(t)

along optimal trajectories. Taking into account system (13.17), we conclude
that optimal control 1s linear:

a(t) = ot + 5, a, (3 = const .
The maximized Hamiltonian function
1
H(ga $) = m3Xhu (ga $) = €1x2 + §€§

1s smooth. That is why optimal trajectories satisfy the Hamiltonian system

i‘l = T2,
ijZ = €2a
éjl = Oa
& = =&
For the variable x; we obtain the boundary value problem
l‘(14) =0,

21(0) =20, #1(0) ==, x(t1) =0, @(t1)=0.  (13.19)

For any (2, 29), there exists exactly one solution 1 (t) of this problem — a
cubic spline. The function 5(¢) is found from the equation o = &;.

So through any initial point 2% € R? passes a unique extremal trajectory
arriving at the origin. It is a curve (z1(¢),z2(t)), ¢t € [0,¢1], where z1(¢) is a
cubic polynomial that satisfies the boundary conditions (13.19), and z5(¢) =
21(t). In view of existence, this is an optimal trajectory.

13.4 Control of a Linear Oscillator with Cost
We control a linear oscillator, say a pendulum with a small amplitude, by an

unbounded force u, but take into account expenditure of energy measured by
the integral % fotl u?(t) dt. The optimal control problem reads

T =x
! > x:(xl)e}Rz, ueR,
To = —21 + U, L2

z(0)=2% x(t1)=0, ¢t fixed,
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Existence of optimal control can be proved by the same argument as in
the previous section.
The Hamiltonian function of PMP is

1%
hZ(€,x) =&1wg —Eaxy + Esu + §u2.

The corresponding Hamiltonian system yields

{51 =&,
€= —&1.

In the same way as in the previous problem, we show that there are no
abnormal extremals, thus we can assume v = —1. Then the maximality con-
dition yields

ift) = & ().

In particular, optimal control is a harmonic:
a(t) = asin(t + 3), a, (3 = const .

The system of ODEs for extremal trajectories

i‘l = T2,
fo = —1 + asin(t + 3)
1s solved explicitly:

z1(t) = 2y cos(t + 3) + asin(t + b),
ol o (13.20)
za(t) = 515 sin(t + §) — §cos(t +8)+acos(t+1b), a, beR.

Exercise 13.1. Show that exactly one extremal trajectory of the form (13.20)
satisfies the boundary conditions.

In view of existence, these extremal trajectories are optimal.

13.5 Dubins Car

In this section we study a time-optimal problem for a system called Du-
bins car, see equations (13.21) below. This system was first considered by
A.A. Markov back in 1887 [109].

Consider a car moving in the plane. The car can move forward with a fixed
linear velocity and simultaneously rotate with a bounded angular velocity.
Given initial and terminal position and orientation of the car in the plane,
the problem is to drive the car from the initial configuration to the terminal
one for a minimal time.
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Admissible paths of the car are curves with bounded curvature. Suppose
that curves are parametrized by length, then our problem can be stated ge-
ometrically. Given two points in the plane and two unit velocity vectors at-
tached respectively at these points, one has to find a curve in the plane that
starts at the first point with the first velocity vector and comes to the sec-
ond point with the second velocity vector, has curvature bounded by a given
constant, and has the minimal length among all such curves.

Remark 13.2. If curvature is unbounded, then the problem, in general, has no
solutions. Indeed, the infimum of lengths of all curves that satisfy the bound-
ary conditions without bound on curvature is the distance between the initial
and terminal points: the segment of the straight line through these points
can be approximated by smooth curves with the required boundary conditi-
ons. But this infimum 1s not attained when the boundary velocity vectors do
not lie on the line through the boundary points and are not collinear one to
another.

After rescaling, we obtain a time-optimal problem for a nonlinear system:

X1 = cosd,
&9 =sin b, (13.21)
0 =u,

l‘:(l‘l,l‘z)eRz, 9651’ |U|§1,
z(0), 6(0), x(t1), 6(t1) fixed,
t1 — min.
Existence of solutions is guaranteed by Filippov’s Theorem. We apply
Pontryagin Maximum Principle.

We have (z1,22,0) € M = R2 x S}, let (£1,&2, 1) be the corresponding
coordinates of the adjoint vector. Then

A= (2,06, p)eT"M,
and the control-dependent Hamiltonian 1s
hy(A) = & cosfl + E2sin 0 + pu.
The Hamiltonian system of PMP yields

£=0, (13.22)
j=E&rsinf — &, cos b, (13.23)

and the maximality condition reads

p(t)u(t) = mz;)i/i(t)u. (13.24)
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Equation (13.22) means that & is constant along optimal trajectories, thus the
right-hand side of (13.23) can be rewritten as

&1sin0 — &y cosf = asin(f + 3), o, B=const, a=+/E+¢&2>0.
(13.25)

So the Hamiltonian system of PMP (13.21)—(13.23) yields the following sys-
tem:

0 = u.

{g = asin(f + f),

Maximality condition (13.24) implies that

w(t) = sgnp(t) if p(t) #0. (13.26)

If o« = 0, then (&,€2) = 0 and g = const # 0, thus v = const = +1. So
the curve #(t) is an arc of a circle of radius 1.

Let o # 0, then in view of (13.25), we have a > 0. Conditions (13.22),
(13.23), (13.24) are preserved if the adjoint vector (£, i) is multiplied by any
positive constant. Thus we can choose (¢, ) such that o = /&7 +¢2 = 1.
That is why we suppose in the sequel that

oa=1.

Condition (13.26) means that behavior of sign of the function y(t) is crucial
for the structure of optimal control. We consider several possibilities for pu(t).

(0) Tf the function p(t) does not vanish on the segment [0,7;], then the
optimal control 1s constant:

u(t) = const = %1, te[0,t4], (13.27)

and the optimal trajectory x(¢), t € [0,1], is an arc of a circle. Notice that
an optimal trajectory cannot contain a full circle: a circle can be eliminated
so that the resulting trajectory satisfy the same boundary conditions and is
shorter. Thus controls (13.27) can be optimal only if ¢; < 2.

In the sequel we can assume that the set

N = {re0.t]] u(r) £ 0}

does not coincide with the whole segment [0,;]. Since N is open, it is a union
of open intervals in [0, ¢1], plus, may be, semiopen intervals of the form [0, ),

(TQa tl] .
(1) Suppose that the set N contains an interval of the form
(Tla TZ) C [Oatl]a 71 < T2. (1328)

We can assume that the interval (71, 73) is maximal w.r.t. inclusion:
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(1) = p(m2) =0, 7y 70y # 0.
From PMP we have the inequality
ha(ey(A()) = cos(0(t) + B) + p(t)u(t) > 0.

Thus
cos(f(m) + B) > 0.

This inequality means that the angle

0=0(r)+8
satisfies the inclusion 5
~ T T
0 c {0,5} U [ ; ,271')
Consider first the case R -
fe (0, 5} .

Then p(m) = sin @ > 0, thus at 7 control switches from —1 to +1, so
0(t) = u(t)

1, tE(Tl,Tz).

We evaluate the distance 7 — 7. Since

pu(m) = / sin(@A—l— T—m7)dr =0,

~

then 7 — 7 = 2(7 — 6), thus

™ — 1 € [, 2m). (13.29)

0 c [3771-,271')

inclusion (13.29) is proved similarly, and in the case 6 = 0 we obtain no optimal

controls (the curve z(t) contains a full circle, which can be eliminated).
Inclusion (13.29) means that successive roots 11, ™ of the function p(t)

cannot be arbitrarily close one to another. Moreover, the previous argument

In the case

shows that at such instants 7; optimal control switches from one extremal
value to another, and along any optimal trajectory the distance between any
successive switchings 7, 7341 1s the same.

So in case (1) an optimal control can only have the form

€ t € (Top—1, Tok)

t — ) ? ’ 1330
u(t) {—6, t € (Tok, Tok+1), ( )
e =41,

Tip1 — T; = const € [, 2m), i=1,...,n—1, (13.31)

m € (0,2m),
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here we do not indicate values of u in the intervals before the first switching,
t € (0,7), and after the last switching, ¢t € (7,,¢1). For such trajectories,
control takes only extremal values 1 and the number of switchings is finite
on any compact time segment. Such a control is called bang-bang.

Controls u(t) given by (13.30), (13.31) satisfy PMP for arbitrarily large ¢,
but they are not optimal if the number of switchings is n > 3. Indeed, suppose
that such a control has at least 4 switchings. Then the piece of trajectory z(t),
t € [r1, 7], is a concatenation of three arcs of circles corresponding to the
segments of time [r, 2], [72, 73], [73, Ta] with

4= T3=T3— T2 =Ty — 7 € [m,27).
Draw the segment of line

da
di

z(t), telln+m)/2,(m3+1)/2],

bl

the common tangent to the first and third circles through the points
z((r+m)/2) and @ ({13 + 14)/2),
see Fig. 13.3. Then the curve

Cfa), ¢+ /2 (st )2
u(t) = {m), LE[(n +m)/2 (rs + 7)/2].

is an admissible trajectory and shorter than z(t). We proved that optimal
bang-bang control can have not more than 3 switchings.

Fig. 13.3. Elimination of 4 switchings

(2) Tt remains to consider the case where the set N does not contain inter-
vals of the form (13.28). Then N consists of at most two semiopen intervals:
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N:[OaTl)U(TZatl]a T1§T2a

where one or both intervals may be absent. If 7 = 7, then the function pu(?)
has a unique root on the segment [0, 1], and the corresponding optimal control
is determined by condition (13.26). Otherwise

T < T2,

and

/’L|[0,Tl) ;é Oa /’L|[7—1,7'2] = 0’ /’L|(72,t1] ;é 0. (1332)

In this case the maximality condition of PMP (13.26) does not determine
optimal control u(¢) uniquely since the maximum is attained for more than one
value of control parameter u. Such a control is called singular. Nevertheless,
singular controls in this problem can be determined from PMP. Indeed, the
following identities hold on the interval (7, 72):

p=sin@f+p5)=0 = 06+p5=mk = 6OG=const = u=0.

Consequently, if an optimal trajectory x(¢) has a singular piece, which is a
line, then 7 and 7 are the only switching times of the optimal control. Then

u|(0771) = const = +1, u|( = const = +1,

T2,t1)
and the whole trajectory z(t), ¢ € [0,11], is a concatenation of an arc of a
circle of radius 1

z(t), wu(t) ==+1, te[0,m],
a line

z(t), wu(t)=0, t€[r,m],

and one more arc of a circle of radius 1
z(t), wu(t) ==+1, t € [, 11].

So optimal trajectories in the problem have one of the following two types:

(1) concatenation of a bang-bang piece (arc of a circle, v = £1), a singular
piece (segment of a line, u = 0), and a bang-bang piece, or

(2) concatenation of bang-bang pieces with not more than 3 switchings,
the arcs of circles between switchings having the same central angle € [, 27).

If boundary points #(0), z(¢1) are sufficiently far one from another, then
they can be connected only by trajectories containing singular piece. For
such boundary points, we obtain a simple algorithm for construction of an
optimal trajectory. Through each of the points x(0) and z(¢1), construct
a pair of circles of radius 1 tangent respectively to the velocity vectors
2(0) = (cos6(0),sin 6(0)) and 2(t1) = (cos@(ty),siné(t1)). Then draw com-
mon tangents to the circles at 2(0) and x(¢1) respectively, so that direction of
motion along these tangents was compatible with direction of rotation along
the circles determined by the boundary velocity vectors #(0) and #(t1), see
Fig. 13.4. Finally, choose the shortest curve among the candidates obtained.
This curve i1s the optimal trajectory.
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Fig. 13.4. Construction of the shortest motion for far boundary points
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Hamiltonian Systems
with Convex Hamiltonians

A well-known theorem states that if a level surface of a Hamiltonian is convex,
then it contains a periodic trajectory of the Hamiltonian system [142], [147].
In this chapter we prove a more general statement as an application of optimal
control theory for linear systems.

Theorem 14.1. Let S be a strongly conver compact subset of R” n even,
and let the boundary of S be a level surface of a Hamiltonian H € C*°(R").
Then for any vector v € R"™ there exists a chord in S parallel to v such that
there exists a trajectory of the Hamiltonian system © = ﬁ(x) passing through
the endpoints of the chord.

We assume here that R” is endowed with the standard symplectic structure

o(e,2) = (2, Jo),  J= (_OId 131) ,

i.e., the Hamiltonian vector field corresponding to a Hamiltonian H has the
form H = Jgrad H.

The theorem on periodic trajectories of Hamiltonian systems is a particular
case of the previous theorem with v = 0. Now we prove Th. 14.1.

Proof. Without loss of generality, we can assume that 0 € int 5.
Consider the polar of the set S:

S® ={u eR" | sup{u,z) < 1}.
z€eS

It follows from the separation theorem that
(S°)° =S, 0 €int S°,

and that 5° is a strongly convex compact subset of R”.
Introduce the following linear optimal control problem:
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* = u, ues®, zrelR”
z(0) = a, z(1) = b,

1
/ (x, Ju)ydt — min. (14.1)
0

Here a and b are any points in S° sufficiently close to the origin and such that
the vector J(b — a) is parallel to v. By Filippov’s theorem, this problem has
optimal solutions. We use these solutions in order to construct the required
trajectory of the Hamiltonian system on 95.

The control-dependent Hamiltonian of PMP has the form:

he(p, ) = pu+ v{x, Ju).

We show first that abnormal trajectories cannot be optimal. Let v = 0.
Then the adjoint equation is p = 0, thus

p = po = const .
The maximality condition of PMP reads

pou(t) = max pov.

Since the polar S° is strictly convex, then
u(t) = const, u(t) € 95°.

Consequently, abnormal trajectories are lines with velocities separated from
zero. For points a, b sufficiently close to the origin, abnormal trajectories
cannot meet the boundary conditions.

Thus optimal trajectories are normal, so we can set v = —1. The normal
Hamiltonian is

hy(p, ) = pu — {(x, Ju),

and the corresponding Hamiltonian system reads

p=Ju,
T = u.

The normal Hamiltonian can be written as

hy(p, x) = (y, u),
y=p+Jz,

where the vector y satisfies the equation

y=2Ju.
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Along a normal trajectory

ha@e) (p(t), 2(1)) = (y(t), u(t)) = max{y(t), v) = C' = const . (14.2)

Consider first the case C' # 0, thus C' > 0. Then

) = 2t € (5°)° = 5
C
ie., z(t) € S. Moreover, z(t) € 95 and the vector u(t) is a normal to 95
at the point z(¢). Consequently, the curve z(t) is, up to reparametrization,
a trajectory of the Hamiltonian field H= J grad H. Compute the boundary
conditions:

p(1) = p(0) = J(x(1) — 2(0)),
y(1) = 4(0) = 2J((1) — £(0)) = 2J(b — a),
z(1) — z(0) = %J(b —a).

Thus z(t) is the required trajectory: the chord z(1) — z(0) is parallel to the
vector v.

In order to complete the proof, we show now that the case C' =0 in (14.2)
is impossible. Indeed, if C' = 0, then y(¢t) = 0, thus u(t) = 0. If a # b,
then the boundary conditions for x are not satisfied. And if @ = b, then the
pair (u(t), z(t)) = (0,0) does not realize minimum of functional (14.1), which
can take negative values: for any admissible 1-periodic trajectory x(t), the
trajectory Z(t) = (1 —t) is periodic with the cost

/01@, Jeyde = _/01@;, Ju) d.
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Linear Time-Optimal Problem

15.1 Problem Statement

In this chapter we study the following optimal control problem:

x = Az + Bu, reR” welUCR™,
2(0) = zo, x(t1) =21, =20, v1 € R” fixed, (15.1)
t1 — min,

where U is a compact convex polytope in R™ and A and B are constant
matrices of order n X n and n x m respectively. Such problem is called linear
time-optimal problem.
The polytope U is the convex hull of a finite number of points a1, ... ax
in R™:
U=conv{ay,...,a,}.

We assume that the points a; do not belong to the convex hull of all the rest
points a;, j # 1, so that each a; is a vertex of the polytope U.

In the sequel we assume the following General Position Condition:

For any edge [a;, a;] of U, the vector e;; = a; — a; satisfies the equality

span(Be;j, ABejj, ..., A" Be;;) = R™. (15.2)

This condition means that no vector Be;; belongs to a proper invariant
subspace of the matrix A. By Theorem 3.3, this is equivalent to controllability
of the linear system # = Az 4 Bu with the set of control parameters u € Re;;.
Condition (15.2) can be achieved by a small perturbation of matrices A, B.

We considered examples of linear time-optimal problems in Sects. 13.1,
13.2. Here we study the structure of optimal control, prove its uniqueness,
evaluate the number of switchings.

Existence of optimal control for any points #q, 21 such that z, € A(xg)
is guaranteed by Filippov’s theorem. Notice that for the analogous problem
with an unbounded set of control parameters, optimal control may not exist:
it 1s easy to show this using linearity of the system.
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Before proceeding with the study of linear time-optimal problems, we recall
some basic facts on polytopes.

15.2 Geometry of Polytopes

The convex hull of a finite number of points ay,...,ax € R™ is the set

i i
U=conv{ay,...,ar} def {Zaiai | v; >0, Zai = 1}.
i=1 i=1

An affine hyperplane in R™ is a set of the form
II={ueR™|{u)=rc}, EeR™N\{0}, ceR.
A hyperplane of support to a polytope U is a hyperplane I7 such that
¢ uy<e YuelU

for the covector £ and number ¢ that define I7, and this inequality turns into
equality at some point u € U, i.e., I NU # .

a4

Fig. 15.1. Polytope U with hyperplane of support T

A polytope U = conv{ay,...,ax} intersects with any its hyperplane of
support IT = {u | (£, u) = ¢} by another polytope:
UNIl =conv{a;i,...,a;},
<€a ai1> == <€a ail> =,
<€,Clj><c, jé{llaall}
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Such polytopes UNII are called faces of the polytope U. Zero-dimensional and
one-dimensional faces are called respectively vertices and edges. A polytope
has a finite number of faces, each of which is the convex hull of a finite number
of vertices. A face of a face is a face of the initial polytope. Boundary of a
polytope is a union of all its faces. This is a straightforward corollary of the
separation theorem for convex sets (or the Hahn-Banach Theorem).

15.3 Bang-Bang Theorem

Optimal control in the linear time-optimal problem is bang-bang, i.e., it is
piecewise constant and takes values in vertices of the polytope U.

Theorem 15.1. Let u(t), 0 < t < ty, be an optimal control in the linear
time-optimal control problem (15.1). Then there exists a finite subset

T C[0,41], #T < o0,
such that
u(t) € {ar,... ,ar}, te[0,t])\ T, (15.3)
and restriction u(t)|,epo ¢, \7 @ locally constant.

Proof. Apply Pontryagin Maximum Principle to the linear time-optimal prob-
lem (15.1). State and adjoint vectors are

T
xr = ERna gz(glaagn)ekn*’

T
and a point in the cotangent bundle is
A= (£, 2) e R x R" = T"R"™.
The control-dependent Hamiltonian is
hy(€,2) = EAx + EBu

(we multiply rows by columns). The Hamiltonian system and maximality
condition of PMP take the form:

x = Az + Bu,
§=—EA,

£(t) # 0,
E(t)Bu(t) = Zneagé’(t)Bu. (15.4)
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The Hamiltonian system implies that adjoint vector

E(t) =€(0)e™, €(0) #0, (15.5)

is analytic along the optimal trajectory.
Consider the set of indices corresponding to vertices where maximum (15.4)
is attained:

J(t) = {1 <j<k|é&()Ba; = Zneagé’(t)Bu =max{{(t)Ba; |i=1,... ,k}}

At each instant ¢ the linear function £(¢)B attains maximum at vertices of
the polytope U. We show that this maximum is attained at one vertex always
except a finite number of moments.
Define the set
T={tel0,t1] | #J(t) > 1}.

By contradiction, suppose that 7 is infinite: there exists a sequence of distinct
moments

{r,. .. 7m,...} CT.

Since there is a finite number of choices for the subset J(7,) C {1,...,k}, we
can assume, without loss of generality, that

Jn)=J(r)=-=J(m)="--.

Denote J = J(7;).
Further, since the convex hull

conv{a; | j € J}

is a face of U, then there exist indices ji, j» € J such that the segment [a;,, a;,]
is an edge of U. We have

f(Ti)Ba]’l :E’(Ti)Ban, 1= 1,2, e

For the vector e = a;, — a;, we obtain

&(r)Be =0, i=1,2,....
But &(r;) = £(0)e~"4 by (15.5), so the analytic function
t > £(0)e~ 4 Be

has an infinite number of zeros on the segment [0,¢1], thus it is identically
zero:

£(0)e™™ Be = 0.
We differentiate this identity successively at ¢ = 0 and obtain



15.4 Uniqueness of Optimal Controls and Extremals 215
£(0)Be =0, &(0)ABe=0, ..., &0)A" 'Be=0.

By General Position Condition (15.2), we have £(0) = 0, a contradiction
to (15.5). So the set T is finite.

Out of the set 7, the function £(¢) B attains maximumon U at one vertex
ajey, 1J(t)} = J(t), thus the optimal control u(t) takes value in the vertex
aj(ty- Condition (15.3) follows. Further,

§(t)Bajiy > &(t) Bay, i#jt).

But all functions ¢ — &(t)Ba; are continuous, so the preceding inequality
preserves for instants close to ¢. The function t — j(t) is locally constant on
[0,£1] \ 7, thus the optimal control u(t) is also locally constant on [0,¢1]\ 7.

O

In the sequel we will need the following statement proved in the preceding
argument.

Corollary 15.2. Let £(t), t € [0,t1], be a nonzero solution of the adjoint

equation & = —EA. Then everywhere in the segment [0,11], except a finile
number of points, there exists a unique control u(t) € U such that &(t)Bu(t) =
ma{}(&’(t)Bu.

u€

15.4 Uniqueness of Optimal Controls and Extremals

Theorem 15.3. Let the terminal point xy be reachable from the initial point
o/

T € .A(l‘o)
Then linear time-optimal control problem (15.1) has a unique solution.

Proof. As we already noticed, existence of an optimal control follows from
Filippov’s Theorem.

Suppose that there exist two optimal controls: uy(?), ua(t), t € [0,¢1]. By
Cauchy’s formula:

t1
z(t) = efrd (xo —1—/ e_tABu(t) dt) ,
0

we obtaln

t1 t1
efrd (xo —1—/ e_tABul(t) dt) — 14 (xo —1—/ e_tABuz(t) dt) ,
0 0

thus

t1 t1
/ e~ Buy(t) dt = / e~ Buy(t) dt. (15.6)
0 0
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Let & (t) = & (0)e™ be the adjoint vector corresponding by PMP to the
control u; (). Then equality (15.6) can be written in the form

t1 t1
/ &1(t) Bus (1) dt = / &1 () Bus(t) dt. (15.7)
0 0
By the maximality condition of PMP

E1(t)Buy(t) = an(}(& (t)Bu,
thus

§u(t)Buy(t) > & (1) Bua(t).
But this inequality together with equality (15.7) implies that almost every-
where on [0, 7]

£1(t)Buy(t) = &1(t) Bual(t).
By Corollary 15.2,
Ul(t) = Uz(t)

almost everywhere on [0,1,]. O

So for linear time-optimal problem, optimal control is unique. The stan-
dard procedure to find the optimal control for a given pair of boundary points
zg, x1 s to find all extremals (£(2), z(¢)) steering o to #1 and then to seek for
the best among them. In the examples considered in Sects. 13.1, 13.2, there
was one extremal for each pair g, #1 with ;1 = 0. We prove now that this is
a general property of linear time-optimal problems.

Theorem 15.4. Let #; = 0 € A(xzg) and 0 € U\ {a1,... ,ai}. Then there
erists a unique control u(t) that steers xy to 0 and satisfies Pontryagin Maz-
wmum Principle.

Proof. Assume that there exist two controls
ul(t)a te [Oatl]a and uZ(t)a te [O,tz],

that steer zg to 0 and satisfy PMP.
If t; = t5, then the argument of the proof of preceding theorem shows that
u1(t) = ua(t) a.e., so we can assume that

11 > 1o,

Cauchy’s formula gives

et (xo + 0,

/
ta
el24 (xo —1—/ e_tABuz(t) dt) =0,
0

e_tABul(t) dt)
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thus
t1 ta
/ e~ Buy(t) dt = / e~ Buy(t) dt. (15.8)
0 0
According to PMP, there exists an adjoint vector &1 (t), ¢ € [0,¢4], such that
E1(t) = E(0)e™ ™ £4(0) £ 0, (15.9)
E1(t)Buy(t) = mea[}& () Bu. (15.10)

Since 0 € U, then

Equality (15.8) can be rewritten as

/Otl &1(t) Bus (1) dt = /Oh €1(1) Bus (1) dt. (15.12)

Taking into account inequality (15.11), we obtain

/Oh &1(t) Bus (1) dt < /Oh &1 (1) Bus (1) di. (15.13)
But maximality condition (15.10) implies that

E1(1)Buy (t) > & () Bua(t), t €[0,t]. (15.14)
Now inequalities (15.13) and (15.14) are compatible only if

&1(t)Buy (t) = &1 (t) Bus(t), t €[0,1s],

thus inequality (15.13) should turn into equality. In view of (15.12), we have

/t2£1(t)Bu1(t) dt = 0.

Since the integrand is nonnegative, see (15.11), then it vanishes identically:
€1(t)Bu1(t) = 0, te [tl,tz].

By the argument of Theorem 15.1, the control w;(¢) is bang-bang, so there
exists an interval I C [{1,15] such that

u(t)|; = a; #0.

Thus
51(15)Baj =0, tel.

But &1 (¢)0 = 0, this is a contradiction with uniqueness of the control for which
maximum in PMP is obtained, see Corollary 15.2. a
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15.5 Switchings of Optimal Control

Now we evaluate the number of switchings of optimal control in linear time-
optimal problems. In the examples of Sects. 13.1, 13.2 we had respectively one
switching and an arbitrarily large number of switchings, although finite on any
segment. It turns out that in general there are two cases: non-oscillating and
oscillating, depending on whether the matrix A of the control system has real
spectrum or not. Recall that in the example with one switching, Sect. 13.1,

we had
A= (8 }))  SpA) = {0},

and in the example with arbitrarily large number of switchings, Sect. 13.2,

A= (_01 é) . Sp(A) = {£i} ¢ B
We consider systems with scalar control:
& = Ax + ub, velU=[a,f]CR, zecR"”
under the General Position Condition
span(b, Ab, ... A"7b) = R".

Then attainable set of the system is full-dimensional for arbitrarily small
times. We can evaluate the minimal number of switchings necessary to fill a
full-dimensional domain. Optimal control is piecewise constant with values in
{o, 3}. Assume that we start from the initial point oy with the control «.
Without switchings we fill a piece of a 1-dimensional curve e(47+*0) g with
1 switching we fill a piece of a 2-dimensional surface e{A7+7b)t2 o c(Azt+ab)
with 2 switchings we can attain points in a 3-dimensional surface, etc. So the
minimal number of switchings required to reach an n-dimensional domain is
n—1.

We prove now that in the non-oscillating case we never need more than
n — 1 switchings of optimal control.

tlea

Theorem 15.5. Assume that the matriz A has only real etgenvalues:
Sp(4) C R.

Then any optimal control in linear time-optimal problem (15.1) has no more
than n — 1 switchings.

Proof. Let u(t) be an optimal control and &(t) = £(0)e~t4 the corresponding
solution of the adjoint equation & = —£A. The maximality condition of PMP
reads

§(t)bu(t) = urel%%]ﬂt)bu,
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thus

o ifE(t)b<0.

So the number of switchings of the control u(t), ¢t € [0,%1], is equal to the
number of changes of sign of the function

y(t) =&(t)b,  te[0,t].

We show that y(¢) has not more than n — 1 real roots.
Derivatives of the adjoint vector have the form

¢F(t) = £(0)e A (— Ak,

By Cayley Theorem, the matrix A satisfies its characteristic equation:

w(t) = {ﬁ if £(t)h > 0,

A"+ A e, Id =0,
where
det(t1d —A) =" + cit" "1 4 - 4 ¢y,

thus

(=A)* —e (A" (=), Id = 0.
Then the function y(t) satisfies an n-th order ODE:

Yy (1) — ey V@) 4 -4 (1) ey(t) = 0. (15.15)

It is well known (see e.g. [136]) that any solution of this equation is a

quasipolynomial:

k
y(t) =Y e MP(1),
i=1
P;(t) a polynomial,
/\Z';é/\jfori;éj,
where \; are eigenvalues of the matrix A and degree of each polynomial P; is
less than multiplicity of the corresponding eigenvalue A;, thus

k
ZdegPi <n-—k.

i=1
Now the statement of this theorem follows from the next general lemma. O

Lemma 15.6. A quasipolynomial

k

k
y(t) = _eNP(t), Y deg P, <n-—k, (15.16)

i=1 i=1
Ai £ Aj fori# ],

has no more than n — 1 real roots.
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Proof. Apply induction on k.
If £ = 1, then a quasipolynomial

y(t) = P),  degP<n—1,

has no more than n — 1 roots.
We prove the induction step for k& > 1. Denote

ni:degPZ', i:l,...,k’.

Suppose that the quasipolynomial y(¢) has n real roots. Rewrite the equation

k-1
= MP(t)+ M P(t) =0
i=1

as follows:

k-1
e(Az—Ak)th.(t) + Py(t) = 0. (15.17)

1

7

The quasipolynomial in the left-hand side has n roots. We differentiate this
quasipolynomial successively (nj + 1) times so that the polynomial Py(t) dis-
appear. After (nj + 1) differentiations we obtain a quasipolynomial

k-1

> e TAQ;(t), deg Qi < deg F;,

i=1

which has (n — n; — 1) real roots by Rolle’s Theorem. But by induction
assumption the maximal possible number of real roots of this quasipolynomial
is

E—1
Zni+k—2<n—nk—1.
i=1
The contradiction finishes the proof of the lemma. a

So we completed the proof of Theorem 15.5: in the non-oscillating case
an optimal control has no more than n — 1 switchings on the whole domain
(recall that n— 1 switchings are always necessary even on short time segments
since the attainable sets A, (t) are full-dimensional for all ¢ > 0).

For an arbitrary matrix A, one can obtain the upper bound of (n — 1)
switchings for sufficiently short intervals of time.

Theorem 15.7. Consider the characteristic polynomial of the matriz A:
det(t1d —A) =" + el ey,

and let
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¢ = max |¢l.
1<i<n

Then for any time-optimal control u(t) and any t € R, the real segment

ren (i)

contains not more than (n — 1) switchings of an optimal control u(t).

In the proof of this theorem we will require the following general proposi-
tion, which we learned from S. Yakovenko.

Lemma 15.8. Consider an ODE
y(n) +ey (t)y(n—l) 4+ Fen(t)y=0

with measurable and bounded coefficients:

i = i (2)].

= Ly )

If
Zciﬁ <1, (15.18)
i=1

then any nonzero solution y(t) of the ODE has not more than n — 1 roots on
the segment t € [t,1 4+ 3].

Proof. By contradiction, suppose that the function y(¢) has at least n roots
on the segment ¢ € [, + d]. By Rolle’s Theorem, derivative () has not less
than n — 1 roots, etc. Then y(»~1)(¢) has a root t,,_1 € [I, 4 d]. Thus

t
= [
tn—1
Let t,_» € [I,1 4 d] be a root of y(»=2)(t), then
t T1
y("_z)(t) :/ dry / y(")(rz)drz.
tnez t

n—1

We continue this procedure by integrating y(”_i‘l'l)(t) from a root t,_; €
[t,7 + 6] of y(»=9)(t) and obtain

t T1 Ti—1
y(n—z’)(t) _ / dm / dr - - - / y(”)(ri) dr;, t=1,...,n.
trnei trn—it1 t

n—1

There holds a bound:
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/ dﬁ/ /_ v (7)) dr;
trn—it1 tp—1
t+6 Ti—1
S/ d7'1/ dry / v ()| dr;
£ 3 £
Sé.—, sup ‘y(”)(t)‘~
b telf,t+4]
Then
i <Dl 0] <Y e s i),
ZZ:; ; ; i telf i)
le.,
‘y(”)(t)‘<zn:clél sup ‘y(”)(t)‘,
Iy il velr i49]
O

a contradiction with (15.18). The lemma is proved.

Now we prove Theorem 15.7.

Proof. As we showed in the proof of Theorem 15.5, the number of switchings
of u(t) is not more than the number of roots of the function y(t) = £(t)b,
which satisfies ODE (15.15).
We have
Z|Cl| <ce—1) v > 0.
By Lemma 15.8, if
(15.19)

e(ef —1) <1,

then the function y(¢) has not more than n — 1 real roots on any interval of
length 6. But inequality (15.19) is equivalent to the following one:

5§1n<1+1),
c
l).

so y(t) has not more than n — 1 roots on any interval of the length In ( +
O
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Linear-Quadratic Problem

16.1 Problem Statement

In this chapter we study a class of optimal control problems very popular in
applications, linear-quadratic problems. That is, we consider linear systems
with quadratic cost functional:

* = Ax + Bu, reR™ weR™ (16.1)
2(0) =z, x(t1) = 1, xg, T, fixed,
J(u) = %/0 1<Ru(t), ()Y + (Pe(t),u(t)) +{Qz(t), z(t)) dt — min.

Here A, B, R, P, ) are constant matrices of appropriate dimensions, R and )
are symmetric:
R* = R’ Q* = Q’

and angle brackets (-, -} denote the standard inner product in R™ and R™.

One can show that the condition R > 0 is necessary for existence of optimal
control. We do not touch here the case of degenerate R and assume that B > 0.
The substitution of variables v — v = R'/?u transforms the functional J(u)
to a similar functional with the identity matrix instead of R. That is why
we assume in the sequel that R = Id. A linear feedback transformation kills
the matrix P (exercise: find this transformation). So we can write the cost
functional as follows:

1

T =5 [ OF + Qo). 2(0) .

For dynamics of the problem, we assume that the linear system is control-

lable:

rank(B, AB,... ,A""!'B) =n. (16.2)
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16.2 Existence of Optimal Control

Since the set of control parameters U = R™ is noncompact, Filippov’s The-
orem does not apply, and existence of optimal controls in linear-quadratic
problems is a nontrivial problem.

In this chapter we assume that admissible controls are square-integrable:

u € LTZH [Oatl]

and use the LT norm for controls:
1/2

= ([ wora) = ([ atw o dt)w.

Consider the set of all admissible controls that steer the initial point to
the terminal one:

u(l‘o,l‘l) = {U € Lgﬁb[o’tl] | l‘(tl,u,l‘o) = 1‘1} .

We denote by x(t, u, o) the trajectory of system (16.1) corresponding to an
admissible control v € LT starting at a point zq € R™. By Cauchy’s formula,
the endpoint mapping

t1
u >zt u, 2) = el hpy + / e(tl_T)ABu(T) dr
0

is an affine mapping from LJ'[0,¢1] to R™. Controllability of the linear sys-
tem (16.1) means that for any 2y € R”, ¢; > 0, the image of the endpoint
mapping is the whole R™. The subspace

U(xo, 1) C L3'[0, 1]

is affine, the subspace

U(0,0) C L70,14]
is linear, moreover,
U(zg,x1) =u+U(0,0) for any u € U(xg, z1).

Thus it 1s natural that existence of optimal controls is closely related to be-
havior of the cost functional J(u) on the linear subspace U (0, 0).

Proposition 16.1. (1) If there exist points xg, x1 € R" such that

inf  J(u) > —o0, 16.3
et (u) > —o0 (16.3)

then
J(u) >0 VYuel(0,0).
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(2) Conversely, if
J(u) >0 VYuel(0,0)\0,
then the minimum is attained:

3 min  J(u) VYag, 1 € R™
u€U(zo,21)

Remark 16.2. That is, the inequality
J |u(0,0) >0
is necessary for existence of optimal controls at least for one pair (xg, 1), and
the strict inequality
Ilugo,000 > 0
is sufficient for existence of optimal controls for all pairs (zg, z1).

In the proof of Proposition 16.1, we will need the following auxiliary propo-
sition.

Lemma 16.3. If J(v) > 0 for all v € U(0,0)\ 0, then
J(v) > aljv|]? for some a >0 and all v € U(0,0),
or, which is equivalent,
inf{J(v) | ||v|| =1, v € 4(0,0)} > 0.

Proof. Let vy, be a minimizing sequence of the functional J(v) on the sphere
{J|v]| = 1} NnU(0,0). Closed balls in Hilbert spaces are weakly compact, thus
we can find a subsequence weakly converging in the unit ball and preserve the
notation v, for its terms, so that

v, — U weakly as n — oo, [|9]| <1, v eU(0,0),
J(vp) = nf{J(v) | ||v]| =1, v €U(0,0)}, n — 0o. (16.4)
We have

(o) = % n %/0 {Qun (), (7)) dr.

Since the controls converge weakly, then the corresponding trajectories con-
verge strongly:
() = ag( ), n — 0o,

thus

J(vp) — % + %/0 1<Qx5(7'), (1)) dr, n — oo.

In view of (16.4), the infimum in question is equal to

(
553 [ (@ualr)salryr = 5 (1= FIF) + @) > o
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Now we prove Proposition 16.1.

Proof. (1) By contradiction, suppose that there exists v € U(0,0) such that
J(v) < 0. Take any u € U(xg, x1), then u + sv € U(xy, 1) for any s € R.
Let y(t), t € [0,¢1], be the solution to the Cauchy problem

y = Ay + Bu, y(0) =0,

and let
Huo) =3 [ () o) + Qo) (e dr

Then the quadratic functional J on the family of controls u + sv, s € R, is
computed as follows:

J(u+ sv) = J(u) + 28] (u,v) + s T (v).

Since J(v) < 0, then J(u + sv) = —o0 as s — o0o. The contradiction with

hypothesis (16.3) proves item (1).
(2) We have

I = 3l + 5 [ (@atr). (e ar

The norm ||u|| is lower semicontinuous in the weak topology on L3, and

the functional f()tl(Qx(T), z(7)) dr is weakly continuous on L. Thus J(u) is
weakly lower semicontinuous on L§'. Since balls are weakly compact in LY
and the affine subspace U(xo, 1) is weakly compact, it is enough to prove
that J(u) = oo when u — oo, u € U(xg, x1).

Take any control u € U(xp, z1). Then any control from U (g, 21) has the
form w + v for some v € U (0, 0). We have

J(u+v) = J(u) + 2||v||] (u ﬁ) +J(v).

Denote J(u) = Cy. Further, ‘J (u, HZ—H)‘ < Cy = const for all v € U(0,0)\

0. Finally, by Lemma 16.3, J(v) > «||v]|?, a > 0, for all v € U(0,0) \ 0.
Consequently,

J(u+v) > Co —2||v]|Cy + a|v||* = o, v— 00, v €U(0,0).
Ttem (2) of this proposition follows. O

So we reduced the question of existence of optimal controls in linear-qua-
dratic problems to the study of the restriction J|u(0 0y We will consider this
restriction in detail in Sect. 16.4.
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16.3 Extremals

We cannot directly apply Pontryagin Maximum Principle to the linear-
quadratic problem since we have conditions for existence of optimal controls
in LY only, while PMP requires controls from LZ.. Although, suppose for a
moment that PMP is applicable to the linear-quadratic problem. It is easy to
write equations for optimal controls and trajectories that follow from PMP,
moreover, 1t 1s natural to expect that such equations should hold true. Now
we derive such equations, and then substantiate them.

So we write PMP for the linear-quadratic problem. The control-dependent
Hamiltonian is

hu(€, ) = €Az + EBu — g(|u|2 +(Qz,z)), zER" £cR™.

Consider first the abnormal case: v = 0. By PMP, adjoint vector along an
extremal satisfies the ODE ¢ = —€A, thus £(t) = £(0)e~ . The maximality
condition implies that 0 = £(t) B = £(0)e~*4 B. We differentiate this identity
n — 1 times, take into account the controllability condition (16.2) and obtain
£(0) = 0. This contradicts PMP, thus there are no abnormal extremals.

In the normal case we can assume v = 1. Then the control-dependent
Hamiltonian takes the form

hu(é’,x):5A1‘—|—€Bu—%(|u|2—|—<Qx,x>), reR™ £ eR™,

The term £Bu — —|u|2 depending on u has a unique maximum in u € R™ at
the point where
0 hy
=¢éB—ut=0
5y B :
thus
u= B*¢*. (16.5)

So the maximized Hamiltonian 1s
1 1T
H( x) = maxh (&,2) =EAx — §<Qx,x>—|— §|B 13 |2
1
= EAx — 5<Qge, x) + 5|Bg|2.

The Hamiltonian function H (£, #) is smooth, thus normal extremals are solu-
tions of the corresponding Hamiltonian system

&= Ar + BB*¢*, (16.6)
E=12"Q—EA. (16.7)

Now we show that optimal controls and trajectories in the linear-quadratic
problem indeed satisfy equations (16.5)—(16.7). Consider the extended system
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& = Az + Bu,
i = Sl + (@r, ),
and the corresponding endpoint mapping;:
Fouw (2t u, zo), y(ty,u,0)), F : L7[0,1] - R* x R.

This mapping can be written explicitly via Cauchy’s formula:

t1
x(ty, u, xo) = 14 (xo —1—/ e~ "4 Bu(t) dt) , (16.8)
0
I
y(t,u,0) = 5/ a(6)]? + (Que (1), (1)) dt. (16.9)
0
Let @(-) be an optimal control and #(-) = »(-, %, xg) the corresponding

optimal trajectory, then
F(u) € 0Im F.

By implicit function theorem, the differential
DgF : LT[0, 1] = R"® R

is not surjective, i.e., there exists a covector (o, ) € R"™ @ R* (o, F) #£ 0,
such that

(o, 8) L DgFv,  ve LY[0, 1] (16.10)

The differential of the endpoint mapping is found from the explicit formu-
las (16.8), (16.9):

t1
DgFv = (/ e(tl_t)ABv(t) dt,
0

/Otl <ﬂ(t) + /;1 B =04 Qi (r) dr, v(t)> dt) ,

Then the orthogonality condition (16.10) reads:

t1 t1
/ <B*e(t1—t)z4*a + Ba(t) + ﬁ/ B*e(T_t)A*Qi‘(T) dr, v(t)> dt =0,
0 t
GRS Lgﬁb[oatl]a
that is,

t1
B0 4 Ba(t) + 6/ B U0 Qi(r)dr =0,  te0,t].
t
(16.11)
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The case # = 0 is impossible by condition (16.2). Denote v = —a/f3, then
equality (16.11) reads

u(t) = B (1),

where

t1
£(t) =y eltr=04 _ / F(r)Qel" V4 dt. (16.12)
t

So we proved equalities (16.5), (16.6). Differentiating (16.12), we arrive at the
last required equality (16.7).

So we proved that optimal trajectories in the linear-quadratic problem are
projections of normal extremals of PMP (16.6), (16.7), while optimal con-
trols are given by (16.5). In particular, optimal trajectories and controls are
analytic.

16.4 Conjugate Points

Now we study conditions of existence and uniqueness of optimal controls de-
pending upon the terminal time. So we write the cost functional to be mini-
mized as follows:

niw) = 5 [ 1P+ (@a(r). ot i
Denote

U(0,0) = {u € LT[0, 1] | #(t, u, w0) = 21},
p(t)  inf{J,(u) | u € Uy (0,0), |jul| = 1}. (16.13)
We showed in Proposition 16.1 that if x(¢) > 0 then the problem has solu-
tion for any boundary conditions, and if u(¢) < 0 then there are no solutions
for any boundary conditions. The case p(t) = 0 is doubtful. Now we study
properties of the function p(?) in detail.

Proposition 16.4. (1) The function t — p(t) is monotone nonincreasing and
continuous.
(2) For any t > 0 there hold the inequalities

t2
L2 2p(0) 2 1= Sl s g (16.14)

(3) If 1 > 2u(t), then the infimum in (16.13) is attained, i.e., it is mini-
mum.
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Proof. (3) Denote

Hw) =5 [ @) atr)y i

the functional I;(u) is weakly continuous on LJ*. Notice that

1
Ji(u) = 3 + I;(u) on the sphere ||u|| = 1.

Take a minimizing sequence of the functional I;(u) on the sphere {||u|| =
1} N U:(0,0). Since the ball {J|ul]| < 1} is weakly compact, we can find a
weakly converging subsequence:

u, — u weakly as n — oo, [|u]] <1, u €U (0,0),
I (un) — I(w) = inf{L;(u) | ||u]] = 1, w € U(0,0)}, n — oo.

If @ = 0, then I;(a) = 0, thus u(t) = %, which contradicts hypothesis of
item (3).

Sou #0, I;(u) <0,and I (ﬁ) < I;(4). Thus ||u]| = 1, and J;(u) attains
minimum on the sphere {||u|| = 1} N#;(0,0) at the point .

(2) Let ||u|| = 1 and x¢ = 0. By Cauchy’s formula,

t
x(t):/ e(t_T)ABu(T) dr,
0

thus
t
(O] < [ AN - fu(r)] dr
0

by Cauchy-Schwartz inequality

t 1/2
<l ([ =402 ar)
0
. 1/2
- (/ e(t_T)ZHA”HBHZdT) .
0

We substitute this estimate of z(t) into J; and obtain the second inequality
in (16.14).

The first inequality in (16.14) is obtained by considering a weakly con-
verging sequence u, — 0, n — oo, in the sphere [|u,|| = 1, u, € U:(0,0).

(1) Monotonicity of j(t). Take any ¢ > ¢. Then the space U;(0,0) is iso-
metrically embedded into ¢;(0,0) by extending controls u € U (0, 0) by zero:

uw€UN(0,0) = u€lU0,0),
a(7_):{11(7'), T <t

0, T >t
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Moreover,
J: (1) = Je(u).
Thus

ult) = inf{Jo(u) | w € Us(0,0), Ju = 1)
> inf{Jy(u) | w € U (0,0, |jull = 1} = pu(d).

Continuity of p(?): we show separately continuity from the right and from
the left.

Continuity from the right. Let ¢, \, t. We can assume that p(t,) < %
(otherwise fi(t,,) = p(t) = %), thus minimum in (16.13) is attained:

1
Pl = S+ D) € (0,0), [ = 1.
Extend the functions u, € LJ'[0,1,] to the segment [0,%;] by zero. Choosing

a weakly converging subsequence in the unit ball, we can assume that

u, — u weakly as n — oo, u € U (0,0), |Ju]l <1,
thus
I, (un) = Li(w) > inf{l;(v) | v €U (0,0), ]| =1}, tn ot
Then )
) < 24 Jien 1 (o) = Ji )

By monotonicity of p,

plt) = lim p(tn),

i.e., continuity from the right is proved.
Continuity from the left. We can assume that p(t) < £ (otherwise p(7) =
p(t) = 1 for 7 < ¢). Thus minimum in (16.13) is attained:

1 N — A~
plt) =5+ L(u), W€ (0,0), [[=1.

For the trajectory

we have

Denote

and notice that
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Denote the ball
Bs ={ue LY |||u|| <4, uel(0,0)}.
Obviously,
z(e, Ba(e), 0) 3 Z(e).

The mapping u — z(¢,u,0) from L to R™ is linear, and the system # =
Az 4 Bu is controllable, thus (e, By(c),0) is a convex full-dimensional set
in R™ such that the positive cone generated by this set 1s the whole R™. That
is why

z(e, QBa(a), 0) = 2x(e, Ba(a), 0)D Ox(a,Ba(E),O)

for some neighborhood Ox(a,Ba(s),O) of the set z(e, Bae),0). Further, there

exists an instant ¢, > ¢ such that
z(t:) € x(e, 2Bo(e)s 0),

consequently,
#(t) = o(e,00,0), ]l < 2a(6).

Notice that we can assume {. — 0 as € — 0. Consider the following family of
controls that approximate u:

u (7_)_ vf(T)’ OSTSEa
T U+t —e), e<T<t+e—t..

We have

u: € Urpe—1.(0,0),
|| — u:|| = 0, e — 0.

But ¢ + ¢ —{. <t and p is nonincreasing, thus it is continuous from the left.
Continuity from the right was already proved, hence p is continuous. 0O

Now we prove that the function p can have not more than one root.
Proposition 16.5. If u(t) =0 for some t > 0, then pu(r) < 0 for all 7 > t.

Proof. Let u(t) =0,¢ > 0. By Proposition 16.4, infimum in (16.13) is attained
at some control u € U:(0,0), [|u]| = 1:
pu(t) = min{Ji(u) [ u € 4:(0,0), [Jul| =1}
= Ji(u) = 0.
Then
Jt(u) Z Jt(a) =0 Vu c Ut(0,0),

l.e., the control u is optimal, thus it satisfies PMP. There exists a solution
(&(r),z(7)), T €]0,¢], of the Hamiltonian system
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£=a"Q ¢4,
z = Az + BB*¢™,

with the boundary conditions

and

u(7) = B*¢"(7), 7 € [0,1].

We proved that for any root ¢ of the function u, any control u € U (0, 0),
[|lu|] = 1, with Ji(u) = 0 satisfies PMP.

Now we prove that u(r) < 0 for all 7 > ¢. By contradiction, suppose that
the function g vanishes at some instant ¢’ > ¢. Since g is monotone, then

/’L|[t,t’] =0.

Consequently, the control

=107 TEp,

satisfies the conditions:
u' € U (0,0), ||| =1,
Ju(u') = 0.
Thus u’ satisfies PMP, i.e.,
W' (r) = B *(r),  Telo,t]
is an analytic function. But u’|[t7t,] = 0, thus v’ = 0, a contradiction with
el =1. :

It would be nice to have a way to solve the equation pu(¢) = 0 without
performing the minimization procedure in (16.13). This can be done in terms
of the following notion.

Definition 16.6. A point t > 0 s conjugate to 0 for the linear-quadratic
problem in question if there exists a nontrivial solution (£(r),x(T)) of the
Hamiltonian system

£=2"Q - ¢A,
i = Az + BB*¢*

such that (0) = x(t) = 0.

Proposition 16.7. The function p vanishes at a point t > 0 if and only if t
15 the closest to 0 conjugate point.
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Proof. Let p(t) =0,t > 0. First of all, ¢ is conjugate to 0, we showed this in
the proof of Proposition 16.5.

Suppose that t’ > 0 is conjugate to 0. Compute the functional J;» on the
corresponding control u(7) = B*¢*(r), 7 € [0,t]:

Jow) = 5 [ BB @)+ (Qelr) 2 () dr

3 | BEE )+ (Qulr)alr)ar

- / é(r Aw(7)) + 2" (1)Qu(r) dr

e

1

S (E)2(t') — €(0)2(0)) = 0.

Thus p(t') < Ju (W) = 0. Now the result follows since p is nonincreasing.
O

The first (closest to zero) conjugate point determines existence and unique-
ness properties of optimal control in linear-quadratic problems.

Before the first conjugate point, optimal control exists and is unique for any
boundary conditions (if there are two optimal controls, then their difference
gives rise to a conjugate point).

At the first conjugate point, there is existence and nonuniqueness for some
boundary conditions, and nonexistence for other boundary conditions.

And after the first conjugate point, the problem has no optimal solutions
for any boundary conditions.
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Sufficient Optimality Conditions,
Hamilton-Jacobi Equation,
and Dynamic Programming

17.1 Sufficient Optimality Conditions

Pontryagin Maximum Principle is a universal and powerful necessary opti-
mality condition, but the theory of sufficient optimality conditions is not so
complete. In this section we consider an approach to sufficient optimality
conditions that generalizes fields of extremals of the Classical Calculus of
Variations.

Consider the following optimal control problem:

¢=/fulg), q€M, uel, (17.1)

9(0) = qo, q(t1) = q1, g0, q1, 11 fixed, (17.2)
t1

/ e(q(t), u(t)) dt = min. (17.3)
0

The control-dependent Hamiltonian of PMP corresponding to the normal case
is

hu(A) =\ fu(@)) — elg, u), AeET'M, g=n(A) e M, uel.
Assume that the maximized Hamiltonian

H(A) = ma{}(hu(/\) (17.4)
u€
is defined and smooth on T* M. We can assume smoothness of H on an open
domain O C T*M and modify respectively the subsequent results. But for
simplicity of exposition we prefer to take O = T* M. Then trajectories of the
Hamiltonian system . .
A=H(N
are extremals of problem (17.1)—(17.3). We assume that the Hamiltonian vec-
tor field H 1s complete.
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17.1.1 Integral Invariant

First we consider a general construction that will play a key role in the proof
of sufficient optimality conditions.
Fix an arbitrary smooth function

a € C™(M).
Then the graph of differential da is a smooth submanifold in 7% M :

Lo={dga|ge M} CT"M,
dimLy=dim M = n.

Translations of £y by the flow of the Hamiltonian vector field
Lo = e (L)

are smooth n-dimensional submanifolds in 7* M | and the graph of the map-
ping t — Ly,

L={AN)|AeL, 0<t<H}CT"M xR

is a smooth (n + 1)-dimensional submanifold in T*M x R.
Consider the 1-form

s— Hdt e AHT*M x R).

Recall that s is the tautological 1-form on 7" M | sy = Aom,, and its differential
1s the canonical symplectic structure on 7% M, ds = o. In mechanics, the form
s— Hdt = pdg — H dt is called the integral invariant of Poincaré-Cartan on
the extended phase space T*M x R.

Proposition 17.1. The form (s — H dt)|, is ezxact.
Proof. First we prove that the form is closed:
0=d(s—Hdt)|, = (¢ —dH Adt)|, . (17.5)

(1) Fix £y = LN{t = const} and consider restriction of the form o —dH Adt
to L;. We have
(o —dH Ad)|,, = o],

JE—

since dt|, = 0. Recall that et ¢ = ¢, thus

ole, = (etﬁ 0')

But s[, = d(aom)|, ,hence

= ol = dsl., .
Lo
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d8|£D: dOd(ClOﬂ')LCD:O,

We proved that (o —dH Adt)|, = 0.
(2) The manifold £ is the image of the smooth mapping

(A1) (etﬁ/\,t) ,

thus the tangent vector to £ transversal to L is

> 0
H(A\) + ET] € Tk

B, B
T(A,t)[r = T(A,t)[rt PR (H(/\) + %) .

237

To complete the proof, we substitute the vector f_f(/\)—l— % as the first argument

to 0 — dH A dt and show that the result is equal to zero. We have:

iﬁO’:—dH, i%UZO,
ig(dH A dt) = (igdH) Adt — dH A (izdt) =0,
N——’ | N——
=0 =0
io (dH Adl) = (iidH) Adt — dH A (iidt) — _dH,
at at at
N——’ N’
=0 =1
consequently,

igyo(o—dH Adt)=—dH +dH =0,

We proved that the form (s — H dt)|, is closed.
(3) Now we show that this form is exact, i.e.,

/ s—Hdt=0
~
for any closed curve

y T (A1), t(r) € L, 7€ [0,1].
The curve v is homotopic to the curve
Yo : T (A(7),0) € Lo, 7€ 0,1].
Since the form (s — H dt)| is closed, Stokes’ theorem yields that

/S—Hdt:/ s— Hdt.
i Yo

But the integral over the closed curve vy C Ly is easily computed:

/S—Hdt:/ sz/d(aOﬂ'):O.
Yo Yo Yo

Equality (17.6) follows, i.e., the form (s — H dt)|, is exact.

(17.6)
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17.1.2 Problem with Fixed Time

Now we prove sufficient optimality conditions for problem (17.1)—(17.3).

Theorem 17.2. Assume that the restriction of projection 7T|Lt 1s a diffeo-
morphism for any t € [0,t1]. Then for any Ao € Lo, the normal extremal
trajectory .

jt)=moe(X),  0<t <y,
realizes a strict minimum of the cost functional fotl e(q(t), u(t)) dt among all
admissible trajectories q(t), 0 <t < 1, of system (17.1) with the same bound-
ary conditions:

9(0) = §4(0), q(t1) = qd(tr). (17.7)

Remark 17.3. (1) Under the hypotheses of this theorem, no check of existence
of optimal control is required.

(2) Tf all assumptions (smoothness of H, extendibility of trajectories of q
to the time segment [0,,], diffecomorphic property of 7|, ) hold in a proper
open domain O C T*M, then the statement can be modified to give local
optimality of ¢(-) in m(O). These modifications are left to the reader.

Now we prove Theorem 17.2.
Proof. The curve (t) is projection of the normal extremal
A = e T ().

Let @(t) be an admissible control that maximizes the Hamiltonian along this
extremal:

H(A) = hagy ()

On the other hand, let ¢(¢) be an admissible trajectory of system (17.1) gen-
erated by a control u(t) and satisfying the boundary conditions (17.7). We
compare costs of the pairs (¢, @) and (g, u).

Since 7 : Ly = M is a diffecomorphism, the trajectory {q(t) | 0 < ¢ <
t1} C M can be lifted to a smooth curve {A(?) |0 <t <t} CT*M:

Vi€ [0,4] 3 A(t) € Ly such that 7w(A(t)) = ¢(t).
Then

/0 " o(gt), u(t)) dt = / D), Fugo (1)) — hugoy(M(8) dt
> | " 0.4(0) - HO®) dr (78)
- / sae MDY — HOW)) di

:/S—Hdt,
~
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where
y oot (A@), 1) € L, t €10,t4].

By Proposition 17.1, the form (s — H dt)|, is exact. Then integral of the form
(s — H dt)|, along a curve depends only upon endpoints of the curve. The
curves v and

Jite At el, A=),  telot],

have the same endpoints (see Fig. 17.1), thus

/S—Hdt:
~

S~

s mar= /Otl@, §(0) — HO) dt

t1 ~

s Fay (@(0)) = hagy (M) dt

o S~ 35

o(i(1), a(1)) dt.
So
/ " ooty ut) di > / 7 o). at) dt (17.9)

i.e., the trajectory §(t) is optimal.

Fig. 17.1. Proof of Th. 17.2

It remains to prove that the minimum of the pair (§(t), @(?)) is strict, i.e,
that inequality (17.9) is strict.
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For a fixed point ¢ € M, write cotangent vectors as A = (p, q), where p
are coordinates of a covector A in 7" M. The control-dependent Hamiltonians
hy(p, q) are affine w.r.t. p, thus their maximum H (p, ¢) is convex w.r.t. p. Any
vector & € Ty M such that

{p, &) = max(p, fu(q))

u€

defines a hyperplane of support to the epigraph of the mapping p — H(p, ¢).
Since H 1s smooth in p, such a hyperplane of support is unique and max-
imum in (17.4) is attained at a unique velocity vector. If ¢(¢) Z ¢(¢), then
inequality (17.8) becomes strict, as well as inequality (17.9). The theorem is
proved. a

Sufficient optimality condition of Theorem 17.2 is given in terms of the
manifolds £;, which are in turn defined by a function a and the Hamiltonian
flow of H. One can prove optimality of a normal extremal trajectory ¢(t),
t € [0,%1], if one succeeds to find an appropriate function a € C'*°(M) for
which the projections 7 : £y — M, t € [0,14], are diffeomorphisms.

For ¢ = 0 the projection @ : Lo — M is a diffeomorphism. So for small ¢ >
0 any function a € C*° (M) provides manifolds £; projecting diffeomorphically
to M, at least if we restrict ourselves by a compact K @ M. Thus the sufficient
optimality condition for small pieces of extremal trajectories follows.

Corollary 17.4. For any compact K € M that contains a normal extremal
trajectory

i) =moef(\), 0<t<t,
there exists t) € (0,1] such that the piece

qt), 0<t<,

1s optimal w.r.t. all trajectories contained in K and having the same boundary
conditions.

In many problems, one can choose a sufficiently large compact K O ¢ such
that the functional J is separated from below from zero on all trajectories
leaving K (this is the case, e.g., if ¢(q,u) > 0). Then small pieces of § are
globally optimal.

17.1.3 Problem with Free Time

For problems with integral cost and free terminal time ¢;, a sufficient opti-
mality condition similar to Theorem 17.2 is valid, see Theorem 17.6 below.

Recall that all normal extremals of the free time problem lie in the zero
level H=1(0) of the maximized Hamiltonian H. First we prove the following
auxiliary proposition.
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Proposition 17.5. Assume that 0 is a reqular value of the restriction H|LD,
ie.dy Hlp . #0 forall X e LoN H=1(0). Then the mapping

G LoNH N 0)x B = T*M, &A1) =eT(N),

1s an itmmersion and ®s is an exact form.

Proof. First of all, regularity of the value 0 for |, implies that LN H=1(0)

1s a smooth manifold. Then, the exactness of Ps easily follows from Proposi-
tion 17.1. To prove that @ is an immersion, 1t is enough to show that the vector
%(/\o,t) = H(A\:), At = @(Xo, 1), is not tangent to the image of Lo N H~1(0)
under the diffeomorphism e'# : T*M — T* M for all Ay € LoN H~1(0). Note
that e (Lo N H~1(0)) = £L: N H~1(0). We are going to prove a little bit more
than we need, namely, that 7 (A;) is not tangent to £;.

Indeed, Proposition 17.1 implies that |z, = ds|z, = 0. Hence it is enough
to show that the form (iz0o)|c, does not vanish at the point A;. Recall that
the Hamiltonian flow e preserves both ¢ and H.In particular,

(igo)le, = e ((igo)le,) = —e (dH]c,) .
The mapping et is invertible. So it is enough to prove that dH |z, does not
vanish at Ag. But the last statement is our assumption! a

Now we obtain a sufficient optimality condition for the problem with free
time.

Theorem 17.6. Let W be a domain in Lo N H~1(0) x R such that
Todly, WM
1s a diffeomorphism of W onto a domain in M, and let
=T (Xo),  telot]

be a normal extremal such that (:\o,t) € W forallt € [0,11]. Then the extremal
tragectory §(t) = 7T(/~\t) (with the corresponding control u(t)) realizes a strict
minimum of the cost fOT e(q(t), u(t)) dt among all admissible trajectories such
that q(t) € m o ®(W) for allt € [0, 7], ¢(0) = §(0), ¢(7) = ¢(t1), 7 > 0.

Proof. Set L = &(W), then # : L — n(L) is a diffecomorphism and s|. is
an exact form. Let ¢(¢), ¢ € [0, 7], be an admissible trajectory generated by a
control u(t) and contained in w(L£), with the boundary conditions ¢(0) = §(0),
q(7) = ¢(t1). Then ¢(t) = n(A(2)), 0 <t < 7, where ¢ — A(t) is a smooth
curve in £ such that A(0) = :\0, A(T) = /N\tl.

We have [ s= [ s. Further,
AH) X
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ty

/s=f<xﬁw>w=/K&JaMﬂm>w=]E@Wﬂu»w

0

The last equality follows from the fact that

(M), Fago (@(1))) = #((), alt) = HA@) = 0.

On the other hand,

[ 5= [owioya= [ty [ e um)a
AC) 0

< [ etato) uto) .

0

The last inequality follows since max hy(A@)) = H(A(t)) = 0. Moreover, the
ue

inequality is strict if the curve t — A(¢) is not a solution of the equation
A= H(A), i.e., if it does not coincide with A(¢). Summing up,

t1 T

/ww»w»ws/wmmwmw

0 0

and the inequality is strict if ¢ differs from g. a

17.2 Hamilton-Jacobi Equation

Suppose that conditions of Theorem 17.2 are satisfied. As we showed in the
proof of this theorem, the form (s — H dt)|, is exact, thus it coincides with
differential of some function:

(s — Hdt)|, =dyg, g L—R. (17.10)

Since the projection 7m : Ly — M is one-to-one, we can identify (A1) €
Ly x R C L with (¢,1) € M x R and define ¢ as a function on M x R:

g=9(q,1).

In order to understand the meaning of the function g for our optimal control
problem, consider an extremal

A = et T (\g)
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and the curve R
’7C£, ;5/ : tH(Atat)a

as in the proof of Theorem 17.2. Then
t1
/S—Hdt: / e(G(r), a(r)) dr, (17.11)
et 0

where §(t) = 7T(/~\t) is an extremal trajectory and u(t) is the control that
maximizes the Hamiltonian hy(A) along A;. Equalities (17.10) and (17.11)
mean that

g(d(t),t) = gg0,0) + / o (§(r), (7)) dr,

ie., g(q,t)—9(qo,0) is the optimal cost of motion between points ¢o and ¢ for
the time t. Initial value for ¢ can be chosen of the form

9(q0,0) = a(q0),  qo € M. (17.12)
Indeed, at ¢t = 0 definition (17.11) of the function g reads
dgli—g = (s = Hdt)|, = s|., = da,

which is compatible with (17.12).
We can rewrite equation (17.10) as a partial differential equation on g. In
local coordinates on M and T* M, we have

g=xz €M, A=(&x)eT"M, g=g(1).
Then equation (17.10) reads
(de — H(¢ z)dt)|, = dg(x,1),

1.e.

0

S

=¢,
57 = —H(&, z).

This system can be rewritten as a single first order nonlinear partial differen-
tial equation:

<%
@y

dyg dyg

ot + (3 x’ x) ’ ( )

which 1s called Hamilton-Jacobi equation. We showed that the optimal cost

g(z,t) satisfies Hamilton-Jacobiequation (17.13) with initial condition (17.12).
Characteristic equations of PDE (17.13) have the form
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i 0H
= S
%
g_ _%a
Eg(a:(t),t) =¢éxr—H.

The first two equations form the Hamiltonian system A= f_f(/\) for normal
extremals. Thus solving our optimal control problem (17.1)-(17.3) leads to
the method of characteristics for the Hamilton-Jacobi equation for optimal
cost.

17.3 Dynamic Programming

One can derive the Hamilton-Jacobi equation for optimal cost directly, with-
out Pontryagin Maximum Principle, due to an idea going back to Huygens and
constituting a basis for Bellman’s method of Dynamic Programming, see [3].
For this, it is necessary to assume that the optimal cost g(g¢,1) exists and is
C''-smooth.

Let an optimal trajectory steer a point gg to a point ¢ for a time ¢t. Apply
a constant control u on a time segment [¢,¢ + Jt] and denote the trajectory
starting at the point ¢ by ¢, (7), 7 € [t, ¢ + dt]. Since ¢, (¢ + J¢) is the endpoint
of an admissible trajectory starting at gg, the following inequality for optimal
cost holds:

t-|—5t
9t +61), 1+ 61) < glg,1) + / P (gu(7), u) dr.

Divide by dt:

L (glqult +61), 1+ 38) — g(0,1)) <

t4ot
50 /t o(gu (1), u)dr

Sd

and pass to the limit as §t — 0:

0y 0g
=2 f 22 < o(q, ).
(500 + 54 < (o)
So we obtain the inequality

0g 0y
L, (22
" <3q

< . 17.14
s 0) <0 uew (17.14)

Now let (§(t), @#(t)) be an optimal pair. Let ¢ > 0 be a Lebesgue point of
the control @. Take any 6¢ € (0,7). A piece of an optimal trajectory is optimal,
thus §(¢ — dt) is the endpoint of an optimal trajectory, as well as §(¢). So the
optimal cost g satisfies the equality:
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t
a0).0) = (it =00t =60+ [ litr), i) o
t—ot
We repeat the above argument:
1 t
501800~ g(al = 80t = 50) = 5 [ pl(r),(r)) ar,
5t 5t )i_s,
take the limit 0t — 0:
dg dg \ _

This equality together with inequality (17.14) means that
dg dg
hawy | 5509 ) = ho | 2=,q ) -
(t)<3q q) i <3q q)

H(&Q)Zglea[}hu(&q)

We denote

and write (17.15) as Hamilton-Jacobi equation:

L . dg . .
Thus derivative of the optimal cost 3_g is equal to the impulse ¢ along the
q

optimal trajectory ¢(¢).
We do not touch here a huge theory on nonsmooth generalized solutions
of Hamilton-Jacobi equation for smooth and nonsmooth Hamiltonians.






18

Hamiltonian Systems
for Geometric Optimal Control Problems

18.1 Hamiltonian Systems
on Trivialized Cotangent Bundle

18.1.1 Motivation

Consider a control system described by a finite set of vector fields on a man-

ifold M:
q= fulq), we{l,... k}, g€ M. (18.1)

We construct a parametrization of the cotangent bundle 7" M adapted to this
system. First, choose a basis in tangent spaces T, M of the fields f,(¢) and
their iterated Lie brackets:

T, M =span(fi(q), ..., falq)),

we assume that the system is bracket-generating. Then we have special coor-
dinates in the tangent spaces:

VveT,M vzz&fi(Q),
i=1

(gla"' agn) ER”

Thus any tangent vector to M can be represented as an (n + 1)-tuple

(gla"'agn;Q)a (gla"'agn)ERna qEMa

i.e., we obtain a kind of parametrization of the tangent bundle TM =
Ugem Ty M. One can construct coordinates on 7'M by choosing local coor-
dinates in M, but such a choice 1s extraneous to our system, and we stay
without any coordinates in M.



248 18 Hamiltonian Systems for Geometric Optimal Control Problems

Having in mind the Hamiltonian system of PMP, we pass to the cotangent
bundle. Construct the dual basis in 7% M : choose differential forms

Wi, ... wn € ATM

such that
(wi, f3) = &, ,j=1,...,n.

Then the cotangent spaces become endowed with special coordinates:
n
VAET, M A= niwig,
i=1
(M, ) € R™

So we obtain a kind of parametrization of the cotangent bundle:
A (s omig), (mme) €RY g€ M.
In notation of Sect. 11.5,
ni = [7(A) =X filg)

is the linear on fibers Hamiltonian corresponding to the field f;. Canonical
coordinates on T*M arise in a similar way from commuting vector fields

fi = 6817,’ i = 1,...,n, corresponding to local coordinates (x1,...,%,)
on M. Consequently, in the (only interesting in control theory) case where
the fields f; do not commute, the “coordinates” (11,...,9n;¢) on T*M are
not canonical.

Now our aim 1s to write Hamiltonian system in these nonstandard coordi-
nates on 7% M, or in other natural coordinates adapted to the control system

in question.

18.1.2 Trivialization of T*M

Let M be a smooth manifold of dimension n, and let £ be an n-dimensional
vector space. Suppose that we have a triwialization of the cotangent bun-
dle T* M, 1.e., a diffeomorphism

¢ ExM-—-T'M
such that:
(1) the diagram

1s commutative, 1.e.,

modle,q)=q,  e€F, qeM,
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(2) for any ¢ € M the mapping
e Ple,q), ec b,
is a linear isomorphism of vector spaces:
D(-,q)  E—=T7M.

So the space E is identified with any vertical fiber T7 M, 1t is a typical fiber
of the cotangent bundle 7% M.
For a fixed vector e € F/, we obtain a differential form on M:

P, < dle, ) e A M.

In the previous section we had

E= {(nla ann)}:Rn’

n
@(6, Q) = Z NiWiq,
i=1
but now we do not fix any basis in F.

18.1.3 Symplectic Form on E X M

In order to write a Hamiltonian system on ' x M =T M, we compute the
symplectic form @0 on E x M. We start from the Liouville form

s € ANT* M)
and evaluate 1ts pull-back
®s € AY(E x M).

The tangent and cotangent spaces are naturally identified with the direct
products:

Teq)(BEx M)=T,EGTM = E&T,M,
T(*e,q)(EX M) ET:E@T;MEE*@T;M

Any vector field V' € Vec(E x M) is a sum of its vertical and horizontal parts:
V=V,+Vi, Vile,q) €E, Vile,q) € T,M.
Similarly, any differential form
w € A(E x M)

1s decomposed into its vertical and horizontal parts:
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W=wyFwh,  Wieq) €ET, Whieq €T7M.

The vertical part w, vanishes on horizontal tangent vectors, while the hori-
zontal one wy vanishes on vertical tangent vectors.

In particular, vector fields and differential forms on M (possibly depending
on e € E) can be considered as horizontal vector fields and differential forms
on B x M:

ToM =0 TyM CT(eyq)(EX M),
T;MZO@T;M CT(*eyq)(EX M)

Compute the action of the form ®s on a tangent vector (¢, v) € T.E®T,M:

<QA§5’ (g’ v)> = <5‘P(€,q)’@*(€’ v)> = <5¢(€,q)’ (@*g’ v)> = <@(6’ (]), v>'

Thus

~

(@5)(e,q) = @(eaQ)a (18.2)

where @ in the right-hand side of (18.2) is considered as a horizontal form on
Ex M.
We go on and compute the pull-back of the standard symplectic form:

50' = éds = ddgs = dP.

Recall that differential of a form w € A'(N) can be evaluated by for-
mula (11.15):

d(.d(Wl, WZ) == W1<W, W2> - W2<W, W1> - <wa [Wla W2]>a
Wy, Ws € Vec N. (183)
In our case N = £ x M we take test vector fields of the form

Wi = (&,Vi) € Vec(E x M), i=1,2

bl bl

where & = const € F are constant vertical vector fields and V; € Vec M are
horizontal vector fields. By (18.3),

do((€1, V1), (€2, V2))
= (&, VIND( -, ), Va) = (§2, Va)(@( -, - ), Vi) —(@( -, - ), V1, Va)

since [(£1, V1), (€2, V2)] = [V4, Va]. Further,

(€ VINR(- ), Vad) (e, = (€(@(-, ), Vo) + V(@ (- ), Vo)) e

and taking into account that @ is linear w.r.t. e
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— <@§1, V2> —|— V1 <@e; V2>

Consequently,

do((&1, V1), (€2, V2))(e,) =
(Pe,, Vay — (D, Vi) + Vi{De, Vo) — VoD, Vi) — (De, [V, V5)).
We denote the first two terms
B((€1, V1), (€2, V2)) = (Bey, Vo) — (P, V1),
and apply formula (18.3) to the horizontal form &,:
dP.(V1, Va) = Vi{D,, Vo) — VoD, V1) — (D, [V1, V5]).
Finally, we obtain the expression for pull-back of the symplectic form:
50(6;)((51, 1), (&2, V) = D((€1, V1), (€2, V2)) + dDe(V1, Va), (18.4)

1.e. R B
@0’(67.) =@+ dP..
Remark 18.1. In the case of canonical coordinates we can take test vector

fields Vi = 32—, then it follows that d®. = 0.

18.1.4 Hamiltonian System on E x M

Formula (18.4) describes the symplectic structure o on E x M. Now we
compute the Hamiltonian vector field corresponding to a Hamiltonian function

h e C™(E x M).

One can consider h as a family of functions on M parametrized by vectors
from E:
he = h(e, -) € O™ (M), ec k.

Decompose the required Hamiltonian vector field into the sum of its vertical
and horizontal parts:

h=X+Y,
X =X(e,q) € E,
Y =Y(e,q) € T,M.

By definition of a Hamiltonian field,
ixty o = —dh. (18.5)

Transform the both sides of this equality:
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Jh

—dh = —— — dh. ,
Oe S~
eT*M

eE*

IX+yY |e‘50 = ix4v|, (D + do,) = i(X,Y) |e o+ iX,Y) |e do.
= <@X, ~>— <@.,Y>—|—iyd@e.
—— N N —
€ET*M cE* €ET*M
Now we equate the vertical parts of (18.5):

Oh
d..Y)= — 18.6
@.v)=" (18.6)
from this equation we can find the horizontal part Y of the Hamiltonian field h.
Indeed, the linear isomorphism

O(-,q): E=TIM

has a dual mapping
" (-,q) : TyM — E™.

Then equation (18.6) can be written as

) Ok
4 ("q)Y_%(e’q)

and then solved w.r.t. Y:
Oh

Yy =¢1—.
de
To find the vertical part X of the field ﬁ, we equate the horizontal parts
of (18.5):
@X + in@e = _dhea

rewrite as
Ox = —iyd®. — dh,,

and solve this equation w.r.t. X:
X = ¢~ iy d®. + dh.).

Thus the Hamiltonian system on E X M corresponding to a Hamiltonian A
has the form:
0h
- @*—1_
1 de’ (18.7)
é = —&(izdd. + dh.).

Now we write this system using coordinates in the cotangent and tangent
spaces (we do not require any coordinates on M ).
Choose a basis in E:
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E =span(ey,...,en),

so that vectors u € F are decomposed as

U = Z U€4.
i=1

Then

Pu, )= (Zuiei, ) = Zuiwi,

i=1 i=1

where

wi =&, € AH(M), i=1,...,n,
are basis 1-forms on M. Further, the wedge products

wi Awj € A*(M), 1<i<j<n,

form a basis in the space A%(M) of 2-forms on M. Decompose the differentials
in this basis:

n

1
k k
dwy = E cjwi Nwj = E §cijwi/\wj,
1<i<j<n ij=1

where coeflicients are smooth functions
ijeCoo(M), i, j, k=1,... n,

skew-symmetric w.r.t. lower indices:

The coefficients cfj are called structural constants (although, in general, they
are not constant). We explain the name and give a simple recipe for computing
them below in Proposition 18.3.

Choose a frame in T, M dual to the frame wy,...  wy:

Viy..., Vo € Vec M,
<wi,Vj>:6ij, i,j:l,...,n.

Now we compute our Hamiltonian system (18.7) in the coordinates introduced.
The Hamiltonian function has the form

heC™(R" x M),
h=h(uy, ..., un,q), (ug,...,un) ER® g€ M.

We have
(@ (Vi), e5) = (Pe;, Vi) = {wy, Vi) = &y,
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thus

the only unit is the ¢-th component. Consequently, the horizontal part of the

field A decomposes along the basis horizontal fields as follows:

oh

Consider the vertical part of h:
X = & (iyd®, + dh,).

The second term is easily computed since

n

dhy = (Vihu)ws,

i=1

this decomposition is immediately checked on basis vector fields V;. And the

first term has the form

n

i, = S Ly (000 0h 0
¢ Zyd@u_i£12ukcij Ju; Ou;  Ou; Oy ’

we leave this as an exercise for the reader.

Finally, the Hamiltonian system in the moving frames (17, . ..

(w1, ... ,wy) reads:
. = 0h
f]—' 8—uin’,
i=1

- 0h

. ' k :

uz—_‘/zhu‘i'z ukcz‘yﬁu]a Z_l""’n'
Jk=1

, Vi) and

Remark 18.2. This system becomes especially simple (triangular) when the

Hamiltonian does not depend upon the point in the base:

oh _
dq

The vertical subsystem simplifies even more when

0.

ko S
ci; = const, t, j, k=1,...,n.

Both these conditions are satisfied for invariant problems on Lie groups dis-

cussed in subsequent sections.
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The structural constants cfj can easily be expressed in terms of Lie brackets
of basis vector fields.

Proposition 18.3. Let the frame of vector fields Vi, ..., V, € Vec M be dual
to the frame of 1-forms w1, ... ,wy, € AY(M):

<wi,Vj>:6ij, i,j:l,...,n.

Then

of and only if

[‘/Za‘/]]:_chjvka i’jzl""’n'
k=1

Proof. The equality for dwg can be written as
<dwka(‘/ia‘/j)>:‘:§ja ia ja ]{7:1,...,71.

The left-hand side is computed by formula (18.3):

<dwk’ (VZ’ VJ)> = Vi<wk’ VJ> - Vj<wk’ VZ> _<wka [VZ, VJ]>;
—_— —,—
=0 =0

and the statement follows. O

If the coefficients cfj are constant, then the vector fields Vi,...,V, span
a finite-dimensional Lie algebra, and the numbers cfj are called structural
constants of this Lie algebra. As we mentioned above, for general vector fields

k
¢y Z const.

18.2 Lie Groups

State spaces for many interesting problems in geometry, mechanics, and ap-
plications are often not just smooth manifolds but Lie groups, in particular,
groups of transformations. A manifold with a group structure is called a Lie
group if the group operations are smooth. The cotangent bundle of a Lie group
has a natural trivialization. We develop an approach of the previous section
and study optimal control problems on Lie groups.
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18.2.1 Examples of Lie Groups

The most important examples of Lie groups are given by groups of linear
transformations of finite-dimensional vector spaces.

The group of all nondegenerate linear transformations of R™ is called the
general linear group:

GL(n) ={X : R" > R" | det X # 0}.
Linear volume-preserving transformations of R” form the special linear group:
SL(n) ={X : R" > R" |det X = 1}.

Another notation for these groups is respectively GL(R™) and SL(R"). The
orthogonal group is formed by linear transformations preserving Euclidean
structure:

O(n) = {X : R® 5 R" | X*X = 1d},

and orthogonal orientation-preserving transformations form the special or-
thogonal group:

SO(n) ={X ' R*" >R | X*X =1d, det X = 1}.
One can also consider the complex and Hermitian versions of these groups:
GL(C"), SL(C"), U(n), SU(n),

for this one should replace in the definitions above R™ by C". Each of these
groups realizes as a subgroup of the corresponding real or orthogonal group.
Namely, the general linear group GL(C") and the unitary group U(n) can
be considered respectively as the subgroups of GL(R?*) or O(2n) commuting
with multiplication by the imaginary unit:

GL(C") = {(_AB i) |4, B : " R" det’A + det?B # o}

C GL(R™™),

Un) = {(_ABi) |4, B: R" - R",

AA* 4+ BB* =1d, BA* — AB* = o} C GL(C*) N O(2n).

The special linear group SL(C™) and the special unitary group SU(n) realize
as follows:

SL(C") = {(_AB i) | A, B : R® 5 R" det(A+iB) = 1} C SL(R*™),
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SU(n) = {(_AB i) |4, B : R" - R",

AA* + BB* =1d, BA* — AB* =0, det(A+ iB) = 1}
= U(n) NSL(C) € SO(2n).

Lie groups of linear transformations are called linear Lie groups. These
groups often appear as a state space of a control system: e.g., SO(n) arises in
the study of rotating configurations. For such systems, one can consider, as
usual, the problems of controllability and optimal control.

18.2.2 Lie’s Theorem for Linear Lie Groups
Consider a control system of the form
X=XA  XeM=GL(N), AeAcCglN), (18.8)

where A is an arbitrary subset of gl(V), the space of all real N x N matrices.
We compute orbits of this system. Systems of the form (18.8) are called left-
wvartant: they are preserved by multiplication from the left by any constant
matrix Y € GL(N).

Notice that the ODE with a constant matrix A

X =XA

is solved by the matrix exponential:

Lie bracket of left-invariant vector fields is left-invariant as well:
[XA, XB] = X[A4, B], (18.9)
this follows easily from the coordinate expression for commutator (exercise).

Remark 18.4. Instead of left-invariant systems X = XA, we can consider
right-invariant ones: X = CX. These forms are equivalent and transformed
one into another by the inverse of matrix. Although, the Lie bracket for right-
invariant vector fields is

[CX, DX] = [D, (X,
which is less convenient than (18.9).

Return to control system (18.8). By the Orbit Theorem, the orbit through
identity O14(A) is an immersed submanifold of GL(N). Moreover, by defini-
tion, the orbit admits the representation via composition of flows:
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Ora(A) ={Id oett A1 o ... o efrdr |[t; eR, A; € A, keN}
thus via products of matrix exponentials

:{etlAl, .etkAk |tZER, AZEAa kEN}

Consequently, the orbit Opq(.A) is a subgroup of GL(N). Further, in the proof
of the Orbit Theorem we showed that the point go e!*41 0. ..0e!x4% depends
continuously on (¢1,...,tx) in the “strong” topology of the orbit, thus it
depends smoothly.

To summarize, we showed that the orbit through identity has the following
properties:

(1) Ora(A) is an immersed submanifold of GL(N),

(2) Ora(A) is a subgroup of GL(N),

(3) the group operations (X,Y) — XY, X — X~! in Op(A) are smooth.
In other words, the orbit Oq(A) is a Lie subgroup of GL(N).

The tangent spaces to the orbit are easily computed via the analytic version
of the Orbit theorem (system (18.8) is real analytic):

TIdOId(.A) = Lie(.A), (18.10)
Tx O1a(A) = X Lie(A).

The orbit of the left-invariant system (18.8) through any point X € GL(N)
is obtained by left translation of the orbit through identity:

Ox (A) = {Xe e |1 e B, A € A, k € N} = XO(A).

We considered before system (18.8) defined by an arbitrary subset A C
gl(NV). Restricting to Lie subalgebras

A = Lie(A) C gl(N),

we see that the following proposition was proved: to any Lie subalgebra
A C gl(N), there corresponds a connected Lie subgroup M C GL(N) such
that Ti¢uM = A. Here M = O14A. Now we show that this correspondence is
invertible.

Let M be a connected Lie subgroup of GL(N), i.e.:

(1) M is an immersed connected submanifold of GL(N),
(2) M is a group w.r.t. matrix product,
(3) the group operations (X,Y) — XY, X +— X~! in M are smooth map-
pings.
Then Id € M. Consider the tangent space
d

TiaM =< A= —
Id { 77

Iy | I, € M, I smooth, Fozld}.
t=0
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Since M C GL(N) C gl(N), then

TiaM C gl(N).

Further,
AeTygM, XeM = XAelxM
since
d
XA = — X1},
dt t=0

the velocity of the curve X1}, where A = Iy. Consequently, for any A € TigM
the vector field X A is identically tangent to M. So the following control system
is well-defined on M:

X=XA, XeM, AeTuM.

This system has a full rank. Since the state space M is connected, it coincides
with the orbit Q14 of this system through identity. We have already computed
the tangent space to the orbit of a left-invariant system, see (18.10), thus

T1aM = T1a(Ora) = Lie(T1aM).

That is, Tiq M is a Lie subalgebra of gl(N). We proved the following classical
proposition.

Theorem 18.5 (Lie). There exists a one-to-one correspondence between Lie
subalgebras A C gl(N) and connected Lie subgroups M C GL(N) such that
TiaM = A.

We showed that Lie’s theorem for linear Lie algebras and Lie groups follows
from the Orbit Theorem: connected Lie subgroups are orbits of left-invariant
systems defined by Lie subalgebras, and Lie subalgebras are tangent spaces
to Lie subgroups at identity.

18.2.3 Abstract Lie Groups

An abstract Lie group is an abstract smooth manifold (not considered embed-
ded into any ambient space) which is simultaneously a group, with smooth
group operations. There holds Ado’s theorem [139] stating that any finite-
dimensional Lie algebra is isomorphic to a Lie subalgebra of gl(N). A similar
statement for Lie groups is not true: a Lie group can be represented as a Lie
subgroup of GL(N) only locally, but, in general, not globally. Although, the
major part of properties of linear Lie groups can be generalized for abstract
Lie groups.

In particular, let M be a Lie group. For any point ¢ € M| the left product
by ¢:

qg:M— M, J(z) =qz, €M,
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is a diffeomorphism of M. Any tangent vector
v €TaM
can be shifted to any point ¢ € M by the left translation ¢:
Vig) = gv € T, M, q €M,
thus giving rise to a left-invariant vector field on M:
VeVeeM, ¢V =V qge M.

There 1s a one-to-one correspondence between left-invariant vector fields on
M and tangent vectors to M at identity:

Ve V(Id) = v.

Left translations in M preserve flows of left-invariant vector fields on M, thus
flows of their commutators. Consequently, left-invariant vector fields on a Lie
group M form a Lie algebra, called the Lie algebra of the Lie group M. The
tangent space T1qM is thus also a Lie algebra.

Then, similar to the linear case, one can prove Lie’s theorem on one-to-one
correspondence between Lie subgroups of a Lie group M and Lie subalgebras
of its Lie algebra A.

18.3 Hamiltonian Systems on Lie Groups

18.3.1 Trivialization of the Cotangent Bundle of a Lie Group

Let M C GL(N) be a Lie subgroup. Denote by M the corresponding Lie
subalgebra:

M ="TM C gl(N)
The cotangent bundle of M admits a trivialization of the form

& M xM—->T"M,

where M* is the dual space to the Lie algebra M. We start from describing
the dual mapping
¢ TM > M x M.

Recall that T,M = ¢TiaM = ¢qM for any ¢ € M. We set
¢ ga—(a,q), a€EM, geM, qae T,M. (18.11)

IL.e., the value of a left-invariant vector field ga at a point ¢ 1s mapped to the
pair consisting of the value of this field at identity and the point ¢. Then the
trivialization @ has the form:

D : (z,9) = Z4, reM*, geM, x, €] M, (18.12)

where z is the left-invariant 1-form on M coinciding with z at identity:

(Zg,qa) € (z,a).
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18.3.2 Hamiltonian System on M* x M
The Hamiltonian system corresponding to a Hamiltonian
h=h(z,q) € C°(M*x M)
was computed in Sect. 18.1, see (18.7):

dh
s -1
1= (18.13)
&=~ (dhy + igd®,).

Taking into account definition (18.11) of @*, we can write the first equation
as follows:

_oh
(J—(J@x~

h
Here g— is the vertical part of dh € AY(M* x M), i.e.,
x

oh N *
@D EM) =M, (z.g) e M x M.

In order to find &, compute the action of the differential dz = d®, on
left-invariant vector fields by formula (11.15):

dz(qa, qb) = (qa) @—(qb) @—@3 [a,0]) = (=, [a, B]).

=const =const

(e )= () )
() o)

So Hamiltonian system (18.13) takes the form:

Then

ndZ

oh
o

o~ igdd, = o7,

o
q_qﬁx’

r = (ad 3_/1) z— & dh,.
ox

Recall that dh, is the horizontal part of dh, thus

(18.14)

(dhy)q € Ty M, (z,q9) € M* x M,

and

o~ 1dh, € M*.
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System (18.14) describes the Hamiltonian system for an arbitrary Lie group
and any Hamiltonian function h.

In the case of commutative Lie groups (which arise in trivialization of 7% M
generated by local coordinates in M), the first term in the second equation
(18.14) vanishes, and we obtain the usual form of Hamiltonian equations in
canonical coordinates:

. dh
q_qﬁx’
i =—&"ldh,.

On the contrary, if the Hamiltonian is left-invariant:
h = h(z),

then Hamiltonian system (18.14) becomes triangular:

Oh
q:qﬁ_a
TR (18.15)
r = (ad—) x.
oz

Here the second equation does not contain ¢. So in left-invariant control prob-
lems, where the Hamiltonian h of PMP 1is left-invariant, one can solve the
equation for vertical coordinates x independently, and then pass to the hori-
zontal equation for g.

18.3.3 Compact Lie Groups

The Hamiltonian system (18.15) simplifies even more in the case of compact
Lie groups.

Let M be a compact Lie subgroup of GL(N). Then M can be considered
as a Lie subgroup of the orthogonal group O(N). Indeed, one can choose a
Euclidean structure (-, -} in RY invariant w.r.t. all transformations from M:

(Av, Aw) = {v, w), v, weRY A€M CGL(N).

Such a structure can be obtained from any Euclidean structure g( -, -) on RY
by averaging over A € M using a volume form wy A ... A w,, where w; are
basis left-invariant forms on M:

<v,w>:/ Yo W1 A AW,
M
Yo,w(A) = g(Av, Aw), AeM.

So we will assume that elements of M are orthogonal N x N matrices, and
the tangent space to M at identity consists of skew-symmetric matrices:

M =TigM C T1g O(N) =so(N) = {a : RY 5 BY | a* +a =0}
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There is an invariant scalar product on so(/N) defined as follows:
{a,b) = —trab, a, b €so(N).
This product is invariant in the sense that
(e2deq ety = (a, b), a, b, c €so(N), teR, (18.16)

1.e., the operator
Adef = e3¢ so(N) = so(N)
is orthogonal w.r.t. this product. Equality (18.16) is a corollary of the invari-
ance of trace:
<6t adca’ et adcb> — <(Ad etc)a’ (Ad etc)b> — <6tca6_tc, etcbe—tc>

= —tr(e’ae e be™¢) = —tr(e’Cabe™¢) = — tr(ab)

= {a,b).
The sign minus in the definition of the invariant scalar product on so(N)

provides positive-definiteness of the product. This can be easily seen in coor-
dinates: if

a = (aij), b= (bij) € so(N),

ajj = —ajj, bij = —byy, i, j=1,... N,
then
N N
—tr(ab) = — Z aijbj; = Z aijbij.
7,j=1 i,7=1

The norm on so(N) is naturally defined:

la] = \/{a, a), a € so(N).

The infinitesimal version of the invariance property (18.16) is easily ob-
tained by differentiation at ¢ = 0:

{[e, al, b) + {a,[c,b]) = O, a, b, ¢ €so(N). (18.17)
That is, all operators
ad ¢ : so(N) = so(N), ¢ € s0(N),

are skew-symmetric w.r.t. the invariant scalar product. Equality (18.17) is a
multidimensional generalization of a property of vector and scalar products
in R3 = s0(3).

Since M C so(N), there is an invariant scalar product in the Lie alge-

bra M. Then the dual space M* can be identified with the Lie algebra M

via the scalar product (-, - ):



264 18 Hamiltonian Systems for Geometric Optimal Control Problems
M = M*, ar{a, ).
In terms of this identification, the operator (ad a)*, a € M, takes the form:
(ada)” : M = M, (ada)* = —ada.

In the case of a compact Lie group M, Hamiltonian system (18.15) for an
invariant Hamiltonian h = h(a) becomes defined on M x M and reads

Oh
q:qﬁ_a
0 (18.18)
a=|a,—|.
5]

We apply this formula in the next chapter for solving several geometric
optimal control problems.
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Examples of Optimal Control Problems
on Compact Lie Groups

19.1 Riemannian Problem

Let M be a compact Lie group. The invariant scalar product (-, -} in the Lie
algebra M = Tiq M defines a left-invariant Riemannian structure on M:

{qu, qu)q def {u,v), u, veEM, qeM, qu, qve T, M.

So in every tangent space T,M there is a scalar product (-, -),. For any

Lipschitzian curve
q:[0,1]> M

its Riemannian length is defined as integral of velocity:

1:/0 @)ldt,  1dl = /{d, 9)-

The problem is stated as follows: given any pair of points qg, g1 € M, find the
shortest curve in M that connects ¢o and ¢;.
The corresponding optimal control problem is as follows:

§=qu, geM, ueM, (19.1)
9(0) = q0, q(1) = g1, (19.2)
qo, q1 € M fixed, (19.3)

l(u):/o |u(t)| dt — min.

First of all, we prove existence of optimal controls. Parametrizing trajec-
tories of control system (19.1) by arc length, we see that the problem with un-
bounded admissible control u € M on the fixed segment ¢ € [0, 1] is equivalent
to the problem with the compact space of control parameters U = {|u| = 1}
and free terminal time. Obviously, afterwards we can extend the set of control
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parameters to U = {Ju| < 1} so that the set of admissible velocities fir(q)
become convex. Then Filippov’s theorem implies existence of optimal controls
in the problem obtained, thus in the initial one as well.

By Cauchy-Schwartz inequality,

<mwz(fwww)sAWWWw

moreover, the equality occurs only if |u(t)] = const. Consequently, the Rie-
mannian problem / — min 1s equivalent to the problem

2

1 1
J(u) = 5/ |u(t)|* dt — min. (19.4)
0
The functional J is more convenient than [ since J is smooth and its extremals
are automatically curves with constant velocity. In the sequel we consider the
problem with the functional J: (19.1)—(19.4). The Hamiltonian of PMP for
this problem has the form:

y ~ v v
hi(a,q) = {aq, qu) + §|u|2 = {a,u)+ §|u|2
The maximality condition of PMP is:

By (alt),a(t) = max(Ga(t), o)+ S10?), v <0,

(1) Abnormal case: v = 0.
The maximality condition implies that a(t) = 0. This contradicts PMP
since the pair (v, a) should be nonzero. So there are no abnormal extremals.
(2) Normal case: v = —1.
The maximality condition gives u(t) = a(t), thus the maximized Hamilto-
nian is smooth: )
2
H(a) = glaf
Notice that the Hamiltonian H is invariant (does not depend on ¢), which is
a corollary of left-invariance of the problem.
Optimal trajectories are projections of solutions of the Hamiltonian system
corresponding to H. This Hamiltonian system has the form (see (18.18)):

q = qa,
a=la,a]=0.
Thus optimal trajectories are left translations of one-parameter subgroups
in M:
Q(t) = qoetaa a € Ma
recall that an optimal solution exists. In particular, for the case ¢o = Id, we
obtain that any point ¢; € M can be represented in the form
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q1 = eaa a € M

That is, any element ¢; in a compact Lie group M has a logarithm a in the

Lie algebra M.

19.2 A Sub-Riemannian Problem

Now we modify the previous problem. As before, we should find the shortest
path between fixed points gg, ¢ in a compact Lie group M. But now ad-
missible velocities ¢ are not free: they should be tangent to a left-invariant
distribution (of corank 1) on M. That is, we define a left-invariant field of tan-
gent hyperplanes on M, and ¢(¢) should belong to the hyperplane attached
at the point ¢(¢). A problem of finding shortest curves tangent to a given
distribution is called a sub-Riemannian problem, see Fig. 19.1.

Fig. 19.1. Sub-Riemannian problem

To state the problem as an optimal control one, choose any element b € M,
|b| = 1. Then the set of admissible velocities at identity is the hyperplane

U=bt={uec M| {ub)=0}.

Remark 19.1. Tn the case M = SO(3), this restriction on velocities means that
we fix an axis b in a rigid body and allow only rotations of the body around
any axis u orthogonal to b.

The optimal control problem is stated as follows.

q.:qua (JEM, UEU,
Q(O) = qo, Q(l) = q1,
qo, qlEMﬁxeda

l(u):/o |u(t)| dt — min.

Similarly to the Riemannian problem, Filippov’s theorem guarantees exis-
tence of optimal controls, and the length minimization problem is equivalent
to the problem
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1
J(u) = %/0 |u(t)])? dt — min.

The Hamiltonian of PMP is the same as in the previous problem:
v v 2
hi(a, q) = (a,u) + §|u| )
but the maximality condition differs since now the set U is smaller:

hra(@(®), ¢(1)) = max((a(t), v) + g|v|2)~

Consider first the normal case: ¥ = —1. Then the Lagrange multipliers
rule implies that the maximum

h—l
maxhy” (a, q)

is attained at the vector

Umax = @ — {a, b)b,
the orthogonal projection of @ to U/ = b+. The maximized Hamiltonian is
smooth: )

H(@) = S{lal* = (,)?),

and the Hamiltonian system for normal extremals reads as follows:

{q' = g(a —(a,b)b),
a = {a,b)[b,al.

The second equation has an integral of the form
{a,b) = const,

this is easily verified by differentiation w.r.t. this equation:

d

) = {a,b){[b,a], )

by invariance of the scalar product
= —{a,b¥{a,[b,b]) = 0.
Consequently, the equation for a can be written as
a = {ag, b)[b, a] = ad({ap, b)b)a,
where ap = a(0). This linear ODE is easily solved:

a(t) — et ad((ag,b)b)ao.
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Now consider the equation for ¢:
q' =q (6t ad((ag,b)b)ao — <Clo, b>b)
since et 2d({a0.b)0)p —p

= get #0a0 b)) (g — (ag, bYb). (19.5)

This ODE can be solved with the help of the Variations formula. Indeed, we
have (see (2.29)):

t
(H(F+) :g);lg/ e S g dr o etf
0]

l.e.
t

5 [ rgdr =t o (19.6)
0]

for any vector fields f and g. Taking
f = {ao, b)b, g = ap — {ap, b)b,
we solve ODE (19.5):
g(t) = qo e’ emHaolb, (19.7)

Consequently, normal trajectories are products of two one-parameter sub-
groups.
Consider the abnormal case: v = 0. The Hamiltonian

RS (a, q) = {(a,u), ulb,
attains maximum only if
a(t) = a(t)d, at) € R. (19.8)
But the second equation of the Hamiltonian system reads
a=la,ul, (19.9)

thus
(a,a) = {[a, u],a) = —{u, [a,a]) = 0.
That is, @ L a. In combination with (19.8) this means that
a(t) = const = ab, a0, a€elR. (19.10)

Notice that o # 0 since the pair (v, a(t)) should be nonzero. Equalities (19.9)
and (19.10) imply that abnormal extremal controls u(?) satisfy the relation
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[u(t), b] = 0.
That is, u(t) belong to the Lie subalgebra
Hy={ceM|[c,b]=0} C M.

For generic b € M the subalgebra Hj is a Cartan subalgebra of M thus Hy
1s Abelian. In this case the first equation of the Hamiltonian system

4= qu
contains only mutually commuting controls:
wr) e Hy = [u(n),u(r)] =0,
and the equation is easily solved:
g(t) = goelo vV 7. (19.11)

Conversely, any trajectory of the form (19.11) with u(r) € Hy, 7 € [0,¢] is
abnormal: it is a projection of abnormal extremal (¢(t), a(?)) with a(t) = «b
for any a # 0.

We can give an elementary explanation of the argument on Cartan subal-
gebra in the case M = so(n). Any skew-symmetric matrix b € so(n) can be
transformed by a change of coordinates to the diagonal form:

iOél
—ia1

THT=' = 102 (19.12)

—ia2

for some T € GL(n,C). But changes of coordinates (even complex) do not
affect commutativity:

[,b]=0 & [Tel™ 1 ThT =0,
thus we can compute the subalgebra Hp using new coordinates:
Hy=T 'Hpyp-T.

Generic skew-symmetric matrices b € so(n) have distinct eigenvalues, thus for
generic b the diagonal matrix (19.12) has distinct diagonal entries. For such b
the Lie algebra Hpyp-1 1s easily found. Indeed, the commutator of a diagonal
matrix

B

P2

B
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with any matrix ¢ = (¢;;) is computed as follows:
(adb) ¢ = (8 — Oj)eij).
If a diagonal matrix b has simple spectrum:
Bi — B # 0, iF

then the Lie algebra Hj consists of diagonal matrices of the form (19.12),
consequently Hyp 1s Abelian.

So for a matrix b € so(n) with mutually distinct eigenvalues (i.e., for
generic b € so(n)) the Lie algebra Hpyp-1 is Abelian, thus Hp is Abelian as
well.

Returning to our sub-Riemannian problem, we conclude that we de-
scribed all normal extremal curves (19.7), and described abnormal extremal
curves (19.11) for generic b € M.

Exercise 19.2. Consider a more general sub-Riemannian problem stated in
the same way as in this section, but with the space of control parameters
U C M any linear subspace such that its orthogonal complement U+ w.r.t.
the invariant scalar product is a Lie subalgebra:

ot vt cut. (19.13)

Prove that normal extremals in this problem are products of two one-
parameter groups (as in the corank one case considered above):

a| = const 19.14

: (19.14)
ap (t) = e 2oL ¢ ayy = ap (0), (19.15)
q(t) = qoe'® et (19.16)

where a = ay 4+ a1 is the decomposition of a vector a € M corresponding to
the splitting M = U @ UL. We apply these results in the next problem.

19.3 Control of Quantum Systems

This section is based on the paper of U. Boscain, T. Chambrion, and J.-
P. Gauthier [104].

Consider a three-level quantum system described by the Schrodinger equa-
tion (in a system of units such that i = 1):

i = Hy, (19.17)

where ¢ : R — €3 ¢ = (1, ¢2,%3), is a wave function and
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B 20
H= |7 B 2 (19.18)
0 25 Es

is the Hamiltonian. Here By < FEs < E3 are constant energy levels of the
system and §2; : R — C are controls describing the influence of the external
pulsed field. The controls are connected to the physical parameters by £2;(¢) =
wiF;(t)/2, j = 1,2, with F; the external pulsed field and p; the couplings
(intrinsic to the quantum system) that we have restricted to couple only levels
j and 7 + 1 by pairs.

This finite-dimensional problem can be thought as the reduction of an in-
finite-dimensional problem in the following way. We start with a Hamiltonian
which is the sum of a drift-term Hy, plus a time dependent potential V() (the
control term, i.e., the lasers). The drift term is assumed to be diagonal, with
eigenvalues (energy levels) Ey < Fy < E3 < --- . Then in this spectral reso-
lution of Hy, we assume the control term V (¢) to couple only the energy levels
Ey, Es and Es| Es. The projected problem in the eigenspaces corresponding to
FE1, Es, Es is completely decoupled and is described by Hamiltonian (19.18).

The problem is stated as follows. Assume that at the initial instant ¢t = 0
the state of the system lies in the eigenspace corresponding to the ground
eigenvalue F;. The goal is to determine controls £21, {25 that steer the system
at the terminal instant ¢ = ¢; to the eigenspace corresponding to Fs, requiring
that these controls minimize the cost (energy in the following):

s= [ (20 + 220 @t

From the physical viewpoint, this problem may be considered either with
arbitrary controls £2;(¢) € C, or with controls “in resonance”:

Q](t) = uj(t)ei(wjt-l-aj)’ wj = Fjp1 — E] (1919)
u; R =R, a; € [-m,m], j=1, 2. (19.20)

In the sequel we call this second problem of minimizing the energy J, which
in this case reduces to

/Otl (2(6) + w3(1)) d, (19.21)

the “real-resonant” problem. The first problem (with arbitrary complex con-
trols) will be called the “general-complex” problem.

Since Hamiltonian (19.18) is self-adjoint: * = H, it follows that Schro-
dinger equation (19.17) is well-defined on the unit sphere

Se=5"={¢ = (1,2, ¢3) € C | [Y[* = [vu]* + [t + [¥5]" = 1} .

The source and the target, i.e., the initial and the terminal manifolds in the
general-complex problem are respectively the circles
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St={(%0,00[peRr},  T¢={0,0,e¥)|pecR}.

The meaning of the label (¢) here will be clarified later.
Summing up, the general-complex problem is stated as follows:

wW=Hy, weS, 2, 2eC,
1/)(0) € S(%la 1/)(t1) S 7?Cda

t1
/ <|91|2—|— |92|2) dt%min,
0

with the Hamiltonian H defined by (19.18).
For the real-resonant case, the control system is (19.17) with Hamiltonian
(19.18), admissible controls (19.19), (19.20), and cost (19.21). The natural

state space, source, and target in this problem will be found later.

19.3.1 Elimination of the Drift

We change variables in order to transfer the affine in control system (19.17),
(19.18) to a system linear in control, both in the general-complex and real-
resonant cases.

For 2 € C, denote by M;(£2) and N;(£2) the n x n matrices:

M;(2)k1 = 8j k811,102 4 841,605,122
Ni (kg = 0jk0j41,092 = G410, 05082, j=1, 2, (19.22)

where § is the Kronecker symbol: §; ; = 1if i = 7, 6;; = 01f ¢ # j. Let
A =diag(E1, Es, E3), w; = E;41 — Ej, j = 1,2. We will consider successively
the general-complex problem:

2
Wp=Hy, H=A+Y M), 2€C

j=1
and the real-resonant problem:

2
ip=Hy,  H=A+Y M@+ y) w0 €R.
j=1
In both cases, we first make the change of variable ¢ = e71'4 A to get:

2 2
iA=)"(Ade"AM;(2))) A= M;(e7""™2;) Al
j=1

j=1

The source & and the target 7 are preserved by this first change of coordinates.
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The General-Complex Case

In that case, we make the time-dependent cost preserving change of controls:

—itwi ). ().
e 2; = i42;.

Hence our problem becomes (after the change of notation A — 1/),

2
)= Nj(u) = Hey,  uj €C,
j=1

t1
/ (Ju1]® + [u2]?) dt — min,
0

1/)(0) € S(%la 1/)(t1) € 7?Cda
where
" 0 Ul(t) 0
H(C = —al(t) 0 Uz(t)
0 —as(t) 0

i — )

(19.23)

(19.24)

(19.25)

(19.26)

Notice that the matrices N;(1), N;(i) generate su(3) as a Lie algebra. The
cost and the relation between controls before and after elimination of the drift

are:

ty
7= [t + lustof?) ar
0
20(1) = wy ()= EV e/
(1)

us (t)ei[(Eg,—Eg)t+7r/2] )

The Real-Resonant Case

In this case £2; = u e’ iwsit+a5) and we have:
id = ZM w‘Ju] uj € R.

We make another diagonal, linear change of coordinates:

A=etg, L =diag(A1, A2, A3), A €R,

which gives:
2

i = ZMj (ei(%+>\j+1—>\j)uj) é.

j=1

(19.27)

(19.28)
(19.29)
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Choosing the parameters \; such that e (®iTAi+1=%) = i we get:

6=> Nj(uj)p, uj€R. (19.30)

j=1

The source and the target are also preserved by this change of coordinates.
Notice that the matrices N1(1), N2(1) in (19.30) generate so(3) as a Lie alge-
bra. This means that the orbit of system (19.30) through the points (1,0, 0)
is the real sphere S?. Hence (by multiplication on the right by €¥), the orbit
through the points (£e%%,0,0) is the set SZe'¢. Therefore (after the change of
notation ¢ — ) the real-resonant problem is well-defined on the real sphere

Sx = 5% = { = (1, ¥9,08) € RP| 9" = 0] + 45 + ¥ = 1},

as follows:

2

U= Ni(u)=Hev, €S u€R, (19.31)
/tl (u] +u3) dt — min, (19.32)
¥(0) € {(£1,0,0)}, Y(t1) € {(0,0,£1)}, (19.33)
where
0 Ul(t) 0
Hg = | —ui(t) 0  us(t) | . (19.34)
0 —Uz(t) 0

The cost is given again by formula (19.27) and the relation between controls
before and after elimination of the drift is:

Q5(t) = wy(t) STy = By - B
uj R =R, a; € [-m,m], j=1, 2.
In the following we will use the labels (¢) and (g) to indicate respectively
the general-complex problem and the real-resonant one. When these labels

are dropped in a formula, we mean that it is valid for both the real-resonant
and the general-complex problem. With this notation:

S(%l:{(ew’o’o)}’ W:{(anaeiw)}a
S ={(%1,0,0)}, T = {(0,0,£1)}.

19.3.2 Lifting of the Problems to Lie Groups

The problems (19.23)-(19.25) and (19.31)-(19.33) on the spheres S¢ = S
and Sg = S? are naturally lifted to right-invariant problems on the Lie groups
Mc = SU(3) and Mg = SO(3) respectively. The lifted systems read
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g=Hq, qeM. (19.35)
Denote the projections
mc : SU(3) — S°, mr : SO(3) — S*

both defined as
1

g—q| 0],
0

i.e., a matrix maps to its first column. We call problems (19.35) on the Lie
groups M problems upstairs, and problems (19.23), (19.31) on the spheres S
problems downstairs. We denote the problem upstairs by the label (*) in
parallel with the label (¢) for the problem downstairs.

Now we compute boundary conditions for the problems upstairs. Define
the corresponding sources and targets:

SY = 7T_1(Sd), T = 7T_1(Td).
The source 8¢ consists of all matrices ¢ € SU(3) with the first column in Sg:
al 0
=14l 4 | aeU(l), Ae€U(2), detg=1.

We denote the subgroup of SU(3) consisting of such matrices by S(U(1) x
U(2)). So the source upstairs in the general-complex problem is the subgroup

St =S(U(1) x U(2)).

Further, the matrix
010
g=1001
100

maps S(%l into 7zcd, thus
T¢ = a8t =q S(U(1) x U(2)).
Similarly, in the real case the source upstairs is
Sg = 5(0(1) x 0(2)),
the subgroup of SO(3) consisting of the matrices

al 0

9= ol 4 | aecOl), Ae€0(2), detg=1,
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and the target is
Te' = 1Sk =7 S(0(1) x 0(2)).

Summingup, we state the lifted problems. The real problem upstairs reads:

j=Hpqg= (X1 +usXs)q, ¢€SOB), wuy, us €R, (19.36)
g(0) € S¥,  q(t) € T,

¢
/ 1 (u% + u%) dt — min,
0

where

010 0
Xi=[-100], Xs=1{0
000 0

0 0
01]. (19.37)
~10

Notice that the real problem upstairs is a right-invariant sub-Riemannian
problem on the compact Lie group SO(3) with a corank one set of control
parameters U C so(3), i.e., a problem already considered in Sect. 19.2. We
have

001
U =span(Xy, X3), Ut = span(X3), Xs=| 000
-100

Moreover, the frame (19.37) is orthonormal w.r.t. the invariant scalar product
<X,Y>:—%tr(XY), X, Y €s0(3).
The complex problem upstairs is stated as follows:
G=Hoq= (w1 X1 4 usXs + us¥y + us¥s) g, g €5U@3), u; ER,

(19.38)
q(0) € S¢, q(t) € T,

t1
/ (u%—l—u%—i—u%—l—ui) dt — min.
0

Here X; and X5 are given by (19.37) and

040 000
Vvi=|i00), Yo=[003
000 0i0

The set of control parameters is

U= SpaH(Xl,Xz,Yl,Yz).
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Notice that its orthogonal complement is

UL = span(Zy, Zs, Zs, Zs),

where
001 001
7, = 0 00], Zo=1000],
—-100 100
1 00 000
Zs3=10—20], Zy=10:¢ 0 |,
000 00—z

and it is easy to check that U+ is a Lie subalgebra. So the general-complex
problem is of the form considered in Exercise 19.2. Again the distribution is
right-invariant and the frame (X1, Xa2,Y7,Y3) is orthonormal for the metric

(X,Y) = —% tr(XY), X, Y esu(3).

The problems downstairs and upstairs are related as follows. For any tra-
jectory upstairs ¢(t) € M satisfying the boundary conditions in M, its pro-
jection ¢ (t) = m(q(t)) € S is a trajectory of the system downstairs satisfying
the boundary conditions in S. And conversely, any trajectory downstairs ¢ (%)
with the boundary conditions can be lifted to a trajectory upstairs ¢(¢) with
the corresponding boundary conditions (such ¢(¢) is a matrix fundamental
solution of the system downstairs). The cost for the problems downstairs and
upstairs 1s the same. Thus solutions of the optimal control problems down-
stairs are projections of the solutions upstairs.

19.3.3 Controllability

The set of control parameters U in the both problems upstairs (19.38), (19.36)
satisfies the property [U/, U] = U*, thus

U+[U,U]=M=TuM. (19.39)

The systems upstairs have a full rank and are symmetric, thus they are com-
pletely controllable on the corresponding Lie groups SU(3), SO(3). Passing to
the projections m, we obtain that the both systems downstairs (19.23), (19.31)
are completely controllable on the corresponding spheres S°, SZ.

19.3.4 Extremals

The problems upstairs are of the form considered in Sect. 19.2 and Exer-
cise 19.2, but right-invariant not left-invariant ones. Thus normal extremals
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are given by formulas (19.14)—(19.16), where multiplication from the left is
replaced by multiplication from the right:

a) = const,

ap (t) = e~t2daL 42 ayy = ap (0),

q(t) = e7tL e gy, (19.40)
for any a; € UL, a¥; € U. Geodesics are parametrized by arclength iff
(afy, ad) = 1. (19.41)

Equality (19.39) means that in the problems upstairs, vector fields in the
right-hand sides and their first order Lie brackets span the whole tangent
space. Such control systems are called 2-generating. In Chap. 20 we prove
that for such systems strictly abnormal geodesics (i.e., trajectories that are
projections of abnormal extremals but not projections of normal ones) are not
optimal, see the argument before Example 20.19. Thus we do not consider
abnormal extremals in the sequel.

19.3.5 Transversality Conditions

In order to select geodesics meeting the boundary conditions, we analyze trans-
versality conditions upstairs.

Transversality conditions of PMP on T* M corresponding to the boundary
conditions

Q(O) € S’ q(tl) € Ta S, T C Ma
read as follows:
</\0,Tq(0)8> = </\t1,Tq(t1)T> =0. (19.42)

Via trivialization (18.12) of T* M, transversality conditions (19.42) are rewrit-
ten for the extremal (2(t),¢(t)) € M* x M in the form:

(2(0), 9(0) ™" Ty0)S ) = (x(t1), q(t1) ™" Tyer) T ) = 0.

Here the brackets { -, -} denote action of a covector on a vector. The transver-
sality conditions for the extremal (a(t),¢(¢)) € M x M read as follows:

(a(0), ¢(0) ™" TyyS ) = (altr), ¢(t1) ™" Tyey T ) = 0,

where the brackets denote the invariant scalar product in M.
For the right-invariant problem, transversality conditions are written in
terms of right translations:

(a(0), (Ty(0)8) q(0)™1) = (alta), (Tyen)T) g(t1) ™" ) = 0. (19.43)

The following features of transversality conditions for our problems up-
stairs simplifies their analysis.
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Lemma 19.3. (1) Transversality conditions at the source are required only at
the identity.

(2) Transversality conditions at the source imply transversality conditions at
the target.

Proof. Ttem (1) follows since the problem is right-invariant and the source §*
is a subgroup.

Ttem (2). Let A\; € T;‘(t)M be a normal extremal for the problem upstairs
such that ¢(0) = Id. We assume the transversality conditions at the source:

(Ao, T1aS™) = 0,
and prove the transversality conditions at the target:
(Meys Ty T) = 0. (19.44)

Notice first of all that since q(t1) € T% = §8%, then g~ ¢(t1) € §* and

T =g8" =7 q(t)S" = q(t1)S".
Then transversality conditions at the target (19.44) read

Aty Tyeny (9(2)S")) = 0.

In order to complete the proof, we show that the function

1(t) = (&, Ty (a(0)S8Y)), 1 e[0, 4],

is constant. Denote the tangent space S = T198". Then we have:

I(t) = (v, a(t)S) = (2 (1), () Sa() ")
= (2(1), (Adq(1)):5) = {a(t), (Ad ¢(1))5)
= ((Ade™")a(0), (Ade~'*)(Ad e="*(0)5)

by invariance of the scalar product

= (a(0), (Ade™")8) = ((Ade™*®)a(0), 5) = (a(0), 5)
— 1(0).

That is, I(t) = const, and item (2) of this lemma follows. O

19.3.6 Optimal Geodesics Upstairs and Downstairs

Similarly to N1, Ny (see formula (19.22)), let us define Ny 3 by:
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' 0 0 aget?s
N173(a36293) = 0 ) 0 0
—ase” 0 0

Let us set, in the real-resonant case
agy = ay N1 (1) 4 agNo(1), a; = azNy 3(1).
In the general complex case, set
a[O] = Nl(alewl) + Nz(azeiGQ), G = ayls+ agly + leg(agew?’).

Here a; € R and 6; € [—m, @].

The Real-Resonant Case

Proposition 19.4. For the real-resonant problem, transversality condition at
the identity in the source {a,TiaSy) = 0 means that as = 0.

Proof. We have

0[0 0
TaSg = 000 -5 |, Bek,,
0/8 0

thus the equation {a,71aSg) = 0 is satisfied for every § € R if and only if
as = 0. O

From Proposition 19.4 and condition (19.41), one gets the covectors to be
used in formula (19.40):

0 =+1 as
atf=[F1 0 0]. (19.45)
—as 0 0

Proposition 19.5. Geodesics (19.40) with the initial condition ¢(0) = Id and
matriz a given by (19.45) reach the target Tg' for the smallest time (ar-
clength) [t|, if and only if a3 = %1//3. Moreover, the 4 geodesics (corre-
sponding to a* and to the signs £ in as) have the same length and reach the
target at the time

Proof. Computing ¢(t) = e=artelartad)t with g given by formula (19.45),
and recalling that
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one gets for the square of the third component of the wave function:

(cos(tas) sin () asy — cos (t7) sin(t as) 72)2

(Us(t)” = ; . (19.46)
v
v =1/1+d2.
Then the following lemma completes the proof of this proposition. a
Lemma 19.6. Set f, = cos(ta)sin(tv/1 + az) L — cos(ty/1 + a?)sin(ta),
then |fa|<1 Moreover, |fs| = 1 zﬁm— i+k_"<1 k # 0 and
— 1
t = \/1+—2 In particular, the smallest |t| is obtained for k = £1, a = :I:\/g,
t = :l:ﬂ—z\/3~
Proof. Set A = 1+ -2 6 =11+ a?, then:
fa(t) = Acos(A9) sin(f) — cos () sin(A0)
= {(Acos(A0),sin(A0)), (sin(@), — cos(6)))
= <Ul, Uz>.
Both vy, vy have norm < 1 and |f,| < 1. Hence, for |f,] = 1, we must have

|vi] = |ve| = 1, v1 = v, Tt follovvs that cos(Af) = 0 and cos(H) = +1. Hence
0=kr, A0 =5 +km A= ﬂ + ?. Therefore, ‘ﬂ + ?‘ = A < 1. Conversely,

choose k, k' meeting this condition and # = kn. Then cos(0) = £1, sin(Af) =
+1, fa(t ) +1. Now, |t| = \/+— and the smallest |t| is obtained for k= =41

(iftk=0,6 =0 and f,(¢t) = 0). Moreover, ﬂ—k ?
for (k, k) (1,0) or (1,—1) or (—=1,0) or (—1,—1). In all cases, || = 1,
a=+ \/_,

and t = + ”\/3 a
Let us fix for instance the sign — in (19.45) and az = +1/+/3. The expres-
sions of the three components of the wave function are:

1(t) = cos (%)3,

W (t) = ? sin (%) :

Vs(l) = —sin (%)3

Notice that this curve is not a circle on S2.
Controls can be obtained with the following expressions:

< 1 is possible only

wr = (g™ 1,0, us = (447 ")2,3.
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We get:

wi (1) = — cos (%) ,
us(t) = sin (%) .

Using conditions (19.19)—(19.20) (resonance hypothesis), we get for the exter-
nal fields:

1 (t) = —cos (t/\/_) i(wit+ar)
§25(t) = sin (t/\/_) i(wat+as)

Notice that the phases a, aq are arbitrary.

The General-Complex Case

Proposition 19.7. For the general-complex problem, transversality condition
at the identity in the source {a, T1aS¢) = 0 means that as = a4 = a5 = 0.

Proof. We have:

iOé1| 0 0
TiaS¢ = 0 |i{ag —a1) fr+if2 |, a1, as, B1, o €ER
61 +ifs —iay

The equation {a, T1aS¢) = 0 is satisfied for every aq, as, 51, f2 € Rif and only
ifa2:a4:a5:0. O

The covector to be used in formula (19.40) is then:

0 ei€1 a36i€3
afrfs) — [ _e=itr o ) (19.47)
—age” s 0 0

Proposition 19.8. The geodesics (19.40), with a given by formula (19.47)
(for which q(0) =1d), reach the target T for the smallest time (arclength) |t|,
of and only iof as = :I:l/\/g. Moreover, all the geodesics of the two parameter
Jamily corresponding to 01,05 € [—m, 7|, have the same length:

Proof. The explicit expression for |v3]? is given by the right-hand side of
formula (19.46). The conclusion follows as in the proof of Proposition 19.5.

O
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The expressions of the three components of the wave function and of op-
timal controls are:

b1(l) = cos (%)3
¢@@)=-—Z§snl<%%)e—w%

Y3(t) = —sin (%) 36_i€3’

and
uy(t) = cos (t/\/g) et
uz(t) = —sin (t/\/g) eilfa=t)

Notice that all the geodesics of the family described by Proposition 19.8
have the same length as the 4 geodesics described by Proposition 19.5. This
proves that the use of the complex Hamiltonian (19.26) instead of the real
one (19.34) does not allow to reduce the cost (19.27). We obtain the following
statement.

Proposition 19.9. For the three-level problem with complex controls, opti-
mality implies resonance. More precisely, controls §21, {25 are optimal if and
only if they have the following form:

02, (t) = cos(t/V3)el(BamEntten]
25(t) = sin(t/V/3)el(Ea—E2)t+ea]

where @1, s are two arbitrary phases. Here the final time ty is fized in such a
way sub-Riemannian geodesics are parametrized by arclength, and it is given

bytlz\/g

2

19.4 A Time-Optimal Problem on SO(3)

Consider a rigid body in R3. Assume that the body can rotate around some
axis fixed in the body. At each instant of time, orientation of the body in 3
defines an orthogonal transformation ¢ € SO(3). We are interested in the
length of the curve in SO(3) corresponding to the motion of the body. Choose
a natural parameter (arc length) ¢, then the curve ¢ = ¢(¢) satisfies the ODE

q=qf,

where
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fESO(3), |f|:1a

is the unit vector of angular velocity corresponding to the fixed axis of rotation
in the body. The curve is a one-parameter subgroup in SO(3):

q(t) = q(0)e/,

and we obviously have no controllability on SO(3).
In order to extend possibilities of motion in SO(3), assume now that there
are two linearly independent axes in the body:

I, g €s0(3), Ifl=lg] =1, FAg#0,

and we can rotate the body around these axes in certain directions. Now we
have a control system
. Jaf
q9= )
q9

which is controllable on SO(3):
Lie(qf,q9) = span(qf, q9,4[f, 9]) = qs0(3) = T, 50(3).
In order to simplify notation, choose vectors
a, b €so(3)

such that
f=a+b, g=a—b.

Then the control system reads
qd=qla£d).

We are interested in the shortest rotation of the body steering an initial ori-
entation ¢y to a terminal orientation ¢;. The corresponding optimal control
problem is

q(0) = q(0),  q(t1) = qu,

t1
l:/ |¢| dt — min.
0

Since |¢| = |a£b| = 1, this problem is equivalent to the time-optimal problem:
t1 — min.
Notice that

(a,b)y ={(f +9)/2,(f—9)/2) =0. (19.48)
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Moreover, by rescaling time we can assume that

la] = 1. (19.49)
Passing to convexification, we obtain the following final form of the problem:

q = qla+ ub), ue[=1,1], ¢q€S0(3),

q(0) = qo, q(th) = q1,
t1 — min,

where a,b € so(3) are given vectors that satisfy equalities (19.48), (19.49).
Now we study this time-optimal problem.

By PMP, if a pair (u(-),q(-)) is optimal, then there exists a Lipschitzian
curve z(t) € so(3) such that:

{q ala+ u(t)p),
& =[x, a4+ u(t)b],
)

0(0) = (). a+ u(D)h) = max(e(t).a+ ) > 0

moreover,

hu(y(x(t)) = const .
The maximality condition for the function
v (2(t), a4+ vb) = (x(l), a) + v{z(t),b), ve[-1,1],
is easily resolved if the switching function
— {x, bY, T EM,

does not vanish at x(¢). Indeed, in this case optimal control can take only
extremal values +1:

(x(t),0) #0 = wu(t) =sgn{x(t),b).

If the switching function has only isolated roots on some real segment, then
the corresponding control u(t) takes on this segment only extremal values.
Moreover, the instants where u(t) switches from one extremal value to another
are isolated. Such a control is called bang-bang.

Now we study the structure of optimal controls. Take an arbitrary extremal
with the curve x(t) satisfying the initial condition

(£(0), ) # 0.
Then the ODE
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& =[z,at], + = sgn{z(0),b)

is satisfied for ¢ > 0 until the switching function {z(¢),b) remains nonzero.
Thus at such a segment of time

l‘(t) — e—t ad(aﬂ:b)x(o).

We study the switching function {z(¢), b). Notice that its derivative does not
depend upon control:

%@(t), b) = {[z(1), a + u(t)t],b) = —(2(1), [a, b]).

If the switching function vanishes:

(x(1),0) =0

at a point where
((t), [a,b]) # 0,

then the corresponding control switches, i.e.; changes its value from +1 to —1
or from —1 to 4+1. In order to study, what sequences of switchings of opti-
mal controls are possible, it is convenient to introduce coordinates in the Lie
algebra M.

In view of equalities (19.48), (19.49), the Lie bracket [a,b] satisfies the
conditions

[a,b] L a, [a,b] L b, [[a, b]| = |b],

this follows easily from properties of cross-product in R3. Thus we can choose
an orthonormal basis:

s0(3) = span(ey, €2, €3)

such that
a=es, b= ves, [a,b] = veq, v > 0.

In this basis, switching points belong to the horizontal plane span(eq, ea).

Let #(7g) be a switching point, i.e., t = 7y is a positive root of {x(t), b). As-
sume that at this point control switches from +1 to —1 (the case of switching
from —1 to +1 is completely similar, we show this later). Then

(#(70),b) = —=(&(m), [a,b]) <0,

thus
(z(m0),e1) > 0.

Further, since the Hamiltonian of PMP is nonnegative, then

hu(ro) (2(70)) = (2(70), @) = (2(70), €2) > 0.

So the point #(7g) lies in the first quadrant of the plane span(ey, es):
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z(7g) € cone(eq, ea).

Let 2(71) be the next switching point after 5. The control has the form

1, tE[To—E,TQ],

u(t) = {_1’ t € [r0, 7],

and the curve z(¢) between the switchings is an arc of the circle obtained by
rotation of the point #(7y) around the vector ¢ — b = es — ves:

z(t) = e_tad(a_b)x(ro), t € [ro, 1]

The switching points z(7g), #(71) satisfy the equalities:

Consequently,
(x(70),e1) = —(z(m1), e1),

i.e., 2(m) is the reflection of #(ry) w.r.t. the plane span(es, e3). Geometrically
it is easy to see that the angle of rotation # from x(ry) to #(r1) around a — b
1s bounded as follows:

6 € [, 27|,

see Fig. 19.2. The extremal values of § are attained when the point () is
on the boundary of cone(eq, ea):

z(rg) ERjyer = 0=m,
z(rg) ERjes = 0 =2m.

In the second case the point x(t), as well as the point ¢(t), makes a complete
revolution at the angle 2w, Such an arc cannot be a part of an optimal trajec-
tory: it can be eliminated with decrease of the terminal time ¢;. Consequently,
the angle between two switchings is

0 € [m,2m).

Let #(72) be the next switching after z (7). The behavior of control after
the switching #(m) from —1 to 41 is similar to the behavior after z(7).
Indeed, our time-optimal problem admits the symmetry

b— —b.
After the change of basis

€3 — —es, €1 = —eq, €9 > €9
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b=ves

€3

Fig. 19.2. Estimate of rotation angle

the curve x(¢) is preserved, but now it switches at () from +1 to —1. This
case was already studied, thus the angle of rotation from z(m) to z(m) is
again 0, moreover, x(72) = #(7g). The next switching point is z(73) = z(m),
and so on.

Thus the structure of bang-bang optimal trajectories is quite simple. Such
trajectories contain a certain number of switching points. Between these
switching points the vector z(¢) rotates alternately around the vectors a + b
and a — b at an angle 6 € [r,27) constant along each bang-bang trajectory.
Before the first switching and after the last switching the vector z(¢) can ro-
tate at angles 6y and #; respectively, 0 < 8y, 61 < 8. The system of all optimal
bang-bang trajectories is parametrized by 3 continuous parameters 8y, 6, 61,
and 2 discrete parameters: the number of switchings and the initial control
sgn{x(0), b).

An optimal trajectory can be not bang-bang only if the point #(ry) cor-
responding to the first nonnegative root of the equation {x(¢),b) = 0 satisfies
the equalities

((m0), b) = (x(70), [a, b]) = 0.
Then
z(79) = pea, w# 0.
There can be two possibilities:

(1) either the switching function {z(t), b) takes nonzero values for some t > 7
and arbitrarily close to 7,

(2) or
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(z(t),6)=0,  t€[rn,m+e], (19.50)

for some ¢ > 0.

We start from the first alternative. From the analysis of bang-bang tra-
jectories it follows that switching times cannot accumulate to 7y from the
right: the angle of rotation between two consecutive switchings # > 7. Thus
in case (1) we have

(x(t),b) >0, t € [0, 70+ 6],

for some ¢ > 0. That is, 7 is a switching time. Since x(7y) € Rey, then the
angle of rotation until the next switching point is # = 27, which is not optimal.
So case (1) cannot occur for an optimal trajectory.

Consider case (2). We differentiate identity (19.50) twice w.r.t. ¢:

d

E<$(t)ab> —{(x(t),[a,b]) =0,
d

77, [a,0]) = ([x(t), a+ u(®)b, [a, b]) = u(t)([2(1), 8], [a, b])
= 0.

Then x(t) = u(t)es, t € [10, 70 + €], thus

u(t)<[aa b]a [aa b]> =0,

1.e.
u(t) =0, t € [r, 70+ €]

This control is not determined directly from PMP (we found it with the help
of differentiation). Such a control is called singular.

Optimal trajectories containing a singular part (corresponding to the con-
trol u(t) = 0) can have an arc with « = +1 before the singular part, with
the angle of rotation around a &+ b less then 27; such an arc can also be after
the singular one. So there can be 4 types of optimal trajectories containing a
singular arc:

+04, +0-, —04, —0—.

The family of such trajectories 1s parametrized by 3 continuous parameters
(angles of rotation at the corresponding arcs) and by 2 discrete parameters
(signs at the initial and final segments).

So we described the structure of all possible optimal trajectories: the bang-
bang one, and the strategy with a singular part. The domains of points in
SO(3) attained via these strategies are 3-dimensional, and the union of these
domains covers the whole group SO(3). But it is easy to see that a sufficiently
long trajectory following any of the two strategies is not optimal: the two
domainsin SO(3) overlap. Moreover, each of the strategies overlaps with itself.
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In order to know optimal trajectory for any point in SO(3), one should study
the interaction of the two strategies and intersections of trajectories that follow
the same strategy. This interesting problem remains open.

Notice that the structure of optimal trajectories in this left-invariant time-
optimal problem on SO(3) is similar to the structure of optimal trajectories
for Dubins car (Sect. 13.5). This resemblance is not accidental: the problem
on Dubins car can be formulated as a left-invariant time-optimal problem on
the group of isometries of the plane.






20

Second Order Optimality Conditions

20.1 Hessian

In this chapter we obtain second order necessary optimality conditions for
control problems. As we know, geometrically the study of optimality reduces
to the study of boundary of attainable sets (see Sect. 10.2). Consider a control
system

q = fulq), geM, velU=intU CR™ (20.1)

where the state space M 1is, as usual, a smooth manifold, and the space of
control parameters U is open (essentially, this means that we study optimal
controls that do not come to the boundary of U, although a similar theory
for bang-bang controls can also be constructed). The attainable set Ag, (¢1)
of system (20.1) is the image of the endpoint mapping

t1
Fey v u(-) — goo e_x_f)/ Ju() dt.
0

We say that a trajectory ¢(¢), ¢ € [0,11], is geometrically optimal for sys-
tem (20.1) if it comes to the boundary of the attainable set for the terminal
time ¢7:

q(t1) € 0A, (11).

Necessary conditions for this inclusion are given by Pontryagin Maximum
Principle. A part of the statements of PMP can be viewed as the first order
optimality condition (we see this later). Now we seek for optimality conditions
of the second order.

Consider the problem in a general setting. Let

F:U—->M

be a smooth mapping, where i is an open subset in a Banach space and M
is a smooth n-dimensional manifold (usually in the sequel U is the space of
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admissible controls L ([0,%1],U) and F' = F;, is the endpoint mapping of a
control system). The first differential

DyF : TuU — TryM

is well defined independently on coordinates. This is not the case for the second
differential. Indeed, consider the case where wu is a regular point for F', i.e., the
differential D, F' is surjective. By implicit function theorem, the mapping F'
becomes linear in suitably chosen local coordinates in ¢ and M, thus it has
no intrinsic second differential. In the general case, well defined independently
of coordinates is only a certain part of the second differential.

The differential of a smooth mapping F : &f — M can be defined via the
first order derivative

DyFuv= di F(p(e)) (20.2)

€ e=0
along a curve ¢ : (—eg,£9) = U with the initial conditions
p(0)=uel, P(0)=veT, U.
In local coordinates, this derivative is computed as
—¢ > = ¢(0).
Toe =90
In other coordinates § in M, derivative (20.2) is evaluated as

drF ,_dqdr
dugp_dqdugp'

Coordinate representation of the first order derivative (20.2) transforms under

changes of coordinates as a tangent vector to M — it is multiplied by the
di
Jacobian matrix <.
dqg
The second order derivative
d2
- F 20.3
7| P, (203)

p(0)=uel, P(0)=veT, U,
1s evaluated in coordinates as

PE oy OF
dul ¥ du’

Transformation rule for the second order directional derivative under changes
of coordinates has the form:
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d?ﬁ(, ,)+dﬁ.._dq~ dZF(, ,)+dF..
duz 0¥ dugp_dq duz 0¥ du”
d’G§ (dF . dF .

— | —, — . 20.4

+dq2 (dugp’dugp) ( )

The second order derivative (20.3) transforms as a tangent vector in TryM
only if ¢ = v € Ker D, F, i.e., if term (20.4) vanishes. Moreover, it is deter-
mined by u and v only modulo the subspace Im D, F', which is spanned by

dF .
the term —¢.
u
Thus intrinsically defined 1s the quadratic mapping

Ker Dy F — TpuyM/Tm D, F,
d2
v s Fp(e)) mod Im Dy F. (20.5)
e=0

After this preliminary discussion, we turn to formal definitions.
The Hesstan of a smooth mapping F' : U — M at a point w € U is a
symmetric bilinear mapping

Hess, I : Ker D, I' x Ker Dy F — Coker Dy I = Tp,yM/Im D, F.  (20.6)

In particular, at a regular point Coker Dy, F' = 0, thus Hess, /' = 0. Hessian
is defined as follows. Let
v, w € Ker D, F

and
A€ (Im Dy F)* C Tp M.

In order to define the value
AHessy, F'(v, w),
take vector fields
V., W€ Vecll, V(u) =v, W(u) =w,

and a function
aECOO(M), dF(u)a:/\
Then

AHessy, F'(v, w) ! VoW (aoF)|,. (20.7)

We show now that the right-hand side does not depend upon the choice
of V, W, and a. The first Lie derivative is

W(aoF)={dp(.ya, FLW(-)),
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and the second Lie derivative V oW (ao F)|, does not depend on second
derivatives of @ since F.W (u) = 0. Moreover, the second Lie derivative obvi-
ously depends only on the value of V' at u but not on derivatives of V at u.
In order to show the same for the field W, we prove that the right-hand side
of the definition of Hessian is symmetric w.r.t. V and W:
(WoV(aoF)—VoW(ao F))l, = [W,V](ao F)],
N —’
:A

since A L Tm D, F'. We showed that the mapping Hess, F' given by (20.7) is
intrinsically defined independently of coordinates as in (20.6).

Exercise 20.1. Show that the quadratic mapping (20.5) defined via the sec-
ond order directional derivative coincides with Hess, F'(v, v).

If we admit only linear changes of variables in U, then we can correctly
define the full second differential

D.F : Ker DyF x Ker Dy F — Tp M
in the same way as Hessian (20.7), but the covector is arbitrary:
A€ Tp M,
and the vector fields are constant:
V=v, W =w.

The Hessian is the part of the second differential independent on the choice
of linear structure in the preimage.

Exercise 20.2. Compute the Hessian of the restriction F|f_1(0 of a smooth
mapping F to a level set of a smooth function f. Consider the restriction
of a smooth mapping F' : U — M to a smooth hypersurface S = f=1(0),
f U =R df #0, and let w € S be a regular point of F'. Prove that the
Hessian of the restriction is computed as follows:

AHess, (Flg) = ADZF — d2f, ALImDy Flg, A€ TpM\{0},
and the covector A 1s normalized so that

ADWF = du f.
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20.2 Local Openness of Mappings

A mapping F' : U — M is called locally open at a point u € U if
F(u) €int F'(Oy)

for any neighborhood O, C U of u. In the opposite case, i.e., when
F(u) € 0F(0y)

for some neighborhood O, the point u is called locally geometrically optimal
for F.

A point u € U is called locally finite-dimensionally optimal for a map-
ping F' if for any finite-dimensional smooth submanifold S C U, u € S, the
point u is locally geometrically optimal for the restriction F|g.

20.2.1 Critical Points of Corank One

Corank of a critical point u of a smooth mapping F' is by definition equal to
corank of the differential D, F'":

corank D, ' = codimIm D, F.

In the sequel we will often consider critical points of corank one. In this case
the Lagrange multiplier

AXe(ImD,F)t,  A#0,
is defined uniquely up to a nonzero factor, and

AHess, ' : Ker D, F x Ker D, F - R

is just a quadratic form (in the case corank Dy F > 1, we should consider a
family of quadratic forms).

Now we give conditions of local openness of a mapping F' at a corank one
critical point u in terms of the quadratic form A Hess, F'.

Theorem 20.3. Let F' : U — M be a continuous mapping having smooth
restrictions to finite-dimensional submanaifolds of U. Let w € U be a corank
one critical point of F, and let A € (Im D, F)*, X # 0.

(1) If the quadratic form AHess, I is sign-indefinite, then F is locally open at
u.

(2) If the form AHess, F' is negative (or positive), then u is locally finite-
dimenstonally optimal for F'.

Remark 20.4. A quadratic form is locally open at the origin iff it is sign-
indefinite.
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Proof. The statements of the theorem are local, so we fix local coordinates
in 4 and M centered at u and F(u) respectively, and assume that U is a
Banach space and M = R"™.

(1) Consider the splitting into direct sum in the preimage:

T.U = E P Ker D, F, dimFE =n—1, (20.8)
and the corresponding splitting in the image:
TrwyM =Im D, F &V, dimV =1. (20.9)

The quadratic form A Hess,, F' is sign-indefinite, i.e., it takes values of both
signs on Ker Dy F'. Thus we can choose vectors

v, w € Ker D, F

such that
AE) (v,v) =0, AE) (v, w) # 0,

we denote by F’, F'" derivatives of the vector function F in local coordinates.

Indeed, let the quadratic form @ = AF) take values of opposite signs at

some vy, w € Ker D, F'. By continuity of (), there exists a nonzero vector v €

span(vg, w) at which Q(v, v) = 0. Moreover, it is easy to see that Q(v, w) # 0.
Since the first differential is an isomorphism:

D,F=F,: FE—=ImD,F =)\,
there exists a vector g € E such that
/ 1 1"
Flag = —§Fu (v,v).
Introduce the following family of mappings:

B,  ExBR M, ccR,
O (x,y) = F(e®v + 3yw + e*xo + ), rel, yeR,
notice that

Im®. CImF

for small ¢. Thus it is sufficient to show that @, 1s open. The Taylor expansion
O (x,y) = (Flox 4+ yF! (v, w)) + O(e%), e —0,

implies that the family }5@5 1s smooth w.r.t. parameter € at £ = 0. For e =0
this family gives a surjective linear mapping. By implicit function theorem,
the mappings }5@5 are submersions, thus are locally open for small ¢ > 0.
Thus the mapping F' is also locally open at u.
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(2) Take any smooth finite-dimensional submanifold S C U, u € S. Simi-
larly to (20.8), (20.9), consider the splittings in the preimage:

S=T,S=L&KerDy, Flg,
and 1n the image:

M = TF(u)M =Im D, F|S e W,
dimW = k = corank D, F'|s > 1.
Since the differential D, F' : E — Im D, F is an isomorphism, we can choose,

by implicit function theorem, coordinates (z,y) in S and coordinates in M
such that the mapping F' takes the form

x
Fle,y) = , x €L, € Ker D, F|..
(=.9) (so(l‘, y)) / s
Further, we can choose coordinates ¢ = (¢1,...,¢x) in W such that

AF(x,y) = o1(2,v).

Now we write down hypotheses of the theorem in these coordinates. Since

ImD, F|;NW = {0}, then
Dio,0y¢1 = 0.
Further, the hypothesis that the form A Hess, F' is negative reads

82 g01
9% 10,0

< 0.

Then the function
©1(0,y) <0 for small y.

Thus the mapping F'|4 is not locally open at u. a

There holds the following statement, which is much stronger than the
previous one.

Theorem 20.5 (Generalized Morse’s lemma). Suppose that uw € U is a
corank one critical point of a smooth mapping F : U — M such that Hess, F
15 a nondegenerate quadratic form. Then there exist local coordinates in U and
M in which F' has only terms of the first and second orders:

1
F(z,v) = DyFz+ §Hessu F(v,v),
(z,v) €U = E D Ker D, F.

We do not prove this theorem since it will not be used in the sequel.
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20.2.2 Critical Points of Arbitrary Corank

The necessary condition of local openness given by item (1) of Theorem 20.3
can be generalized for critical points of arbitrary corank.

Recall that positive (negative) index of a quadratic form @ is the maximal
dimension of a positive (negative) subspace of Q:

indy Q = max{dimL | Qloyjo > 0} ,
ind_ Q= max{dimL | Qloyiop < 0} .

Theorem 20.6. Let F' : U — M be a continuous mapping having smooth
restrictions to finite-dimensional submanifolds. Let u € U be a critical point

of F' of corank m. If
ind_ AHess, I' > m VALImD,F, A#£0,
then the mapping I is locally open at the point u.

Proof. First of all, the statement is local, so we can choose local coordinates
and assume that ¢/ is a Banach space and v = 0, and M = R” with F/(0) = 0.

Moreover, we can assume that the space {f is finite-dimensional, now we
prove this. For any A L Im D, F', A # 0, there exists a subspace

E\CU, dim E, = m,
such that
AHeSSu F|EA\{0} < 0
We take A from the unit sphere

sm=1 = {/\ € (Im D F)* ||\ = 1}.

For any A € S™ !, there exists a neighborhood Oy C S™~!, X\ € O,, such
that Ey: = E, for any A’ € O,, this easily follows from continuity of the form
A Hess,, F' on the unit sphere in F). Choose a finite covering:

N
st =] on.

i=1

Then restriction of F' to the finite-dimensional subspace Zf\;l Ey, satisfies the
hypothesis of the theorem. Thus we can assume that I/ is finite-dimensional.
Then the theorem is a consequence of the following Lemmas 20.7 and 20.8. O

Lemma 20.7. Let F' : RY — R be a smooth mapping, and let F(0) = 0.
Assume that the quadratic mapping



20.2 Local Openness of Mappings 301
() = Hessg F' : Ker Do F' — Coker Do I
has a reqular zero:
JveKer DoF s.t. Q(v) =0, D,Q surjective.
Then the mapping F has reqular zeros arbitrarily close to the origin in RY.

Proof. We modify slightly the argument used in the proof of item (1) of The-
orem 20.3. Decompose preimage of the first differential:

BN = E @ Ker Dy F, dimE =n—m,

then the restriction
DoF : E—=1ImDyF

is one-to-one. The equality Q(v) = Hessg F'(v) = 0 means that
F(v,v) € Im Do F.

Then there exists xg € £ such that
Fiag = —%Fé’(v, v).

Define the family of mappings

O (x,y) = F(e®v + 3y + e*wg + °1), rell, yeKerDyF.

The first four derivatives of @, vanish at ¢ = 0, and we obtain the Taylor
expansion

1

6—5@5(1‘, y) = Flaz + Fi(v,y) + O(g), ¢ —0.

Then we argue as in the proof of Theorem 20.3. The family }5@5 1s smooth and
linear surjective at ¢ = 0. By implicit function theorem, the mappings }5@5 are
submersions for small £ > 0, thus they have regular zeros in any neighborhood
of the origin in RY. Consequently, the mapping F also has regular zeros
arbitrarily close to the origin in R, O

Lemma 20.8. Let Q : RY — R™ be a quadratic mapping such that
ind_ AQ > m YAeR™, X#£0.
Then the mapping @ has a reqular zero.

Proof. We can assume that the quadratic form ¢ has no kernel:

Qv, )£0  Vu0. (20.10)
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If this is not the case, we factorize by kernel of Q. Since D,Q = 2Q(v, -),
condition (20.10) means that D, @ # 0 for v # 0.

Now we prove the lemma by induction on m.

In the case m = 1 the statement i1s obvious: a sign-indefinite quadratic
form has a regular zero.

Induction step: we prove the statement of the lemma for any m > 1 under
the assumption that it is proved for all values less than m.

(1) Suppose first that Q~1(0) # {0}. Take any v # 0 such that Q(v) = 0.
If v is a regular point of @), then the statement of this lemma follows. Thus
we assume that v is a critical point of (. Since D, @ # 0, then

rank D, Q = k, 0<k<m.
Consider Hessian of the mapping @:
Hess, Q : Ker D,Q — R™™*,

The second differential of a quadratic mapping is the doubled mapping itself,
thus

AHess, Q = 2 /\Q|KerDUQ .
Further, since ind_ AQ > m and codim Ker D, @ = k, then

ind_ AHess, Q@ = ind— AQ|g..p o > m — k.

By the induction assumption, the quadratic mapping Hess, () has a regular
zero. Then Lemma 20.7 applied to the mapping @ yields that @ has a regular
zero as well. The statement of this lemma in case (1) follows.

(2) Consider now the second case: Q~1(0) = {0}.

(2.a) Tt is obvious that Im @ is a closed cone.

(2.b) Moreover, we can assume that Im @ \ {0} is open. Indeed, suppose
that there exists

r=Q(v) € 0ImQ, z #£0.

Then v is a critical point of @, and in the same way as in case (1) the induction
assumption for Hess, () yields that Hess, @) has a regular zero. By Lemma 20.7,
@ is locally open at v and Q(v) € intIm Q. Thus we assume in the sequel that
Im@ \ {0} is open. Combined with item (a), this means that @ is surjective.
(2.c) We show now that this property leads to a contradiction which proves
the lemma.
The smooth mapping

Q . SN—l _)Sm—l’ Q(U)

Q] ATIOT

is surjective. By Sard’s theorem, it has a regular value. Let z € S™~! be a
regular value of the mapping Q/|Q|.

v ESN_l,
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Now we proceed as follows. We find the minimal @ > 0 such that
Qv) = ax, ve sVt

and apply optimality conditions at the solution vy to show that ind_ AQ <
m — 1, a contradiction.

So consider the following finite-dimensional optimization problem with
constraints:

a—min, Q(v) =ax, a>0, vesh-L (20.11)

This problem obviously has a solution, let a pair (vg, ag) realize minimum. We
write down first- and second-order optimality conditions for problem (20.11).
There exist Lagrange multipliers

(v,A) #0, veR, AeT;

anRma
such that the Lagrange function
Ly, A\ a,v) =va+ AQv) — ax)

satisfies the stationarity conditions:

g_i =v—Ax=0, (20.12)
oL

= == /\Dv ~n—1 = U.

81) (vo,a0) 0Q|S 0

Since vg is a regular point of the mapping @/|Q|, then v # 0, thus we can set
v=1.

Then second-order necessary optimality condition for problem (20.11) reads

AHessy, Q|gn-1 > 0. (20.13)

Recall that Hessian of restriction of a mapping is not equal to restriction
of Hessian of this mapping, see Exercise 20.2 above.

Exercise 20.9. Prove that

A (Hess, Qlgnv-1) (u) = 2(AQ(u) — lu|*AQ(v)),
ve SNl weKerD, Qlgn-1 -

That is, inequality (20.13) yields

AQ(u) — [ul*AQ(v0) > 0, u € Ker Dy, Qlgn-r



304 20 Second Order Optimality Conditions

thus
AQ() > [ulAQ(v0) = JulPans = [ufaow = [ufas > 0,

1.e.

AQ(u) >0,  u€Ker Dy, Qlgnos -

Moreover, since vg ¢ Ty, SV 71, then
AQ|, >0, L =XKer Dy, Q|lsv-1 & Rup.

Now we compute dimension of the nonnegative subspace L of the quadratic

form AQ@. Since vq is a regular value of @, then
dimImDUDQ =m-1.
Q|

Thus Im Dy, Q|g~—-1 can have dimension m or m—1. But vy is a critical point
of Q|gw-1, thus
dimIm Dy, Q|gn-r =m —1

and
dimKer Dy, Qlgv-2 =N —-1—-(m—1)=N —m.

Consequently, dim L = N — m + 1, thus ind_ AQ < m — 1, which contradicts
the hypothesis of this lemma.

So case (c) is impossible, and the induction step in this lemma is proved.

O

Theorem 20.6 1s completely proved.

20.3 Differentiation of the Endpoint Mapping

In this section we compute differential and Hessian of the endpoint mapping
for a control system

q = fulq), wuelUCR™ U=itU, q€ M, (20.14)
q(o) = 4o,
u(+) €U = Leo([0,44],U),

with the right-hand side f,(¢) smooth in (u, ¢). We study the endpoint map-
ping

Ft1 :U—)M,

t1
Fey v u(-) e qoo e_x_f)/ Ju) dt
0
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in the neighborhood of a fixed admissible control
a=u(-)elU.

In the same way as in the proof of PMP (see Sect. 12.2), the Variations formula
yields a decomposition of the flow:

t1
Ftl(u) = {qp©° e_x_f) / gt,u(t) dt [e] Ptl,
0

where

t
——
P ZeXp/ Ja(ry dr,
0
Jtu = Pt:l(fu - fﬂ(t))
Further, introduce an intermediate mapping

th U — M,
t1
—
Gy @ u—qpo exp/ Gt ,u(e) dt.
0

Then
Ftl(u) = Ptl(th(u))’
consequently,
DﬂFtl = Ptl*Dﬂth,
Hessg Fy, = Pr .« Hessg Gy,

so differentiation of Iy, reduces to differentiation of GG;,. We compute deriva-
tives of the mapping Gy, using the asymptotic expansion of the chronological
exponential:

a(Gy, (u))

t1
=4qoo°o Id+/ gT,u(T) dr + // grg,u(m) o grl,u(ﬁ) dTl dTZ a
0 0<72<1 <t

+O(|lu—al|}_). (20.15)

Introduce some more notations:
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g’ = i q
T Ouan

32
n_ Y
gT - 6U2 a(T) gT,ua
hu(V) =X fulg)),  AETM,
h;_ = ; hu;

“la(r)

A

I lagr)

Then differential (the first variation) of the mapping Gy, has the form:

t1
(Dath)v:qoo/ giv(t) dt, v=uv(-)eTyl.
0

The control @ is a critical point of Fi, (or, which is equivalent, of G¢,) if and
only if there exists a Lagrange multiplier

/\QET;DM, A();éo,

such that
Ao(DgGe)v =0 YveTgl,

le.

Aogi(g0) = 0, t €[0,11].
Translate the covector Ay along the reference trajectory

q(t) = qoo P,
we obtain the covector curve
A= P70 = APt e Tig M,

which is a trajectory of the Hamiltonian system

A = hawy(Ne),  t€[0,t],
see Proposition 11.14. Then

4 0
Xogi(q0) = Ao P! 7u ( )fu(‘J(t)) = (M)
alt

We showed that @ is a critical point of the endpoint mapping Fi, if and only
if there exists a covector curve

A € T;(t)M, At # 0, t €[0,14],
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such that
A = ]_iz](t)(/\t), (20.16)
0 hy,
7u (A) =0, t€[0,14]. (20.17)

In particular, any Pontryagin extremal is a critical point of the endpoint map-
ping. Pontryagin Maximum Principle implies first order necessary optimality
conditions (20.16), (20.17). Notice that PMP contains more than these con-
ditions: by PMP, the Hamiltonian h, () is not only critical, as in (20.17),
but attains maximum along the optimal @(t). We go further to second order
conditions.

Asymptotic expansion (20.15) yields the expression for the second differ-
ential:

Dthl(v,w)a
t1
= ggo / gl (v(7),w(r))dr + 2 // (97,v(72)) 0 gy w(m) dridrs | a,
0 0<72<1 <t
where a € C*° (M) and
v,w € Ker DGy, = Ker Dy Fy,,
le.
t1 t1
o o/ gio(t) dt = qo o/ giw(t)dt = 0.
0 0

Now we transform the formula for the second variation via the following de-
composition into symmetric and antisymmetric parts.

Exercise 20.10. Let X, be a nonautonomous vector field on M. Then

X7-2 o Xrl dTlde

0<72<71 <t
I f 1
= —/ X, dro/ X, dr+ = // (X, X7 ]drdr.

0<72<71 <t

t1
Choosing X; = g;v(f) and taking into account that ¢q o/ gv(t)dt =0,
0

we obtain:

1
qo © // X7-2 0)(7—1 dTlde = 5(]0 o // [XTQ,XTl]dTldTQ,

0<72<1 <t 0<72<m1<t
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thus
DGy, (v, w)a

— o /O“g;'<v<r>,w<r>>dr+ ] W dhuwtman dn | a

0<72<m1<t

—wvo ([t wenars [ [ v dn g u)] dn) o

The first term can conveniently be expressed in Hamiltonian terms since

Xogru = A PR N (fu = far) = hu(Ar) = hary (Ar).
Then
A, D2F;, (v, w) = Ao DGy, (v, w)
_ /tl O ) (0(7), w(r)) dr + /tl Ao [/ ¢ v(m) de,gfrlw(Tl)] dr.
' ' ' (20.18)

In order to write also the second term in this expression in the Hamiltonian

form, compute the linear on fibers Hamiltonian corresponding to the vector
field ¢/ v:

Aog;U: AQ,P;Fliqu == P:—le’ifuv
0u du

d d
=5 (Pr~"Xo, fu)v = a_uhu o P 1(\o)v,

where derivatives w.r.t. u are taken at v = @(7). Introducing the Hamiltonian
hu,z(A) = hu (PFTH(N)),

we can write the second term in expression (20.18) for the second variation
as follows:

t1 T1
/ / Ao [g'mv(rz),g/ﬁw(ﬁ)] dradrn
0o Jo

_ t1 pT1 ih U(T ih Ny dro d
_/0 /0 {8u w72 2)’6u u,ﬁw(ﬁ)}( o) drs dmy
t1 7 5 — 5 —
:/0 /0 - <3—u Purs 0(72), 5= B, w(ﬁ)) drydr.  (20.19)

.. 0 o — N
Here the derivatives =—h, », and =— hy -, are evaluated at u = a(7;).
u

Ju 0
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20.4 Necessary Optimality Conditions

Now we apply our results on second variation and obtain necessary conditions
for geometric optimality of an extremal trajectory of system (20.1).

20.4.1 Legendre Condition
Fix an admissible control u which is a corank m > 1 critical point of the
endpoint mapping Fy,. For simplicity, we will suppose that @(-) is piecewise
smooth. Take any Lagrange multiplier
Ao € (Im Dy 7, ) \ {0},
then .
A\ = Pt*—lAO = Apo e_x_f)/ ]_7:1](7-) dT, te [O,tl],
0

is a trajectory of the Hamiltonian system of PMP. Denote the corresponding
quadratic form that evaluates Hessian of the endpoint mapping in (20.18):

Q:TyU =R,
t1 t1 T1
= r(\ Ju(r)) d A ' drs, g dry.
Q) / ") (), v(r)) r+/0 [/ g vo(m) dror gl o(m)| dm

Then (20.18) reads
At, Hessg Fy, (v, v) = Q(v), v € Ker Dy Fy,.

By Theorem 20.6, if a control @ is locally geometrically optimal (i.e., the
endpoint mapping F, is not locally open at @), then there exists a Lagrange
multiplier Ay such that the corresponding form ) satisfies the condition

ind_ Q|KerDﬁFt1 < m = corank Dy Fy,. (20.20)

The kernel of the differential DgFy, is defined by a finite number of scalar
linear equations:

t1
Ker Dy Fy, = {v €Tl | qo o/ giv(t) dt = 0} ,
0
i.e., it has a finite codimension in Ty U. Thus inequality (20.20) implies that

ind_ @ < oo

for the corresponding extremal A;. If we take the extremal —\; projecting to
the same extremal curve ¢(¢), then we obtain a form @ with a finite positive
index. So local geometric optimality of u implies finiteness of positive index
of the form @ for some Lagrange multiplier Ag.
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Proposition 20.11. If the quadratic form @ has a finite positive index, then
there holds the following inequality along the corresponding extremal s :

RO (v,0) <0, tE[0,ti], vER™ (20.21)

Inequality (20.21) is called Legendre condition.

In particular, if a trajectory ¢(t) is locally geometrically optimal, then Leg-
endre condition holds for some extremal Ay, 7(A:) = ¢(t). However, necessity
of Legendre condition for optimality follows directly from the maximality con-
dition of PMP (exercise). But we will need in the sequel the stronger statement
related to index of () as in Proposition 20.11.

Notice once more that in the study of geometric optimality, all signs may be
reversed: multiplying A; by —1, we obtain a quadratic form with ind_ @ < +oo
and the reversed Legendre condition hy(A:)(v,v) > 0. Of course, this is true
also for subsequent conditions related to geometric optimality.

Now we prove Proposition 20.11.

Proof. Take a smooth vector function
v:R—=R™ suppv C [0,1],
and introduce a family of variations of the form:

T—T

vr,g(T):v< ) re€0,t1), e>0.

£

Notice that the vector function vz . is concentrated at the segment [T, 7 + ¢].
Compute asymptotics of the form ¢ on the family introduced:

1
Qlore) = ¢ / B oo e (0(5), 0(s)) ds
1 1
—1-62/0 Ao [/0 g;_l_ast(sz)dsz,g;_l_aslv(sl) dsy (20.22)

_ 6/0 RO (0(s), v(s)) ds + O(e2),

where O(e?) is uniform w.r.t. v in the L, norm.
Suppose, by contradiction, that

KA (v,0) > 0

for some 7 € [0,¢1), v € R™. In principal axes, the quadratic form becomes a
sum of squares:

MO (v 0) = Y k)’

with at least one coefficient
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al > 0.
Choose a vector function v of the form
vl(s) 0
v(s) = vi(s) = | v'(s)
v (s) 0

with the only nonzero component v*(s). For sufficiently small ¢ > 0, Q(vs c) >
0. But for any fixed 7 and &, the space of vector functions vz . is infinite-
dimensional. Thus the quadratic form () has an infinite positive index. By
contradiction, the proposition follows. a

20.4.2 Regular Extremals

We proved that Legendre condition is necessary for finiteness of positive index
of the quadratic form . The corresponding sufficient condition is given by
the strong Legendre condition:

Ry (M) (v, v) < —alv]?, te0,t1], veR™ (20.23)
a > 0.

An extremal that satisfies the strong Legendre condition is called regular (no-
tice that this definition is valid only in the case of open space of control
parameters U, where Legendre condition is related to maximality of hy,).

Proposition 20.12. If A, ¢ € [0,11], is a regular extremal, then:

(1) For any T € [0,11) there exists € > 0 such that the form @ is negative on
the space L1, T+ €],
(2) The form @ has a finite positive index on the space Ty U = L72[0,14].

Proof. (1) We have:
QW) = Qi () + Quv)
= [ WOt o)
@)= [ 2] [ oot st )]

Ty — o —

t1
:/0 g ( i £ hu,ry v(T2), £ hu v(ﬁ)) dro dmy.

By continuity of hY(A;) w.r.t. 7, the strong Legendre condition implies that

«
Q1 (vlprraey) < =5 eIl
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for small e > 0. It follows by the same argument as in (20.22) that the term @
dominates on short segments:

Q- (“|[m+a]) =0@E)|vllz,, -0,

thus
Q (v|[r,r+a]) <0

for sufficiently small ¢ > 0 and all v € LT[0, 1], v # 0.

(2) We show that the form @ is negative on a finite codimension subspace
in L22[0,;], this implies that indy Q < .

By the argument used in the proof of item (1), any point 7 € [0,¢1] can
be covered by a segment [r — ¢, 7+ €] such that the form @ is negative on the
space L [T —e, 7+¢]. Choose points 0 = 1o < 7 < -+ - < 75 = ¢1 such that @
is negative on the spaces L™ [r,_1, 7], 1= 1,..., N. Define the following finite
codimension subspace of L72[0,4]:

., Ou

T —
L= vELZZ[O,tlH/\Oo/ hurv(r)dr=0, i=1,...,N,.

For any v € L, v # 0,

Thus L is the required finite codimension negative subspace of the quadratic
form ). Consequently, the form @ has a finite positive index. a

Propositions 20.11 and 20.12 relate sign-definiteness of the form hZ(A:)
with sign-definiteness of the form @, thus, in the corank one case, with local
geometric optimality of the reference control @ (via Theorem 20.3). Legendre
condition is necessary for finiteness of indy @, thus for local geometric op-
timality of %. On the other hand, strong Legendre condition is sufficient for
negativeness of () on short segments, thus for local finite-dimensional optimal-
ity of u on short segments. Notice that we can easily obtain a much stronger
result from the theory of fields of extremals (Sect. 17.1). Indeed, under the
strong Legendre condition the maximized Hamiltonian of PMP is smooth,
and Corollary 17.4 gives local optimality on short segments (in C([0,%1], M)
topology, thus in L, ([0,1],U) topology and in topology of convergence on
finite-dimensional submanifolds in /).

20.4.3 Singular Extremals

Now we consider the case where the second derivative of the Hamiltonian A,
vanishes identically along the extremal, in particular, the case of control-affine
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systems ¢ = fo(q) + > i, uifi(g). So we assume that an extremal A; satisfies
the identity

RN =0, te0 . (20.24)

Such an extremal is called totally singular. As in the case of regular extremals,
this definition is valid only if the set of control parameters U is open.

For a totally singular extremal, expression (20.18) for the Hessian takes
the form:

t1 T1
At, Hessq Py, (vi,v2) = /\0/ [/ g’mvl(rz) dro, g'Tlvz(Tl) dry.
0 0

In order to find the dominating term of the Hessian (concentrated on the
diagonal 7 = 13), we integrate by parts. Denote

witr) = [ty as,

Then

At, Hessg Py, (v, v2)

= ([ st + a0+ [ st an, st dn)
=0 (= [ (gt dr 4 G 0, g0

a0, [ grstryae] + [ (e grwsto) ar

[ [t | :Ig'/ﬁwz(ﬁ)dﬁ] ). (20.25)

t1
We integrate by parts also the admissibility condition ¢q o/ grvi(t)dt =
0
0:
t1
go © (/ grw;(t) dt + g()wi(O)) =0. (20.26)
0

In the sequel we take variations v; subject to the restriction

We assume that functions v(s) used in construction of the family v-.(7) =
v (T;f) satisfy the equality
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then the primitive

is also concentrated at the segment [0,1]. Then the last term in expressi-
on (20.25) of the Hessian vanishes, and equality (20.26) reduces to

t1
q0 o/ grw;(t) dt = 0.
0

Asymptotics of the Hessian on the family vz . has the form:

1
At, Hessg Fy, (ve o vr ) = Quvr ) = % o / [ghw(s), giv(s)] ds + 0(63).
0

The study of this dominating term provides necessary optimality conditions.

Proposition 20.13. Let A, t € [0,11], be a totally singular extremal. If the
quadratic form @ = A, Hessg Fy, has a finite positive index, then

/\o[gévl,gévz] =0 Y v1, Vg € Rm, t e [O,tl]. (2027)

Equality (20.27) is called Goh condition. It can be written also as follows:

&[an 0/, ]:0’

V1, &7 VU2
du 7 du

or in Hamiltonian form:

dhy Ohy B 9 » 9 >\ _
{Tm’ﬁ—w}(At) =0, <6uihu’3—ujhu) =0,

i, j=1,...,m, te[ot]

As before, derivatives w.r.t. u are evaluated at u = d(t).
Now we prove Proposition 20.13.

Proof. Take a smooth vector function v : R — R™ concentrated at the seg-

2w
ment [0, 2] such that / v(s) ds = 0, and construct as before the variation
0

m;ﬁ)zv(T;T).

27
Q@m)zgﬂ;/me®ﬂ®@ﬂ®+0@WWﬁw

of controls

Then
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where w(s) = / v(s') ds’. The leading term is the integral
0

/0 ’ Xolgiw(s), ghv(s)]ds = /0 ’ w(w(s),v(s)) ds, (20.28)
w(a:,y) :/\O[g;xag;y]a Ty yERma

notice that the bilinear skew-symmetric form w enters Goh condition (20.27).
In order to prove the proposition, we show that if w # 0, then the leading
term (20.28) of Hessian has a positive subspace of arbitrarily large dimension.

Let w # 0 for some 7 € [0,¢;], then rankw = 2[ > 0, and there exist
coordinates in R in which the form w reads

l
w(a:,y) — Z(xiyi+l _ xi-l—lyi)’
i=1

) y=

vl(s) = Zé’k cos ks, v Tl(s) = Z Nk sin ks.

k>0 k>0

Substituting v(s) to (20.28), we obtain:

/0 Ww(w(s), v(s))ds = —271'2 %gkﬁk

k>0

This form obviously has a positive subspace of infinite dimension.

For an arbitrarily great N, we can find an N-dimensional positive space Ly
for form (20.28). There exists ey > 0 such that Q(vz ., ) > 0 for any v € L.
Thus indy @ = co. By contradiction, Goh condition follows. a

Exercise 20.14. Show that Goh condition is satisfied not only for piecewise
smooth, but also for measurable bounded extremal control u at Lebesgue
points.



316 20 Second Order Optimality Conditions

Goh condition imposes a strong restriction on a totally singular optimal
control @. For a totally singular extremal, the first two terms in (20.25) vanish
by Goh condition. Moreover, under the condition w(0) = 0, the third term
in (20.25) vanishes as well. Thus the expression for Hessian (20.25) reduces to
the following two terms:

M, Hessa Fr. (v, 0) = Q(v)
= ([ st ars [ it [ jg';lwm)dn] ).
(20.29)

Suppose that the quadratic form ¢ has a finite positive index. Then by the
same argument as in Proposition 20.11 we prove one more pointwise condition:

Molfiv,g] <0 YweR™ tel0t] (20.30)

This inequality is called generalized Legendre condition.
Notice that generalized Legendre condition can be rewritten in Hamilto-
nian terms:

{{ha(t),hgv}  hyv} (/\t)—l—{h;’(ﬂ(t),v),h;v} (At) <0, veR™ te]0,t].

This easily follows from the equalities:

10 Ju 0 Ju
gév:Pt*1 3 u v=AdP; 3 u v,
, d — [* 9 fu
/ e — ~
giv = exp/0 ad fg(r) dr 3 v

_ 0 fu 17 fu e
=r;! [fa(t), S v:| + Pt T (u(t),v).

The strong version (20.31) of generalized Legendre condition plays in the
totally singular case the role similar to that of the strong Legendre condition
in the regular case.

Proposition 20.15. Let an extremal A, be totally singular, satisfy Goh con-
dition, the strong generalized Legendre condition:

Hhagy, v} b} () + {RY (@(1), v), hiv} (A) < —alvf?,
veR™, tel0,t], (20.31)

for some a > 0, and the following nondegeneracy condition:

, .0 o
the linear mapping w R™ =Ty M s injective. (20.32)
“ lago
Then the quadratic form Q|KerDﬁFt 15 negative on short segments and has a
finite positive index on LT[0, t1].
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Proof. This proposition is proved similarly to Proposition 20.12. In decom-
position (20.25) the first two terms vanish by Goh condition, and the fourth
term 1s negative and dominates on short segments. The third term is small
on short segments since

g0 © gow1(0) = wi(0),
and condition (20.32) allows to express wy (0) through the integral fotl wy(7)dr
on the kernel of Dy Fy,, which is defined by equality (20.26). O
We call an extremal that satisfies all hypotheses of Proposition 20.15 a
nice singular extremal.
20.4.4 Necessary Conditions

Summarizing the results obtained in this section, we come to the following
necessary conditions for the quadratic form ) to have a finite positive index.

Theorem 20.16. Let a piecewise smooth control & = u(t), t € [0,t1], be a

critical point of the endpoint mapping Fy,. Let a covector Ay, € TF, (a)M be
1

a Lagrange multiplier:

AtlDﬂFtl == 0, Atl 7é 0
If the quadratic form @) has a finite positive index, then:
(I) The trajectory As of the Hamiltonian system of PMP

A= ﬁﬂ(t)(/\t),
hu(A) = (A ful9)),
satisfies the equality
hi(A) =0, t €[0,t4],
(I1.1) Legendre condition is satisfied:
Ry (A)(v,v) <0, veR™ te[0,t].
(I1.2) If the extremal A; is totally singular:
Ry (A)(v,v) =0, veR™  tel0,t],
then there hold Goh condition:
{hv1, hjva} (M) =0, vy, va €R™ .t €]0,14], (20.33)
and generalized Legendre condition:

Hhaw, kv hio} () + (kY (a(t), v), hiv} (A) <0,
veR™  tel0,4]. (20.34)
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Remark 20.17. Tf the Hamiltonian &y, is affine in u (for control-affine systems),
then the second term in generalized Legendre condition (20.34) vanishes.

Recall that the corresponding sufficient conditions for finiteness of index
of the second variation are given in Propositions 20.12 and 20.15.

Combining Theorems 20.16 and 20.6, we come to the following necessary
optimality conditions.

Corollary 20.18. If a piecewise smooth control @ = u(t) is locally geomet-
rically optimal for control system (20.14), then first-order conditions (1) and
second-order conditions (11.1), (I11.2) of Theorem 20.16 hold along the corre-
sponding extremal A;.

20.5 Applications

In this section we apply the second order optimality conditions obtained to
particular problems.

20.5.1 Abnormal Sub-Riemannian Geodesics

Consider the sub-Riemannian problem:

q:Zusz(Q)a qEMa u:(ul,,um)ERm,
q(O)—qo, 1 —Q1a

1
/Zu dt = /|u|2dt—>min.
0

The study of optimality is equivalent to the study of boundary of attainable
set for the extended system:

1
y = §|U|2, Yy e R.
The Hamiltonian 1s
=" wilh filg g|u|2, AeT*M, veR*=R.
i=1

The parameter v is constant along any geodesic (extremal). If v # 0 (the
normal case), then extremal control can be recovered via PMP. In the sequel
we consider the abnormal case:
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v=0.
Then

(V) = hy (X, 0) = i uihi(\),

BO) = O fila)), i=1,...m.

The maximality condition of PMP does not determine controls in the ab-
normal case directly (abnormal extremals are totally singular). What that
condition implies is that abnormal extremals A; satisfy, in addition to the
Hamiltonian system

A= wit)hi(M),
i=1
the following identities:
hi(As) = 0, r=1,...,m.

We apply second order conditions. As we already noticed, Legendre con-
dition degenerates. Goh condition reads:

{hi,hj}(/\t)EO, t, J=1,...m.

If an abnormal extremal A; projects to an optimal trajectory ¢(t), then at any
point ¢ of this trajectory there exists a covector

AE T;M, A# 0,
such that

N filg)y=0, i=1,...,m,
NI Hl@))y=0, i, j=1,...,m.

Consequently, if
span(fi(q), [fi, fi](a)) = T, M, (20.35)

then no locally optimal strictly abnormal trajectory passes through the
point ¢. An extremal trajectory is called strictly abnormal if it is a projec-
tion of an abnormal extremal and 1t is not a projection of a normal extremal.
Notice that in the case corank > 1 extremal trajectories can be abnormal
but not strictly abnormal (i.e., can be abnormal and normal simultaneously),
there can be two Lagrange multipliers (A, 0) and (M\,v # 0). Small arcs of
such trajectories are always local minimizers since the normal Hamiltonian
H= %Zzn:l h? is smooth (see Corollary 17.4).

Distributions span(f;(g)) that satisfy condition (20.35) are called 2-ge-
nerating. E.g., the left-invariant bracket-generating distributions appearing
in the sub-Riemannian problem on a compact Lie group in Sect. 19.2 and
Exercise 19.2 are 2-generating, thus there are no optimal strictly abnormal
trajectories in those problems.
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Ezxample 20.19. Consider the following left-invariant sub-Riemannian problem
on GL(n) with a natural cost:

Q=0qQV, Q eGL(n), V=V~ (20.36)

1 1
J(V) = 5/0 tr V2 dt — min. (20.37)

Exercise 20.20. Show that normal extremals in this problem are products
of 2 one-parameter subgroups. (Hint: repeat the argument of Sect. 19.2.) Then
it follows that any nonsingular matrix can be represented as a product of two
exponentials e¥ eV =V")/2 Notice that not any nonsingular matrix can be
represented as a single exponential eV .

There are many abnormal extremals in problem (20.36), (20.37), but they
are never optimal. Indeed, the distribution defined by the right-hand side of
the system is 2-generating. We have

[Q@V1, QVa] = Q[Vi, Ve,

and if matrices V; are symmetric then their commutator [V4, V3] is antisym-
metric. Moreover, any antisymmetric matrix appears in this way. But any
n X n matrix is a sum of symmetric and antisymmetric matrices. Thus the
distribution {QV | V* = V} is 2-generating, and strictly abnormal extremal
trajectories are not optimal.

20.5.2 Local Controllability of Bilinear System
Consider a bilinear control system of the form
* = Az +uBzx + vb, u, veER, x€R" (20.38)
We are interested, when the system is locally controllable at the origin, 1.e.,
0 € int Ap(?) Vi>0.

Negation of necessary conditions for geometric optimality gives sufficient con-
ditions for local controllability. Now we apply second order conditions of Corol-
lary 20.18 to our system. Suppose that

0 € dAy(t) for some t > 0.

Then the reference trajectory z(t) = 0 is geometrically optimal, thus it satis-
fies PMP. The control-dependent Hamiltonian is

huo(p, &) = pAx +upBx +vpb, A= (p,z) € T"R" = R"* x R".

The vertical part of the Hamiltonian system along the reference trajectory ()
reads:
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p=-pA,  peER™ (20.39)
It follows from PMP that
p(r)b=p(0)e™*b=0, r€[0,1],

le.
p(0)A’b = 0, i=0,...,n—1, (20.40)

for some covector p(0) # 0, thus

span(b, Ab, ... A"7b) £ R"

We pass to second order conditions. Legendre condition degenerates since the
system is control-affine, and Goh condition takes the form:

p(T)Bb =0, 7 €10,1].

Differentiating this identity by virtue of Hamiltonian system (20.39), we ob-
tain, in addition to (20.40), new restrictions on p(0):

p(0)A"Bb = 0, i=0,...,n—1.

Generalized Legendre condition degenerates.
Summing up, the inequality

span(b, Ab,... A" 7'b Bb ABb, ... A"T'Bb) £ R"

is necessary for geometric optimality of the trajectory x(¢t) = 0. In other
words, the equality

span(b, Ab, ... A""'b Bb ABb, ... A""'Bb) = R"

is sufficient for local controllability of bilinear system (20.38) at the origin.

20.6 Single-Input Case

In this section we apply first- and second-order optimality conditions to the
simplest (and the hardest to control) case with scalar input:

i=folg) +ufile), uwely,flCR, ¢e&M. (20.41)

Since the system is control-affine, Legendre condition automatically degener-
ates. Further, control is one-dimensional, thus Goh condition is trivial. Al-
though, generalized Legendre condition works (we write it down later). We
apply first Pontryagin Maximum Principle. Introduce the following Hamilto-
nians linear on fibers of the cotangent bundle:
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hi(A) = (A, fi(g)), 1=0, 1,
then the Hamiltonian of the system reads
hu(A) = ho(A) + uhy(N).
We look for extremals corresponding to a control
u(t) € (@, B). (20.42)
The Hamiltonian system of PMP reads
Ao = ho(Ae) + u(t)h (M), (20.43)
and maximality condition reduces to the identity
h1(As) = 0. (20.44)

Extremals A; are Lipschitzian, so we can differentiate the preceding identity:
- d
hi(A) = Ehl(/\t) ={ho+u)h1, b1} (Ae) = {ho, hi}(A) = 0. (20.45)

Equalities (20.44), (20.45), which hold identically along any extremal A; that
satisfies (20.42), do not allow us to determine the corresponding control wu(t).
In order to obtain an equality involving u(t), we proceed with differentiation:

hi(A) = {ho + u(t)h1, {ho, b1 }} (M)
= {ho, {ho, hi} HAe) + u(t){h, {ho, h1}}(Ae) =0

Introduce the notation for Hamiltonians:

hiyiy. i, = {his, {hiy, - {ha_y ha } oo 1 ij €10,1}.

then any extremal A; with (20.42) satisfies the identities

hl(At) = h(n(At) = 0, (2046)

hoo1(Ar) + u(t)hio1(Ae) =0 (20.47)

If h1g1(Ae) # 0, then extremal control u = u(A;) is uniquely determined by A;:
hOOl(/\t)

u(A) = 20.48

( t) thl(/\t) ( )

Notice that the regularity condition higi(As) # 0 is closely related to gener-
alized Legendre condition. Indeed, for the Hamiltonian A, = hg + uh, gener-
alized Legendre condition takes the form

{{ho +uhy, hi}, hi}(Ae) = —hio1(Ae) <0,
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le.
thl(At) Z 0.

And if this inequality becomes strong, then the control is determined by re-
lation (20.48).

Assume that hig1(A:) # 0 and plug the control u(A) = —hgo1(A)/h101(A)
given by (20.48) to the Hamiltonian system (20.43):

A= ho(A) + u(A)hi(A). (20.49)
Any extremal with (20.42) and h1p1(A:) # 0 is a trajectory of this system.
Lemma 20.21. The manifold
INET M | hi(X) = hor(A) =0, hig1(X) # 0} (20.50)
is invariant for system (20.49).

Proof. Notice first of all that the regularity condition hig1(A) # 0 guarantees
that conditions (20.50) determine a smooth manifold since dyhy and dyhor
are linearly independent. Introduce a Hamiltonian

p(A) = ho(A) + u(A)hi ().

The corresponding Hamiltonian vector field

—

B) = ho(A) + w(X) A (X) + hi(N) (V)

coincides with field (20.49) on the manifold {h; = ho; = 0}, so it is sufficient
to show that  is tangent to this manifold.
Compute derivatives by virtue of the field :

hy = {ho + uhy, hi} = hor — (h1u)hi,
hoy = {ho + why, ho1} = hoo1 + uhio1 —(];01U)h1 = _(EOW)hl'
S—_—

=0

The linear system with variable coefficients for hy(t) = hi(A:), hoi(t) =
ho1(A¢)

hot (1) = —(horu) (o) ha (¢)
has a unique solution. Thus for the initial condition h1(0) = kp1(0) = 0 we
obtain the solution hy(t) = hp1(t) = 0. So manifold (20.50) is invariant for
the field G(A), thus for field (20.49). O

{in(t) = hot (1) = (hyu) (Ae) b (1),

Now we can describe all extremals of system (20.41) satisfying the con-
ditions (20.42) and hyg; # 0. Any such extremal belongs to the manifold
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{h1 = hg1 = 0}, and through any point Ay of this manifold with the bound-
ary restrictions on control satisfied:

hoo1(Ao)

o) = =4 Ou)

€ (a,5),

passes a unique such extremal — the trajectory A; of system (20.49).

In problems considered in Chaps. 13 and 18 (Dubins car, rotation around
2 axes in SO(3)), all singular extremals appeared exactly in this way. Gener-
ically, h1p1 # 0, thus all extremals with (20.42) can be studied as above.
But in important examples the hamiltonian h1¢; can vanish. E.g., consider a
mechanical system with a controlled force:

¥ = g(y) + ub, y, beR", wuela,f]CR,

or, in the standard form:

yl = Y2,
Y2 = g(y1) + ub.
The vector fields in the right-hand side are

0 0
= — 4+ -,
fo yz@yl g(y1)3y2
0

fi :bﬁ—yz’

thus
hiot(A) = (A Uf1, [fo, ]l = 0.
T/

More generally, kg1 vanishes as well for systems of the form

.lj:f(xay)a reM, y, beR™ UE[OZ,ﬁ]CR~ (2051)
=gz, y) + ub,

An interesting example of such systems is Dubins car with control of angular
acceleration:

X1 = cosd,

Xo = sin 0,

i (z1,22) €R?, 0€S', yeR, |u<L.
=Y

y=u,

Having such a motivation in mind, we consider now the case where
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Then equality (20.47) does not contain u(t), and we continue differentiation
in order to find an equation determining the control:

h(13)(/\t) = hOOl(/\t) = hooo1(Ae) + w(t)h1oo1(Ae) = 0.

It turns out that the term near w(?) vanishes identically under condition

(20.52):

hioo1 = {h1, {ho, {ho, hi}}} = {{h1, ho}, {ho, ha}} +{ho, {h1, {ho, h1}}}

=0

= {ho, h101} = 0.

So we obtain, in addition to (20.46), (20.47), and (20.52), one more identity
without u(t) for extremals:

hooo1(A¢) = 0.

Thus we continue differentiation:
h(14)(/\t) = hooo1(Ae) = hoooot(Ae) + u(t)hiooo1 (M) = 0. (20.53)

In Dubins car with angular acceleration control hyggo1(A:) # 0, and generically
(in the class of systems (20.51)) this is also the case. Under the condition
hi1ooo1(A¢) # 0 we can express control as u = u(A) from equation (20.53) and
find all extremals in the same way as in the case hypi(As) # 0.

Exercise 20.22. Show that for Dubins car with angular acceleration control,
singular trajectories are straight lines in the plane (21, z2):

xlzx?—l—tcosﬁo, xzzxg—i—tsinﬁo, =10, y=0.

Although, now geometry of the system 1s new. There appears a new pattern
for optimal control, where control has an infinite number of switchings on
compact time intervals.

For the standard Dubins car (with angular velocity control) singular tra-
jectories can join bang trajectories as follows:

u(t) =1, 1<t w(t)=0, t>¢ (20.54)
or
wlt) =0, t<t;  u(t)=+1, t>1t (20.55)

We show that such controls cannot be optimal for the Dubins car with angular
acceleration control.

The following argument shows how our methods can be applied to prob-
lems not covered directly by the formal theory. In this argument we prove
Proposition 20.23 stated below at p. 330.
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Consider the time-optimal problem for our single-input system (20.41).
We prove that there do not exist time-optimal trajectories containing a sin-
gular piece followed by a bang piece. Suppose, by contradiction, that such a
trajectory ¢(t) exists. Consider restriction of this trajectory to the singular
and bang pieces:

q(t), t €10,t4],
u(t) € (o, 8),  te[0,1],
u(t) =~ € {a, 5}, t €[t t].

Let A; be an extremal corresponding to the extremal trajectory ¢(t). We sup-
pose that such A; is unique up to a nonzero factor (generically, this is the
case). Reparametrizing control (i.e., taking u — u(f — 0) as a new control), we
obtain

w(f—0)=0, a<0<§g

without any change of the structure of Lie brackets. Notice that now we study
a time-optimal trajectory, not geometrically optimal one as before. Although,
the Hamiltonian of PMP h, = hg + uh; for the time-optimal problem is
the same as for the geometric problem, thus the above analysis of singular
extremals applies. In fact, we prove below that a singular piece and a bang
piece cannot follow one another not only for a time-minimal trajectory, but
also for a time-maximal trajectory or for a geometrically optimal one.
We suppose that the fields fy, f1 satisfy the identity

1, [fo, 1]l =0

and the extremal A; satisfies the inequality

hioo01(Ar) # 0.
Since u(t — 0) = 0, then equality (20.53) implies that hggoo1(Af) = 0.
It follows from the maximality condition of PMP that
hu@y(Ae) = ho(Ae) + w(t)hi(Xe) > ho(Ae),
i.e., along the whole extremal
u(t)hi(As) >0, t €[0,t1].

But along the singular piece hy(A:) = 0, thus

U(t)hl(At) = 0, t e [O,t]
The first nonvanishing derivative of uy(t)hy(A¢) at ¢ = ¢ + 0 is positive. Keep-
ing in mind that u(f) = v at the singular piece ¢ € [t,?;], we compute this
derivative. Since hl(A{) = h(n(A{) = hOOl(Af) = hOOOl(/\f) = h1001(/\{) = 0,

then the first three derivatives vanish:
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dk

dt_k U(t)hl(At) :0, ]{7:0,1,2,3.

t=t4+0

Thus the fourth derivative is nonnegative:

d4
dt#

—u(t)hi(M) = y(hoooo1 (Ar) + vh1ooo1(As))
t=F+0

= v?h10001(A¢) > 0.
Since 2 > 0, then

hiooo1(Ar) > 0.

327

(20.56)

Now we apply this inequality in order to obtain a contradiction via the theory

of second variation.
Recall expression (20.29) for Hessian of the endpoint mapping:

At Hessy, Fi(v)
t t T1

- / Do i, 1] w?(r) dr + / / Do [i,6%,] w(ma)w(n) dradry.
0 0 0

Here

—1
;': T* fla
T_ T* anfl]

b= [ s

The first term in expression (20.57) for the Hessian vanishes:

Ao [97, 9] = —h101(A7) = 0.

Integrating the second term by parts twice, we obtain:
At Hessy, Fi(v)
= [ [ " vl s i) dedn
where

PLMfo, [fo, A1),
n(T)z/O w(r)dr, n(t) = 0.

(20.57)

(20.58)
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The first term in (20.58) dominates on needle-like variations v = vy,
Af Hess, Fe(ve.) = 64/\0[ﬁ%, gFl+ 0(65),
we compute the leading term in the Hamiltonian form:

Xold 951 = Adllfo, [fo, full, [fo, full = {hoor, ho1 }(Ar) = {{h1, ho}, hoo1} ()
= {h1,{ho, hoo1} }(Ag) — {ho, {1, hoo1} }(Ae) = hioooi(Ae).
N——
=hi1001=0
By virtue of inequality (20.56),
Af Hessy, Fr(vg) > 0,
where
Vo = Vi e
for small enough £ > 0. This means that
d2

2 ao Fe(u + svg) = As Hessy Fr(vg) > 0
s s=

0

for any function a € C* (M), a(q(t)) =0, dy#ya = Ap. Then

2
ao Fe(u+ svg) = %/\gHessu Fr(vo) + O(s%), s —0,

i.e., the curve Fr(u ++/svg) is smooth at s = 40 and has the tangent vector

% s Fr(u 4+ +/sv) = &,
O €0) > 0. (20.59)

That is, variation of the optimal control u in direction of vy generates a tangent
vector & to the attainable set Ay, (¢) that belongs to the half-space (A, - ) > 0
n Tq(f)M.

Since the extremal trajectory ¢() is a projection of a unique, up to a scalar
factor, extremal A, then the control u is a corank one critical point of the

endpoint mapping:
dimImD, Fr=dimM —-1=n-—1.

This means that there exist variations of control that generate a hyperplane
of tangent vectors to Ag, (¢ ):

Jwvy,...,v5_1 € TyU such that
d
EszoFg(u—i—svi):&, i=1,..., n—1

span(€y,...,&n-1) =Im D, Fr.

bl
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Summing up, the variations vy, vy, ..., v,—1 of the control u at the singular
plece generate a nonnegative half-space of the covector Az

Us = U+ +/SoUp + Zsivi, s =(50,81,...,8n-1) ER4 X }R”_l,

0

8‘% s=0
R+€0 + Span(gla s agn—l) = {<Afa : > Z 0}
Now we add a needle-like variation on the bang piece. Since the con-

trol u(t), ¢ € [¢,t1], is nonsingular, then the switching function hy(A¢) # 0,
t € [t,¢1]. Choose any instant

Fy(us) = &, t=0,1,... , n—1,

t1 € (t,t1) such that hy(Ag,) # 0.

Add a needle-like variation concentrated at small segments near #;:

us (1), te0,t],
usyg(t) = U(t) =, te [{, {1] U [{1 + E,tl],
0, tE[{l,fl—i—E].

The needle-like variation generates the tangent vector

55 R CRES (CORAITINE

(=5 [ s

this derivative 1s computed as in the proof of PMP, see Lemma 12.6. We
determine disposition of the vector

me == | (PL)_£] (alt2))
w.r.t. the hyperplane Im Dy, F},:

Aty M) = —v(Aq, f1) = =vhi (Ag,).

Since hy(Az,) # 0, then it follows from PMP that vhq (Ag,) = u(t1)hi(As,) > 0,
thus

<At1a77n> < 0
Now we translate the tangent vectors &,¢ = 0,...,n—1, from ¢(t ) to q(¢1):
0 0
% Ftl(us,a) == % Pt’tl (F{(Us))
(¢,8)=(0,0) (¢,8)=(0,0)

=1, 1=0,...,n—1

I
—~~
<5

_
~—
*
'A%
.
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Inequality (20.59) translates to
{Aer, mo) = Az, &0} > 0
and, of course,
My, ) = (Mg, &) =0, i=1,...,n—1

The inequality {A:;, 7,) < 0 means that the needle-like variation on the bang

piece generates a tangent vector in the half-space (A, - )} < 0 complementary

to the half-space (As;, - ) > 0 generated by variations on the singular piece.
Summing up, the mapping

F:RyxR"IxR, — M, F(s,e) = Fy,(use),
satisfies the condition
Do,y F(R4 x R*™ ' x Ry) = Rymo +span(ny, . .., fn-1) + By = Ty, M.

By Lemma 12.4 and remark after it, the mapping F' is locally open at (s,£) =
(0,0). Thus the image of the mapping Fy, (u; ) contains a neighborhood of the
terminal point ¢(¢1). By continuity, ¢(¢1) remains in the image of Fy, _s(u; )
for sufficiently small 6 > 0. In other words, the point ¢(#;) is reachable from ¢
at t1—d instants of time, i.e., the trajectory ¢(¢), t € [0,¢1], is not time-optimal,
a contradiction.

We proved that a time-optimal trajectory ¢(¢) cannot have a singular piece
followed by a bang piece. Similarly, a singular piece cannot follow a bang piece.

We obtain the following statement on the possible structure of optimal
control.

Proposition 20.23. Assume that vector fields in the right-hand side of sys-
tem (20.41) satisfy the identity

[f1,[fo, ]l = 0. (20.60)

Let a time-optimal trajectory q(t) of this system be a projection of a unique, up
to a scalar factor, extremal Ay, and let higoo1(Ae) # 0. Then the trajectory q(t)
cannot contain a singular piece and a bang piece adjacent one to another.

Remark 20.24. In this proposition, time-optimal (i.e., time-minimal) control
can be replaced by a time-maximal control or by a geometrically optimal one.

What happens near singular trajectories under hypothesis (20.60)7 As-
sume that a singular trajectory is optimal (as straight lines for Dubins car
with angular acceleration control). Notice that optimal controls exist, thus the
cost function is everywhere defined. For boundary conditions sufficiently close
to the singular trajectory, there are two possible patterns of optimal control:
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(1) either it makes infinite number of switchings on a compact time segment
adjacent to the singular part, so that the optimal trajectory “gets oft” the
singular trajectory via infinite number of switchings,

(2) or optimal control is bang-bang, but the number of switchings grows in-
finitely as the terminal point approaches the singular trajectory.

Pattern (1) of optimal control is called Fuller’s phenomenon. It turns out
that Fuller’s phenomenon takes place in Dubins car with angular acceleration
control, see Fig. 20.1. As our preceding arguments suggest, this phenomenon is
not a pathology, but is ubiquitous for certain classes of systems (in particular,
in applications). One can observe this phenomenon trying to stop a ping-
pong ball jumping between the table and descending racket. The theory of
Fuller’s phenomenon is described in book [18]. Tt follows from this theory that
possibility (1) is actually realized for Dubins car with angular acceleration
control.

o

Fig. 20.1. Singular arc adjacent to arc with Fuller phenomenon
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Jacobi Equation

In Chap. 20 we established that the sign of the quadratic form A; Hessg F; 1s
related to optimality of the extremal control @. Under natural assumptions,
the second variation is negative on short segments. Now we wish to catch
the instant of time where this quadratic form fails to be negative. We de-
rive an ODE (Jacobi equation) that allows to find such instants (conjugate
times). Moreover, we give necessary and sufficient optimality conditions in
these terms.
Recall expression (20.18) for the quadratic form @ with

At Hessg Iy = Q|KeI‘DﬁFt

obtained in Sect. 20.3:

Qv) = /Ot h?(v(7)) dr + /Ot Ao [/OTI gr v(re) dra, g7 v(m)| dr.

We extend the form @ from L., to Ls by continuity.
We will consider a family of problems on segments [0,1], ¢ € [0,%1], so we
introduce the corresponding sets of admissible controls:

Uy = {u € Ly([0,21],U) | u(r) =0 for 7 > ¢},
and spaces of variations of controls:
Vi =Tally ={v e LT[0, t1] | v(r) = 0 for 7 > ¢t} = LT[0,1].
We denote the second variation on the corresponding segment as

Qe = Q|vt :
Notice that the family of spaces V; is ordered by inclusion:

<t = Vir C Vi,
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and the family of forms @) respects this order:

Qt’ = Qt”|vt/ .

In particular,

Qi <0 = Qv < 0.

Denote the instant of time where the forms ; lose their negative sign:

t. def sup {t € (0,11] | Qelg, < 0}’

¢
K, = {v eV |qoo/ g’Tv(T)dTZO}
0

is the closure of the space Ker Dg Fy in Lo. If (; |Kt is negative for all t € (0,],
then, by definition, t, = 4oc0.

where

21.1 Regular Case: Derivation of Jacobi Equation

Proposition 21.1. Let A\; be a regular extremal with t. € (0,t1]. Then the
quadratic form Qt*|Kt 1s degenerate.

Proof. By the strong Legendre condition, the norm

ol = ( / " () dT)

is equivalent to the standard L5*-norm. Then

1/2

ta ty T1

/ h’T/(v(T))dT—I—/ Ao [/ g;2v(7’2)d7'2, g'Tlv(Tl)] dn
0 0 0

= lloli2 + (Ro, ),

Q.

where R is a compact operator in LJ[0,1.].
First we prove that the quadratic form @, 1s nonpositive on the kernel K, .
Assume, by contradiction, that there exists v € V;, such that

Q:,(v) >0, v € Ks,.
The linear mapping Dy F;, has a finite-dimensional image, thus
Vi, = Ky, P E, dim F < 0.
The family Dy F; is weakly continuous in ¢, hence D3 F;, _. |y is invertible and

Vi, =Ky, . DFE
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for small € > 0. Consider the corresponding decomposition
v =v. + x, v. € K¢,y xz:. €EF.

Then . — 0 weakly as ¢ — 0, so &, — 0 strongly since F is finite-dimensional.
Consequently, v. — v strongly as ¢ — 0. Further, Q:,_.(v.) = Q4, (v:) —
Q:,(v) as € — 0 since the quadratic forms @ are continuous. Summing up,
Qt,—:(v:) > 0 for small £ > 0, a contradiction with definition of .. We proved
that

Q.

%, <O. (21.1)

Now we show that
dve R, v#0, suchthat @, (v)=0.

By the argument similar to the proof of Proposition 16.4 (in the study of
conjugate points for the linear-quadratic problem), we show that the function

p(t) = sup {Qe(v) | v € Ky, [Joflnr =1} (21.2)

satisfies the following properties: u(¢) is monotone nondecreasing, the supre-
mum in (21.2) is attained, and () is continuous from the right.

Inequality (21.1) means that p(f.) < 0. If p(ts) < 0, then p(t. +¢) < 0
for small £ > 0, which contradicts definition of the instant ¢.. Thus u(t.) = 0,
moreover, there exists

vek, vl =1,

such that
@, (v) = 0.

Taking into account that the quadratic form @, is nonpositive, we con-
clude that the element v # 0 is in the kernel of @,

K. O

Proposition 21.1 motivates the introduction of the following important
notion. An instant ¢. € (0,¢1] is called a conjugate time (for the initial instant
t = 0) along a regular extremal A; if the quadratic form @, |Ktc is degenerate.
Notice that by Proposition 20.12, the forms Q) |Kt are negative for small¢ > 0,
thus short arcs of regular extremals have no conjugate points: for them ¢. > 0.
Proposition 21.1 means that the instant ¢, where the quadratic forms Qt|Kt
lose their negative sign is the first conjugate time.

We start to derive a differential equation on conjugate time for a regular
extremal pair (@(?), A¢). The symplectic space

I =T, (T*M)

will be the state space of that ODE. Introduce the family of mappings
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Jt ZRm%E,

In these terms, the bilinear form @Q; reads

Qt(vl,vz) :/ h”(vl( ) Uz dt—i— // JT21)1 T2 J71v2(7—1)) dTlde,

0<72 <1<t
(21.3)
see (20.18), (20.19). We consider the form @ on the subspace
¢
K, =Ker Dz F, = {viEVt |/ JTUZ'(T)dTEHQ}, (21.4)
0

where
I, = TAD(T;DM) cX

is the vertical subspace.
A varniation of control v € V, satisfies the inclusion

v € Ker (Qt|Kt)

iff the linear form Qy (v, - ) annihilates the subspace Ky C V;. Since the vertical
subspace ITy C X is Lagrangian, equality (21.4) can be rewritten as follows:

¢
Ky = {Ui EVil|o (/ JTUZ'(T)CZT,I/) =0 Vve Ho}.
0

That is, the annihilator of the subspace K; C V; coincides with the following
finite-dimensional space of linear forms on V;:

{/Ota(JT~,y)dr|u€H0}. (21.5)

Summing up, we obtain that v € Ker (Qt|Kt) iff the form Qq(v, -) on V),

belongs to subspace (21.5). That is, v € Ker (Qt|Kt) iff there exists v € Iy
such that

Q:(v, )= /0 o(Jr -, v)dr. (21.6)

We transform equality of forms (21.6):

¢
/ a( / R (v ydr + // o(Jrv(72), Jry - ) dridrs
0 0

0<72<m1 <t

t T
/ R (v dT—|—/ (/ Jov(0) do, J, ) dr.
0 0 0
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This equality of forms means that the integrands coincide one with another:
o(Jr -, v) = h!(v(r), ~)—|—0’</OT Jov(0) d@,JT~) , re[0,¢]. (21.7)

In terms of the curve in the space X
nr :/OT Jov(6) df + v, € [0,1], (21.8)

equality of forms (21.7) can be rewritten as follows:
R (v(r), Y+ o, Jr-) =0, € [0,1]. (21.9)
The strong Legendre condition implies that the linear mapping
Y R™ — R™

is nondegenerate (we denote here and below the linear mapping into the dual
space by the same symbol as the corresponding quadratic form), thus the
inverse mapping is defined:

(R~ R SR
Then equality (21.9) reads
v(r)+ (K e, Jo ) =0, TE0,]. (21.10)
We come to the following statement.

Theorem 21.2. Let \;, t € [0,11], be a regular extremal. An instantt € (0,41]
15 a conjugate time iff there exists a nonconstant solution 1, to Jacobi equation

e =Jr (B o(Jr e my), T E0,], (21.11)
that satisfies the boundary conditions
Mo € 1o, N € 1lo. (21.12)

Jacobi equation (21.11) is a linear nonautonomous Hamiltonian system on X:

0 = b:(n;) (21.13)
with the quadratic Hamiltonian function

1

5 () (om0l m). me X,

b-(n)

where (h’T’)_1 is a quadratic form on R™*,
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Proof. We already proved that existence of v € Ker Qt|Kt i1s equivalent to
existence of a solution 7, to Jacobi equation that satisfies the boundary con-
ditions (21.12).

If v = 0, then n, = const by virtue of (21.8). Conversely, if 1, = const,
then J-u(r) = 9 = 0. By (21.3), the second variation takes the form

t
Q:(v) = / R (v(r))dr < —oz||v||%2 for some a > 0.
0

But v € Ker @¢, so Q+(v) = 0, consequently v = 0. Thus nonzero v correspond
to nonconstant 7, and vice versa.

It remains to prove that b, is the Hamiltonian function for Jacobi equa-
tion (21.11). Denote

Ar() = () o) ERT, e,
then Jacobi equation reads
777' = JTAT(UT)a

so we have to prove that

then
<d77b7'a€> = _<U(JT : ag)’AT(n» = O'(f, JTAT(U))

Thus equality (21.14) follows and the proof is complete. O

21.2 Singular Case: Derivation of Jacobi Equation

In this section we obtain Jacobi equation for a nice singular extremal pair
(a(t), Ae).

In contrast to the regular case, the second variation in the singular case
can be nondegenerate at the instant ¢, where it loses its negative sign. In order
to develop the theory of conjugate points for the singular case, we introduce
a change of variables in the form ;. We denote, as before, the integrals

and denote the bilinear form that enters generalized Legendre condition:
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le(wy, wa) = o(Jewy, Jywa), w; € R™.

For a nice singular extremal, expression (20.25) for the second variation reads

Q:(v1,v9) :/OtlT(wl(T),wz(T))dT—l—/otO' (ijl(T),/Tt Jows (0) da) dr
.y (Jowl(o), /Ot Jrws(T) dr) .

Admissibility condition (20.26) for variations of control v;(-) can be written
as follows:

/t Jrw(r)dr + Jow(0) € Iy, (21.15)

The mapping
() (w(-),w(0)) € LT x R™

has a dense image in L7* x R™, and the Hessian @); and admissibility condi-
tion (21.15) are extended to L x R™ by continuity.
Denote
v = Jow(0) € Iy

and consider the extended form
¢ ¢ . t
Q1 (wy, wa) :/ ZT(wl(T),wz(T))dT—l—/ o (JTwl(T),/ Jowa(6) db’) dr
0 0 T

+0 (W,/Ot Jrws(T) dr)

on the space

¢
/ Jrw(T)dr 4+ v € . (21.16)
0

Then in the same way as in the regular case, it follows that the restriction
of the quadratic form @:(w) to the space (21.16) is degenerate at the instant
t = t.. An instant t that satisfies such a property is called a conjugate time
for the nice singular extremal X;.

Similarly to the regular case, we derive now a Hamiltonian Jacobi equa-
tion on conjugate times for nice singular extremals, although the Hamiltonian
function and boundary conditions differ from the ones for the regular case.

Let ¢t € (0,¢1] be a conjugate time, i.e., let the form @Q:(wy,ws) have a
nontrivial kernel on the space (21.16). That is, there exists a pair

t
(w,4) € LT[0,1] x I, / Jrw(r) dr + 5 € Iy,
0
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such that the linear form on the space L7'[0,¢] x I

Qt(~,w):/Otlf('LQ,w(r))err/ota(jT ~L2,/:J'9w(9)d9) dr
+o <~p0,/0t Jrw(r) dr) (21.17)

annihilates the admissible space (21.16). In turn, the annihilator of the ad-
missible space (21.16) is the space of linear forms

t
/O'(JT~L2,I/) dr+o(r,,v), v € Il.
0
Thus, similarly to the regular case, there exists v € Il such that
t .
Qt(~,w):/ O'(JT ~L2,1/) dr+o (-, ,v).
0

By virtue of (21.17), the previous equality of forms splits:
. t . .
I (mm,w(r) +o (JT .Rm,/ Jow(0) da) —0 (JT .Rm,y) . relo,1],

t
o ('Fo ,/ JTw(T)dT) =o(r,,v).
0
That 1s,
. t .
Lw(r)=—0o (JT R ,/ Jow(6) do — 1/) , (21.18)
. . T
U('pu,/ Jrw(T) dT—I/) =0. (21.19)
0
In terms of the curve in the space X = T5,(T* M)
t .
Ny = / Jow(6) do — v, € [0,1], (21.20)
equalities (21.18), (21.19) take the form

Lw(r)=—c (JT Rm 777) , 7 €1[0,1], (21.21)
o (FO, 770) =0.
The last equality means that 7y belongs to the skew-orthogonal comple-

ment I'#. On the other hand, 17y € Iy + Ily, compare definition (21.20)
with (21.16). That is,
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no € (o + Io) NI = 113",

Recall that H{” is a Lagrangian subspace in the symplectic space X containing
the isotropic subspace Iy, see definition (11.28). Notice that Goh condition

o(Jev1, Jrv2) = 0, vy, v ER™ 1 €]0,11]
means that the subspaces
It =span{Jv |v e R™} C X
are isotropic. We obtain boundary conditions for the curve 5;:
m € 15", e € M. (21.22)
Moreover, equality (21.21) yields an ODE for n;:
iy = —Jrw(r)=J, 5o (Jr - n0), T elo]. (21.23)

Similarly to the regular case, it follows that this equation is Hamiltonian with
the Hamiltonian function

1

be(n) = =5 Mo (s o) o), neX

The linear nonautonomous equation (21.23) is Jacobi equation for the totally
singular case.
Now the next statement follows in the same way as in the regular case.

Theorem 21.3. Let A; be a nice singular extremal. An instantt € (0,%1] is a
conjugate time iff there exists a nonconstant solution n, to Jacobi equation

By = J 17 (U(J; .,777)) . relot, (21.24)
with the boundary conditions

no € 15",y € Ilo. (21.25)

Jacobi equation (21.24) is Hamiltonian:

2

>~

e = b7 (1) (21.26)
with the nonautonomous quadratic Hamailtonian function

o) = —5 17 (om0 m), me 2

The following statement provides a first integral of equation (21.23), it can
be useful in the study of Jacobi equation in the singular case.
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Lemma 21.4. For any constant vector v € R™, the function o(n, J:v) is an
integral of Jacobi equation (21.23).

Proof. We have to show that
o (1, Jrv) 4+ o (97, Jrv) = 0 (21.27)

for a solution 7, to (21.23). The first term can be computed via Jacobi equa-
tion:

(b

o(nr, Jrv) = —{dy b, J )

where (7! is a bilinear form

= <0’(j7— o) e (s JTv)>
where {71 is a linear mapping to the dual space

= <0’(j7— M), v> =—o(n,, ij),
and equality (21.27) follows. O
In particular, this lemma means that
mwelé o n,el?,

i.e., the flow of Jacobi equation preserves the family of spaces I'#. Since this
equation is Hamiltonian, its flow preserves also the family I'.. Consequently,
boundary conditions (21.22) can equivalently be written in the form

no € Iy, e € 115"

21.3 Necessary Optimality Conditions
Proposition 21.5. Let (&, At) be a corank one extremal pair. Suppose that A
is reqular or nice singular. Let t. € (0,t1]. Then:

(1) Either for any nonconstant solution n, t € [0,t.], to Jacobi equation
(21.13) or (21.26) that satisfies the boundary conditions (21.12) or (21.25)
the continuation

teoLl,
=4 € 0.1 (21.28)
M. te [t*atl]a

satisfies Jacobi equation on [0,11],
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(2) Or the control @ is not locally geometrically optimal on [0,t1].

Proof. Assume that condition (1) does not hold, we prove that condition (2)
, ) and let 9y, t € [0,1.], be

the corresponding nonconstant solution to Jacobi equation with the boundary
conditions. Consider the continuation of v by zero:

56) = {v(t), t€[0,4.],

0, t € [t ta].

is then satisfied. Take any nonzero v € Ker | ¢,

and the corresponding continuation by constant 7; as in (21.28). Since 7
does not satisfy Jacobi equation on [0,,], then v & Ker(Q, |, ). Notice that
1

Q:,(¥) = @, (v) = 0. On the other hand, there exists w € K, such that
Q+, (¢, w) # 0. Then the quadratic form @y, takes values of both signs in the
plane span(v, w).

In the singular case, since the extended form @, is sign-indefinite, then the
initial form is sign-indefinite as well.

Summing up, the form @, is sign-indefinite on K;,. By Theorem 20.3, the
control @(t) is not optimal on [0, ¢4]. O

Notice that case (1) of Proposition 21.5 imposes a strong restriction on an
extremal A;. If this case realizes, then the set of conjugate points coincides
with the segment [{.,1].

Assume that the reference control @(¢) is analytic, then solutions 7: to
Jacobi equation are analytic as well. If 7; 1s constant on some segment, then
it is constant on the whole domain. Thus in the analytic case alternative (1)
of Proposition 21.5 is impossible, and the first conjugate time ¢, provides a
necessary optimality condition: a trajectory cannot be locally geometrically
optimal after t,.

Absence of conjugate points implies finite-dimensional local optimality in
the corank one case, see Theorem 20.3. In the following two sections, we
prove a much stronger result for the regular case: absence of conjugate points
1s sufficient for strong optimality.

21.4 Regular Case: Transformation of Jacobi Equation

Let A be a regular extremal, and assume that the maximized Hamilto-
nian H(A) is smooth in a neighborhood of A;. The maximality condition of
PMP yields the equation

0 hy
A) =
du W) =0,
which can be resolved in the neighborhood of A;:

3 hy
Ju

AN=0 < u=u()).
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The mapping A — u(A) is smooth near A; and satisfies the equality
u(Ae) = a(t).

The maximized Hamiltonian of PMP is expressed in the neighborhood of A
as

H(A) = hu) (),
see Proposition 12.3. Consider the flow on T* M :

t —
etfo &E) / —hg(rydr = et o py.
0

By the variations formula in the Hamiltonian form, see (2.27) and (11.22),
this flow 18 Hamiltonian:

. _ t
el o py :ex_f)/ @, dr (21.29)
0

with the Hamiltonian function

pr(A) = (H = hag) (P71 (V)-

Notice that .
Ao 0 et o Pl =M o P = Ay,

i.e., Ap is an equilibrium point of the field ;. In other words, Ag is a critical
point of the Hamiltonian function:

(M) 2 0=p(ho) = drp=0.

It is natural to expect that the corresponding Hessian is related to optimality
of the extremal A;.

The following statement relates two Hamiltonian systems: Jacobi equa-
tion on X and the maximized Hamiltonian system on 7* M. We will use this
relation in the proof of sufficient optimality conditions in Sect. 21.5.

Proposition 21.6. The Hamiltonian by of Jacobi equation coincides with one
half of Hessian of the Hamultonian ¢, at Ag:

1
by = — Hess\, ¢¢.
2
Proof. Recall that Hamiltonian of Jacobi equation for the regular case is

be() = —5 (oo ), () oo )

Transform the linear form:
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o —
o(Je-m) =0 5o hue -m

where hy +(A) = hy (P71 (A)

d 3 hu . —
= _<d>\06_uhu’t.’n> = —<<d)\ta—u) (Pt 1)*>\D a77>

where (P7 ') is differential of the diffeomorphism (P ~") : T*M — T*M

0 hy
- - <d>\tm 'a€>a
E= (Pt*_1>*>\0 ne TM(T*M)~

Then the Hamiltonian b; can be rewritten as

bt(n) = _% <<d)\t% ) a€> 3 (h;/)_l <d>\t% ) a€>> .

Now we compute Hessian of the Hamiltonian

pe(A) = (hu(r) — hag) (PF7HN).

We have
Hessx, ¢ (n) = Hessx, (hu(x) — hag)) (§)-
Further,
0 hy
dx(huxy = haw)) = M . dau+ (dxha)ly o) — drhag),
NI

0 hy
D3, (hu(ny = hag)) = (dxt B

) d>\tu.
u(Ar)

The differential dy,u can be found by differentiation of the identity

0 hy
3 =0
Uy
at A = A¢. Indeed, we have
0? hy, 0 hy
Gz DUt hg, =0
thus
0 hy

d>\tu = _(h;/)_l d>\t

ou
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Consequently,

A hy
Ju

3 hy
du’

D3 (hugxy = hay) = —dr, ——(h)) " 1da,

le.,
Hessy, ¢r(n) = Hessx, (hu(x) — hag))(€) = 2b:(n),

and the statement follows. O

Since the Hamiltonian ¢; attains minimum at Ag, the quadratic form b; is
nonnegative:
by > 0.

Denote by C; the space of constant vertical solutions to Jacobi equation
at the segment [0, ]:
Co={ne|im=0,reo,q}. (21.30)

Now we can give the following simple characterization of this space:

Cy =1l ﬂ (ﬂ,-e[oyt] Ker bT) .

Indeed, equilibrium points of a Hamiltonian vector field are critical points
of the Hamiltonian, and critical points of a nonnegative quadratic form are
elements of its kernel.

21.5 Sufficient Optimality Conditions

In this section we prove sufficient conditions for optimality in the problem
with integral cost:

4= fulq), g€EM, uwelU=intU CR",
7(0) = qo, q(th) = q1,

/0 1 e(q(t), u(t)) dt = min,

with fixed or free terminal time. Notice that now we study an optimal problem,
not a geometric one as before. Although, the theory of Jacobi equation can
be applied here since Jacobi equation depends only on a Hamiltonian A, ()
and an extremal pair (@(t), A¢).

For the normal Hamiltonian of PMP

hu(A) = (A, ful9)) — (g, u),  AET™M,

and a regular extremal pair (@(¢), A¢) of the optimal control problem, consider
Jacobi equation .

n=b(n), neX="T\(T"M).
In Sect. 21.3 we showed that absence of conjugate points at the interval (0,%;)
is necessary for geometric optimality (at least in the corank one analytic case).
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Exercise 21.7. Show that absence of conjugate points on (0,%;) is necessary
also for optimality (in the analytic case) reducing the optimal control problem
to a geometric one.

Now we can show that absence of conjugate points is also sufficient for
optimality (in the regular case).

A trajectory ¢(t), t € [0,11], is called strongly optimal for an optimal
control problem if it realizes a local minimum of the cost functional w.r.t. all
trajectories of the system close to ¢(¢) in the uniform topology C([0,%1], M)
and having the same endpoints as ¢(¢). If the minimum is strict, then the
trajectory ¢(t) is called strictly strongly optimal.

Theorem 21.8. Let Ay, t € [0,11], be a regular normal extremal in the problem
with integral cost and fived time, and let the maximized Hamiltonian H ()
be smooth in a neighborhood of Ai. If the segment (0,t1] does not contain
conjugate points, then the extremal trajectory q(t) = w(At), t € [0,11], s
strictly strongly optimal.

Proof. We apply the theory of fields of extremals (see Sect. 17.1) and embed A,
into a family of extremals well projected to M.
The maximized Hamiltonian

H(A):ma{}(hu(/\), AeT*M,
ue

is defined and smooth. Then by Theorem 17.2, it is enough to construct a
function a € C°°(M) such that the family of manifolds

Lo=eT(Lo)cT*M,  telo,t],
Lo = {/\ = dqa} C T*M,
A0 EEO;

has a good projection to M:

7 Ly — M is a diffeomorphism near Ay, ¢ € [0,¢4].
In other words, we require that the tangent spaces Ty,L; = €& 4(T>\D£0) have
zero intersection with the vertical subspaces Iy = T}, (T;(t)M):

(T, Loyn I, = {0},  te[0,4].

This is possible due to the absence of conjugate points (a typical picture for
a conjugate point — fold for projection onto M — is shown at Fig. 21.1).

Below we show that such a manifold £y exists by passing to its tangent
space Ly — a Lagrangian subspace in X (see definition in Subsect. 11.5.3). For
any Lagrangian subspace Ly C X transversal to Ily, one can find a function
a € C™(M) such that the graph of its differential Lo = {A = dga} C T*M
satisfies the conditions:
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Ao
LoNTM

Fig. 21.1. Conjugate point as a fold

(1) A0 S EO;
(2) Th, Lo = Lo.

Indeed, in canonical coordinates (p,q) on T* M, take a function of the form

1
Cl(q) = <p0aq> + §qTSQa A0 = (pO;O)a
with a symmetric n X n matrix S. Then

Lo={A=(p,q) | p=po+ Sq},
Tro Lo ={(dp,dq) | dp = Sdq}

and i1t remains to choose the linear mapping S with the graph L. Notice
that the symmetry of the matrix S corresponds to the Lagrangian property
of the subspace Lg. Below we use a similar construction for parametrization
of Lagrangian subspaces by quadratic forms.
To complete the proof, we have to find a Lagrangian subspace Ly C X
such that .
(61HL0) N Ht = {0}, t e [O,tl].

By (21.29), the flow of the maximized Hamiltonian decomposes:

. ~ ¢
e =@ 0P P, :ex_f)/ Gy dr.
0
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Notice that the flow Pt*_1 on 7% M is induced by the flow P, on M, thus it
preserves the family of vertical subspaces:

(Pr=h), 1o = 1T,

So it remains to show that there exists a Lagrangian subspace Ly C X for

which
(@i Lo) N 1Ty = {0}, t€[0,14]. (21.31)

Proposition 21.6 relates the Hamiltonian b; of Jacobi equation to the
Hamiltonian ¢;:
1
3 Hessy, ¢t = be.
Thus the field I;t is the linearization of the field @_. at the equilibrium point Ag:
the Hamiltonian b; and the Hamiltonian field b; are respectively the main

terms in Taylor expansion of ¢; and @, at Ay. Linearization of a flow is the
flow of the linearization, thus
—exp / b, dr.
0

t
(e_x_f) / &y dT)
0 *

Introduce notation for the flow of Jacobi equation:

t
B, :e_x_f)/ b, dr,
0]

o

then
@t*AU == Bt;

and equality (21.31) reads
(BiLo) N 1Ty = {0},  t€[0,t1]. (21.32)

It remains to prove existence of a Lagrangian subspace Ly that satisfies this
equality.
Recall that the segment (0,¢;] does not contain conjugate points:

(BeIlg) N ITy = Ct, t e (0,t],

where C} is the space of constant vertical solutions to Jacobi equation on [0, ¢],
see (21.30).

In order to make the main ideas of the proof more clear, we consider first
the simple case where

Cr={0}, te(0t] (21.33)

1.e.
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(BtHQ)mHQZ{O}, tE (O,tl].

Fix any ¢ € (0,1). By continuity of the flow By, there exists a neighbor-
hood of the vertical subspace Iy such that for any Lagrangian subspace Lg
from this neighborhood

(BtLo)mHQZ{O}, it e [E,tl].

In order to complete the proof| it remains to find such a Lagrangian sub-
space L satisfying the condition

(ByLo) N Iy = {0}, te0,¢].

We introduce a parametrization of the set of Lagrangian subspaces Ly C
X sufficiently close to Ily. Take any Lagrangian subspace H C X which is
horizontal, i.e., transversal to the vertical subspace IIy. Then the space X
splits:
Y =1y H.

Introduce Darboux coordinates (p, ¢) on X such that
I = {(p,0)}, H={(0,9)}.

Such coordinates can be chosen in many ways. Indeed, the symplectic form o
defines a nondegenerate pairing of the mutually transversal Lagrangian sub-
spaces Il and H:

1= 11,
<f’e>:0-(eaf)a eclly, fe€eH.

Taking any basis ey,...,e, in Iy and the corresponding basis fi,..., f,
in H dual w.r.t. this pairing, we obtain a Darboux basis in X~. In Darboux
coordinates the symplectic form reads

a((p1,q1), (P2, 92)) = (1, q2) — (P2, q1)-

Any n-dimensional subspace L C X transversal to H is a graph of a linear
mapping

S H0—>H,
le.

L={(p,5p) | p € o}

A subspace L is Lagrangian iff the corresponding mapping S has a symmetric
matrix in a symplectic basis (exercise):

S=5"
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Introduce the quadratic form on 7y with the matrix S:

S(p,p) = (p, Sp)-

So the set of Lagrangian subspaces I C X transversal to the horizon-
tal space H is parametrized by quadratic forms S on Il;. We call such
parametrization of Lagrangian subspaces L C X, LN H = {0}, a (IIy, H)-
parametrization.

Consider the family of quadratic forms S; that parametrize a family of
Lagrangian subspaces of the form

Ly = B Ly,
1.e.

Ly = {(p, Stp) | p € Io}.

Lemma 21.9.

Se(p,p) = 2b:(p, Stp).

Proof. Take any trajectory (p,q) = (pt, ¢:) of the Hamiltonian field by. We
have

q = 5tp,
thus .
q = Stp+ Sip,
le.

—

be(p, q) = (15, Sep + Stp) .

Since the Hamiltonian b; is quadratic, we have

o ((p, q), be(p, Q)) = 2b:(p, q).

But the left-hand side is easily computed:

o ((p, q), be(p, Q))

o ((p,9), (P, q))

((P, Stp), (p, Stp + Stp)) = <P, Stp + Stp> —(p, Stp)

o
<P, Stp>

by symmetry of S;. a

Since the Hamiltonian ¢; attains minimum at Ag, then b > 0, thus

S, > 0.
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The partial order on the space of quadratic forms induced by positive forms
explains how one should choose the initial subspace Ly. Taking any Lagrangian
subspace Ly C X' with the corresponding quadratic form

So >0
sufficiently close to the zero form, we obtain
S¢ > 0, te€[0,¢].

That 1s,
Lt n Ho = {0}

on [0,¢], thus on the whole segment [0,1].

We proved equality (21.32) in the simple case (21.33). Now we consider
the general case. The intersection (BiIlg) N Iy = C} is nonempty now, but
we can get rid of it by passing to Jacobi equation on the quotient C#/C,.

The family of constant vertical solutions Ct is monotone nonincreasing:

Ct’ D) Ct” for ¢/ < .

We have Cy = Iy and set, by definition, Ct, 40 = {0}. The family C; is

continuous from the left, denote its discontinuity points:
0<s1 <9<+ < s <1ty

(notice that in the simple case (21.33), we have k = 1, s; = 0). The family C;
is constant on the segments (s;, s;41].
Construct subspaces B; C IIy, ¢ =1,...,k, such that

Cy=LEip1 D Eiqa @D By, t € (si, Sit1]-
Notice that for ¢ = 0, we obtain a splitting of the vertical subspace:
oy =Co=FE1 @& & E.

For any horizontal Lagrangian subspace H C X, one can construct the corre-
sponding splitting of H:

H=F&- - &F, o, F) =0 i#j (21.34)

Fix any initial horizontal subspace Hy C X, HyN Il = {0}. The following
statement completes the proof of Theorem 21.8 in the general case.

Lemma 21.10. For any ¢ = 1,...,k, there exist a number ¢; > 0 and a
Lagrangian subspace H; C X, H; N Il = {0}, such thal any Lagrangian
subspace Ly C X, LoN Hy = {0}, with a (IIy, Hy)-parametrization Sy(p,p) =
e(p,py, 0 < & < &, satisfies the conditions:
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(1) Ly N 11y = {0}, t€[0,si],
(2) Ly n H; = {0}, t € [0, s;], and the Lagrangian subspace Ly has a (Ily, H;)-
parametrization Sy > 0.

Proof. We prove this lemma by induction on .

Let ¢ = 1. For s;1 = 0, the statement is trivial, so we assume that s; > 0.
Take any ¢; > 0 and any Lagrangian subspace Ly C X with a quadratic form
e(p,p), 0 < € < ey, in the (IIy, Hp)-parametrization.

Notice that Cy = Ilg, i.e., Bi|y = 1d, for t € (0, s1]. We have

LthQZBtLothHQ:Bt(LomH()):{0}, tE[O,Sl].

By continuity of the flow By, there exists a horizontal Lagrangian subspace H;
with a (ITg, Hp)-parametrization —§{p, p), § > 0, such that L, N Hy; = {0}, ¢ €
[0, 51]. One can easily check that the subspace Lg in (IIy, Hy)-parametrization
is given by the quadratic form Sy(p,p) = '{p,p) > 0, ¢’ = /(1 + ¢/J) < e.
We already proved that Sy > 0, thus

St > Oa t € [0,81],

in the (I1y, H1)-parametrization.

The induction basis (i = 1) is proved.

Now we prove the induction step. Fix 7 > 1, assume that the statement of
Lemma 21.10 is proved for i, and prove it for ¢ + 1.

Let ¢ € (si,8;41], then Cy = Ej41 & -+ - & Ey. Introduce a splitting of the
horizontal subspace H; as in (21.34):

Hi=rN®- - @ F.

Denote
El=E1® & E;, Ey=Cy =Eiy1® - - D Ey,
Fl=Fo  -oF, Fy=Fp1® & Fy,
Ly =LoN(E, @ F)), L =Lon (Ey® Fy).

Since B;E4 = EY, then the skew-orthogonal complement (E%)4 = Ef @
El @ F/ is also invariant for the flow of Jacobi equation: B;(FE%)4 = (E4)%.

In order to prove that Ly N IIy = {0}, compute this intersection. We have
Iy C (E%)#, thus

ByLo N Ig = ByLo N By(EY)* NIl = By(Lo N (EY)“)N Iy = B L N 1.
(21.35)

So we have to prove that B;L{ N Ilo = {0}, t € (54, si41]-
Since the subspaces F% and (E})4 are invariant w.r.t. the flow B, the
quotient flow is well-defined:
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B, : =%, I=(EY)/ES
In the quotient, the flow Et has no constant vertical solutions:
BiIloN Iy = {0}, t € (si,841],
IIy = I,/ EY,.
By the argument already used in the proof of the simple case (21.33), it follows
that
B,LiN Iy = {0}, € (si,si41),
Ly = L3/ By,
for Ly sufficiently close to Ilg, i.e., for ¢ sufficiently small. That is,
B:LiN I, C BY, t € (si,8i11]-
Now it easily follows that this intersection is empty:
B, LiNIy C B, LyNEY = B.LiNBEY = By(LiNEY) = {0}, ¢ € (s, 8i11]-
In view of chain (21.35),
L,NII, = {0}, t € (s, Sit1],

that is, we proved condition (1) in the statement of Lemma 21.10 for ¢ 4 1.

Now we pass to condition (2). In the same way as in the proof of the
induction basis, it follows that there exists a horizontal Lagrangian subspace
Hiy1 C X such that the curve of Lagrangian subspaces Ly, ¢ € [0, s;41], is
transversal to H;41. In the (ITy, H;41)-parametrization, the initial subspace
Ly is given by a positive quadratic form So(p, p) = €'(p,p), 0 < &’ < e. Since
Sy > 0, then

Sy > 0, t €10, si41].

Condition (2) is proved for i + 1.

The induction step is proved, and the statement of this lemma follows. 0O

By this lemma,
LthOZ{O}, tE[O,tl],

for all initial subspaces Ly given by quadratic forms Sy = e{(p, p), 0 < & < &,
for some g5 > 0, in a (Ily, Hy)-parametrization. This means that we con-
structed a family of extremals containing A; and having a good projection
to M. By Theorem 17.2, the extremal A, t € [0,14], is strongly optimal. The-
orem 21.8 is proved. a

For the problem with integral cost and free terminal time ¢;, a similar
argument and Theorem 17.6 yield the following sufficient optimality condition.

Theorem 21.11. Let Ay, t € [0,14], be a regular normal extremal in the prob-
lem with integral cost and free time, and let H(X) be smooth in a neighborhood
of A¢. If there are no conjugate points at the segment (0,t1], then the extremal
tragectory q(t) = m(Ae), t € [0,t1], is strictly strongly optimal.
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Reduction

In this chapter we consider a method for reducing a control-affine system to
a nonlinear system on a manifold of a less dimension.

22.1 Reduction

Consider a control-affine system
m
i=f(g)+ Y wgile), weER, q€M, (22.1)
i=1
with pairwise commuting vector fields near controls:
[gi,gj]EO, i,j:l,...,m.
The flow of the system can be decomposed by the variations formula:

t m t
b [ (f+Zui(r)gi) ) e e
0 i=1

(22.2)

wi(t) = /0 t wi(r) dr.

Here we treat > " u;(7)g; as a nonperturbed flow and take into account that
the fields g; mutually commute. Introduce the partial system corresponding
to the second term in composition (22.2):

G = eXiziWinddif(g) w;i €R, q€ M, (22.3)

where w; are new controls. Attainable sets A (¢) of the initial system (22.1)
and As(t) of the partial system (22.3) for time ¢ from a point gg € M are
closely related one to another:
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Ar(t) C As(t) o {eB i | wy € B} € el(Ay (1)), (22.4)

Indeed, the first inclusion follows directly from decomposition (22.2). To prove
the second inclusion in (22.4), notice that the mapping

t
w() = oo e_X_f)/ ezﬁlw,('r)adg,de
0

is continuous in Ly topology, this follows from the asymptotic expansion of
the chronological exponential. Thus the mapping

¢
(w(-),v) > ggo exp / ez WilT)adgi £ g o o2l vigi
0

is continuous in topology of L; x R™. Finally, the mapping

has a dense image in L; X R™. Then decomposition (22.2) implies the second
inclusion in (22.4).
The partial system (22.3) is invariant w.r.t. the fields g;:

(eEZ’”‘zl vzgz) i1 wiadgi f — ey (wi—vs) adgi f (22.5)

Thus chain (22.4) and equality (22.5) mean that the initial system (22.1) can
be considered as a composition of the partial system (22.3) with the flow of
the fields g;: any time ¢ attainable set of the initial system is (up to closure)
the time ¢ attainable set of the partial system plus a jump along ¢;, moreover,
the jump along g; 1s possible at any instant.

Let (u(t), A¢) be an extremal pair of the initial control-affine system. The
extremal A; is necessarily totally singular, moreover the maximality condition
of PMP is equivalent to the identity

<Atagi> =0.

It is easy to see that

po = (Z0a) ),

is an extremal of system (22.3) corresponding to the control

w(t) = /Otu(r) dr,

moreover,

{1z, 9:) = 0. (22.6)
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(Here, we use the term extremal as a synonym of a critical point of the end-
point mapping, 1.e., we require that the extremal control be critical, not nec-
essarily minimizing, for the control-dependent Hamiltonian of PMP.) Con-
versely, if p; is an extremal of (22.3) with a Lipschitzian control w(¢), and if

identity (22.6) holds, then
At = (6_ E:n:1 w,(t)g,)* m
is an extremal of the initial system (22.1) with the control
u(t) = w(t).

Moreover, the strong generalized Legendre condition for an extremal A; of
the initial system coincides with the strong Legendre condition for the cor-
responding extremal p; of the partial system. In other words, the passage
from system (22.1) to system (22.3) transforms nice singular extremals A;
into regular extremals gi;.

Exercise 22.1. Check that the extremals A; and g; have the same conjugate
times.

Since system (22.3) is invariant w.r.t. the fields g;, this system can be
considered on the quotient manifold of M modulo action of the fields g; if the
quotient manifold is well-defined. Consider the following equivalence relation
on M:

i ~q & ¢ €0(n,...,9m)

Suppose that all orbits Og4(g1, ..., gm) have the same dimension and, more-
over, the following nonrecurrence condition is satisfied: for each point ¢ € M
there exist a neighborhood O, 3 ¢ and a manifold N, C M, ¢ € Ny, transver-
sal to Og4(g1,...,9m), such that any orbit Oy (g1,...,9m), ¢ € Oy, inter-
sects N, at a unique point. In particular, these conditions hold if M = R”
and g; are constant vector fields, or if m = 1 and the field g; is nonsingu-
lar and nonrecurrent. If these conditions are satisfied, then the space of orbits
M /~ is a smooth manifold. Then system (22.3) is well-defined on the quotient
manifold M /~:

s oir, wiadg; .

g=e fle),  wieR, qeMp. (22.7)
The passage from the initial system (22.1) affine in controls to the reduced
system (22.7) nonlinear in controls decreases dimension of the state space and
transforms singular extremals into regular ones.

Let m : M — M/~ be the projection. For the attainable set Asz(t) of the

reduced system (22.7) from the point 7(gy), inclusions (22.4) take the form

A1) € 7Y (As(1) C (A (1)), (22.8)
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It follows from the analysis of extremals above that ¢(¢) is an extremal curve
of the initial system (22.1) iff its projection m(q(t)) is an extremal curve of
the reduced system (22.7). The first inclusion in (22.8) means that if w(¢(7)),
T € [0,1], is geometrically optimal, then ¢(7), 7 € [0,¢], is also geometrically
optimal.

One can also define a procedure of inverse reduction. Given a control sys-
tem

¢=flgw), geM, welR” (22.9)

we restrict it to Lipschitzian controls w(-) and add an integrator:

W= u,

Exercise 22.2. Prove that system (22.9) is the reduction of system (22.10).

22.2 Rigid Body Control

Consider the time-optimal problem for the system that describes rotations of
a rigid body, see Sect. 19.4:

q = q(a+ ub), q €50(3), uelR, (22.11)

where

a, b€so(3), {(a,b)=0, |b|=1, a#0.

Notice that in Sect. 19.4 we assumed |a| = 1, not |b] = 1 as now, but one case
is obtained from another by dividing the right-hand side of the system by a
constant.

We construct the reduced system for system (22.11).

The state space SO(3) factorizes modulo orbits ge*®, s € R of the field ¢b.
The corresponding equivalence relation is:

g~qe’,  seR,
and the structure of the factor space is described in the following statement.

Proposition 22.3.
SO(3)/~ ~ S%

the canonical projection is

¢—qf,  q€S0(3), pges (22.12)
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Here 3 € S? C R?is the unit vector corresponding to the matrix b € so(3):

by 0 —bs by
B=10b2], b=| b5 0 —bh
b3 —by by 0

Proof. The group SO(3) acts transitively on the sphere S?. The subgroup of
SO(3) leaving a point 3 € S? fixed consists of rotations around the line 3,
le., 1t is

B = (et | s e R}
Thus the quotient SO(3)/e%? = SO(3)/~ is diffeomorphic to S?, projection
SO(3) — S? is given by (22.12), and level sets of this mapping coincide with
orbits of the field ¢b. a

The partial system (22.3) in this example takes the form
G = qe¥ g, q €50(3), welk,

and the reduced system (22.7) is

d
7 (@9 =g aB, qfeES”. (22.13)

The right-hand side of this symmetric control system defines a circle of ra-
dius |a] in the tangent plane (¢8)* = T,3S5%. In other words, system (22.13)
determines a Riemannian metric on S2. Since the vector fields in the right-
hand side of system (22.13) are constant by absolute value, then the time-
optimal problem is equivalent to the Riemannian problem (time minimization
is equivalent to length minimization if velocity is constant by absolute value).

Extremal curves (geodesics) of a Riemannian metric on S? are arcs of
great circles, they are optimal up to semicircles. And the antipodal point is
conjugate to the initial point. Conjugate points for the initial and reduced
systems coincide, thus for both systems extremal curves are optimal up to the
antipodal point.

22.3 Angular Velocity Control

Consider the system that describes angular velocity control of a rotating rigid

body, see (6.19):
L= px B+ ul, ueR, p€R> (22.14)

Here 1 is the vector of angular velocity of the rigid body in a coordinate
system connected with the body, and [ € R3 is a unit vector in general position
along which the torque is applied. Notice that in Sect. 6.4 we allowed only
torques u = =£1, while now the torque is unbounded. In Sect. 8.4 we proved
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that the system with bounded control is completely controllable (even in the
six-dimensional space). Now we show that with unbounded control we have
complete controllability in B2 for an arbitrarily small time.
We apply the reduction procedure to the initial system (22.14). The partial
system reads now
fr=e" " x Bp)
= (p+ wl) x g(p+ wl), weR, peR3

The quotient of &3 modulo orbits of the constant field { can be realized as
the plane R? passing through the origin and orthogonal to [. Then projection
R3 - R? is the orthogonal projection along [, and the reduced system reads

= (r+wl) x Bz + wl) —{xx Bz 4w, reR? weR.
(22.15)

Introduce Cartesian coordinates in R3 corresponding to the orthonormal frame
with basis vectors collinear to the vectors {, [ x I, I x (I x ). In these
coordinates & = (1, 23) and the reduced system (22.15) takes the form:

r] = blgl‘g + ((bll — b33)l‘2 — bzgl‘l)w — b13w2, (2216)
Lo = —bizz1s + ((baz — b11)x1 + bazaa)w, (22.17)

where b = (b;;) is the matrix of the operator 8 in the orthonormal frame.
Direct computation shows that b13 < 0 and b32 —b11 # 0. In polar coordinates
(r, ) in the plane (21, 23), the reduced system (22.16), (22.17) reads

7 = rF(cos ¢, sin p)w — byzcos pw?,

¢ = —bizrsing — (1/r)sin pw” + G(cos ¢, sin p)w,

where F' and G are homogeneous polynomials of degree 2 with G(+1,0) =
baz — b11.

Choosing appropriate controls, one can construct trajectories of the system
in R? of the following two types:

(1) “spirals”, i.e., trajectories starting and terminating at the positive semi-
axes x1, not passing through the origin (r # 0), and rotating counterclock-
wise (¢ > 0),

(2) “horizontal” trajectories almost parallel to the axis #1 (1 > #2).

Moreover, we can move fast along these trajectories. Indeed, system (22.16),
(22.17) has an obvious self-similarity — it is invariant with respect to the
changes of variables 21 — az1, T3 = azs, w = aw, t = o=t (a > 0).
Consequently, one can find “spirals” arbitrarily far from the origin and with
an arbitrarily small time of complete revolution. Further, it is easy to see
from equations (22.16), (22.17) that taking large in absolute value controls w
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one obtains arbitrarily fast motions along the “horizontal” trajectories in the
positive direction of the axis .

Combining motions of types (1) and (2), we can steer any point x € R? to
any point # € R? for any time ¢ > 0, see Fig. 22.1. Details of this argument
are left to the reader as an exercise, see also [41].

T2

Ty

H>l

Fig. 22.1. Complete controllability of system (22.15)

That is, time ¢ attainable sets A2 () of the reduced system (22.15) from a
point x satisfy the property:

Ad(e)=R?  VzeR? e>0.

By virtue of chain (22.8), attainable sets AL (t) of the initial system (22.14)
satisfy the equality

cd(AL(e)) =R®  VueR’ e>0.

Since the vector [ is in general position, the 3-dimensional system (22.14) has a
full rank (see Proposition 6.3), thus it is completely controllable for arbitrarily
small time:

A (e)=R>  VpeR? =>0.
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Curvature

23.1 Curvature of 2-Dimensional Systems

Consider a control system of the form
§="fulg), q€M, uwel, (23.1)

where

dimM =2, U=Ror S

We suppose that the right-hand side f,(q) is smooth in (u, ¢). A well-known
example of such a system 1s given by a two-dimensional Riemannian problem:
locally, such a problem determines a control system

§=cosufi(q)+sinufolg), q€M, ues,

where f1, f2 1s a local orthonormal frame of the Riemannian structure. For
control systems (23.1), we obtain a feedback-invariant form of Jacobi equation
and construct the main feedback invariant — curvature (in the Riemannian
case this invariant coincides with Gaussian curvature). We prove comparison
theorem for conjugate points similar to those in Riemannian geometry.

We assume that the curve of admissible velocities of control system (23.1)
satisfies the following regularity conditions:

J fu
fu(Q) A giq) # 0,
2
040 FE0 0w ver o

Condition (23.2) means that the curve {f,(¢) | v € U} C T, M is strongly
convex, it implies strong Legendre condition for extremals of system (23.1).

Introduce the following control-dependent Hamiltonian linear on fibers of
the cotangent bundle:

hu(A) = A, ful9))
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and the maximized Hamiltonian

H(\) = Zneaghu(/\). (23.3)

We suppose that I (A) is defined in a domain in 7* M under consideration.
Moreover, we assume that for any A in this domain maximum in (23.3) is
attained for a unique u € U, this means that any line of support touches the
curve of admissible velocities at a unique point. Then the convexity condi-
tion (23.2) implies that H () is smooth in this domain and strongly convex
on fibers of T* M. Moreover, H is homogeneous of order one on fibers, thus
we restrict to the level surface

H=H1)CT"M.
Denote the intersection with a fiber

Hy=HOT;M.

23.1.1 Moving Frame

We construct a feedback-invariant moving frame on the 3-dimensional mani-
fold A in order to write Jacobi equation in this frame. Notice that the max-
imized Hamiltonian H 1is feedback-invariant since it depends on the whole
admissible velocity curve fir(¢), not on its parametrization by u. Thus the
level surface H and the fiber H, are also feedback-invariant.

We start from a vertical field tangent to the curve H,. Introduce polar
coordinates in a fiber:

p=(rcosp,rsing) € T, M,
then H, is parametrized by angle ¢:
He=A{p=p(p)}
Since the curve H, does not pass through the origin: p(¢) # 0, it follows that
dp
ple) A o) # 0. (23.4)

d
Decompose the second derivative in the frame p, d—p:
¥
d*p dp
W(@) = ai1()p(y) + az(@)@(w
The curve H, is strongly convex, thus

al(go) < 0
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A change of parameter § = () gives

T =al) (55) 0+ a0 0,

thus there exists a unique (up to translations and orientation) parameter ¢
on the curve H, such that

’p dp
—= = —p(0) + b(6)==(6).
We fix such a parameter # and define the corresponding vertical vector field
on H:
0
=55

In invariant terms, v is a unique (up to multiplication by +1) vertical field
on H such that

Lis= —s+blys, (23.5)

v

where s = pdq is the tautological form on T™ M restricted to H.
We define the moving frame on H as follows:

Vlzv’ sz[v,[:_f], ngﬁ.

Notice that these vector fields are linearly independent since v is vertical and
the other two fields have linearly independent horizontal parts:

ﬂ-*ﬁ:fa
. 0fudu du
F*[U,H] = 6u W’ W 750

Here we denote by u(6) the maximizing control on H,:

<p(9)afu(€)>2 <p(9),fu>, uel.
Differentiating the identity

du
rt. 8 btain — .
w.r.t. 0, we o amdggéo

In order to write Jacobi equation along an extremal A;, we require Lie
brackets of the Hamiltonian field H with the vector fields of the frame:

[H, V1] = V5,
[ﬁa VZ] == ?a
[H,Vs]=0.

The missing second bracket is given by the following proposition.
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Theorem 23.1.

— —

[H,[H,v]] = —&v. (23.6)

The function k = &(A), A € H, is called the curvature of the two-
dimensional control system (23.1). The Hamiltonian field H is feedback-
invariant, and the field v is feedback-invariant up to multiplication by +1.

Thus the curvature « is a feedback invariant of system (23.1).
Now we prove Theorem 23.1.

Proof. The parameter @ provides an identification
H={6} x M, (23.7)

thus tangent spaces to H decompose into direct sum of the horizontal and
vertical subspaces. By duality, any differential form on A has a horizontal
and vertical part. Notice that trivialization (23.7) is not feedback invariant
since the choice of the section # = 0 is arbitrary, thus the form df and the
property of a subspace to be horizontal are not feedback-invariant.

For brevity, we denote in this proof

s = 5|’,L[ )
a horizontal form on #. Denote the Lie derivative:

Ly=Lo = '

8

Q>|Q>

and consider the following coframe on H:
g, s, . (23.8)

It is easy to see that these forms are linearly independent: d@ is vertical, while
the horizontal forms s, s” are linearly independent by (23.4). Now we construct
a frame on A dual to coframe (23.8).

Decompose H into the horizontal and vertical parts:

H= Y + a% , a=ab,q). (23.9)
horizontal \{'/l
vertica,

We prove that the fields
0 0
— Y, Y =|-Y
a0’ ’ [3 0’ ]

give a frame dual to coframe (23.8). We have to show only that the pair of
horizontal fields Y, Y’ is dual to the pair of horizontal forms s, s’. First,

(s3,YY={(sx, HY=(\ f) = H(\) = 1.
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Further,
Y'Y = HY=(X =(A — =0.
(0,17 = (2, 1) < ’aa> < ’au>d9 ’
N— ——
:0
Consequently,
0="{(s,Y) =(s, V) + (5,Y"),
le.,
(s',Y)y=0.
Finally,

0={(s, VY =(s" V) + (s, Y").
Equality (23.5) can be written as s = —s 4 bs’, thus
(s, V'Y= (5", Yy =(s —bs', V) = 1.

So we proved that the frame
9 Y, Y' € VecH
8 9 bl bl

1s dual to the coframe
do, s, s’ € AY(H).

—

We complete the proof of this theorem computing the bracket [H, [ﬁ, v]] using
these frames.
First consider the standard symplectic form:

oly =d(sly)=ds=doAs + dgys,

where dgs is the differential of the form s w.r.t. horizontal coordinates. The
horizontal 2-form dgs decomposes:

dgs=csAs, c=c(0,q),
thus
oly =dOAs +esNs.
Since
iﬁ 0-|’H = 0,
then
0

aly (H, )= ol (Y +azs )
=as’ — (s, Y)dO + c(s5,Y)s' —c(s',V)s

=as +cs’ =0,
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l.e., @ = —c, thus
ey -l
=Y —c—.
040
Now we can compute the required Lie bracket.
- 0 = 0
H/ — . H — Y/ N
[a 0’ ] ‘a0
consequently,

L [ 0 A =1 0 , /6
[H,[H,M”_[H,—H]_[Y—c—ag,—y + oo
. N
_ g / "ot
_(Hc Hc)89+[Y,Y]+cY Y.
———

vertical part

horizontal part

In order to complete the proof, we have to show that the horizontal part of
the bracket [H,[H, 2] vanishes.
The equality s” = —s + bs’ implies, by duality of the frames Y, Y’ and s,
s’ that
Y =Y —bY’.

Further,
ds=dOAs +csAs,
d(s') = (ds)) = dOAs" +'sAs +esAs”
=—d0As—bdOAS + (' +cb)sAs,

and we can compute the bracket [Y’, Y] using duality of the frames and Propo-
sition 18.3:
Y, Y] =cY + (¢ +ch)Y'".

Summing up, the horizontal part of the field [ﬁ, [ﬁ, v]] is
Y Y]+ Y=Y =eV + (¢ +eb)Y —cY —ebY' — 'Y =0.

. [ 0 19}
[H’ [H’ %H T

where the curvature has the form

We proved that

R = —f_fc/—l—f_f’c.
O

Remark 23.2. Recall that the vertical vector field v that satisfies (23.5) is
unique up to a factor &1. On the other hand, the vertical field v that satis-
fies (23.6) is unique, up to a factor constant along trajectories of q (so this
factor does not affect x). Consequently, any vertical vector field v for which an
equality of the form (23.6) holds can be used for computation of curvature «.
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So now we know all brackets of the Hamiltonian vector field X = H with
the vector fields of the frame Vi, V5, Vs:

[, V1] = —Va, (23.10)
[H, V5] = k14, (23.11)
[, V5] = 0. (23.12)

23.1.2 Jacobi Equation in Moving Frame

We apply the moving frame constructed to derive an ODE on conjugate time
of our two-dimensional system — Jacobi equation in the moving frame.

As in Chap. 21, consider Jacobi equation along a regular extremal A,
t €[0,t1], of the two-dimensional system (23.1):

U:bt(ﬂ)a UEE:TAU(T*M)a

and 1ts flow .
B, = &b / b, dr.
0

Recall that ITy = TAD(T;DM) is the vertical subspace in X and Cy C Il is the
subspace of constant vertical solutions to Jacobi equation at [0, 7], see (21.30).
The intersection B:Illy N Il always contains the subspace C. An instant
t € (0,t41] is a conjugate time for the extremal A; iff that intersection is greater
than C;:

B llpnNlg # Ch.

In order to complete the frame V1, V5, V3 to a basis in Ty, (7™ M), consider
a vector field transversal to H — the vertical Euler field E € Vec(T* M) with
the flow
Aoef =l ), AeT"M, tel.
In coordinates (p,q) on T* M, this field reads

0
E=p—.
p@p
The vector fields Vi, Vs, Va, E form a basis in Th(T*M), A € H. The fields
Vi = (,?—9 and F are vertical:
Ho = span(V1 (Ao), E(/\o))

To compute the constant vertical subspace Cy, evaluate the action of the
flow B; on these fields. In the proof of Theorem 21.8, we decomposed the flow
of Jacobi equation:

Thus
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BiE(o) = (P))« e E(N).

The Hamiltonian H is homogeneous of order one on fibers, consequently the
flow of H is homogeneous as well:

(k/\)oetH:k(/\oetﬁ), k>0,

and the fields H and E commute. That 1s, the Hamiltonian vector field q
preserves the vertical Euler field E. Further, the flow P} is linear on fibers,
thus it also preserves the field E. Summing up, the vector E(Ap) is invariant
under the action of the flow of Jacobi equation, i.e.,

RE(/\Q) c Cy.

It 1s easy to see that this inclusion is in fact an equality. Indeed, in view of

bracket (23.10),
eiﬁ%(/\o) — NoetaAy — )\ o (Vi +1Va+o(t)) & Tx,(T5,) M),

thus
B:Vi(Ao) ¢ Hy

for small ¢ > 0. This means that
Cy = RE(Ny), t € (0,t4].
Thus an instant ¢ is a conjugate time iff
B Ily N Il £ RE(Ay),
le.
eVi(Ao) € RVI(N),
or, equivalently,
Agoel Ay e R(Ago V7). (23.13)
Now we describe the action of the flow of a vector field on a moving frame.

Lemma 23.3. Let N be a smooth manifold, dim N = m, and let vector fields
Vi,...,Vin € Vec N form a mouving frame on N. Take a vector field X €
Vec N. Let the operator ad X have a matric A = (ai;) in this frame:

(adX)Vj:ZaijVi, aijECOO(N).

i=1

Then the matriz I'(t) = (vi; (t)) of the operator e’ sdf i the moving frame:
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etV = Z%J Vio () € CF(N), (23.14)

15 the solution to the following Cauchy problem:
I'(t)=T{#)A(), (23.15)
I'(0) =1d, (23.16)
where A(t) = (etXaij).

Proof. Initial condition (23.16) is obvious. In order to derive the matrix equa-
tion (23.15), we differentiate identity (23.14) w.r.t. ¢:

D )V = XX, V] = et X (Z akjvk) = (e Fagy) XV,
i=1 k=1 k=1
Z ak] PszVZa
and the ODE follows. O

In view of inclusion (23.13), an instant ¢ is a conjugate time iff the coeffi-
cients in the decomposition

A tadHV Z»}/” /\OOV

satisfy the equalities:

y21(t) = 731(t) = 0.
By the previous lemma, the matrix I'(¢) = (7;;(t)) is the solution to Cauchy
problem (23.15), (23.16) with the matrix

0 K¢ 0
Ay= =100, & =r(A),
000

see Lie bracket relations (23.10)—(23.12).
Summing up, an instant ¢ € (0,%1] is a conjugate time iff the solutions to
the Cauchy problems

{721 - _722’ ’_}/21(0) — 0’ ’_}/22(0) 1
Y22 = Ke21,

and

{731 - v31(0) =0, 732(0) =0
Y32 = K731,
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satisfy the equalities
Y21(t) = ys1(t) = 0.

But Cauchy problem for 31, 32 has only trivial solution. Thus for a conjugate
time ¢, we obtain the linear nonautonomous system for (z1, 2) = (y21, y22):

L2 = Ktd1,

{%1 - 21(0) = 1 (t) = 0. (23.17)

We call system (23.17), or, equivalently, the second order ODE
¥+ ke =0, z(0) = z(t) = 0, (23.18)

Jacobi equation for system (23.1) in the moving frame. We proved the follow-
ing statement.

Theorem 23.4. An instant t € (0,t1] is a conjugate time for the two-dimen-
stonal system (23.1) iff there exists a nontrivial solution to boundary prob-

lem (23.18).

Sturm’s comparison theorem for second order ODEs (see e.g. [136]) implies
the following comparison theorem for conjugate points.

Theorem 23.5. (1) If k < C? for some C' > 0 along an extremal ¢, then
there are no conjugate points at the time segment [0, ). In particular, if & < 0
along A:, then there are no conjugate points.

(2) If k > C? along A\, then there is a conjugate point at the segment

[0, &]-

A typical behavior of extremal trajectories of the two-dimensional sys-
tem (23.1) in the cases of negative and positive curvature is shown at Figs. 23.1
and 23.2 respectively.

Fig. 23.1. k<0 Fig. 23.2. k >0
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Ezrample 23.6. Consider the control system corresponding to a Riemannian
problem on a 2-dimensional manifold M :

j=cosufi()+sinufolg), geM, uwest
where f1, f2 is an orthonormal frame of the Riemannian structure (-, - ):

In this case, & is the Gaussian curvature of the Riemannian manifold M, and
it 1s evaluated as follows:

K= —C% - C% + fica — facq,
where ¢; are structure constants of the frame fi, fa: [f1, f2] = c1f1 +cafz. We
prove this formula for x in Chap. 24.
For the Riemannian problem, the curvature x = x(¢) depends only on the
base point ¢ € M, not on the coordinate # in the fiber. Generally, this is not
the case: the curvature is a function of (¢,0) € H.

Optimality conditions in terms of conjugate points obtained in Chap. 21
can easily be applied to the two-dimensional system (23.1) under considera-
tion.

Assume first that ¢, € (0,¢1) is a conjugate time for an extremal A,
t €[0,t1], of system (23.1). We verify hypotheses of Proposition 21.5. Condi-
tion (23.2) implies that the extremal is regular. The corresponding control
has corank one since the Lagrange multiplier A; is uniquely determined by
PMP (up to a scalar factor). Further, Jacobi equation cannot have solutions
of form (21.28): if this were the case, Jacobi equation in the moving frame
Z + kex = 0 would have a nontrivial solution with the terminal conditions
z(t.) = #(t;) = 0, which is impossible. Summing up, the extremal A; satisfies
hypotheses of Proposition 21.5, and alternative (1) of this proposition is not
realized. Thus the corresponding extremal trajectory is not locally geometri-
cally optimal.

If the segment [0,¢1] does not contain conjugate points, then by Theo-
rem 21.11 the corresponding extremal trajectory is time-optimal compared
with all other admissible trajectories sufficiently close in M.

23.2 Curvature of 3-Dimensional Control-Affine Systems

In this section we consider control-affine 3-dimensional systems:

¢ = folg) +ufi(q), uelR, geM, (23.19)
dim M = 3.
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We reduce such a system to a 2-dimensional one as in Chap. 22 and compute
the curvature of the 2-dimensional system obtained — a feedback invariant of
system (23.19).

We assume that the following regularity conditions hold on M:

foNFuNfo, 1] # 0, (23.20)
fi Ao, XA f1, [fo, Al # 0. (23.21)

Any extremal A; of the control-affine system (23.19) is totally singular, it
satisfies the equality

hi(Ae) = (A, f1) = 0, (23.22)

and the corresponding extremal control cannot be found immediately from
this equality. Differentiation of (23.22) w.r.t. ¢ yields

h01(At) = <At’ [foa f1]> = Oa
and one more differentiation leads to an equality containing control:
hoot(Ae) + u(t)hio1(Ae) = (Ae, [fo, [fo, [} + u(@){Ae, [f1, [fo, 1]]) = 0.

Then the singular control is uniquely determined:

h001(/\)
Chioi(A)’

We apply a feedback transformation to system (23.19):

u=1u(q) =

hi(A) = hor(\) = 0.

u = u—a(g).

This transformation affects the field fy, but preserves regularity conditions
(23.20), (23.21). After this transformation the singular control is

u=0.
In other words,

AleA[fO;fl]:O = A[an[anfl]]:O'

So we assume below that

[fo, [fo, fa]] € span(fi, [fo, f1]). (23.23)

In a tubular neighborhood of a trajectory of the field fy, consider the
reduction of the three-dimensional system (23.19):

4q _

dt_ewadflfo(q), we (—e,), G€M=M/&N (23.24)
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for a small enough «.

This system has the same conjugate points as the initial one (23.19). If
system (23.24) has no conjugate points, then the corresponding singular tra-
jectory of system (23.19) is strongly geometrically optimal, i.e., comes, locally,
to the boundary of attainable set. . .

Describe the cotangent bundle of the quotient M. A tangent space to M
consists of tangent vectors to M modulo fi:

Ty M = T, M/R fi(q), (23.25)
geEM, G=qodfhel,
identification (23.25) is given by the mapping
v o, veT,M, teT;M,
d d

v= — q(1), V= — q(t).
dt t=0 di t=0

Thus a cotangent space to M consists of covectors on M orthogonal to fi:
TgMET;Mﬂ{hl =0},
A= AeT;MN{hy =0}, XAe€TyM,
A By=(\v), veT,M, ©eT;M.

Taking into account that the field f; is the projection of the Hamiltonian
field Ay, it is easy to see that

T*M = {hy = 0} /B,

where the mapping A — X is defined above (exercise: show that M= &
Ay € A0 eREl). Summing up, cotangent bundle to the quotient M is obtained
from 7" M via Hamiltonian reduction by ﬁl: restriction to the level surface
of hy with subsequent factorization by the flow of /;1.

Further, regularity condition (23.21) implies that the field ﬁl is transver-
sal to the level surface {hy = ho; = 0}, so this level surface gives another
realization of the cotangent bundle to the quotient:

T*M = {hy = hgy = 0}.

In this realization, /;0 1s the Hamiltonian field corresponding to the maximized
Hamiltonian — generator of extremals (H in Sect. 23.1). The level surface of
the maximized Hamiltonian (H in Sect. 23.1) realizes as the submanifold

{hl =hmn =0, ho = 1} CcT"M.

Via the canonical projection = : T* M — M, this submanifold can be identi-
fied with M, so the level surface H of Sect. 23.1 realizes now as M. We use
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this realization to compute curvature of the three-dimensional system (23.19)
as the curvature & of its two-dimensional reduction (23.24).

The Hamiltonian field H of Sect. 23.1 is now fo, and fi is a vertical field.
It remains to normalize fi, i.e., to find a vertical field af;, a € C(M), such
that

[fo, [fo,af1]] = —rafi, (23.26)

see (23.6). The triple
fo, hy fa=1[fo, Al

forms a moving frame on M, consider the structure constants of this frame:
2
i 11= e, i, 5=0,1,2
k=0

Notice that inclusion (23.23) obtained after preliminary feedback transforma-
tion reads now as c¢j, = 0. That is why

[fo, [fo, Aill = —cbafi — cialfo, f1)-

Now we can find the normalizing factor a for fi such that (23.26) be satisfied.
We have

[fo, [fo, afi]l = [fo, (foa) + alfo, fill = (FFa) fr + 2(foa) [fo, [1] + alfo, [fo, il
= (ffa —cpra) fi + (2foa — ¢gy)[fo, F1]-
Then the required function a is found from the first order PDE
2foa — ciya =0,
and the curvature is computed:

_Jia—cpya
. .

K=

Summing up, curvature of the control-affine 3-dimensional system (23.19) is
expressed through the structure constants as

1 1
K= Céz - Z(ng)z - 5]”0632,
a function on the state space M.

Bounds on curvature x along a (necessarily singular) extremal of a 3-
dimensional control-affine system allow one to obtain bounds on conjugate
time, thus on segments where the extremal is locally optimal. Indeed, by
construction, « is the curvature of the reduced 2-dimensional system. As we
know from Chap. 22, reduction transforms singular extremals into regular
ones, and the initial and reduced systems have the same conjugate times.
Thus Theorem 23.5 can be applied, via reduction, to the study of optimality
of singular extremals of 3-dimensional control-affine systems.
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Rolling Bodies

We apply the Orbit Theorem and Pontryagin Maximum Principle to an intrin-
sic geometric model of a pair of rolling rigid bodies. We solve the controllability
problem: in particular, we show that the system is completely controllable iff
the bodies are not isometric. We also state an optimal control problem and
study its extremals.

24.1 Geometric Model

Consider two solid bodies in the 3-dimensional space that roll one on another
without slipping or twisting.

N,
[

Fig. 24.1. Rolling bodies

M

Rather than embedding the problem into R3, we construct an intrinsic
geometric model of the system.
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Let M and M be two-dimensional connected manifolds — surfaces of the
rolling bodies. In order to measure lengths of paths in M and M, we suppose
that each of these manifolds is Riemannian, i.e., endowed with a Riemannian
structure — an inner product in the tangent space smoothly depending on
the point in the manifold:

{v1,v2) M, v, €T, M,
(01, 0y 57, 0 € TeM.

Moreover, we suppose that M and M are oriented (which is natural since
surfaces of solid bodies in R are oriented by the exterior normal vector).

At contact points of the bodies x € M and z € M\, their tangent spaces are
identified by an isometry (i.e., a linear mapping preserving the Riemannian
structures)

g ToM — ToM,

see Fig. 24.2. We deal only with orientation-preserving isometries and omit

Fig. 24.2. Identification of tangent spaces at contact point

the words “orientation-preserving” in order to simplify terminology. An isom-
etry ¢q is a state of the system, and the state space is the connected 5-
dimensional manifold

Q=1q: TxM—>T5]/\4\|l‘EM, 561\/4\, q an isometry }.
Denote the projections from ) to M and M:

wg) =z, 7(¢)=2 q:TeM—T:M,
geQ, reM, 261\7.

Local coordinates on () can be introduced as follows. Choose arbitrary local
orthonormal frames e, es on M and €7, €3 on M:

<eiaej>M :6Z]a <€Za€]>]/\-4\ :6Z]a Za .7: 1a 2.
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For any contact configuration of the bodies ¢ € @), denote by & the angle of
rotation from the frame €7, €3 to the frame gey, ges at the contact point:

gep = cosf e +sinf ey,

ges = —sinf e +cosf €.

Then locally points ¢ € @ are parametrized by triples (z,7,0), v = 7(¢) € M,
z="(q) € M\, 9 € S'. Choosing local coordinates (z1,r3) on M and (z1, %)
on M\, we obtain local coordinates (z1, 2, 21, 2, 0) on Q.

Let ¢(t) € @ be a curve corresponding to a motion of the rolling bodies,
then z(t) = n(q(t)) and Z(t) = 7(q(t)) are trajectories of the contact points

in M and M respectively. The condition of absence of slipping means that

g(1)&(t) = (1), (24.1)
and the condition of absence of twisting is geometrically formulated as follows:

q(t) (vector field parallel along z(t)) = (vector field parallel along Z(t)) .
(24.2)

Our model ignores the state constraints that correspond to admissibility of
contact of the bodies embedded in R3. Notice although that if the surfaces M
and M have respectively positive and nonnegative Gaussian curvatures at a
point, then their contact is locally admissible.

The admissibility conditions (24.1) and (24.2) imply that a curve z(t) €
M determines completely the whole motion ¢(t) € @. That is, velocities of
admissible motions determine a rank 2 distribution A on the 5-dimensional
space . We show this formally and compute the distribution A explicitly
below. Before this, we recall some basic facts of Riemannian geometry.

24.2 Two-Dimensional Riemannian Geometry

Let M be a 2-dimensional Riemannian manifold. We describe Riemannian
geodesics, Levi-Civita connection and parallel translation on 7% M = T'M .

Let (-, -) be the Riemannian structure and ej, ez a local orthonormal
frame on M.

24.2.1 Riemannian Geodesics

For any fixed points zg, ©1 € M, we seek for the shortest curve in M con-
necting zy and 1:

& = urey(x) + ugea(x), reM, (up,uq)€ RZ

z(0) = zo, z(t1) = 1,

t1 t1
l:/ <a},i‘>1/2dt:/ (u%—i—u%)l/zdt—)min.
0 0
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In the same way as in Sect. 19.1, it easily follows from PMP that arc-length
parametrized extremal trajectories in this problem (Riemannian geodesics)
are projections of trajectories of the normal Hamiltonian field:

ety=mocT(\),  ANeH={H=1/2CT"M,
1= (0 4+ 03),
hi(A) = (A &), i=1, 2.
The level surface H is a spherical bundle over M with a fiber
He={hi+h3=1}NT; M =5'
parametrized by angle :
hy1 = cos ¢, hy = sin .

Cotangent bundle of a Riemannian manifold can be identified with the
tangent bundle via the Riemannian structure:

TM =T M,
v A= (v, ).

Then H C T* M is identified with the spherical bundle

S={veTM||v|=1}CTM

tH

of unit tangent vectors to M. After this identification, e** can be considered

as a geodesic flow on §.

24.2.2 Levi-Civita Connection

A connection on the spherical bundle § — M is an arbitrary horizontal
distribution D:

D={D, CT,S|veS}
D, T (S:) =TS, Se=8NT, M.

Any connection D on M defines a parallel translation of unit tangent
vectors along curves in M. Let z(¢), t € [0,%1], be a curve in M, and let
vo € Ty(0)M be a unit tangent vector. The curve z(t) has a unique horizontal
lift on § starting at vy:

W) €S, mou(t) = (1),

i)(t) S Dv(t),
v(0) = wg.
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Indeed, if the curve z(t) satisfies the nonautonomous ODE
&= uy(t) er(x) + ua(t) ea(z),
then its horizontal lift v(¢) is a solution to the lifted ODE

0= up(t) &1 (v) + ua(t) E2(v), (24.3)

where &; are horizontal lifts of the basis fields e;:

Dy = span(&1(v), £2(v)), i = €.

Notice that solutions of ODE (24.3) are continued to the whole time seg-
ment [0,;] since the fibers S, are compact. The vector v(t1) is the parallel
translation of the vector vy along the curve z(t).

A vector field v(t) along a curve () is called parallel if it is preserved by
parallel translations along z(t).

Lewi-Civita connection is the unique connection on the spherical bundle
S — M such that:

(1) velocity of a Riemannian geodesic is parallel along the geodesic (i.e., the
geodesic field His horizontal),

(2) parallel translation preserves angle, i.e., horizontal lifts of vector fields on
the base M commute with the vector field 27 that determines the element
of length (or, equivalently, the element of angle) in the fiber S,.

Now we compute the Levi-Civita connection as a horizontal distribution
on H = &. In Chap. 23 we constructed a feedback-invariant frame on the

manifold H:

TAH:span<ﬁ,a—,ﬁ/), ﬁ/:[ﬁ—,ﬁ].
de

dp
We have
H=h e—l—ca— +h 6-1-68— (24.4)
=mle 1380 2| €2 2380 ) .
H =—h 6—|—Ca— +h 6—|—Ca— (24.5)
=—hs | el 1380 1| ez 2380 ) .

where ¢; are structure constants of the orthonormal frame on M:
[61,62]:6161+6262, C; ECOO(M)

Indeed, the component of the field H= hlﬁl + hzﬁz in the tangent space of
the mﬁnifold M is equal to hie; + hoes. In order to find the component of the
field H in the fiber, we compute the derivatives Hh; in two different ways:
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ﬁhl = (hll_il + hzﬁz)h1 = hz(ﬁzhl) = hz{hz, h1} = hz(—C1h1 - Czhz),
Hhy = Hcosp = —singp(ﬁgp) = —hz(ﬁgo),

similarly . .
Hhy = hi(c1hi 4 eahs) = hi(Hy),
thus .
He =c1hy + cahs.
Consequently,

o 0
H = hyey + haea + (c1hy + Czhz)%,

and equality (24.4) follows. Then equality (24.5) is obtained by straightfor-
ward differentiation.

Notice that using decompositions (24.4), (24.5), we can easily compute
Gaussian curvature k of the Riemannian manifold M via the formula of The-

orem 23.1: 5 5
|0 —|| = —k—.
7|85 =5
Since 5
[H,H/] — (C% + C% — €1Cy —|— 6261)%,
then

k=—c?—ci4eico—eqc. (24.6)
Properties (1) and (2) of the horizontal distribution D on H that deter-

o o
mines the Levi-Civita connection mean that H € D and eia“’ D = D, thus

S0
D:span{e*a“’HL‘;ER}.

Since

s&_

e’ H = hi(p—s) <61 + Cl_so) + ha(p — ) (62 + Cza—) :
we obtaln

D = span (ﬁ,ﬁ/) .
The 1-form of the connection D:
w e A (H), D =Kerw,

reads
W = c1wy + cows — dyp,

where (w1,ws) is the dual coframe to (ey, e2):

w; € AL (M), (wiye;y = dij, 4, j=1, 2.
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24.3 Admissible Velocities

We return to the rolling bodies problem and write down admissibility con-
ditions (24.1), (24.2) for a curve ¢(t) € @ as restrictions on velocity ¢(t).
Decompose velocities of the contact curves in M and M in the orthonormal
frames:

& =aje(x)+ azea(), (24.7)
2 =Gy 61 (2) + do 62 (7). (24.8)

Then the nonslipping condition (24.1) reads:
ay = ajcosf —assind, as = a1 sin @ + as cos 0. (24.9)

Now we consider the nontwisting condition (24.2). Denote the structure
constants of the frames:
le1, e2] = cre1 + caen, c; € C° (M),
[e1,€2] = C1e1 + a6, ci € C%(M).
Let g : T)M — Tgl\/i\ be the mapping induced by the isometry ¢ via identifi-
cation of tangent and cotangent spaces:

Juwi =cos @& +sinfd &s,

Juws = —sinf &y + cos 0 Ls.
In the cotangent bundle, the nontwisting condition means that if

At) = (2(1), (1)) € H

is a parallel covector field along a curve z(t) € M, then

~

A(t) = A1) = (F(1), 3(t) € H

is a parallel covector field along the curve Z(t) € M.

Since the isometry ¢(t) rotates the tangent spaces at the angle 8(¢), then
the mapping ¢(¢) rotates the cotangent spaces at the same angle: @(t) =
o(t) + 0(t), thus

0(t) = §(t) — p(1). (24.10)

A covector field A(t) is parallel along the curve in the base z(t) iff A € Kerw,
le.,
¢ = (c1w1 + cows, &) = c1ay + caas.

~

Similarly, A(t) is parallel along #(¢) iff
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S.B: <51@1 +52@2,.§> =C1ay + Caay
= ay1(¢1 cos @ + casinf) + as(—e1 sinf + ¢2 cos b).
In view of (24.10), the nontwisting condition reads

6 =¢iar + cads — (c1a1 + coaz)

=ay(—c1 +c1cost 4+ casinf) + az(—ea — 1 8in 6 + €5 cos 6). (24.11)

Summing up, admissibility conditions (24.1) and (24.2) for rolling bodies
determine constraints (24.9) and (24.11) along contact curves (24.7), (24.8),
i.e., a rank two distribution A on @ spanned locally by the vector fields

X1 =e1 +cosfey +sinfles + (—eq + ¢1 cosfl 4 ¢asin 9)%, (24.12)
Xo = eg —sinf ey + cosfleg + (—ea — ¢y 8infl 4 ¢ cos H)i (24.13)

a6’

Admissible motions of the rolling bodies are trajectories of the control system

¢ =uX1(q) +usXa(q), ¢€Q, wup,u €R. (24.14)

24.4 Controllability

Denote the Gaussian curvatures of the Riemannian manifolds M and M by
k and k respectively. We lift these curvatures from M and M to @:

k(g) = k(n(q)), K(9) = k(F(g), ¢€Q.

Theorem 24.1. (1) The reachable set O of system (24.14) from a point ¢ € Q)
15 an tmmersed smooth connected submanifold of QQ with dimension equal to 2
or b. Specifically:

(k-HB)o=0 = dim0O=2,
(k—k)lo#0 = dimO=5.

(2) There exists an injective correspondence between isometries 1 : M —
M and 2-dimensional reachable sets O of system (24.14). In particular, if
the manifolds M and M are isometric, then system (24.14) is not completely
controllable.

(3) Suppose that both manifolds M and M are complete and simply con-
nected. Then the correspondence between isometries i : M — M and 2-
dimensional reachable sets O of system (24.14) is bijective. In particular, sys-
tem (24.14) is completely controllable iff the manifolds M and M are not
1sometric.
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Proof. (1) By the Orbit theorem, the reachable set of the symmetric sys-
tem (24.14), i.e., the orbit of the distribution A through any point ¢ € @Q,
is an immersed smooth connected submanifold of ). Now we show that any
orbit O of A has dimension either 2 or 5.

Fix an orbit O and assume first that at some point ¢ € O the manifolds M
and M have different Gaussian curvatures: k(q) # k(¢q). In order to construct
a frame on (), compute iterated Lie brackets of the fields X, X5:

~ d

X3 = [Xl,Xz] = Cle —|—62X2—|—(k’—k’)%, (2415)
Xy = [X1, X3]
-~ d -~ [ 8 ]
:(chl)X1+(X162)X2+62X3—|—(X1(k—k’))%+(k’—k’) Xl,% s
(24.16)
X5 = [X2, X3]
-~ d -~ [ 8 ]
= (Xze1) X1 + (X202)Xo — a1 X5 + (Xa(k — k’))% + (k= k) | X2, IR
O (24.17)
X, L] Zsinoe —cos0 4 ()L (24.18)
1 5g | =sinbé —cosf& 55 )
X0, | = cos 02, + cos08 + () = (24.19)
25| = cos0e +cos0e 50 )

In the computation of bracket (24.15) we used expression (24.6) of Gaussian
curvature through structure constants. It i1s easy to see that

. 0
Lie(X1, X3)(q) = span (X1, X2, X3, X4, X5) (¢) = span (61, €3,¢1, €, —) ()

06
=1T,Q.

System (24.14) has the full rank at the point ¢ € O where k # %, thus
dimO = 5. R

On the other hand, if k(¢) = k(q) at all points ¢ € O, then equality (24.15)
implies that the distribution A is integrable, thus dim O = 2.

(2) Leté: M — M be an isometry. Its graph

F:{q€Q|q:i*x CToM = TsM, z€ M, f:i(x)ez\?}

is a smooth 2-dimensional submanifold of ). We prove that " is an orbit of A.
Locally, choose an orthonormal frame e, e in M and take the corresponding
orthonormal frame €, = iyeq, € = i.ep in M. Then 6|, = 0. Since ¢; = ¢4,
Ca = ca, and k(q) = %(q), restrictions of the fields Xy, X5 read
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Xilr=e1+e1, Xo|lr=ex+ea

Then it follows that the fields X, X5 are tangent to I'. Lie bracket (24.15)
yields
(X1, Xo]lr = 1 X1 + c2Xo,

thus [ is an orbit of A. Distinct isometries i1 # iz have distinct graphs
I # Iy, i.e., the correspondence between isometries and 2-dimensional orbits
1s injective. .

(3) Now assume that the manifolds M and M are complete and simply
connected. Let O be a 2-dimensional orbit of A. We construct an isometry
¢+ M — M with the graph O.

Notice first of all that for any Lipschitzian curve x(t) € M, ¢ € [0,¢4], and
any point ¢o € @, there exists a trajectory ¢(t) of system (24.14) such that
m(q(t)) = »(t) and ¢(0) = ¢qo. Indeed, a Lipschitzian curve z(t), t € [0,11], is
a trajectory of a nonautonomous ODE & = uy(¢)e1 () + ua(t)e2(z) for some
u; € Loo[0,11]. Consider the lift of this equation to Q:

= u1(t) X1(q) + ua2(t) X2(q), q(0) = qo. (24.20)

We have to show that the solution to this Cauchy problem is defined on the
whole segment [0,;]. Denote by R the Riemannian length of the curve z(¢)
and by B(zg,2R) C M the closed Riemannian ball of radius 2R centered
at 2g. The curve z(t) is contained in B(zp, 2R) and does not intersect with its
boundary. Notice that the ball B(zg, 2R) is a closed and bounded subset of the
complete space M, thus it is compact. The projection Z(t) € M of the maximal
solution ¢(t) to Cauchy problem (24.20) has Riemannian length not greater
than R, thus it is contained in the compact B(Zg,2R) C M\, Zo = m(qo), and
does not intersect with its boundary. Summing up, the maximal solution ¢()
to (24.20) is contained in the compact K = B(zq,2R) x B(Zo,2R) x S* and
does not come to its boundary. Thus the maximal solution ¢(¢) is defined at
the whole segment [0,4].

Now it easily follows that m(O) = M for the two-dimensional orbit O.
Indeed, let g9 € O, then z¢ = 7(qo) € m(O). Take any point 1 € M and
connect it with zg by a Lipschitzian curve (t), t € [0,%1]. Let ¢(¢) be the lift
of z(t) to the orbit O with the initial condition ¢(0) = ¢o. Then ¢(¢1) € O and
z1 =m(q(t1)) € 7(0). Thus 7(O) = M. Similarly, 7(0) = M.

The projections

r:O0O—=M and 7:0—M (24.21)

are local diffeomorphisms since

e (X1) = €1, T (X1) =cosfl €1 +sind ey,

s (X2) = eq, Tu(X2) = —sinf €3 + cosfl es.
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Moreover, it follows that projections (24.21) are global diffeomorphisms.
Indeed, let ¢ € O. Any Lipschitzian curve z(-) on M starting from m(q) has
a unique lift to O starting from ¢ and this lift continuously depends on z(-).
Suppose that ¢' € O, ¢ # ¢, 7(¢’) = n(q), and ¢(-) is a path on O connecting
q with ¢’. Contracting the loop m(¢(-)) and taking the lift of the contraction,
we come to a contradiction with the local invertibility of 7|o. Hence o is
globally invertible, thus it is a global diffeomorphism. The same is true for 7|o.

Thus we can define a diffeomorphism

1:]\4—}]\/4\.

i =70 (rlo)”
Since

ixe1 = cosfe; +sinf ey,

ixe3 = —sinf ey + cos ey,

the mapping ¢ is an isometry.

If the manifolds M and M are not isometric, then all reachable sets of
system (24.14) are 5-dimensional, thus open subsets of (). But @ is connected,
thus it is a single reachable set. O

24.5 Length Minimization Problem

24.5.1 Problem Statement

Suppose that k(z) # E(@) foranyr € M,z € M\, ie., k—k # 0 on @. Then, by
item (1) of Theorem 24.1, system (24.14) is completely controllable. Consider
the following optimization problem: given any two contact configurations of
the system of rolling bodies, find an admissible motion of the system that
steers the first configuration into the second one and such that the path of
the contact point in M (or, equivalently, in M) was the shortest possible. This
geometric problem is stated as the following optimal control one:

¢ = u1 X1 + usXo, qE€Q, u=(up,uz) € RZ (24.22)
¢(0) = qo, q(t1) = q1, 1 fixed,

t1
l:/ (u? + u2)*/? dt — min.
0

Notice that projections of ODE (24.22) to M and M read respectively as
T = uiey + uses, x €M,
and

r= up(cos@e; +sinfes) + us(—sinf ey + cosdes), Te M,
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thus the sub-Riemannian length [ of the curve ¢(¢) is equal to the Riemannian
length of the both curves z(¢) and Z(t).
As usual, we replace the length [ by the action:

t1
J = 5/0 (u? + u3) dt — min,

and restrict ourselves to constant velocity curves:

ui + uj = const # 0.

24.5.2 PMP

As we showed in the proof of Theorem 24.1, the vector fields X1, ..., X5 form
a frame on @, see (24.15)—(24.17). Denote the corresponding Hamiltonians
linear on fibers in 77 Q:

gi(p)=(u, Xs), peT*Q, i=1,...,5

Then the Hamiltonian of PMP reads

v 14
9o (p) = urg1(p) + uaga(p) + 5(“% +u3),

and the corresponding Hamiltonian system is

fr=u1gi(p) +uado(p), pel™Q. (24.23)

24.5.3 Abnormal Extremals

Let v = 0. The maximality condition of PMP implies that

g1(pe) = g2(pe) =0 (24.24)

along abnormal extremals. Differentiating these equalities by virtue of the
Hamiltonian system (24.23), we obtain one more identity:

gs(pe) = 0. (24.25)

The next differentiation by virtue of (24.23) yields an identity containing
controls:

ui(t)galpe) + us(t)gs(pe) = 0. (24.26)

It is natural to expect that conditions (24.23)—(24.26) on abnormal ex-

tremals on @ should project to reasonable geometric conditions on M and M.
This is indeed the case, and now we derive ODEs for projections of abnormal
extremals to M and M.
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According to the splitting of the tangent spaces
T,Q =T, M & T:M & TS,
the cotangent space split as well:
T:Q=T:M&TEM e Ty S,
p=A+Atadl, p€TIQ NETIM, N€TEM, adf € T; S

Then
< ~ PN 0
g1(p) =, X1) = { A+ A+ adf, el—i—cosﬁel—i—smﬁez—l—bl%
= hy(A) + cos B hy(N) + sin 0 by (X) + by, (24.27)
g2(p) = {p, X2) = </\—|—X—|—ozd9, es —sinfe; —|—cos€€2—|—b2%>
= hy(A) —sin @ hy(N) + cos 0 ha () + abs, (24.28)

where by = —c¢y + ¢ cosl +Cysinf, by = —cy — €1 sin 6 + ¢ cos 6,

< ~ 9
g3(/,L) = </,L,X3> = </\—|— A + Oédg, Cle + 62X2 + (k’ - k’)%>

= 191 (1) + caga(p) + alk — k). (24.29)
Then identities (24.24) and (24.25) read as follows:
a =0,
hy + cos0 hy +sin @ hy = 0,
hy —sin@ hy + cos 6 hy = 0.
Under these conditions, taking into account equalities (24.16)—(24.19), we
have:
ga(p) = </\ + X, (X161) X1 + (Xac2) X + 2 X3

~ 0 ~ 0
+(X1 (k- k))% + (k —k) [Xl, %] >
= (k— k)(sin 0 hy — cos B hs) = (k — k)hs,
gs(p) = </\ 1, (X2c1) X1 + (Xae2)Xo —e1 X3 +

@&@—%D§g+@_kﬂxmgﬂ>

= (k — k)(cos B hy +sin O hs) = —(k — k)hy.
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Then identity (24.26) yields
U1h2 - U2h1 =0.

That is, up to reparametrizations of time, abnormal controls satisfy the iden-
tities:

up =hi(A),  us = ha(\). (24.30)

In order to write down projections of the Hamiltonian system (24.23) to
T*M and T™ M, we decompose the Hamiltonian fields ¢7, ¢2. In view of equal-
ities (24.27), (24.28), we have

1

1= ﬁl —|—cos€ﬁl —|—sin9%2 + (—sin@ﬁl —|—cos€ﬁz)67—|— ady + a1 @,

1

5 = ﬁz —sinﬁﬁl —|—cos€ﬁz + (—cosﬁﬁl —sin@ﬁz)§+ ads + asd.

It follows easily that g = —g—. Since « = 0 along abnormal extremals, pro-

jection to T* M of system (24(.3623) with controls (24.30) reads

— —

A=hihi+hobo =H,  H= %(hf +h3).
Consequently, projections z(t) iﬂ'(q(t)) are Riemannian geodesics in M.
Similarly, for projection to M we obtain the equalities
ulz—cosﬁﬁl—sinﬁﬁz, uzzsinﬁﬁl—cosﬁﬁz,
thus
X = (— cosﬁﬁl — sin@ﬁz) (cos Hﬁl + sin Hﬁz)
+ (sin 9%1 — cos 9%2) (— sin Hﬁl + cos Hﬁz)

—
=

PO 1 e~
— Ty hy—hohy = —H, H:§(h§+h§),

i.e., projections Z(¢t) = w(q()) are geodesics in M.
We proved the following statement.

Proposition 24.2. Projections of abnormal extremal curves x(t) = w(q(t))
and Z(t) = 7(q(t)) are Riemannian geodesics respectively in M and M.

Abnormal sub-Riemannian geodesics ¢(t) are optimal at segments [0, 7] at
which at least one of Riemannian geodesics #(t), Z(¢) is a length minimizer.
In particular, short arcs of abnormal geodesics ¢(t) are optimal.
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24.5.4 Normal Extremals

Let v = —1. The normal extremal controls are determined from the maximal-
ity condition of PMP:

Uy = g1, Uz = g2,
and normal extremals are trajectories of the Hamiltonian system

(n), HET"Q, (24.31)

(g7 +93).

ol —

=
G =
The maximized Hamiltonian GG is smooth, thus short arcs of normal extremal
trajectories are optimal. .
Consider the case where one of the rolling surfaces is the plane: M = R2,

In this case the normal Hamiltonian system (24.31) can be written in a simple
form. Choose the following frame on Q:

0
Yi=X1, Ya=Xy, Ys=_-

55" Yo=[,Y3], Y5 =[Yo,Y3],

and introduce the corresponding linear on fibers Hamiltonians

o~

Taking into account that ¢; = ¢y = k= 0, we compute Lie brackets in this
frame:

Y1,Y2] = e Y1 + oYy — kY5,
Y1,Ya] = —1 Y5, [Y2,Y4] = —e2Y5,
[V1,Y5] = e1Ya, [Ya,Ys] = e2Ya.

Then the normal Hamiltonian system (24.31) reads as follows:

my = —ma(crmy + cama — kms),
Mo = mq(c1ma + comso — kmg),
M3 = MiMmq + Mams,

my = —(e1my + cama)ms,

ms = (c1my + cama)my,

¢§=m X1 +maXs.

Notice that, in addition to the Hamiltonian G = §(m% + m3), this system
has one more integral: p = (m? + m%)l/z. Introduce coordinates on the level

f: G=-:
surface 5
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my = cos 7, me = sin -y, ms = m,
my = pcos(y + ¢), ms = psin(y + ¢).
Then the Hamiltonian system simplifies even more:
¥ = c1co8y + cosiny — km,
m = pcos,
U= km,
g =cosy X1 +sinvy X,.

The case k = const, 1.e., the sphere rolling on a plane, is completely inte-
grable. This problem was studied in detail in book [12].

&

Fig. 24.3. Sphere on a plane
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Appendix

In this Appendix we prove several technical propositions from Chap. 2.

A.1 Homomorphisms and Operators in C*(M)

Lemma A.1. On any smooth manifold M, there exists a function a €
C®(M) such that for any N > 0 exists a compact K € M for which

a(q) > N Vge M\ K.

Proof. Let ey, k € N, be a partition of unity on M: the functions e, € C*° (M)
have compact supports supp e, @ M, which form a locally finite covering of M,
and Y7, ey = 1. Then the function > ;2 , key can be taken as a. O

Now we recall and prove Proposition 2.1.

Proposition 2.1. Let ¢ : C*°(M) = R be a nontrivial homomorphism of
algebras. Then there exists a point ¢ € M such that ¢ = 7.

Proof. For the homomorphism ¢ : € (M) — R, the set
Kerp = {f € C™(M)|¢f =0}

is a maximal ideal in C°°(M). Further, for any point ¢ € M, the set of
functions

Iy ={f €™ (M) | f(q) =0}
is an ideal in C°°(M). To prove the proposition, we show that

Kere C I, (A.1)

for some ¢ € M. Then it follows that Ker ¢ = I, and ¢ = 7.
By contradiction, suppose that Kery ¢ I, for any ¢ € M. This means
that
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VgeM 3Jb;eKerp s t. by(q) #0.
Changing if necessary the sign of b,, we obtain that

VgeM 3byeKerp, O,CM s.t. bq|oq>0' (A.2)
Fix a function a given by Lemma A.1. Denote ¢(a) = a, then p(a—a) = 0,
le.,
(a —«a) € Ker .
Moreover,

IKEM st alg)—a>0 Vge M\ K.
Take a finite covering of the compact K by the neighborhoods Oy as in (A.2):
K cl]o,,
i=1

and let eg,e1,... e, € C°(M) be a partition of unity subordinated to the
covering of M:

M\K,O,...,0,.
Then we have a globally defined function on M:

c=eg(a —a) +Zeibql > 0.

i=1

lzso(CE):so(C)w(%),

p(c) #0.

But ¢ € Ker ¢, a contradiction. Inclusion (A.1) is proved, and the proposition
follows. O

Since

then

Now we formulate and prove the theorem on regularity properties of com-

position of operators in C°° (M), in particular, for nonautonomous vector
fields or flows on M.

Proposition A.2. Let A; and B; be continuous w.r.t. t families of linear con-
tinuous operators in C°°(M). Then the composition Ao By is also continuous
w.r.t. t. If in addition the families Ay and By are differentiable at t = tq, then
the family A; o By s also differentiable at t = ty, and its derivative is given

by the Leibniz rule:
d
By .
to

d
(AtOBt) = (E tDAt) OBtD +At0 o (E

di

to
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Proof. To prove the continuity, we have to show that for any a € C*(M),
the following expression tends to zero as ¢ — 0:

(At+a o Bt+a —Aso Bt) a = At+a o (Bt+a - Bt) a—+ (At+a - At) o Bia.

By continuity of the family A;, the second term (A¢y. — At) o Bra — 0 as
£ = 0. Since the family B; is continuous, the set of functions (B — Bt) a lies
in any preassigned neighborhood of zero in C*° (M) for sufficiently small ¢. For
any g > 0, the family A;4., |¢| < o, is locally bounded, thus equicontinuous
by the Banach-Steinhaus theorem. Consequently, Aiy. o0 (Biy: — Bi)a — 0 as
¢ — 0. Continuity of the family A; o B, follows.

The differentiability and Leibniz rule follow similarly from the decompo-
sition
1 1 1
z (Atqe 0 Bige — At o By)a = Agqc 0 B (Biye — Bi)a+ z (Atye — At) o Bra.

O

A.2 Remainder Term of the Chronological Exponential

Here we prove estimate (2.13) of the remainder term for the chronological
exponential.

Lemma A.3. For any t1 > 0, complete nonautonomous vector field V;, com-
pactum K € M, and inleger s > 0, there exist C' > 0 and a compactum
K' @M, K C K', such that

||Pta||s,K < CeC futllvrlls,}{/ dr ||a||s,K’, = COO(M), te [O,tl], (A3)
where .
P, :e_x_f)/ V, dr.
0
Proof. Denote the compact set
Ky =U{P;(K) | T €l0,¢}

and introduce the function

Pralls
a(t) = sup {—” alls k| e oo (ar), Nallorn i, # o}
lalloo.x,

= sup {||Pralls,x |« € CF(M), [la]|s41,5, =1} (A.4)

Notice that the function « (), t € [0,¢1], is measurable since the supremum in
the right-hand side of (A.4) may be taken over only an arbitrary countable
dense subset of C'°°(M). Moreover, in view of inequalities (2.3) and
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lalls, oy < llallsr,m,

the function a(#) is bounded on the segment [0,#;].

As in the definition of the seminorms || - ||s,x in Sect. 2.2, we fix a proper
embedding M C RY and vector fields hy, ..., hy € Vec M that span tangent
spaces to M.

Let qo € K be a point at which

| Pralls,r
=sup{|hy,0---oh; (Pa)(q) |¢g€ K, 1<idy,..., 4 <N, 1<I<s}

attains its upper bound, and let p, = pqs(21,...,2n) be the polynomial of
degree < s whose derivatives of order up to and including s at the point
q: = P:(qo) coincide with the corresponding derivatives of a at ¢;. Then

|1 Pealls, i = [hi, 0 - 0 hiy (Pepa)(g0)] < || Pepalls i (A.5)
1Palls.q0 < llalls .-

In the finite-dimensional space of all real polynomials of degree < s, all norms
are equivalent, so there exists a constant C' > 0 which does not depend on the
choice of the polynomial p of degree < s such that

Plls.ree (A.6)
[171ls,q.

Inequalities (A.5) and (A.6) give the estimate

1Pealls i WPpallsse o clPepalls i _ o NI Ppalls. i
lalls, ke = llpallsq 1Palls . 1Pallst1,5,

< Ca(t).  (AT)

Since

t
Pta:a—l—/ P, oViadr,
0

then
t
1Pl < lallose + [ 1177 o Vel dr
0
by inequality (A.7) and definition (2.2)

t
< lalls,x + C||Ct||s+1,m/ af7) [[Vells, i, dr.
0

Dividing by ||a||s+1,&,, we arrive at

Pral|s
Peals i <1+c/ I IValls. i, dr.
llalls+1 £,
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Thus we obtain the inequality

<1—|—C’/ ) |Ve|ls &, dT,
from which 1t follows by Gronwall’s lemma that
a(t) < e Jo Vells, 5, d7
Then estimate (A.7) implies that
1Pralls s < € e SVt a] g,
and the required inequality (A.3) follows for any compactum K’ O K. O

Now we prove estimate (2.13).

Proof. Decomposition (2.11) can be rewritten in the form

/ / P ooV, o---oVydr, ...dn,

m—1
t):Id+Z/~~~/VTkO~~~OVTldi ..o.dm.
k=1 Ak(t)

where

Then
[[(Pr — Sm (t))al|s & </ /|| o Vialls kg dTm ... dT

by Lemma A.3

< CeC TNVl e dT/~~~/||VTm oo Viallos drm ... dr.

Now we estimate the last integral. By definition (2.2) of seminorms,

//HVTm 0"'0V71a||s,K’dTm ... dmy
A ()

< [ [ WelegllVo et WV =t s el . dy
Ap(t)

< lallsm, we:

o W etmot Ve et 1Vt d .
Ap(t)

1 ¢ "
= el oty ([ W llesmoserar)
. 0
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and estimate (2.13) follows:
|(Pe — Sm (1)) all, &

c t "
t
< S it o ([ Vellmos e dr) il
. 0

m

O
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