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Preface

This book presents some facts and methods of the Mathematical Control
Theory treated from the geometric point of view� The book is mainly based
on graduate courses given by the �rst coauthor in the years ��������� at
the International School for Advanced Studies� Trieste� Italy� Mathematical
prerequisites are reduced to standard courses of Analysis and Linear Algebra
plus some basic Real and Functional Analysis� No preliminary knowledge of
Control Theory or Di�erential Geometry is required�
What this book is about	 The classical deterministic physical world is

described by smooth dynamical systems
 the future in such a system is com�
pletely determined by the initial conditions� Moreover� the near future changes
smoothly with the initial data� If we leave room for �free will
 in this fatalistic
world� then we come to control systems� We do so by allowing certain param�
eters of the dynamical system to change freely at every instant of time� That
is what we routinely do in real life with our body� car� cooker� as well as with
aircraft� technological processes etc� We try to control all these dynamical
systems�
Smooth dynamical systems are governed by di�erential equations� In this

book we deal only with �nite dimensional systems
 they are governed by ordi�
nary di�erential equations on �nite dimensional smooth manifolds� A control
system for us is thus a family of ordinary di�erential equations� The family
is parametrized by control parameters� All di�erential equations of the family
are de�ned on one and the same manifold which is called the state space of the
control system� We may select any admissible values of the control parameters
�i�e� select any dynamical system from the family� and we are free to change
these values at every time instant� The way of selection� which is a function
of time� is called a control or a control function�
As soon as a control is �xed� the control system turns into a nonau�

tonomous ordinary di�erential equation� A solution of such an equation is
uniquely determined by the initial condition and is called an admissible tra�
jectory of the control system �associated with a given control�� Thus� an ad�
missible trajectory is a curve in the state space� The initial condition �initial
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state� is just a starting point of the trajectory� di�erent controls provide� gen�
erally speaking� di�erent admissible trajectories started from a �xed state� All
these trajectories �ll the attainable �reachable� set of the given initial state�
To characterize the states reachable from a given initial one is the �rst

natural problem to study in Control Theory
 the Controllability Problem� As
soon as the possibility to reach a certain state is established� we try to do it in
the best way� Namely� we try to steer the initial state to the �nal one as fast
as possible� or try to �nd the shortest admissible trajectory connecting the
initial and the �nal states� or to minimize some other cost� This is the Optimal
Control Problem� These two problems are our leading lights throughout the
book�
Why Geometry	 The right�hand side of the ordinary di�erential equation

is a vector �eld and the dynamical system governed by the equation is the
�ow generated by this vector �eld� Hence a control system is a family of vector
�elds� The features of control systems we study do not change under trans�
formations induced by smooth transformations of the state space� Moreover�
our systems admit a wide class of reparametrizations of the family of vector
�elds� which are called feedback transformations in Control Theory and gauge
transformations in Geometry and Mathematical Physics� This is a formal rea�
son why the intrinsic geometric language and geometric methods are relevant
to Control Theory�
There is another more fundamental reason� As we mentioned� a dynami�

cal system is a �ow �a one�parametric group of transformations of the state
space� generated by a vector �eld� An admissible trajectory of the control
system associated to a constant control is a trajectory of the corresponding
�ow� Admissible trajectories associated with a piecewise constant control are
realized by the composition of elements of the �ows corresponding to the
values of the control function� The arbitrary control case is realized via an
approximation by piecewise constant controls� We see that the structure of
admissible trajectories and attainable sets is intimately related to the group of
transformations generated by the dynamical systems involved� In turn� groups
of transformations form the heart of Geometry�
Now� what could be the position of Control techniques and the Control

way of thinking in Geometry and� more generally� in the study of basic struc�
tures of the world around us	 A naive in�nitesimal version of attainable set
is the set of admissible velocities formed by velocities of all admissible trajec�
tories passing through the given state� It is usual in Control Theory for the
dimension of attainable sets to be essentially greater than the dimension of
the sets of admissible velocities� In particular� a generic pair of vector �elds
on an n�dimensional manifold provides n�dimensional attainable sets� where n
is as big as we want� In other words� constraints on velocities do not imply
state constraints� Such a situation is traditionally indicated by saying that
constraints are �nonholonomic
� Control theory is a discipline that systemat�
ically studies various types of behavior under nonholonomic constraints and
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provides adequate methods for the investigation of variational problems with
nonholonomic constraints�
The �rst chapter of the book is of introductory nature
 we recall what

smooth manifolds and ordinary di�erential equations on manifolds are� and
de�ne control systems� Chapter � is devoted to an operator calculus that
creates great �exibility in handling of nonlinear control systems� In Chapters �
and � we introduce a simple and extremely popular in applications class of
linear systems and give an e�ective characterization of systems that can be
made linear by a smooth transformation of the state space� Chapters ���
are devoted to the fundamental Orbit Theorem of Nagano and Sussmann
and its applications� The Orbit Theorem states that any orbit of the group
generated by a family of �ows is an immersed submanifold �the group itself
may be huge and wild�� Chapter � contains general results on the structure
of attainable sets starting from a simple test to guarantee that these sets are
full dimensional� In Chapter � we introduce feedback transformations� give a
feedback classi�cation of linear systems� and e�ectively characterize systems
that can be made linear by feedback and state transformations�
The rest of the book is mainly devoted to the Optimal Control� In Chap�

ter �� we state the optimal control problem� give its geometric interpretation�
and discuss the existence of solutions� Chapter �� contains basic facts on di�er�
ential forms and Hamiltonian systems� we need this information to investigate
optimal control problems� Chapter �� is devoted to the intrinsic formulation
and detailed proof of the Pontryagin Maximum Principle� a key result in the
Optimal Control Theory� Chapters ����� contain numerous applications of
the Pontryagin Maximum Principle including a curious property of Hamilto�
nian systems with convex Hamiltonians and more or less complete theories of
linear time�optimal problems and linear�quadratic problems with �nite hori�
zons� In Chapter �� we discuss a Hamiltonian version of the theory of �elds
of extremals� which is suitable for applications in the Optimal Control� and
introduce the Hamilton�Jacobi equation� Chapters �� and �� are devoted to
the moving frames technique for optimal control problems and to problems
on Lie groups� The de�nition and basic facts on Lie groups are given in Chap�
ter ��
 they are simple corollaries of the general geometric control techniques
developed in previous chapters� Chapters �� and �� contain the theory of
the Second Variation with second order necessary and su�cient optimality
conditions for regular and singular extremals� The short Chapter �� presents
an instructive reduction procedure� which establishes a connection between
singular and regular extremals� In Chapter �� we introduce and compute �in
simplest low dimensional cases� the curvature� a remarkable feedback invari�
ant of optimal control problems� Finally in Chapter �� we discuss the control
of a classical nonholonomic system
 two bodies rolling one on another without
slipping or twisting� The Appendix contains proofs of some results formulated
in Chapter ��
This is a very brief overview of the contents of the book� In each chapter

we try to stay at textbook level� i�e� to present just the �rst basic results with
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some applications� The topic of practically every chapter has an extensive de�
velopment� sometimes rather impressive� In order to study these topics deeper
the reader is referred to research papers�
Geometric Control Theory is a broad subject and many important top�

ics are not even mentioned in the book� In particular� we do not study the
feedback stabilization problem and the huge theory of control systems with
outputs including fundamental concepts of Observability and Realization� For
this and other material see books on Control listed in the Bibliography�
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Vector Fields and Control Systems

on Smooth Manifolds

��� Smooth Manifolds

We give just a brief outline of basic notions related to the smooth manifolds�
For a consistent presentation� see an introductory chapter to any textbook on
analysis on manifolds� e� g� ������
In the sequel� �smooth
 �manifold� mapping� vector �eld etc�� means C��

De�nition ���� A subset M � Rn is called a smooth k�dimensional subman�
ifold of Rn� k � n� if any point x �M has a neighborhood Ox in Rn in which
M is described in one of the following ways�

��� there exists a smooth vector�function

F 
 Ox � Rn�k� rank
dF

dx

����
q

� n� k

such that
Ox �M � F������

��� there exists a smooth vector�function

f 
 V� � Rn

from a neighborhood of the origin � � V� � Rk with

f��� � x� rank
d f

d x

����
�

� k

such that
Ox �M � f�V��

and f 
 V� � Ox �M is a homeomorphism�
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��� there exists a smooth vector�function

� 
 Ox � O� � Rn

onto a neighborhood of the origin � � O� � Rn with

rank
d�

dx

����
x

� n

such that
��Ox �M � � Rk �O��

Exercise ���� Prove that three local descriptions of a smooth submanifold
given in ������� are mutually equivalent�

Remark ��	� ��� There are two topologically di�erent one�dimensional mani�
folds
 the line R� and the circle S�� The sphere S� and the torus T� � S��S�

are two�dimensional manifolds� The torus can be viewed as a sphere with a
handle� Any compact orientable two�dimensional manifold is topologically a
sphere with p handles� p � �� �� �� � � � �
��� Smooth manifolds appear naturally already in the basic analysis� For

example� the circle S� and the torus T� are natural domains of periodic and
doubly periodic functions respectively� On the sphere S�� it is convenient to
consider restriction of homogeneous functions of � variables�

So a smooth submanifold is a subset inRnwhich can locally be de�ned by a
regular system of smooth equations and by a smooth regular parametrization�
In spite of the intuitive importance of the image of manifolds as subsets of

a Euclidean space� it is often convenient to consider manifolds independently
of any embedding in Rn� An abstract manifold is de�ned as follows�

De�nition ���� A smooth k�dimensional manifold M is a Hausdor
 para�
compact topological space endowed with a smooth structure� M is covered by
a system of open subsets

M � ��O�

called coordinate neighborhoods� in each of which is de�ned a homeomorphism

�� 
 O�� Rk

called a local coordinate system such that all compositions

�� 	 ���
� 
 ���O� �O�� � Rk� ���O� �O�� � Rk

are di
eomorphisms� see Fig� ����

As a rule� we denote points of a smooth manifold by q� and its coordinate
representation in a local coordinate system by x
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��

��

O�

O�

�� ��
��

�

M R
k

Fig� ���� Coordinate system in smooth manifold M

q �M� �� 
 O� � Rk� x � ��q� � Rk�

For a smooth submanifold in Rn� the abstract De�nition ��� holds� Con�
versely� any connected smooth abstract manifold can be considered as a
smooth submanifold in Rn� Before precise formulation of this statement� we
give two de�nitions�

De�nition ���� Let M and N be k� and l�dimensional smooth manifolds re�
spectively� A continuous mapping

f 
 M � N

is called smooth if it is smooth in coordinates� That is� let M � ��O� and
N � ��V� be coverings of M and N by coordinate neighborhoods and

�� 
 O� � Rk� �� 
 V� � Rl

the corresponding coordinate mappings� Then all compositions

�� 	 f 	 ���
� 
 ���O� � f���V��� � Rk� ���f�O�� � V�� � Rl

should be smooth�

De�nition ���� A smooth manifold M is called di�eomorphic to a smooth
manifold N if there exists a homeomorphism

f 
 M � N

such that both f and its inverse f�� are smooth mappings� Such mapping f
is called a di�eomorphism�
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The set of all di�eomorphisms f 
 M � M of a smooth manifold M is
denoted by Di�M �
A smooth mapping f 
 M � N is called an embedding of M into N if

f 
 M � f�M � is a di�eomorphism� A mapping f 
 M � N is called proper
if f���K� is compact for any compactumK b N �the notationK b N means
that K is a compact subset of N ��

Theorem ��� �Whitney�� Any smooth connected k�dimensional manifold
can be properly embedded into R�k���

Summing up� we may say that a smooth manifold is a space which looks
locally like a linear space but without �xed linear structure� so that all smooth
coordinates are equivalent� The manifolds� not linear spaces� form an adequate
framework for the modern nonlinear analysis�

��� Vector Fields on Smooth Manifolds

The tangent space to a smooth manifold at a point is a linear approximation
of the manifold in the neighborhood of this point�

De�nition ��	� Let M be a smooth k�dimensional submanifold of Rn and
x �M its point� Then the tangent space toM at the point x is a k�dimensional
linear subspace

TxM � Rn

de�ned as follows for cases �����	� of De�nition ����

��� TxM � Ker
dF

dx

����
x

�

��� TxM � Im
d f

d x

����
�

�

��� TxM �

�
d�

dx

����
x

���

Rk�

Remark ��
� The tangent space is a coordinate�invariant object since smooth
changes of variables lead to linear transformations of the tangent space�

In an abstract way� the tangent space to a manifold at a point is the set
of velocity vectors to all smooth curves in the manifold that start from this
point�

De�nition ����� Let �� 
 � be a smooth curve in a smooth manifold M starting
from a point q �M �

� 
 ���� �� �M a smooth mapping� ���� � q�

The tangent vector
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d �

d t

����
t��

� �����

to the curve �� 
 � at the point q is the equivalence class of all smooth curves
in M starting from q and having the same ��st order Taylor polynomial as
�� 
 �� for any coordinate system in a neighborhood of q�

����

�����

��t�

Fig� ���� Tangent vector ���	


De�nition ����� The tangent space to a smooth manifold M at a point q �
M is the set of all tangent vectors to all smooth curves in M starting at q�

TqM �

�
d �

d t

����
t��

j � 
 ���� ���M smooth� ���� � q

�
�

M

q

TqM

��t�

�����

Fig� ���� Tangent space TqM

Exercise ����� LetM be a smooth k�dimensional manifold and q �M � Show
that the tangent space TqM has a natural structure of a linear k�dimensional
space�
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De�nition ����� A smooth vector �eld on a smooth manifold M is a smooth
mapping

q � M �� V �q� � TqM

that associates to any point q � M a tangent vector V �q� at this point�

In the sequel we denote by VecM the set of all smooth vector �elds on a
smooth manifoldM �

De�nition ����� A smooth dynamical system� or an ordinary di�erential
equation �ODE�� on a smooth manifold M is an equation of the form

d q

d t
� V �q�� q �M�

or� equivalently�

�q � V �q�� q �M�

where V �q� is a smooth vector �eld on M � A solution to this system is a
smooth mapping

� 
 I �M�

where I � R is an interval� such that

d �

d t
� V ���t�� � t � I�

��t�

V ���t��

Fig� ���� Solution to ODE �q � V �q




��� Vector Fields on Smooth Manifolds 


De�nition ����� Let � 
 M � N be a smooth mapping between smooth
manifolds M and N � The di�erential of � at a point q � M is a linear
mapping

Dq� 
 TqM � T��q�N

de�ned as follows�

Dq�

�
d �

d t

����
t��

�
�

d

d t

����
t��

����t���

where
� 
 ���� ���M� q��� � q�

is a smooth curve in M starting at the point q� see Fig� ����

q � ����

v � �����

��t�

M

��q�
����t��

Dq� v

N

Dq�

�

Fig� ���� Di�erential Dq�

Now we apply smooth mappings to vector �elds� Let V � VecM be a
vector �eld on M and

�q � V �q� �����

the corresponding ODE� To �nd the action of a di�eomorphism

� 
 M � N� � 
 q �� x � ��q�

on the vector �eld V �q�� take a solution q�t� of ����� and compute the ODE
satis�ed by the image x�t� � ��q�t��


�x�t� �
d

d t
��q�t�� � �Dq�� �q�t� � �Dq��V �q�t�� � �D��� �x���V ��

���x�t����

So the required ODE is

�x �
�
D��� �x��

�
V �����x��� �����

The right�hand side here is the transformed vector �eld on N induced by the
di�eomorphism �
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���V ��x�
def
�
�
D��� �x��

�
V �����x���

The notation ��q is used� along with Dq�� for di�erential of a mapping �
at a point q�

Remark ����� In general� a smooth mapping � induces transformation of tan�
gent vectors� not of vector �elds� In order that D� transform vector �elds to
vector �elds� � should be a di�eomorphism�

��� Smooth Di�erential Equations and Flows
on Manifolds

Theorem ����� Consider a smooth ODE

�q � V �q�� q �M � Rn� �����

on a smooth submanifold M of Rn� For any initial point q� �M � there exists
a unique solution

q�t� q��� t � �a� b�� a � � � b�

of equation ����� with the initial condition

q��� q�� � q��

de�ned on a su�ciently short interval �a� b�� The mapping

�t� q�� �� q�t� q��

is smooth� In particular� the domain �a� b� of the solution q� 
 � q�� can be chosen
smoothly depending on q��

Proof� We prove the theorem by reduction to its classical analog in Rn�
The statement of the theorem is local� We rectify the submanifold M in

the neighborhood of the point q�


� 
 Oq� � Rn� O� � Rn�
��Oq� �M � � Rk�

Consider the restriction � � �jM � Then a curve q�t� inM is a solution to �����
if and only if its image x�t� � ��q�t�� inRk is a solution to the induced system


�x � ��V �x�� x � Rk�

ut
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Theorem ���	� Let M � Rn be a smooth submanifold and let

�q � V �q�� q � Rn� �����

be a system of ODEs in Rn such that

q �M 
 V �q� � TqM�

Then for any initial point q� �M � the corresponding solution q�t� q�� to �����
with q��� q�� � q� belongs to M for all su�ciently small jtj�
Proof� Consider the restricted vector �eld


f � V jM �

By the existence theorem for M � the system

�q � f�q�� q �M�

has a solution q�t� q��� q��� q�� � q�� with

q�t� q�� �M for small jtj� �����

On the other hand� the curve q�t� q�� is a solution of ����� with the same initial
condition� Then inclusion ����� proves the theorem� ut
De�nition ���
� A vector �eld V � VecM is called complete� if for all q� �
M the solution q�t� q�� of the Cauchy problem

�q � V �q�� q��� q�� � q� �����

is de�ned for all t � R�
Example ����� The vector �eld V �x� � x is complete on R� as well as on
Rn f�g� ���� ��� ��� ��� and f�g� but not complete on other submanifolds
of R� The vector �eld V �x� � x� is not complete on any submanifolds of R
except f�g�
Proposition ����� Suppose that there exists � 	 � such that for any q� �M
the solution q�t� q�� to Cauchy problem ����� is de�ned for t � ���� ��� Then
the vector �eld V �q� is complete�

Remark ����� In this proposition it is required that there exists � 	 � common
for all initial points q� � M � In general� � may be not bounded away from
zero for all q� � M � E�g�� for the vector �eld V �x� � x� we have � � � as
x����
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Proof� Suppose that the hypothesis of the proposition is true� Then we can
introduce the following family of mappings in M 


P t 
 M �M� t � ���� ���
P t 
 q� �� q�t� q���

P t�q�� is the shift of a point q� � M along the trajectory of the vector �eld
V �q� for time t�
By Theorem ����� all mappings P t are smooth� Moreover� the family fP t j

t � ���� �� g is a smooth family of mappings�
A very important property of this family is that it forms a local one�pa�

rameter group� i�e��

P t�P s�q�� � P s�P t�q�� � P t�s�q�� q �M� t� s� t s � ���� ���
Indeed� the both curves in M 


t �� P t�P s�q�� and t �� P t�s�q�

satisfy the ODE �q � V �q� with the same initial value P ��P s�q�� � P ��s�q� �
P s�q�� By uniqueness� P t�P s�q�� � P t�s�q�� The equality for P s�P t�q�� is
obtained by switching t and s�
So we have the following local group properties of the mappings P t


P t 	 P s � P s 	 P t � P t�s� t� s� t  s � ���� ���
P � � Id�

P�t 	 P t � P t 	 P�t � Id� t � ���� ���
P�t �

�
P t
���

� t � ���� ���
In particular� all P t are di�eomorphisms�
Now we extend the mappingsP t for all t � R�Any t � Rcan be represented

as
t �

�

�
K  
� � � 
 �

�

�
� K � �������� � � � �

We set
P t def

� P � 	 P���� 	 
 
 
 	 P����� 	z 

jKj times

� � � sgn t�

Then the curve
t �� P t�q��� t � R�

is a solution to Cauchy problem ������ ut
De�nition ����� For a complete vector �eld V � VecM � the mapping

t �� P t� t � R�
is called the �ow generated by V �
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Remark ����� It is useful to imagine a vector �eld V � VecM as a �eld of
velocity vectors of a moving liquid in M � Then the �ow P t takes any particle
of the liquid from a position q � M and transfers it for a time t � R to the
position P t�q� �M � see Fig� ����

q
P t�q�

V

M

Fig� ���� Flow P t of vector �eld V

Simple su�cient conditions for completeness of a vector �eld are given in
terms of compactness�

Proposition ����� Let K � M be a compact subset� and let V � VecM �
Then there exists �K 	 � such that for all q� � K the solution q�t� q�� to
Cauchy problem ����� is de�ned for all t � ���K � �K��

Proof� By Theorem ����� domain of the solution q�t� q�� can be chosen con�
tinuously depending on q�� The diameter of this domain has a positive in��
mum ��K for q� in the compact set K� ut
Corollary ����� If a smooth manifold M is compact� then any vector �eld
V � VecM is complete�

Corollary ����� Suppose that a vector �eld V � VecM has a compact
support�

suppV
def
� f q �M j V �q� �� � g is compact�

Then V is complete�

Proof� Indeed� by Proposition ����� there exists � 	 � such that all trajectories
of V starting in suppV are de�ned for t � ���� ��� But V jMnsupp V � �� and
all trajectories of V starting outside of supp V are constant� thus de�ned for
all t � R� By Proposition ����� the vector �eld V is complete� ut
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Remark ����� If we are interested in the behavior of �trajectories of� a vector
�eld V � VecM in a compact subset K � M � we can suppose that V is
complete� Indeed� take an open neighborhood OK of K with the compact
closure OK � We can �nd a function a � C��M � such that

a�q� �

�
�� q � K�
�� q �M nOK �

Then the vector �eld a�q�V �q� � VecM is complete since it has a compact
support� On the other hand� inK the vector �elds a�q�V �q� and V �q� coincide�
thus have the same trajectories�

��� Control Systems

For dynamical systems� the future q�t� q��� t 	 �� is completely determined by
the present state q� � q��� q��� The law of transformation q� �� q�t� q�� is the
�ow P t� i�e�� dynamics of the system

�q � V �q�� q �M� �����

it is determined by one vector �eld V �q��
In order to be able to a�ect dynamics� to control it� we consider a family

of dynamical systems

�q � Vu�q�� q �M� u � U� �����

with a family of vector �elds Vu parametrized by a parameter u � U � A
system of the form ����� is called a control system� The variable u is a control
parameter � and the set U is the space of control parameters� A priori we do
not impose any restrictions on U � it is an arbitrary set� although� typically U
will be a subset of a smooth manifold� The variable q is the state� and the
manifoldM is the state space of control system ������
In control theory we can change dynamics of control system ����� at any

moment of time by changing values of u � U � For any u � U � the corresponding
vector �eld Vu � VecM generates the �ow� which is denoted by P t

u�
A typical problem of control theory is to �nd the set of points that can be

reached from an initial point q� �M by choosing various values of u � U and
switching from one value to another time to time �for dynamical system ������
this reachable set is just the semitrajectory q�t� q�� � P t�q��� t � ��� Suppose
that we start from a point q� �M and use the following control strategy for
control system �����
 �rst we choose some control parameter u� � U � then
we switch to another control parameter u� � U � Which points in M can be
reached with such control strategy	 With the control parameter u�� we can
reach points of the form

fP t�
u��q�� j t� � � g�
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and the whole set of reachable points has the form

fP t�
u�
	 P t�

u�
�q�� j t�� t� � � g�

a piece of a ��dimensional surface


P t�
u�

P t�
u�

q�

A natural next question is
 what points can be reached from q� by any
kind of control strategies	
Before studying this question� consider a particular control system that

gives a simpli�ed model of a car�

Example ���
�We suppose that the state of a car is determined by the position
of its center of mass x � �x�� x�� � R� and orientation angle � � S� relative
to the positive direction of the axis x�� Thus the state space of our system is
a nontrivial ��dimensional manifold� a solid torus

M � f q � �x� �� j x � R�� � � S� g � R�� S��

Suppose that two kinds of motion are possible
 we can drive the car forward
and backwards with some �xed linear velocity u� � R� and we can turn the
car around its center of mass with some �xed angular velocity u� � R� We
can combine these two kinds of motion in an admissible way�
The dynamical system that describes the linear motion with a velocity

u� � R has the form ��

�x� � u� cos ��
�x� � u� sin ��
�� � ��

�����

Rotation with an angular velocity u� � R is described as��

�x� � ��
�x� � ��
�� � u��

������
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The control parameter u � �u�� u�� can take any values in the given subset
U � R�� If we write ODEs ����� and ������ in the vector form


�q � u�V��q�� �q � u�V��q��

where

V��q� �

�� cos �sin �
�

�A � V��q� �

�� ��
�

�A � ������

then our model reads

�q � Vu�q� � u�V��q�  u�V��q�� q �M� u � U�

This model can be rewritten in the complex form


z � x�  ix� � C �
�z � u�e

i��

�� � u��

�u�� u�� � U� �z� �� � C � S��

Remark ��	�� Control system ����� is often written in another form


�q � f�q� u�� q �M� u � U�

We prefer the notation Vu�q�� which stresses that for a �xed u � U � Vu is a
single object ! a vector �eld on M �

Now we return to the study of the points reachable by trajectories of a
control system from an initial point�

De�nition ����� The attainable set �or reachable set� of control system �����
with piecewise�constant controls from a point q� � M for a time t � � is
de�ned as follows�

Aq��t� � fP �k
uk
	 � � � 	 P ��

u�
�q�� j 
i � ��

kX
i��


i � t� ui � U� k � N g�

The attainable set from q� for arbitrary nonnegative time of motion has the
form

Aq� �
�
t��

Aq� �t��

see Fig� ����
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Aq�

q�

Vu�

Vu�

Vu�

Vuk

Fig� ���� Attainable set Aq�

For simplicity� consider �rst the smallest nontrivial space of control pa�
rameters consisting of two indices


U � f�� �g

�even this simple case shows essential features of the reachability problem��
Then the attainable set for arbitrary nonnegative times has the form


Aq� � fP �k
� 	 P �k��

� 	 � � � 	 P ��
� 	 P ��

� �q�� j 
i � �� k � N g�
This expression suggests that the attainable set Aq� depends heavily upon
commutator properties of the �ows P t

� and P s
� �

Consider �rst the trivial commutative case� i�e�� suppose that the �ows
commute


P t
� 	 P s

� � P s
� 	 P t

� �t� s � R�
Then the attainable set can be evaluated precisely
 since

P �k
� 	 P �k��

� 	 � � � 	 P ��
� 	 P ��

� � P �k�������
� 	 P �k���������

� �

then
Aq� � fP s

� 	 P t
��q�� j t� s � � g�

So in the commutative case the attainable set by two control parameters is
a piece of a smooth two�dimensional surface� possibly with singularities� It
is easy to see that if the number of control parameters is k � � and the
corresponding �ows P t�

� � � � � � P
tk
k commute� then Aq� is� in general� a piece

of a k�dimensional manifold� and� in particular� dimAq� � k�
But this commutative case is exceptional and occurs almost never in real

control systems�

Example ��	�� In the model of a car considered above the control dynamics is
de�ned by two vector �elds ������ on the ��dimensionalmanifoldM � R�

x�S�
� �
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x�

��

q�
x�

��

q�

Fig� ��	� Initial and �nal con�gurations of the car

q�

q�

PV�
t�

P
V�
t�

PV�
t�

Fig� ��
� Steering the car from q� to q�

It is obvious that from any initial con�guration q� � �x�� ��� �M we can drive
the car to any terminal con�guration q� � �x�� ��� �M by alternating linear
motions and rotations �both with �xed velocities�� see Fig� ����
So any point in the ��dimensional manifold M can be reached by means

of � vector �elds V�� V�� This is due to noncommutativity of these �elds �i�e��
of their �ows��

Given an arbitrary pair of vector �elds V�� V� � VecM � how can one rec�
ognize their commuting properties without �nding the �ows P t

�� P
s
� explicitly�

i�e�� without integration of the ODEs �q � V��q�� �q � V��q� 	
If the �ows P t

�� P
s
� commute� then the curve

��s� t� � P�t� 	 P s
� 	 P t

��q� � P s
� �q�� t� s � R� ������

does not depend on t� It is natural to suggest that a lower�order term in
the Taylor expansion of ������ at t � s � � is responsible for commuting
properties of �ows of the vector �elds V�� V� at the point q� The �rst�order
derivatives

� �

� t

����
s�t��

� ��
� �

� s

����
s�t��

� V��q�

are obviously useless� as well as the pure second�order derivatives

���

�t�

����
s�t��

� ��
���

�s�

����
s�t��

�
�

� s

����
s��

V��P
s
� �q���
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The required derivative should be the mixed second�order one

���

�t�s

����
s�t��

�

It turns out that this derivative is a tangent vector to M � It is called the Lie
bracket of the vector �elds V�� V� and is denoted by �V�� V���q�


�V�� V���q�
def
�

��

�t�s

����
t�s��

P�t� 	 P s
� 	 P t

��q� � TqM� ������

The vector �eld �V�� V�� � VecM determines commuting properties of V� and
V� �it is often called commutator of vector �elds V�� V���
An e�ective formula for computing Lie bracket of vector �elds in local

coordinates is given in the following statement�

Proposition ����� Let V�� V� be vector �elds on Rn� Then

�V�� V���x� �
d V�
d q

V��x�� d V�
d x

V��x�� ������

The proof is left to the reader as an exercise�
Another way to de�ne Lie bracket of vector �elds V�� V� is to consider the

path
��t� � P�t� 	 P�t� 	 P t

� 	 P t
��q��

see Fig� �����

q

P t

�

P t

�

P�t

�

P�t

�

��t�

�V�� V���q�

Fig� ����� Lie bracket of vector �elds V�� V�

Exercise ����� Show that in local coordinates

��t� � x �V�� V���x�t
�  o�t��� t� ��
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i�e�� �V�� V���x� is the velocity vector of the C
� curve ��

p
t�� In particular� this

proves that �V�� V���x� is indeed a tangent vector to M 


�V�� V���x� � TxM�

In the next chapter we will develop an e�cient algebraic way to do similar
calculations without any coordinates�

In the commutative case� the set of reachable points does not depend on the
number of switches of a control strategy used� In the general noncommutative
case� on the contrary� the greater number of switches� the more points can be
reached�
Suppose that we can move along vector �elds �V� and �V�� Then� in�

�nitesimally� we can move in the new direction ��V�� V��� which is in general
linearly independent of the initial ones �V�� �V�� Using the same switching
control strategy with the vector �elds �V� and ��V�� V��� we add one more
in�nitesimal direction of motion ��V�� �V�� V���� Analogously� we can obtain
��V�� �V�� V���� Iterating this procedure with the new vector �elds obtained
at previous steps� we can have a Lie bracket of arbitrarily high order as an
in�nitesimal direction of motion with a su�ciently large number of switches�

Example ��	�� Compute the Lie bracket of the vector �elds

V��q� �

�� cos �sin �
�

�A � V��q� �

�� ��
�

�A � q �

��x�
x�
�

�A � R�
�x�	x��

� S�
�

appearing in the model of a car� Recall that the �eld V� generates the forward
motion� and V� the counterclockwise rotation of the car� By ������� we have

�V�� V���q� �
d V�
d q

V��q�� d V�
d q

V��q� � �
��� � � sin �� � cos �
� � �

�A�� ��
�

�A
�

�� sin �
� cos �
�

�A �

The vector �eld �V�� V�� generates the motion of the car in the direction per�
pendicular to orientation of the car� This is a typical maneuver in parking a
car
 the sequence of � motions with the same small amplitude of the form

motion forward� rotation counterclockwise � motion backward�
� rotation clockwise

results in motion to the right �in the main term�� see Fig� �����
We show this explicitly by computing the Lie bracket �V�� V�� as in Exer�

cise ����
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P
t

�

P
t

�

P
�t

�

P
�t

�

Fig� ����� Lie bracket for a moving car

P�t� 	 P�t� 	 P t
� 	 P t

�

��x�
x�
�

�A �
��x�  t�cos � � cos��  t��

x�  t�sin � � sin��  t��
�

�A
�

��x�
x�
�

�A  t�

�� sin �
� cos �
�

�A  o�t��� t� ��

and we have once more

�V�� V���q� �

�� sin �
� cos �
�

�A � ������

Of course� we can also compute this Lie bracket by de�nition as in ������


P�t� 	 P s
� 	 P t

�

��x�
x�
�

�A �
��x�  t�cos � � cos��  s��

x�  t�sin � � sin��  s��
�  s

�A
�

��x�
x�
�

�A s

�� ��
�

�A ts

�� sin �
� cos �
�

�A  O�t�  s������ t� s� ��

and the Lie bracket ������ follows�





�

Elements of Chronological Calculus

We introduce an operator calculus that will allow us to work with nonlinear
systems and �ows as with linear ones� at least at the formal level� The idea
is to replace a nonlinear object� a smooth manifoldM � by a linear� although
in�nite�dimensional one
 the commutative algebra of smooth functions on M
�for details� see ����� ������ For basic de�nitions and facts of functional analysis
used in this chapter� one can consult e�g� ������

��� Points� Di�eomorphisms� and Vector Fields

In this section we identify points� di�eomorphisms� and vector �elds on the
manifold M with functionals and operators on the algebra C��M � of all
smooth real�valued functions on M �
Addition� multiplication� and product with constants are de�ned in the

algebra C��M �� as usual� pointwise
 if a� b � C��M �� q �M � 
 � R� then
�a  b��q� � a�q�  b�q��

�a 
 b��q� � a�q� 
 b�q��
�
 
 a��q� � 
 
 a�q��

Any point q �M de�nes a linear functionalbq 
 C��M �� R� bqa � a�q�� a � C��M ��

The functionals bq are homomorphisms of the algebras C��M � and R
bq�a b� � bqa bqb� a� b � C��M ��bq�a 
 b� � �bqa� 
 �bqb�� a� b � C��M ��bq�
 
 a� � 
 
 bqa� 
 � R� a � C��M ��

So to any point q � M � there corresponds a nontrivial homomorphism of
algebras bq 
 C��M �� R� It turns out that there exists an inverse correspon�
dence�
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Proposition ���� Let � 
 C��M � � R be a nontrivial homomorphism of
algebras� Then there exists a point q �M such that � � bq�
We prove this proposition in the Appendix�

Remark ���� Not only the manifoldM can be reconstructed as a set from the
algebra C��M �� One can recover topology on M from the weak topology in
the space of functionals on C��M �


lim
n�� qn � q if and only if lim

n�� bqna � bqa �a � C��M ��

Moreover� the smooth structure onM is also recovered fromC��M �� actually�
�by de�nition

 a real function on the set fbq j q � Mg is smooth if and only
if it has a form bq �� bqa for some a � C��M ��

Any di�eomorphism P 
 M �M de�nes an automorphism of the algebra
C��M �


bP 
 C��M �� C��M �� bP � Aut�C��M ���
� bPa��q� � a�P �q��� q �M� a � C��M ��

i�e�� bP acts as a change of variables in a function a� Conversely� any automor�
phism of C��M � has such a form�

Proposition ���� Any automorphism A 
 C��M �� C��M � has a form ofbP for some P � Di�M �

Proof� Let A � Aut�C��M ��� Take any point q �M � Then the composition

bq 	A 
 C��M �� R
is a nonzero homomorphism of algebras� thus it has the form bq� for some
q� �M � We denote q� � P �q� and obtain

bq 	A ��P �q� � bq 	 bP �q �M�

i�e��
A � bP �

and P is the required di�eomorphism� ut
Now we characterize tangent vectors to M as functionals on C��M ��

Tangent vectors to M are velocity vectors to curves in M � and points of
M are identi�ed with linear functionals on C��M �� thus we should obtain
linear functionals on C��M �� but not homomorphisms intoR� To understand�
which functionals on C��M � correspond to tangent vectors to M � take a
smooth curve q�t� of points inM � Then the corresponding curve of functionalsbq�t� �dq�t� on C��M � satis�es the multiplicative rule
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bq�t��a 
 b� � bq�t�a 
 bq�t�b� a� b � C��M ��

We di�erentiate this equality at t � � and obtain that the velocity vector to
the curve of functionals

�
def
�

d bq
d t

����
t��

� � 
 C��M �� R�

satis�es the Leibniz rule


��ab� � ��a�b�q����  a�q������b��

Consequently� to each tangent vector v � TqM we should put into corre�
spondence a linear functional

� 
 C��M �� R

such that

��ab� � ��a�b�q�  a�q���b�� a� b � C��M �� �����

But there is a linear functional � � bv naturally related to any tangent vector
v � TqM � the directional derivative along v


bva � d

d t

����
t��

a�q�t��� q��� � q� �q��� � v�

and such functional satis�es Leibniz rule ������
Now we show that this rule characterizes exactly directional derivatives�

Proposition ���� Let � 
 C��M � � R be a linear functional that satis�es
Leibniz rule ����� for some point q �M � Then � � bv for some tangent vector
v � TqM �

Proof� Notice �rst of all that any functional � that meets Leibniz rule �����
is local� i�e�� it depends only on values of functions in an arbitrarily small
neighborhood Oq of the point q


"ajOq � ajOq 
 �"a � �a� a� "a � C��M ��

Indeed� take a cut function b � C��M � such that bjMnOq � � and b�q� � ��

Then �"a� a�b � "a� a� thus

��"a � a� � ���"a� a�b� � ��"a� a� b�q�  �"a� a��q� �b � ��

So the statement of the proposition is local� and we prove it in coordinates�
Let �x�� � � � � xn� be local coordinates on M centered at the point q� We

have to prove that there exist 
�� � � � � 
n � R such that
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� �
nX
i��


i
�

� xi

����
�

�

First of all�

���� � ��� 
 �� � ���� 
 �  � 
 ���� � ������

thus ���� � �� By linearity� ��const� � ��
In order to �nd the action of � on an arbitrary smooth function� we expand

it by the Hadamard Lemma


a�x� � a���  
nX
i��

Z �

�

� a

� xi
�tx�xi dt � a���  

nX
i��

bi�x�xi�

where

bi�x� �

Z �

�

� a

� xi
�tx� dt

are smooth functions� Now

�a �
nX
i��

��bixi� �
nX
i��

���bi�xi���  bi�����xi�� �
nX
i��


i
� a

� xi
����

where we denote 
i � �xi and make use of the equality bi��� �
� a

� xi
���� ut

So tangent vectors v � TqM can be identi�ed with directional derivativesbv 
 C��M �� R� i�e�� linear functionals that meet Leibniz rule ������
Now we characterize vector �elds on M � A smooth vector �eld on M is a

family of tangent vectors vq � TqM � q � M � such that for any a � C��M �
the mapping q �� vqa� q �M � is a smooth function on M �
To a smooth vector �eld V � VecM there corresponds a linear operator

bV 
 C��M �� C��M �

that satis�es the Leibniz rule

bV �ab� � �bV a�b a�bV b�� a� b � C��M ��

the directional derivative �Lie derivative� along V �
A linear operator on an algebra meeting the Leibniz rule is called a deriva�

tion of the algebra� so the Lie derivative bV is a derivation of the algebra
C��M �� We show that the correspondence between smooth vector �elds on
M and derivations of the algebra C��M � is invertible�

Proposition ���� Any derivation of the algebra C��M � is the directional
derivative along some smooth vector �eld on M �



��� Seminorms and C��M
�Topology ��

Proof� Let D 
 C��M � � C��M � be a derivation� Take any point q � M �
We show that the linear functional

dq
def
� bq 	D 
 C��M �� R

is a directional derivative at the point q� i�e�� satis�es Leibniz rule �����


dq�ab� � bq�D�ab�� � bq��Da�b  a�Db�� � bq�Da�b�q�  a�q�bq�Db� �

�dqa�b�q�  a�q��dqb�� a� b � C��M ��

ut
So we can identify points q �M � di�eomorphisms P � Di�M � and vector

�elds V � VecM with nontrivial homomorphisms bq 
 C��M � � R� auto�
morphisms bP 
 C��M �� C��M �� and derivations bV 
 C��M �� C��M �
respectively�
For example� we can write a point P �q� in the operator notation as bq 	 bP �

Moreover� in the sequel we omit hats and write q 	 P � This does not cause
ambiguity
 if q is to the right of P � then q is a point� P a di�eomorphism�
and P �q� is the value of the di�eomorphism P at the point q� And if q is to
the left of P � then q is a homomorphism� P an automorphism� and q 	 P a
homomorphism of C��M �� Similarly� V �q� � TqM is the value of the vector
�eld V at the point q� and q 	 V 
 C��M � � R is the directional derivative
along the vector V �q��

��� Seminorms and C��M	
Topology

We introduce seminorms and topology on the space C��M ��
By Whitney�s Theorem� a smooth manifoldM can be properly embedded

into a Euclidean space RN for su�ciently large N � Denote by hi� i � �� � � � � N �
the smooth vector �eld onM that is the orthogonal projection fromRN toM
of the constant basis vector �eld 



 xi
� Vec�RN�� So we have N vector �elds

h�� � � � � hN � VecM that span the tangent space TqM at each point q �M �
We de�ne the family of seminorms k 
 ks	K on the space C��M � in the

following way


kaks	K � sup fjhil 	 
 
 
 	 hi�a�q�j j q � K� � � i�� � � � � il � N� � � l � sg �
a � C��M �� s � �� K bM�

This family of seminorms de�nes a topology on C��M �� A local base of this
topology is given by the subsets�

a � C��M � j kakn	Kn
�
�

n

�
� n � N�

where Kn� n � N� is a chained system of compacta that cover M 
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Kn � Kn���

��
n��

Kn �M�

This topology on C��M � does not depend on embedding of M into RN�
It is called the topology of uniform convergence of all derivatives on compacta�
or just C��M ��topology � This topology turns C��M � into a Fr#echet space
�a complete� metrizable� locally convex topological vector space��
A sequence of functions ak � C��M � converges to a � C��M � as k ��

if and only if
lim
k��

kak � aks	K � � � s � �� K b M�

For vector �elds V � VecM � we de�ne the seminorms

kV ks	K � sup fkV aks	K j kaks��	K � �g � s � �� K bM� �����

One can prove that any vector �eld V � VecM has �nite seminorms kV ks	K �
and that there holds an estimate of the action of a di�eomorphismP � Di�M
on a function a � C��M �


kPaks	K � Cs	Pkaks	P �K�� s � �� K bM� �����

Thus vector �elds and di�eomorphisms are linear continuous operators on the
topological vector space C��M ��

��� Families of Functionals and Operators

In the sequel we will often consider one�parameter families of points� di�eo�
morphisms� and vector �elds that satisfy various regularity properties �e�g�
di�erentiability or absolute continuity� with respect to the parameter� Since
we treat points as functionals� and di�eomorphisms and vector �elds as oper�
ators on C��M �� we can introduce regularity properties for them in the weak
sense� via the corresponding properties for one�parameter families of functions

t �� at� at � C��M �� t � R�

So we start from de�nitions for families of functions�
Continuity and di
erentiability of a family of functions at w�r�t� parameter

t are de�ned in a standard way since C��M � is a topological vector space�
A family at is called measurable w�r�t� t if the real function t �� at�q� is
measurable for any q �M � A measurable family at is called locally integrable
if Z t�

t�

katks	K dt �� � s � �� K bM� t�� t� � R�

A family at is called absolutely continuous w�r�t� t if
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at � at�  

Z t

t�

b� d


for some locally integrable family of functions bt� A family at is called Lips�
chitzian w�r�t� t if

kat � a�ks	K � Cs	Kjt� 
 j �s � �� K bM� t� 
 � R�
and locally bounded w�r�t� t if

katks	K � Cs	K	I� � s � �� K bM� I b R� t � I�

where Cs	K and Cs	K	I are some constants depending on s� K� and I�
Now we can de�ne regularity properties of families of functionals and oper�

ators on C��M �� A family of linear functionals or linear operators on C��M �

t �� At� t � R�
has some regularity property �i�e�� is continuous� di
erentiable� measurable�
locally integrable� absolutely continuous� Lipschitzian� locally bounded w�r�t� t�
if the family

t �� Ata� t � R�
has the same property for any a � C��M ��
A locally bounded w�r�t� t family of vector �elds

t �� Vt� Vt � VecM� t � R�
is called a nonautonomous vector �eld � or simply a vector �eld � on M � An
absolutely continuous w�r�t� t family of di�eomorphisms

t �� P t� P t � Di�M� t � R�
is called a �ow on M � So� for a nonautonomous vector �eld Vt� the family of
functions t �� Vta is locally integrable for any a � C��M �� Similarly� for a
�ow P t� the family of functions �P ta��q� � a�P t�q�� is absolutely continuous
w�r�t� t for any a � C��M ��
Integrals of measurable locally integrable families� and derivatives of dif�

ferentiable families are also de�ned in the weak sense
Z t�

t�

At dt 
 a ��
Z t�

t�

�Ata� dt� a � C��M ��

d

d t
At 
 a �� d

d t
�Ata�� a � C��M ��

One can show that if At and Bt are continuous families of operators on
C��M � which are di�erentiable at t�� then the family At 	Bt is continuous�
moreover� di�erentiable at t�� and satis�es the Leibniz rule
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d

d t

����
t�

�At 	Bt� �

�
d

d t

����
t�

At

�
	Bt�  At� 	

�
d

d t

����
t�

Bt

�
�

see the proof in the Appendix�
If families At and Bt of operators are absolutely continuous� then the

composition At 	 Bt is absolutely continuous as well� the same is true for
composition of functionals with operators� For an absolute continuous family
of functions at� the familyAtat is also absolutely continuous� and the Leibniz
rule holds for it as well�

��� Chronological Exponential

In this section we consider a nonautonomous ordinary di
erential equation of
the form

�q � Vt�q�� q��� � q�� �����

where Vt is a nonautonomous vector �eld onM � and study the �ow determined

by this �eld� We denote by �q the derivative
d q

d t
� so equation ����� reads in the

expanded form as
d q�t�

d t
� Vt�q�t���

����� ODEs with Discontinuous Right�Hand Side

To obtain local solutions to the Cauchy problem ����� on a manifoldM � we
reduce it to a Cauchy problem in a Euclidean space� For details about nonau�
tonomous di�erential equations in Rn with right�hand side discontinuous in
t� see e�g� ������
Choose local coordinates x � �x�� � � � � xn� in a neighborhood Oq� of the

point q�


� 
 Oq� � M � Ox� � Rn� � 
 q �� x�

��q�� � x��

In these coordinates� the �eld Vt reads

���Vt� �x� � eVt�x� � nX
i��

vi�t� x�
�

� xi
� x � Ox� � t � R� �����

and problem ����� takes the form

�x � eVt�x�� x��� � x�� x � Ox� � Rn� �����

Since the nonautonomous vector �eld Vt � VecM is locally bounded� the
components vi�t� x�� i � �� � � � � n� of its coordinate representation ����� are
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��� measurable and locally bounded w�r�t� t for any �xed x � Ox� �
��� smooth w�r�t� x for any �xed t � R�
��� di�erentiable in x with locally bounded partial derivatives
����� vi� x

�t� x�

���� � CI	K� t � I b R� x � K b Ox� � i � �� � � � � n�

By the classical Carath#eodory Theorem �see e�g� ����� the Cauchy prob�
lem ����� has a unique solution� i�e�� a vector�function x�t� x��� Lipschitzian
w�r�t� t and smooth w�r�t� x�� and such that


��� ODE ����� is satis�ed for almost all t�
��� initial condition holds
 x��� x�� � x��

Then the pull�back of this solution from Rn to M

q�t� q�� � ����x�t� x����

is a solution to problem ����� in M � The mapping q�t� q�� is Lipschitzian
w�r�t� t and smooth w�r�t� q�� it satis�es almost everywhere the ODE and the
initial condition in ������
For any q� � M � the solution q�t� q�� to the Cauchy problem ����� can

be continued to a maximal interval t � Jq� � R containing the origin and
depending on q��
We will assume that the solutions q�t� q�� are de�ned for all q� � M and

all t � R� i�e�� Jq� � R for any q� � M � Then the nonautonomous �eld Vt is
called complete� This holds� e�g�� when all the �elds Vt� t � R� vanish outside
of a common compactum in M �in this case we say that the nonautonomous
vector �eld Vt has a compact support��

����� De�nition of the Right Chronological Exponential

Equation ����� rewritten as a linear equation for Lipschitzian w�r�t� t families
of functionals on C��M �


�q�t� � q�t� 	 Vt� q��� � q�� �����

is satis�ed for the family of functionals

q�t� q�� 
 C
��M �� R� q� �M� t � R

constructed in the previous subsection� We prove later that this Cauchy prob�
lem has no other solutions �see Proposition ����� Thus the �ow de�ned as

P t 
 q� �� q�t� q�� �����

is a unique solution of the operator Cauchy problem
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�P t � P t 	 Vt� P � � Id� �����

�where Id is the identity operator� in the class of Lipschitzian �ows on M �
The �ow P t determined in ����� is called the right chronological exponential
of the �eld Vt and is denoted as

P t �
��
exp

Z t

�

V� d
�

Now we develop an asymptotic series for the chronological exponential� which
justi�es such a notation�

����� Formal Series Expansion

We rewrite di�erential equation in ����� as an integral one


q�t� � q�  

Z t

�

q�
 � 	 V� d
 ������

then substitute this expression for q�t� into the right�hand side

� q�  

Z t

�

�
q�  

Z ��

�

q�
�� 	 V�� d
�
�
	 V�� d
�

� q� 	
�
Id 

Z t

�

V� dt

�
 

ZZ
��������t

q�
�� 	 V�� 	 V�� d
� d
��

repeat this procedure iteratively� and obtain the decomposition


q�t� � q� 	

�B�Id Z t

�

V� d
  

ZZ
���t�

V�� 	 V�� d
� d
�  � � � 

Z

 
 

Z

�n�t�

V�n 	 
 
 
 	 V�� d
n � � � d
�

�CA  
Z

 
 

Z

�n���t�

q�
n��� 	 V�n�� 	 
 
 
 	 V�� d
n�� � � � d
�� ������

Here
�n�t� � f�
�� � � � � 
n� � Rn j � � 
n � 
 
 
 � 
� � tg

is the n�dimensional simplex� Purely formally passing in ������ to the limit
n��� we obtain a formal series for the solution q�t� to problem �����




��� Chronological Exponential ��

q� 	

�B�Id �X
n��

Z

 
 

Z

�n�t�

V�n 	 
 
 
 	 V�� d
n � � � d
�

�CA �

thus for the solution P t to problem �����


Id 
�X
n��

Z

 
 

Z

�n�t�

V�n 	 
 
 
 	 V�� d
n � � � d
�� ������

Exercise ����We obtained the previous series expansion under the condition
t 	 �� although the chronological exponential is de�ned for all values of t� Show
that the �ow

��
exp

R t
� V� d
 admits for t � � the series expansion

Id 
�X
n��

Z

 
 

Z

�n��t�

��V�n � 	 
 
 
 	 ��V�� � d
n � � � d
��

This series is similar to ������� so in the sequel we restrict ourselves by the
study of the case t 	 ��

����� Estimates and Convergence of the Series

Unfortunately� these series never converge on C��M � in the weak sense �if
Vt �� ��
 there always exists a smooth function on M � on which they diverge�
Although� one can show that series ������ gives an asymptotic expansion for

the chronological exponential P t �
��
exp

R t
� V� d
 � There holds the following

bound of the remainder term
 denote the m�th partial sum of series ������ as

Sm�t� � Id 
m��X
n��

Z

 
 

Z

�n�t�

V�n 	 
 
 
 	 V�� d
n � � � d
��

then for any a � C��M �� s � �� K bM����� ��
exp

Z t

�
V� d
 � Sm�t�

�
a

����
s	K

� CeC
R
t

� kV�ks�K� d� �
m�

�Z t

�

kV�ks�m��	K� d


�m
kaks�m	K� ������

� O�tm�� t� ��

where K� b M is some compactum containing K� We prove estimate ������
in the Appendix� It follows from estimate ������ that����� ��

exp

Z t

�

�V� d
 � S�m�t�

�
a

����
s	K

� O��m�� �� ��
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where S�m�t� is the m�th partial sum of series ������ for the �eld �Vt�
Thus we have an asymptotic series expansion


��
exp

Z t

�
V� d
 � Id 

�X
n��

Z

 
 

Z

�n�t�

V�n 	 
 
 
 	 V�� d
n � � � d
�� ������

In the sequel we will use terms of the zeroth� �rst� and second orders of
the series obtained


��
exp

Z t

�

V� d
 � Id 
Z t

�

V� d
  

ZZ
��������t

V�� 	 V�� d
� d
�  
 
 
 �

We prove that the asymptotic series converges to the chronological expo�
nential on any normed subspace L � C��M � where Vt is well�de�ned and
bounded


VtL � L� kVtk � sup fkVtak j a � L� kak � �g ��� ������

We apply operator series ������ to any a � L and bound terms of the series
obtained


a  
�X
n��

Z

 
 

Z

�n�t�

V�n 	 
 
 
 	 V�� a d
n � � � d
�� ������

We have �������
Z

 
 

Z

�n�t�

V�n 	 
 
 
 	 V�� a d
n � � � d
�

�������
�

Z

 
 

Z

���n�			����t

kV�nk 
 
 
 
 
 kV��k d
n � � � d
� 
 kak

by symmetry w�r�t� permutations of indices � 
 f�� � � � � ng � f�� � � � � ng

�

Z

 
 

Z

�����n��			�������t

kV�nk 
 
 
 
 
 kV��k d
n � � � d
� 
 kak

passing to the integral over cube

�
�

n�

Z t

�

� � �

Z t

�

kV�nk 
 
 
 
 
 kV��k d
n � � � d
� 
 kak

�
�

n�

�Z t

�

kV�k d

�n

 kak�
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So series ������ is majorized by the exponential series� thus the operator se�
ries ������ converges on L�
Series ������ can be di�erentiated termwise� thus it satis�es the same ODE

as the function P ta

�at � Vtat� a� � a�

Consequently�

P ta � a 
�X
n��

Z

 
 

Z

�n�t�

V�n 	 
 
 
 	 V�� a d
n � � � d
��

So in the case ������ the asymptotic series converges to the chronological
exponential and there holds the bound

kP tak � e
R
t

� kV�k d�kak� a � L�

Moreover� one can show that the bound and convergence hold not only for
locally bounded� but also for integrable on ��� t� vector �elds
Z t

�

kV�k d
 ���

Notice that conditions ������ are satis�ed for any �nite�dimensional Vt�
invariant subspace L � C��M �� In particular� this is the case when M � Rn�
L is the space of linear vector �elds� and Vt is a linear vector �eld on Rn�
IfM � Vt� and a are real analytic� then series ������ converges for su�ciently

small t� see the proof in �����

����� Left Chronological Exponential

Consider the inverse operator Qt � �P t�
��
to the right chronological expo�

nential P t �
��
exp

R t
�
V� d
 � We �nd an ODE for the �ow Qt by di�erentiation

of the identity
P t 	Qt � Id �

Leibniz rule yields
�P t 	Qt  P t 	 �Qt � ��

thus� in view of ODE ����� for the �ow P t�

P t 	 Vt 	Qt  P t 	 �Qt � ��

We multiply this equality by Qt from the left and obtain

Vt 	Qt  �Qt � ��

That is� the �ow Qt is a solution of the Cauchy problem
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d

d t
Qt � �Vt 	Qt� Q� � Id� ������

which is dual to the Cauchy problem ����� for P t� The �ow Qt is called the
left chronological exponential and is denoted as

Qt �

�
exp

Z t

�

��V� � d
�

We �nd an asymptotic expansion for the left chronological exponential
in the same way as for the right one� by successive substitutions into the
right�hand side


Qt � Id 

Z t

�

��V� � 	Q� d


� Id 

Z t

�

��V� � d
  
ZZ
���t�

��V�� � 	 ��V�� � 	Q�� d
� d
� � 
 
 


� Id 
m��X
n��

Z

 
 

Z

�n�t�

��V�� � 	 
 
 
 	 ��V�n � d
n � � � d
�

 

Z

 
 

Z

�m�t�

��V�� � 	 
 
 
 	 ��V�m � 	Q�m d
m � � � d
��

For the left chronological exponential holds an estimate of the remainder term
as ������ for the right one� and the series obtained is asymptotic



�
exp

Z t

�

��V� � d
 � Id 
�X
n��

Z

 
 

Z

�n�t�

��V�� � 	 
 
 
 	 ��V�n � d
n � � � d
��

Remark ���� ��� Notice that the reverse arrow in the left chronological expo�

nential

�
exp corresponds to the reverse order of the operators ��V�� � 	 
 
 
 	

��V�n �� 
n � � � �� 
��
��� The right and left chronological exponentials satisfy the corresponding

di�erential equations


d

d t

��
exp

Z t

�

V� d
 �
��
exp

Z t

�

V� d
 	 Vt�
d

d t


�
exp

Z t

�

��V� � d
 � �Vt 	 
�
exp

Z t

�

��V� � d
�

The directions of arrows correlate with the direction of appearance of opera�
tors Vt� �Vt in the right�hand side of these ODEs�
��� If the initial value is prescribed at a moment of time t� �� �� then the

lower limit of integrals in the chronological exponentials is t��
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��� There holds the following obvious rule for composition of �ows


��
exp

Z t�

t�

V� d
 	 ��
exp

Z t�

t�

V� d
 �
��
exp

Z t�

t�

V� d
�

Exercise ��	� Prove that

��
exp

Z t�

t�

V� d
 �

�
��
exp

Z t�

t�

V� d


���

�

�
exp

Z t�

t�

��V� � d
� ������

����� Uniqueness for Functional and Operator ODEs

We saw that equation ����� for Lipschitzian families of functionals has a so�

lution q�t� � q�	 ��
exp

R t
� V� d
 � We can prove now that this equation has no

other solutions�

Proposition ��
� Let Vt be a complete nonautonomous vector �eld on M �
Then Cauchy problem ����� has a unique solution in the class of Lipschitzian
families of functionals on C��M ��

Proof� Let a Lipschitzian family of functionals qt be a solution to prob�
lem ������ Then

d

d t

�
qt 	 �P t���

�
�

d

d t

�
qt 	Qt

�
� qt 	 Vt 	Qt � qt 	 Vt 	Qt � ��

thus qt 	Qt � const� But Q� � Id� consequently� qt 	Qt � q�� hence

qt � q� 	 P t � q� 	 ��
exp

Z t

�

V� d


is a unique solution of Cauchy problem ������ ut
Similarly� the both operator equations �P t � P t 	 Vt and �Qt � �Vt 	 Qt

have no other solutions in addition to the chronological exponentials�

����� Autonomous Vector Fields

For an autonomous vector �eld

Vt � V � VecM�

the �ow generated by a complete �eld is called the exponential and is denoted
as etV � The asymptotic series for the exponential takes the form

etV �
�X
n��

tn

n�
V n � Id tV  

t�

�
V 	 V  
 
 
 �
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i�e� it is the standard exponential series�
The exponential of an autonomous vector �eld satis�es the ODEs

d

d t
etV � etV 	 V � V 	 etV � etV

��
t��

� Id �

We apply the asymptotic series for exponential to �nd the Lie bracket of
autonomous vector �elds V�W � VecM � We compute the �rst nonconstant
term in the asymptotic expansion at t � � of the curve


q�t� � q 	 etV 	 etW 	 e�tV 	 e�tW

� q 	
�
Id tV  

t�

�
V �  
 
 


�
	
�
Id tW  

t�

�
W �  
 
 


�
	
�
Id�tV  t�

�
V �  
 
 


�
	
�
Id�tW  

t�

�
W �  
 
 


�
� q 	

�
Id t�V  W �  

t�

�
�V �  �V 	W  W ��  
 
 


�
	
�
Id�t�V  W �  

t�

�
�V �  �V 	W  W ��  
 
 


�
� q 	 �Id t��V 	W �W 	 V �  
 
 
 � �

So the Lie bracket of the vector �elds as operators �directional derivatives� in
C��M � is

�V�W � � V 	W �W 	 V�
This proves the formula in local coordinates
 if

V �
nX
i��

ai
�

� xi
� W �

nX
i��

bi
�

� xi
� ai� bi � C��M ��

then

�V�W � �
nX

i	j��

�
aj

� bi
� xj

� bj
� ai
� xj

�
�

� xi
�

dW

dx
V � d V

d x
W�

Similarly�

q 	 etV 	 esW 	 e�tV � q 	 �Id tV  
 
 
 � 	 �Id sW  
 
 
 � 	 �Id�tV  
 
 
 �
� q 	 �Id sW  ts�V�W �  
 
 
 ��

and

q 	 �V�W � � ��

�s�t

����
s�t��

q 	 etV 	 esW 	 e�tV �
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��� Action of Di�eomorphisms on Vector Fields

We have already found counterparts to points� di�eomorphisms� and vector
�elds among functionals and operators on C��M �� Now we consider action
of di�eomorphisms on vector �elds�
Take a tangent vector v � TqM and a di�eomorphism P � Di�M � The

tangent vector P�v � TP �q�M is the velocity vector of the image of a curve
starting from q with the velocity vector v� We claim that

P�v � v 	 P� v � TqM� P � Di�M� ������

as functionals on C��M �� Take a curve

q�t� �M� q��� � q�
d

d t

����
t��

q�t� � v�

then

P�v a �
d

d t

����
t��

a�P �q�t��� �

�
d

d t

����
t��

q�t�

�
	 Pa

� v 	 Pa� a � C��M ��

Now we �nd expression for P�V � V � VecM � as a derivation of C��M �� We
have

q 	 P 	 P�V � P �q� 	 P�V � �P�V � �P �q�� � P��V �q�� � V �q� 	 P
� q 	 V 	 P� q �M�

thus
P 	 P�V � V 	 P�

i�e��
P�V � P�� 	 V 	 P� P � Di�M� V � VecM�

So di�eomorphisms act on vector �elds as similarities� In particular� di�eo�
morphisms preserve compositions


P��V 	W � � P��	 �V 	W �	P � �P�� 	V 	P �	 �P�� 	W 	P � � P�V 	P�W�

thus Lie brackets of vector �elds


P��V�W � � P��V 	W �W 	 V � � P�V 	 P�W � P�W 	 P�V � �P�V� P�W ��
If B 
 C��M � � C��M � is an automorphism� then the standard alge�

braic notation for the corresponding similarity is AdB


�AdB�V
def
� B 	 V 	B���

That is�
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P� � AdP��� P � Di�M�

Now we �nd an in�nitesimal version of the operator Ad� Let P t be a �ow
on M �

P � � Id�
d

d t

����
t��

P t � V � VecM�

Then
d

d t

����
t��

�
P t
���

� �V�
so

d

d t

����
t��

�AdP t�W �
d

d t

����
t��

�P t 	W 	 �P t���� � V 	W �W 	 V
� �V�W �� W � VecM�

Denote

adV � ad

�
d

d t

����
t��

P t

�
def
�

d

d t

����
t��

AdP t�

then
�adV �W � �V�W �� W � VecM�

Di�erentiation of the equality

AdP t �X�Y � � �AdP tX�AdP t Y � X�Y � VecM�

at t � � gives Jacobi identity for Lie bracket of vector �elds


�adV ��X�Y � � ��adV �X�Y �  �X� �adV �Y ��

which may also be written as

�V� �X�Y �� � ��V�X�� Y �  �X� �V� Y ��� V�X� Y � VecM�

or� in a symmetric way

�X� �Y� Z��  �Y� �Z�X��  �Z� �X�Y �� � �� X� Y� Z � VecM� ������

The set VecM is a vector space with an additional operation ! Lie
bracket� which has the properties


��� bilinearity


�
X  �Y� Z� � 
�X�Z�  ��Y� Z��

�X�
Y  �Z� � 
�X�Y �  ��X�Z�� X� Y� Z � VecM� 
� � � R�
��� skew�symmetry


�X�Y � � ��Y�X�� X� Y � VecM�
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��� Jacobi identity �������

In other words� the set VecM of all smooth vector �elds on a smooth manifold
M forms a Lie algebra�

Consider the �ow P t �
��
exp

Z t

�
V� d
 of a nonautonomous vector �eld Vt�

We �nd an ODE for the family of operators AdP t � �P t���
� on the Lie algebra

VecM �

d

d t
�AdP t�X �

d

d t

�
P t 	X 	 �P t���

�
� P t 	 Vt 	X 	 �P t��� � P t 	X 	 Vt 	 �P t���

� �AdP t��Vt� X� � �AdP
t� adVtX� X � VecM�

Thus the family of operators AdP t satis�es the ODE

d

d t
AdP t � �AdP t� 	 adVt ������

with the initial condition

AdP � � Id � ������

So the family AdP t is an invertible solution for the Cauchy problem

�At � At 	 adVt� A� � Id

for operators At 
 VecM � VecM � We can apply the same argument as for
the analogous problem ����� for �ows to derive the asymptotic expansion

AdP t � Id 
Z t

�

adV� d
  
 
 


 

Z

 
 

Z

�n�t�

adV�n 	 
 
 
 	 adV�� d
n � � � d
�  
 
 
 ������

then prove uniqueness of the solution� and justify the following notation


��
exp

Z t

�

adV� d

def
� AdP t � Ad

�
��
exp

Z t

�

V� d


�
�

Similar identities for the left chronological exponential are


�
exp

Z t

�

ad��V� � d
 def
� Ad

�

�
exp

Z t

�

��V� � d

�

� Id 
�X
n��

Z

 
 

Z

�n�t�

�� ad V��� 	 
 
 
 	 �� adV�n � d
n � � � d
��
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For the asymptotic series ������� there holds an estimate of the remainder
term similar to estimate ������ for the �ow P t� Denote the partial sum

Tm � Id 
m��X
n��

Z

 
 

Z

�n�t�

adV�n 	 
 
 
 	 adV�� d
n � � � d
��

then for any X � VecM � s � �� K bM�����Ad ��
exp

Z t

�
V� d
 � Tm

�
X

����
s	K

� C�e
C�

R
t

� kV�ks���K� d� �
m�

�Z t

�
kV�ks�m	K� d


�m
kXks�m	K�

������

� O�tm�� t� ��

where K� b M is some compactum containing K�
For autonomous vector �elds� we denote

etadV
def
� Ad etV �

thus the family of operators et adV 
 VecM � VecM is the unique solution
to the problem

�At � At 	 adV� A� � Id�

which admits the asymptotic expansion

et adV � Id t adV  t�

�
ad� V  
 
 
 �

Exercise ����� Let P � Di�M � and let Vt be a nonautonomous vector �eld
on M � Prove that

P	 ��
exp

Z t

�
V� d
 	 P�� �

��
exp

Z t

�
AdP V� d
� ������

��� Commutation of Flows

Let Vt � VecM be a nonautonomous vector �eld and P t �
��
exp

R t
� V� d
 the

corresponding �ow� We are interested in the question
 under what conditions
the �ow P t preserves a vector �eld W � VecM 


P t�W �W �t�
or� which is equivalent�

�P t���
� W � W �t�
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Proposition �����

P t
�W �W �t � �Vt�W � � � �t�

Proof� We have

d

d t
�Pt�

��
� W �

d

d t
AdP tW �

�
d

d t

��
exp

Z t

�

adV� d


�
W

�

�
��
exp

Z t

�

adV� d
 	 adV�
�
W �

�
��
exp

Z t

�

adV� d


�
�Vt�W �

� �P t���
� �Vt�W ��

thus �P t���� W � W if and only if �Vt�W � � �� ut
In general� �ows do not commute� neither for nonautonomous vector �elds

Vt� Wt


��
exp

Z t�

�

V� d
 	 ��
exp

Z t�

�

W� d
 �� ��
exp

Z t�

�

W� d
 	 ��
exp

Z t�

�

V� d
�

nor for autonomous vector �elds V � W 


et�V 	 et�W �� et�W 	 et�V �

In the autonomous case� commutativity of �ows is equivalent to commutativity
of vector �elds


et�V 	 et�W � et�W 	 et�V � t�� t� � R� � �V�W � � ��

We already showed that commutativity of vector �elds is necessary for com�
mutativity of �ows� Let us prove that it is su�cient� Indeed��

Ad et�V
�
W � et� adVW �W�

Taking into account equality ������� we obtain

et�V 	 et�W 	 e�t�V � et��Ad et�V �W � et�W �

��
 Variations Formula

Consider an ODE of the form

�q � Vt�q�  Wt�q�� ������

We think of Vt as an initial vector �eld and Wt as its perturbation� Our aim
is to �nd a formula for the �ow Qt of the new �eld Vt Wt as a perturbation
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of the �ow P t �
��
exp

R t
� V� d
 of the initial �eld Vt� In other words� we wish

to have a decomposition of the form

Qt �
��
exp

Z t

�

�V�  W� � d
 � Ct 	 P t�

We proceed as in the method of variation of parameters� we substitute the
previous expression to ODE ������


d

d t
Qt � Qt 	 �Vt  Wt�

� �Ct 	 P t  Ct 	 P t 	 Vt
� �Ct 	 P t  Qt 	 Vt�

cancel the common term Qt 	 Vt

Qt 	Wt � �Ct 	 P t�

and write down the ODE for the unknown �ow Ct


�Ct � Qt 	Wt 	
�
P t
���

� Ct 	 P t 	Wt 	
�
P t
���

� Ct 	
�
AdP t

�
Wt

� Ct 	
�
��
exp

Z t

�

adV� d


�
Wt�

C� � Id �

This operator Cauchy problem is of the form ������ thus it has a unique solu�
tion


Ct �
��
exp

Z t

�

�
��
exp

Z �

�

adV� d�

�
W� d
�

Hence we obtain the required decomposition of the perturbed �ow


��
exp

Z t

�

�V�  W� � d
 �
��
exp

Z t

�

�
��
exp

Z �

�

adV� d�

�
W� d
 	 ��

exp

Z t

�

V� d
�

������

This equality is called the variations formula� It can be written as follows


��
exp

Z t

�

�V�  W� � d
 �
��
exp

Z t

�

�AdP � �W� d
 	 P t�

So the perturbed �ow is a composition of the initial �ow P t with the �ow of
the perturbation Wt twisted by P t�
Now we obtain another form of the variations formula� with the �ow P t

to the left of the twisted �ow� We have
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��
exp

Z t

�

�V�  W� � d
 �
��
exp

Z t

�

�AdP � �W� d
 	 P t

� P t 	 �P t
��� 	 ��

exp

Z t

�

�AdP � �W� d
 	 P t

� P t	 ��
exp

Z t

�

�
Ad
�
P t
��� 	AdP �

�
W� d


� P t	 ��
exp

Z t

�

�
Ad
��

P t
��� 	P �

��
W� d
�

Since �
P t
��� 	 P � �

��
exp

Z �

t

V� d��

we obtain

��
exp

Z t

�

�V�  W� � d
 � P t	 ��
exp

Z t

�

�
��
exp

Z �

t

adV� d�

�
W� d


�
��
exp

Z t

�

V� d
	 ��
exp

Z t

�

�
��
exp

Z �

t

adV� d�

�
W� d
�

������

For autonomous vector �elds V�W � VecM � the variations formulas �������
������ take the form


et�V�W � �
��
exp

Z t

�

e� ad VW d
 	 etV � etV 	 ��
exp

Z t

�

e���t� adVW d
� ������

In particular� for t � � we have

eV�W �
��
exp

Z �

�

e� adVW d
 	 eV �

��� Derivative of Flow with Respect to Parameter

Let Vt�s� be a nonautonomous vector �eld depending smoothly on a real
parameter s� We study dependence of the �ow of Vt�s� on the parameter s�
We write

��
exp

Z t

�

V� �s  �� d
 �
��
exp

Z t

�

�V� �s�  �V� �s� ��� d
 ������

with the perturbation �V� �s� �� � V� �s  �� � V� �s�� By the variations for�
mula ������� the previous �ow is equal to

��
exp

Z t

�

�
��
exp

Z �

�
adV��s� d�

�
�V� �s� �� d
 	

��
exp

Z t

�
V� �s� d
�
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Now we expand in �


�V� �s� �� � �
�

� s
V� �s�  O����� �� ��

W� �s� ��
def
�

�
��
exp

Z �

�

adV��s� d�

�
�V� �s� ��

� �

�
��
exp

Z �

�

adV��s� d�

�
�

� s
V� �s�  O����� �� ��

thus

��
exp

Z t

�

W� �s� �� d
 � Id 

Z t

�

W� �s� �� d
  O����

� Id �

Z t

�

�
��
exp

Z �

�
adV��s� d�

�
�

� s
V� �s� d
  O�����

Finally�

��
exp

Z t

�

V� �s  �� d
 �
��
exp

Z t

�

Ws	� ��� d
 	 ��
exp

Z t

�

V� �s� d


�
��
exp

Z t

�

V� �s� d


 �

Z t

�

�
��
exp

Z �

�

adV��s� d�

�
�

� s
V� �s� d
 	 ��

exp

Z t

�

V� �s� d
  O�����

that is�

�

� s

��
exp

Z t

�
V� �s� d


�

Z t

�

�
��
exp

Z �

�

adV��s� d�

�
�

� s
V� �s� d
 	 ��

exp

Z t

�

V� �s� d
� ������

Similarly� we obtain from the variations formula ������ the equality

�

� s

��
exp

Z t

�

V� �s� d


�
��
exp

Z t

�
V� �s� d
 	

Z t

�

�
��
exp

Z �

t

adV��s� d�

�
�

� s
V� �s� d
� ������

For an autonomous vector �eld depending on a parameter V �s�� formula
������ takes the form

�

� s
etV �s� �

Z t

�

e� adV �s� � V

� s
d
 	 etV �s��
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and at t � �


�

� s
eV �s� �

Z �

�

e� adV �s� � V

� s
d
 	 eV �s�� ������

Proposition ����� Assume that�Z t

�

V� d
� Vt

�
� � �t� ������

Then
��
exp

Z t

�

V� d
 � e
R
t

�
V� d� �t�

That is� we state that under the commutativity assumption ������� the chrono�

logical exponential
��
exp

R t
� V� d
 coincides with the �ow Qt � e

R
t

� V� d� de�ned
as follows


Qt � Qt
��

� Qt
s

� s
�

Z t

�

V� d
 	Qt
s� Qt

� � Id �

Proof� We show that the exponential in the right�hand side satis�es the same
ODE as the chronological exponential in the left�hand side� By ������� we have

d

d t
e
R
t

� V� d� �

Z �

�

e� ad
R
t

� V� d� Vt d
 	 e
R
t

� V� d� �

In view of equality �������

e� ad
R
t

� V� d� Vt � Vt�

thus

d

d t
e
R
t

� V� d� � Vt 	 e
R
t

� V� d� �

By equality ������� we can permute operators in the right�hand side


d

d t
e
R
t

� V� d� � e
R
t

� V� d� 	 Vt�
Notice the initial condition

e
R
t

� V� d�
���
t��

� Id �

Now the statement follows since the Cauchy problem for �ows

�At � At 	 Vt� A� � Id

has a unique solution


At � e
R
t

� V� d� �
��
exp

Z t

�

V� d
�

ut





�

Linear Systems

In this chapter we consider the simplest class of control systems ! linear
systems

�x � Ax c  
mX
i��

uibi� x � Rn� u � �u�� � � � � um� � Rm� �����

where A is a constant real n�n matrix and c� b�� � � � � bm are constant vectors
in Rn�

��� Cauchy�s Formula for Linear Systems

Let u�t� � �u��t�� � � � � um�t�� be locally integrable functions� Then the solu�
tion of ����� corresponding to this control and satisfying the initial condition

x��� x�� � x�

is given by Cauchy�s formula


x�t� x�� � etA

�
x�  

Z t

�

e��A
�

mX
i��

ui�
 �bi  c d


��
� t � R�

Here we use the standard notation for the matrix exponential


etA � Id tA  
t�

��
A�  
 
 
 tn

n�
An  
 
 
 �

Cauchy�s formula is veri�ed by di�erentiation� In view of uniqueness� it gives
the solution to the Cauchy problem�
Linear system ����� is a particular case of a control�a�ne system


�x � x 	
�
f�  

mX
i��

uifi

�
� �����
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in order to obtain ����� from ������ one should just take

f��x� � Ax c� fi�x� � bi� i � �� � � � �m� �����

Let us show that Cauchy�s formula is actually a special case of the general
variations formula�

Proposition ���� Cauchy�s formula specializes the variations formula for lin�
ear systems�

Proof� We restrict ourselves with the case c � ��
The variations formula for system ����� takes the form

��
exp

Z t

�

�
f�  

mX
i��

ui�
 �fi

�
d


�
��
exp

Z t

�

��
��
exp

Z �

�
ad f� d�

�
	

mX
i��

ui�
 �fi

�
d
	 ��

exp

Z t

�
f� d


�
��
exp

Z t

�

�
mX
i��

ui�
 �e
� ad f�fi

�
d
 	 etf� � �����

We assume that c � �� i�e�� f��x� � Ax� Then

x 	 etf� � etAx� �����

Further� since �ad f��fi � �f�� fi� � �Ax� b� � �Ab then

e� ad f�fi � fi  
 �ad f��fi  

�

��
�ad f��

�fi  
 
 
 
n

n�
�ad f��

nfi  
 
 


� bi � 
Abi  

�

��
��A��bi  
 
 
 
n

n�
��A�nbi  
 
 


� e��Abi�

In order to compute the left �ow in ������ recall that the curve

x�	 ��
exp

Z t

�

�
mX
i��

ui�
 �e
� ad f�fi

�
d
 � x�	 ��

exp

Z t

�

�
mX
i��

ui�
 �e
��Abi

�
d


�����

is the solution to the Cauchy problem

�x�t� �
mX
i��

ui�t�e
�tAbi� x��� � x��

thus ����� is equal to
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x�t� � x�  

Z t

�

�
e��A

mX
i��

ui�
 �bi

�
d
�

Taking into account ������ we obtain Cauchy�s formula


x�t� � x�	 ��
exp

Z t

�

�
f�  

mX
i��

ui�
 �fi

�
d


�

�
x�  

Z t

�

�
e��A

mX
i��

ui�
 �bi

�
d


�
	 etf�

� etA

�
x�  

Z t

�

�
e��A

mX
i��

ui�
 �bi

�
d


�
�

ut
Notice that in the general case �c �� �� Cauchy�s formula can be written

as follows


x�t� x�� � etAx�  etA
Z t

�

e��A
mX
i��

ui�
 �bi d
  etA
Z t

�

e��Ac d


� etAx�  etA
Z t

�

e��A
mX
i��

ui�
 �bi d
  
etA � Id

A
c� �����

where

etA � Id
A

c � tc 
t�

��
Ac  

t�

��
A�c  
 
 
 tn

n�
An��c 
 
 
 �

��� Controllability of Linear Systems

Cauchy�s formula ����� yields that the mapping

u �� x�t� u� x���

which sends a locally integrable control u � u� 
 � to the endpoint of the
corresponding trajectory� is a�ne� Thus the attainable set Ax��t� of linear
system ����� for a �xed time t 	 � is an a�ne subspace in Rn�

De�nition ���� A control system on a state space M is called completely
controllable for time t 	 � if

Ax��t� �M �x� �M�



�	 � Linear Systems

This de�nition means that for any pair of points x�� x� � M exists an
admissible control u� 
 � such that the corresponding solution x� 
 � u� x�� of
the control system steers x� to x� in t units of time


x��� u� x�� � x�� x�t� u� x�� � x��

The study of complete controllability of linear systems is facilitated by the
following observation� The a�ne mapping

u �� etAx�  
etA � Id

A
c etA

Z t

�

e��A
mX
i��

ui�
 �bi d


is surjective if and only if its linear part

u �� etA
Z t

�

e��A
mX
i��

ui�
 �bi d
 �����

is onto� Moreover� ����� is surjective i� the following mapping is


u ��
Z t

�

e��A
mX
i��

ui�
 �bi d
� �����

Theorem ���� The linear system ����� is completely controllable for a time
t 	 � if and only if

spanfAjbi j j � �� � � � � n� �� i � �� � � � �mg � Rn� ������

Proof� Necessity� Assume� by contradiction� that condition ������ is violated�
Then there exists a covector p � Rn�� p �� �� such that

pAjbi � �� j � �� � � � � n� �� i � �� � � � �m� ������

By the Cayley�Hamilton theorem�

An �
n��X
j��


jA
j

for some real numbers 
�� � � � � 
n��� thus

Ak �
n��X
j��

�kjA
j

for any k � N and some �kj � R� Now we obtain from ������


pAkbi �
n��X
j��

�kj pA
jbi � �� k � �� �� � � � � i � �� � � � �m�
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That is why
pe��Abi � �� i � �� � � � �m�

and �nally

p

Z t

�

e��A
mX
i��

ui�
 �bi d
 �

Z t

�

mX
i��

ui�
 �pe
��Abi d
 � ��

i�e�� mapping ����� is not surjective� The contradiction proves necessity�

Su�ciency� By contradiction� suppose that mapping ����� is not surjective�
Then there exists a covector p � Rn�� p �� �� such that

p

Z t

�

mX
i��

ui�
 �e
��Abi d
 � � �u� 
 � � �u�� 
 �� � � � � um� 
 ��� ������

Choose a control of the form


u�
 � � ��� � � � � �� vs�
 �� �� � � � � ���

where the only nonzero i�th component is

vs�
 � �

�
�� � � 
 � s�
�� 
 	 s�

Then equality ������ gives

p

Z s

�

e��Abi d
 � �� s � R� i � �� � � � �m�

thus
pe�sAbi � �� s � R� i � �� � � � �m�

We di�erentiate this equality repeatedly at s � � and obtain

pAkbi � �� k � �� �� � � � � i � �� � � � �m�

a contradiction with ������� Su�ciency follows� ut
So if a linear system is completely controllable for a time t 	 �� then it

is completely controllable for any other positive time as well� In this case the
linear system is called controllable�





�

State Linearizability of Nonlinear Systems

The aim of this chapter is to characterize nonlinear systems

�q � f��q�  
mX
i��

uifi�q�� u � �u�� � � � � um� � Rm� q �M �����

that are equivalent� locally or globally� to controllable linear systems� That is�
we seek conditions on vector �elds f�� f�� � � � � fm that guarantee existence of
a di�eomorphism �global � 
 M � Rn or local � 
 Oq� � M � O� � Rn�
which transforms nonlinear system ����� into a controllable linear one ������

��� Local Linearizability

We start with the local problem� A natural language for conditions of local
linearizability is provided by Lie brackets� which are invariant under di�eo�
morphisms


���V�W � � ���V� ��W �� V�W � VecM�

The controllability condition ������ can easily be rewritten in terms of Lie
brackets
 since

��A�jbi � �ad f��jfi � �f�� �� � � �f�� 	z 

j times

� fi� � � � ��

for vector �elds ������ then the controllability test for linear systems ������
reads

spanfx� 	 �ad f��jfi j j � �� � � � � n� �� i � �� � � � �mg � Tx�R
n�

Further� one can see that the following equality is satis�ed for linear vector
�elds �����
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��adf��
j�fi� � �ad f��

j�fi� � � ���A�j�bi� � ��A�j�bi� � � ��
� � j�� j�� � � i�� i� � m�

It turns out that the two conditions found above give a precise local char�
acterization of controllable linear systems�

Theorem ���� Let M be a smooth n�dimensional manifold� and let f�� f��
� � � � fm � VecM � There exists a di
eomorphism

� 
 Oq� � O�

of a neighborhood Oq� � M of a point q� �M to a neighborhood O� � Rn of
the origin � � Rn such that

���f���x� � Ax c� x � O��

���fi��x� � bi� x � O�� i � �� � � � �m�

for some n�n matrix A and c� b�� � � � � bm � Rn that satisfy the controllability
condition ������ if and only if the following conditions hold�

spanfq� 	 �ad f��jfi j j � �� � � � � n� �� i � �� � � � �mg � Tq�M� �����

q 	 ��ad f��j�fi� � �ad f��j�fi� � � ��
q � Oq� � � � j�� j� � n� � � i�� i� � m� �����

Remark ���� In other words� the di�eomorphism � from the theorem trans�
forms a nonlinear system ����� to a linear one ������

Before proving the theorem� we consider the following proposition� which
we will need later�

Lemma ���� Let M be a smooth n�dimensional manifold� and let Y�� � � � �
Yk � VecM � There exists a di
eomorphism

� 
 O� � Oq�

of a neighborhood O� � Rn to a neighborhood Oq� �M � q� �M � such that

��

�
�

� xi

�
� Yi� i � �� � � � � k�

if and only if the vector �elds Y�� � � � � Yk commute�

�Yi� Yj� � �� i� j � �� � � � � k�

and are linearly independent�

dimspan�q� 	 Y�� � � � � q� 	 Yk� � k�
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Proof� Necessity is obvious since Lie bracket and linear independence are in�
variant with respect to di�eomorphisms�

Su�ciency� Choose Yk��� � � � � Yn � VecM that complete Y�� � � � � Yk to a
basis


span�q 	 Y�� � � � � q 	 Yn� � TqM� q � Oq� �

The mapping
��s�� � � � � sn� � q� 	 esnYn 	 
 
 
 	 es�Y�

is de�ned on a su�ciently small neighborhood of the origin in Rn� We have

��

�
�

� si

����
s��

�
def
�

�

� si

����
s��

��s� �
�

� �

����
���

q� 	 e�Yi � q� 	 Yi�

Hence ��js�� is surjective and � is a di�eomorphism of a neighborhood of
� in Rn and a neighborhood of q� in M � according to the implicit function
theorem�
Now we prove that � recti�es the vector �elds Y�� � � � � Yk� First of all�

notice that since these vector �elds commute� then their �ows also commute�
thus

eskYk 	 
 
 
 	 es�Y� � e
Pk

i�� siYi

and
��s�� � � � � sn� � q� 	 esnYn 	 
 
 
 	 esk��Yk�� 	 e

P
k
i�� siYi �

Then for i � �� � � � � k

��

�
�

� si

�����
��s�

�
�

� �

����
���

��s�� � � � � si  �� � � � � sn�

�
�

� �

����
���

q� 	 esnYn 	 
 
 
 	 esk��Yk�� 	 e
Pk

j�� sjYj 	 e�Yi

� q� 	 esnYn 	 
 
 
 	 esk��Yk�� 	 e
Pk

j�� sjYj 	 �

� �

����
���

e�Yi

� ��s� 	 Yi�

ut
Now we can prove Theorem ��� on local equivalence of nonlinear systems

with linear ones�

Proof� Necessity is obvious since Lie brackets are invariant with respect to
di�eomorphisms� and for controllable linear systems conditions ������ �����
hold�

Su�ciency� Select a basis of the space Tq�M among vectors of the form
q� 	 �ad f��jfi
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Y� � �ad f��
j�fi� � 
 � �� � � � � n� � � j� � n� �� � � i� � m�

span�q� 	 Y�� � � � � q� 	 Yn� � Tq�M�

By Lemma ���� there exists a rectifying di�eomorphism


� 
 Oq� � O�� ��Y� �
�

� x�
� 
 � �� � � � � n�

We show that � is the required di�eomorphism�

��� First we check that the vector �elds ��fi� i � �� � � � �m� are constant� That
is� we show that in the decomposition

��fi �
nX

���

�i��x�
�

� x�
� i � �� � � � �m�

the functions �i��x� are constant� We have

�
�

� x�
� ��fi� �

nX
���

� �i�
� xj

�

� x�
� �����

on the other hand

�
�

� x�
� ��fi� � ���Y�� ��fi� � ���Y�� fi� � ����ad f��j�fi� � fi� � � �����

by hypothesis ������ Now we compare ����� and ����� and obtain

� �i�
� xj

�

� x�
� � 
 �i� � const� i � �� � � �m� 
 � �� � � � � n�

i�e�� ��fi� i � �� � � � �m� are constant vector �elds bi� i � �� � � � �m�

��� Now we show that the vector �eld ��f� is linear� We prove that in the
decomposition

��f� �
nX
i��

�i�x�
�

� xi

all functions �i�x�� i � �� � � � � n� are linear� Indeed�

nX
���

���i
�x��x�

�

� xi
� �

�

� x�
� �

�

� x�
� ��f���

� ���Y�� ���Y�� ��f��� � ���Y�� �Y�� f���

� ����adf��j�fi� � ��adf��
j�fi� � f���

� �����ad f��j�fi� � �f�� �ad f��j�fi� ��
� �����ad f��j�fi� � �ad f��j���fi� �

� �� 
� � � �� � � � � n�
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by hypothesis ������ Thus

���i
�x��x�

�

� xi
� �� i� 
� � � �� � � � � n�

i�e�� ��f� is a linear vector �eld Ax c�
For the linear system �x � Ax c 

Pm
i�� uibi� hypothesis ����� implies the

controllability condition ������� ut

��� Global Linearizability

Now we prove the following statement on global equivalence�

Theorem ���� Let M be a smooth connected n�dimensional manifold� and let
f�� f�� � � � � fm � VecM � There exists a di
eomorphism

� 
 M �Tk�Rn�k

of M to the product of a k�dimensional torus Tk with Rn�k for some k � n
such that

���f���x� � Ax c� x �Tk�Rn�k�
���fi��x� � bi� x �Tk�Rn�k� i � �� � � � �m�

for some n� n matrix A with zero �rst k rows�

Aei � �� i � �� � � � � k� �����

and c� b�� � � � � bm � Rn that satisfy the controllability condition ������ if and
only if the following conditions hold�

�ad f��
jfi� j � �� �� � � � � n� �� i � �� � � � �m�

are complete vector �elds� �����

spanfq 	 �adf��jfi j j � �� � � � � n� �� i � �� � � � �mg � TqM� �����

q 	 ��adf��j�fi� � �ad f��j�fi� � � ��
q � M� � � j�� j� � n� � � i�� i� � m� �����

Remark ���� ��� If M is additionally supposed simply connected� then it is
di�eomorphic to Rn� i�e�� k � ��
��� If� on the contrary�M is compact� i�e�� di�eomorphic toTn and m � n�

then there are no globally linearizable controllable systems onM � Indeed� then
A � �� and the controllability condition ������ is violated�
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Proof� Su�ciency� Fix a point q� �M and �nd a basis in Tq�M of vectors of
the form

Y� � �ad f��
j�fi� � 
 � �� � � � � n�

span�q� 	 Y�� � � � � q� 	 Yn� � Tq�M�

��� First we show that the vector �elds Y�� � � � � Yn are linearly independent
everywhere in M � The set

O � fq �M j span�q 	 Y�� � � � � q 	 Yn� � TqMg
is obviously open� We show that it is closed� In this set we have a decompo�
sition

q 	 �ad f��jfi � q 	
nX

���

aij�Y�� q � O� j � �� � � � � n� �� i � �� � � � �m�

������

for some functions aij� � C��O�� We prove that actually all aij� are constant�
We have

� � �Y��
nX

���

aij� Y��

by Leibniz rule �X� aY � � �Xa�Y  a�X�Y �

�
nX

���

aij� �Y�� Y��  
nX

���

�Y�a
ij
� �Y�

�
nX

���

�Y�a
ij
� �Y�� � � �� � � � � n� j � �� � � � � n� �� i � �� � � � �m�

thus

Y�a
ij
� � � 
 aij�

��
O
� const�


 � �� � � � � n� j � �� � � � � n� �� i � �� � � � �m�

That is why equality ������ holds in the closure O� Thus the vector �elds
Y�� � � � � Yn are linearly independent in O �if this is not the case� then the whole
family �ad f��

jfi� j � �� � � � � n� �� i � �� � � � �m� is not linearly independent
in O�� Hence the set O is closed� Since it is simultaneously open and M is
connected�

O �M�

i�e�� the vector �elds Y�� � � � � Yn are linearly independent in M �
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��� We de�ne the �inverse
 � of the required di�eomorphism as follows


� �x�� � � � � xn� � q� 	 ex�Y� 	 
 
 
 	 exnYn

since the vector �elds Y� commute

� q� 	 e
Pn

��� x�Y�� x � �x�� � � � � xn� � Rn�

��� We show that the �obviously smooth� mapping � 
 Rn � M is regular�
i�e�� its di�erential is surjective� Indeed�

� �

� x�
�x� �

d

d �

����
���

� �x�� � � � � x�  �� � � � � xn�

�
d

d �

����
���

q� 	 e
P

n
��� x�Y���Y�

� q� 	 e
Pn

��� x�Y� 	 Y�
� � �x� 	 Y�� 
 � �� � � � � n�

thus
��x�Rn� � T��x�M�

The mapping � is regular� thus a local di�eomorphism� In particular� � �Rn�
is open�

��� We prove that � �Rn� is closed� Take any point q � � �Rn�� Since the vector
�elds Y�� � � � � Yn are linearly independent� the image of the mapping

�y�� � � � � yn� �� q 	 e
Pn

��� y�Y�� y � �y�� � � � � yn� � Rn�

contains a neighborhood of the point q� Thus there exists y � Rn such that

q 	 e
P

n
��� y�Y� � � �Rn��

i�e��
q 	 e

Pn
��� y�Y� � q� 	 e

Pn
��� x�Y�

for some x � �x�� � � � � xn� � Rn� Then

q � q� 	 e
Pn

��� x�Y� 	 e�
Pn

��� y�Y� � q� 	 e
Pn

����x��y��Y�

� � �x� y��

In other words� q � � �Rn��
That is why the set � �Rn� is closed� Since it is open and M is connected�

� �Rn� �M�
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��� It is easy to see that the preimage

����q�� � fx � Rn j � �x� � q�g
is a subgroup of the Abelian group Rn� Indeed� let

� �x� � q� 	 e
P

n
��� x�Y� � � �y� � q� 	 e

P
n
��� y�Y� � q��

then

� �x y� � q� 	 e
P

n
����x��y��Y� � q� 	 e

P
n
��� x�Y� 	 e

P
n
��� y�Y� � q��

Analogously� if
� �x� � q� 	 e

P
n
��� x�Y� � q��

then
� ��x� � q� 	 e�

P
n
��� x�Y� � q��

Finally�
� ��� � q��

��� Moreover� G� � ����q�� is a discrete subgroup of R
n� i�e�� there are no

nonzero elements of ����q�� in some neighborhood of the origin inR
n� since �

is a local di�eomorphism�

��� The mapping � is well�de�ned on the quotient Rn�G�� Indeed� let y � G��
Then

� �x y� � q� 	 e
Pn

����x��y��Y� � q� 	 e
Pn

��� y�Y� 	 e
Pn

��� x�Y�

� q� 	 e
Pn

��� x�Y� � � �x��

So the mapping

� 
 Rn�G��M ������

is well�de�ned�

��� The mapping ������ is one�to�one
 if

� �x� � � �y�� x� y � Rn�
then

q� 	 e
Pn

��� x�Y� � q� 	 e
Pn

��� y�Y� �

thus
q� 	 e

Pn
����x��y��Y� � q��

i�e�� x� y � G��
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��� That is why mapping ������ is a di�eomorphism� By Lemma ��� �see
below�� the discrete subgroup G� of R

n is a lattice


G� �

�
kX
i��

niei j ni �Z
�
�

thus the quotient is a cylinder


Rn�G� � T
k�Rn�k�

Hence we constructed a di�eomorphism

� � ��� 
 M �Tk�Rn�k�
Equalities ����� and ����� follow exactly as in Theorem ����
The vector �eld ��f� � Ax c is well�de�ned on the quotient Tk�Rn�k�

that is why equalities ����� hold� The su�ciency follows�

Necessity� For a linear system on a cylinder Tk � Rn�k� conditions �����
and ����� obviously hold� If a linear system is controllable on the cylinder�
then it is also controllable on Rn� thus the controllability condition ����� is
also satis�ed� ut
Now we prove the following general statement used in the preceding argu�

ment�

Lemma ���� Let � be a discrete subgroup in Rn� Then it is a lattice� i�e��
there exist linearly independent vectors e�� � � � � ek � Rn such that

� �

�
kX
i��

niei j ni �Z
�
�

Proof� We prove by induction on dimension n of the ambient group Rn�

��� Let n � �� Since the subgroup � � R is discrete� it contains an element
e� �� � closest to the origin � � R� By the group property� all multiples
�e� � e� � 
 
 
 � e� � �ne�� n � �� �� �� � � � � are also in � � We prove that �
contains no other elements�
By contradiction� assume that there is an element x � � such that ne� �

x � �n  ��e�� n � Z� Then the element y � x � ne� � � is in the interval
��� e�� � R� So y �� � is closer to the origin than e�� a contradiction� Thus
� �Ze� � fne� j n �Zg� q�e�d�
��� We prove the inductive step
 let the statement of the lemma be proved for
some n� � � N� we prove it for n�
Choose an element e� � � � e� �� �� closest to the origin � � Rn� Denote

by l the line Re�� and by �� the lattice Ze� � � � We suppose that � �� ��

�otherwise everything is proved��
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e�

�
e�

Fig� ���� Lattice generated by vectors e�� e�

Now we show that there is an element e� � � n �� closest to l


dist�e�� l� � minfdist�x� l� j x � � n lg� ������

Take any segment I � �ne�� �n  ��e�� � l� and denote by � 
 Rn � l the
orthogonal projection from Rn to l along the orthogonal complement to l
in Rn� Since the segment I is compact and the subgroup � is discrete� the
n�dimensional strip ����I� contains an element e� � � n l closest to I


dist�e�� I� � minfdist�x� I� j x � �� n l� � ����I�g�

Then the element e� is the required one
 it satis�es equality ������ since any
element that satis�es ������ can be translated to the strip ����I� by elements
of the lattice ���
That is why a su�ciently small neighborhood of l is free of elements of

� n��� Thus the quotient group ���� is a discrete subgroup in Rn�l � Rn���
By the inductive hypothesis� ���� is a lattice� hence � is also a lattice� ut



�

The Orbit Theorem and its Applications

��� Formulation of the Orbit Theorem

Let F � VecM be any set of smooth vector �elds� In order to simplify no�
tation� we assume that all �elds from F are complete� Actually� all further
de�nitions and results have clear generalizations to the case of noncomplete
�elds� we leave them to the reader�
We return to the study of attainable sets
 we study the structure of the

attainable sets of F by piecewise constant controls

Aq� � fq� 	 et�f� 	 
 
 
 	 etkfk j ti � �� fi � F � k � Ng� q� �M�

But �rst we consider a larger set ! the orbit of the family F through a
point


Oq� � fq� 	 et�f� 	 
 
 
 	 etkfk j ti � R� fi � F � k � Ng� q� �M�

In an orbit Oq� � one is allowed to move along vector �elds fi both forward and
backwards� while in an attainable set Aq� only the forward motion is possible�
see Figs� ���� ����
Although� if the family F is symmetric F � �F �i�e�� f � F 
 �f � F��

then attainable sets coincide with orbits
 Oq� � Aq� � q� �M �
In general� orbits have more simple structure that attainable sets� It is

described in the following fundamental proposition�

Theorem ��� �Orbit Theorem� Nagano�Sussmann�� Let F � VecM
and q� �M � Then�

���Oq� is a connected immersed submanifold of M �
��� TqOq� � spanfq 	 �AdP �f j P � P� f � Fg� q � Oq� �
Here we denote by P the group of di�eomorphisms of M generated by

�ows in F 

P � fet�f� 	 
 
 
 	 etkfk j ti � R� fi � F � k � Ng � Di�M�

We de�ne and discuss the notion of immersed manifold in the next section�



�� � The Orbit Theorem and its Applications

q�

f�

f�

Aq�

q� f�

f�

Oq�

Fig� ���� Attainable set Aq� Fig� ���� Orbit Oq�

��� Immersed Submanifolds

De�nition ���� A subset W of a smooth n�dimensional manifold is called an
immersed k�dimensional submanifold of M � k � n� if there exists a one�to�one
immersion

� 
 N �M� Ker��q � � � q � N

of a k�dimensional smooth manifold N such that

W � ��N ��

Remark ��	� An immersed submanifold W of M can also be de�ned as a
manifold contained in M such that the inclusion mapping

i 
 W �M� i 
 q �� q�

is an immersion�

Su�ciently small neighborhoods Ox in an immersed submanifoldW ofM
are submanifolds of M � but the whole W is not necessarily a submanifold of
M in the sense of De�nition ���� In general� the topology ofW can be stronger
than the topology induced on W by the topology of M �

Example ���� Let � 
 R � R� be a one�to�one immersion of the line into
the plane such that limt��� ��t� � ����� Then W � ��R� is an immersed
one�dimensional submanifold of R�� see Fig� ���� The topology of W inherited
from R is stronger than the topology induced by R�� The intervals ����� ���
� 	 � small enough� are open in the �rst topology� but not open in the second
one�

The notion of immersed submanifold appears inevitably in the description
of orbits of families of vector �elds� Already the orbit of one vector �eld �i�e��
its trajectory� is an immersed submanifold� but may fail to be a submanifold
in the sense of De�nition ����
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����

W

Fig� ���� Immersed manifold

Example ���� Oscillator with � degrees of freedom is described by the equa�
tions


$x 
�x � �� x � R�
$y  ��y � �� y � R�

In the complex variables

z � x� i �x�
� w � y � i �y��

these equations read

�z � i
z� z � C �
�w � i�w� w � C � �����

and their solutions have the form

z�t� � ei�tz����

w�t� � ei�tw����

Any solution �z�t�� w�t�� to equations ����� belongs to an invariant torus

T� � f�z� w� � C � j jzj � const� jwj � constg�
Any such torus is parametrized by arguments of z� w modulo ��� thus it is a
group
 T� � R�����Z���
We introduce a new parameter 
 � 
t� then trajectories �z� w� become

images of the line f�
� ���
�
 � j 
 � Rg under the immersion
�
� ���
�
 � �� �
  ��Z� ���
�
  ��Z� � R�����Z���

thus immersed submanifolds of the torus�
If the ratio ��
 is irrational� then trajectories are everywhere dense in

the torus
 they form the irrational winding of the torus� In this case� trajec�
tories� i�e�� orbits of a vector �eld� are not submanifolds� but just immersed
submanifolds�
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Remark ���� Immersed submanifolds inherit many local properties of sub�
manifolds� In particular� the tangent space to an immersed submanifold
W � Im� �M � � an immersion� is given by

T��q�W � Im��q �

Further� it is easy to prove the following property of a vector �eld V � VecM 

V �q� � TqW � q �W 
 q 	 etV �W � q �W�

for all t close enough to ��

��� Corollaries of the Orbit Theorem

Before proving the Orbit Theorem� we obtain several its corollaries�
Let Oq� be an orbit of a family F � VecM �
First of all� if f � F � then f�q� � TqOq� for all q � Oq� � Indeed� the

trajectory q 	 etf belongs to the orbit Oq� � thus its velocity vector f�q� is in
the tangent space TqOq� �
Further� if f�� f� � F � then �f�� f���q� � TqOq� for all q � Oq� � This follows

since the vector �f�� f���q� is tangent to the trajectory

t �� q 	 etf� 	 etf� 	 e�tf� 	 e�tf� � Oq� �
Given three vector �elds f�� f�� f� � F � we have �f�� �f�� f����q� � TqOq� �

q � Oq� � Indeed� it follows that �f�� f���q� � TqOq� � q � Oq� � then all trajecto�
ries of the �eld �f�� f�� starting in the immersed submanifoldOq� do not leave
it� Then we repeat the argument of the previous items�
We can go on and consider Lie brackets of arbitrarily high order

�f�� �� � � �fk��� fk� � � � ���q�

as tangent vectors to Oq� if fi � F � These considerations can be summarized
in terms of the Lie algebra of vector �elds generated by F 


LieF � spanf�f�� �� � � �fk��� fk� � � � �� j fi � F � k � Ng � VecM�

and its evaluation at a point q �M 


Lieq F � fq 	 V j V � LieFg � TqM�

We obtain the following statement�

Corollary ����

Lieq F � TqOq� �����

for all q � Oq� �
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Remark ���� We show soon that in many important cases inclusion ����� turns
into equality� In the general case� we have the following estimate


dimLieq F � dimOq� � q � Oq� �
Another important corollary of the Orbit Theorem is the following propo�

sition often used in control theory�

Theorem ��
 �Rashevsky�Chow�� Let M be a connected smooth manifold�
and let F � VecM � If the family F is completely nonholonomic�

Lieq F � TqM � q �M� �����

then

Oq� �M � q� �M� �����

De�nition ����� A family F � VecM that satis�es property ����� is called
completely nonholonomic or bracket�generating�

Now we prove Theorem ����

Proof� By Corollary ���� equality ����� means that any orbit Oq� is an open
set in M �
Further� consider the following equivalence relation in M 


q� � q� � q� � Oq� � q�� q� �M� �����

The manifoldM is the union of �naturally disjoint� equivalence classes� Each
class is an open subset of M and M is connected� Hence there is only one
nonempty class� That is� M is a single orbit Oq� � ut
For symmetric families attainable sets coincide with orbits� thus we have

the following statement�

Corollary ����� A symmetric bracket�generating family on a connected man�
ifold is completely controllable�

��� Proof of the Orbit Theorem

Introduce the notation


�AdP�F def
� f�AdP �f j P � P� f � Fg � VecM�

Consider the following subspace of TqM 


�q
def
� spanfq 	 �AdP�Fg�

This space is a candidate for the tangent space TqOq� �



�� � The Orbit Theorem and its Applications

Lemma ����� dim�q � dim�q� for all q � Oq� � q� �M �

Proof� If q � Oq� � then q � q� 	Q for some di�eomorphism Q � P�
Take an arbitrary element q� 	 �AdP �f in �q� � P � P� f � F � Then

Q��q� 	 �AdP �f� � q� 	 �AdP �f 	Q � q� 	 P 	 f 	 P�� 	Q
� �q� 	Q� 	 �Q�� 	 P 	 f 	 P�� 	Q�
� q 	Ad�Q�� 	 P �f � �q

since Q�� 	 P � P�
We have Q��q� � �q� thus dim�q� � dim�q� But q� and q can be

switched� that is why dim�q � dim�q� � Finally� dim�q � dim�q� � ut
Now we prove the Orbit Theorem�

Proof� The manifold M is divided into disjoint equivalence classes of rela�
tion ����� ! orbits Oq � We introduce a new �strong
 topology onM in which
all orbits are connected components�
For any point q �M � denote m � dim�q and pick elements V�� � � � � Vm �

�AdP�F such that

span�V��q�� � � � � Vm�q�� � �q� �����

Introduce a mapping


Gq 
 �t�� � � � � tm� �� q 	 et�V� 	 
 
 
 	 etmVm � ti � R�

We have
� Gq

� ti

����
�

� Vi�q��

thus in a su�ciently small neighborhood O� of the origin � � Rm the vectors
� Gq

� t�
� � � � �

� Gq

� tm
are linearly independent� i�e�� GqjO�

is an immersion�

The sets of the form Gq�O��� q � M � are candidates for elements of a
topology base on M � We prove several properties of these sets�

��� Since the mappings Gq are regular� the sets Gq�O�� are m�dimensional
submanifolds of M � may be� for smaller neighborhoods O��

��� We show that Gq�O�� � Oq � Any element of the basis ����� has the form
Vi � �AdPi�fi� Pi � P� fi � F � Then

etVi � et�AdPi�fi � etPi�fi�P
��
i � Pi 	 etfi 	 P��

i � P�

thus
Gq�t� � q 	 etVi � Oq� t � O��
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��� We show that G�t�TtRm� � �G�t�� t � O�� Since rank G�tjO�
� m and

dim�G�t�

��
O�
� m� it remains to prove that


 Gq


 ti

���
t
� �Gq�t� for t � O�� We

have

�

� ti
Gq�t� �

�

� ti
q 	 et�V� 	 
 
 
 	 etmVm

� q 	 et�V� 	 
 
 
 	 etiVi 	 Vi 	 eti��Vi�� 	 
 
 
 	 etmVm
� q 	 et�V� 	 
 
 
 	 etiVi 	 eti��Vi�� 	 
 
 
 	 etmVm

	 e�tmVm 	 
 
 
 	 e�ti��Vi�� 	 Vi 	 eti��Vi�� 	 
 
 
 	 etmVm

�introduce the notation Q � eti��Vi�� 	 
 
 
 	 etmVm � P�

� Gq�t� 	Q�� 	 Vi 	Q � Gq�t� 	AdQ��Vi � �Gq�t��

��� We prove that sets of the form Gq�O��� q � M � form a topology base

inM � It is enough to prove that any nonempty intersection Gq�O���G	q� eO��

contains a subset of the form G
q� bO��� i�e�� this intersection has the form as at
the left �gure� not at the right one


Gq�O��

G�q� eO��

Let a point %q belong to Gq�O��� Then dim�
q � dim�q � m� Consider
the mapping

G
q 
 �t�� � � � � tm� �� %q 	 et� bV� 	 
 
 
 	 etm bVm �
span�%q 	 bV�� � � � � %q 	 bVm� � �
q�

It is enough to prove that for small enough �t�� � � � � tm�

G
q�t�� � � � � tm� � Gq�O���

then we can replace Gq�O�� by G	q� eO��� We do this step by step� Consider

the curve t� �� bq 	 et� bV� � By property ��� above� bV��q�� � �q� for q� � Gq�O��
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and su�ciently close to bq� Since Gq�O�� is a submanifold of M and �q �

TqGq�O��� the curve bq 	 et� bV� belongs to Gq�O�� for su�ciently small jt�j� We
repeat this argument and show that

�bq 	 et� bV�� 	 et� bV� � Gq�O��

for small jt�j� jt�j� We continue this procedure and obtain the inclusion

�bq 	 et� bV� 	 
 
 
 	 etm�� bVm�� � 	 etm bVm � Gq�O��

for �t�� � � � � tm� su�ciently close to � � Rm�
Property ��� follows� and the sets Gq�O��� q � M � form a topology base

on M � We denote by MF the topological space obtained� i�e�� the set M
endowed with the �strong
 topology just introduced�

��� We show that for any q� �M � the orbit Oq� is connected� open� and closed
in the �strong
 topology�
Connectedness
 all mappings t �� q 	 etf � f � F � are continuous in the

�strong
 topology� thus any point q � Oq� can be connected with q� by a path
continuous in MF �
Openness
 for any q � Oq� � a set of the form Gq�O�� � Oq� is a neighbor�

hood of the point q in MF �
Closedness
 any orbit is a complement to a union of open sets �orbits��

thus it is closed�
So each orbit Oq� is a connected component of the topological space MF �

��� A smooth structure on each orbit Oq� is de�ned by choosing Gq�O�� to
be coordinate neighborhoods and G��

q coordinate mappings� Since GqjO�
are

immersions� then each orbit Oq� is an immersed submanifold of M � Notice
that dimension of these submanifolds may vary for di�erent q��

��� By property ��� above� TqOq� � �q� q � Oq� �
The Orbit Theorem is proved� ut
The Orbit Theorem provides a description of the tangent space of an orbit


TqOq� � span�q 	 �AdP�F��

Such a description is rather implicit since the structure of the group P is quite
complex� However� we already obtained the lower estimate

Lieq F � span�q 	 �AdP�F� �����

from the Orbit Theorem� Notice that this inclusion can easily be proved di�
rectly� We make use of the asymptotic expansion of the �eld Ad etf bf � et ad f bf �
Take an arbitrary element ad f� 	 
 
 
 	 adfk bf � LieF � fi� bf � F � We have
Ad�et�f� 	 
 
 
 	 etkfk � bf � �AdP�F � thus
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q 	 �k

�t� 
 
 
�tk

����
�

Ad�et�f� 	 
 
 
 	 etkfk� bf
� q 	 �k

�t� 
 
 
�tk

����
�

�et� ad f� 	 
 
 
 	 etk ad fk� bf
� q 	 ad f� 	 
 
 
 	 ad fk bf � span�q 	 �AdP�F��

Now we consider a situation where inclusion ����� is strict�

Example ���	� Let M � R�� F �

�
�

� x�
� a�x��

�

� x�

�
� where the function

a � C��R�� a �� �� has a compact support�
It is easy to see that the orbit Ox through any point x � R� is the whole

plane R�� Indeed� the familyF � ��F� is completely controllable in the plane�
Given an initial point x� � �x��� x

�
�� and a terminal point x� � �x

�
�� x

�
��� we

can steer x� to x�
 �rst we go from x� by a �eld � �

� x�
to a point �"x�� x��� with

a�"x�� �� �� then we go by a �eld �a�"x�� �

� x�
to a point �"x�� x���� and �nally

we reach �x��� x
�
�� along �

�

� x�
� see Fig� ����

x�

x�

x�

x�

�x�

�
�

�x�

�
�

�x�

�a��x��
�

�x�

Fig� ���� Complete controllability of the family F

On the other hand� we have

dimLie�x�	x���F� �
�
�� x� �� supp a�
�� a�x�� �� ��

That is� x 	 �AdP�F � TxR
� �� LiexF if x� �� supp a�

Although� such example is essentially non�analytic� In the analytic case�
inclusion ����� turns into equality� We prove this statement in the next section�
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��� Analytic Case

The set VecM is not just a Lie algebra �i�e�� a vector space close under the
operation of Lie bracket�� but also a module over C��M �
 any vector �eld
V � VecM can be multiplied by a function a � C��M �� and the resulting
vector �eld aV � VecM � If vector �elds are considered as derivations of
C��M �� then the product of a function a and a vector �eld V is the vector
�eld

�aV �b � a 
 �V b�� b � C��M ��

In local coordinates� each component of V at a point q � M is multiplied
by a�q��

Exercise ����� Let X�Y � VecM � a � C��M �� P � Di�M � Prove the
equalities


�adX��aY � � �Xa�Y  a�adX�Y�

�AdP ��aX� � �Pa� AdP X�

A submodule V � VecM is called �nitely generated over C��M � if it has
a �nite global basis of vector �elds


� V�� � � � � Vk � VecM such that V �
�

kX
i��

aiVi j ai � C��M �

�
�

Lemma ����� Let V � VecM be a �nitely generated submodule over C��M ��
Assume that

�adX�V � f�adX�V j V � Vg � V
for a vector �eld X � VecM � Then�

Ad etX
�V � V�

Proof� Let V�� � � � � Vk be a basis of V� By the hypothesis of the lemma�

�X�Vi� �
kX
j��

aijVj �����

for some functions aij � C��M �� We have to prove that the vector �elds

Vi�t� � �Ad e
tX �Vi � et adXVi� t � R�

can be expressed as linear combinations of the �elds Vi with coe�cients from
C��M ��
We de�ne an ODE for Vi�t�
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�Vi�t� � et adX �X�Vi� � et adX
kX
j��

aijVj

�
kX
j��

�
etXaij

�
Vj�t��

For a �xed q �M � de�ne the k � k matrix


A�t� � �aij�t��� aij�t� � etXaij� i� j � �� � � � � k�

Then we have a linear system of ODEs


�Vi�t� �
kX
j��

aij�t�Vj�t�� �����

Find a fundamental matrix � of this system


�� � A�t��� � ��� � Id �

Since A�t� smoothly depends on q� then � depends smoothly on q as well


� �t� � ��ij�t��� �ij�t� � C��M �� i� j � �� � � � � k� t � R�

Now solutions of the linear system ����� can be written as follows


Vi�t� �
kX
j��

�ij�t�Vj����

But Vi��� � Vi are the generators of the module� and the required decompo�
sition of Vi�t� along the generators is obtained� ut
A submodule V � VecM is called locally �nitely generated over C��M �

if any point q �M has a neighborhood O �M in which the restriction FjO
is �nitely generated over C��O�� i�e�� has a basis of vector �elds�

Theorem ����� Let F � VecM � Suppose that the module LieF is locally
�nitely generated over C��M �� Then

TqOq� � Lieq F � q � Oq� ������

for any orbit Oq� � q� �M � of the family F �
We prove this theorem later� but now obtain from it the following conse�

quence�

Corollary ����� If M and F are real analytic� then equality ������ holds�
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Proof� In the analytic case� LieF is locally �nitely generated� Indeed� any
module generated by analytic vector �elds is locally �nitely generated� This
is N$otherian property of the ring of germs of analytic functions� see ������ ut
Now we prove Theorem �����

Proof� By the Orbit Theorem�

TqOq� � span
n
q 	Ad �et�f� 	 
 
 
 	 etkfk� bf j fi� bf � F � tk � R� k � N

o
�

������

By de�nition of the Lie algebra LieF �
�adf� LieF � LieF � f � F �

Apply Lemma ���� for the locally �nitely generated C��M ��module V �
LieF � We obtain �

Ad etf
�
LieF � LieF � f � F �

That is why

Ad
�
et�f� 	 
 
 
 	 etkfk� bf � Ad et�f� 	 
 
 
 	Ad etkfk bf � LieF

for any fi� bf � F � tk � R� In view of equality �������
TqOq� � Lieq F �

But the reverse inclusion ����� was already obtained� Thus TqOq� � Lieq F �
Another proof of the theorem can be obtained via local convergence of the

exponential series in the analytic case� ut

��� Frobenius Theorem

We apply the Orbit Theorem to obtain the classical Frobenius Theorem as a
corollary�

De�nition ���	� A distribution � � TM on a smooth manifold M is a
family of linear subspaces �q � TqM smoothly depending on a point q � M �
Dimension of the subspaces �q� q �M � is assumed constant�

Geometrically� at each point q �M there is attached a space �q � TqM �
i�e�� we have a �eld of tangent subspaces on M �

De�nition ���
� A distribution � on a manifold M is called integrable if
for any point q �M there exists an immersed submanifold Nq � M � q � Nq �
such that

Tq�Nq � �q� � q� � Nq �

see Fig� ���� The submanifold Nq is called an integral manifold of the distri�
bution � through the point q�
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q
q�

�q��q

Nq

Fig� ���� Integral manifold Nq of distribution �

In other words� integrability of a distribution� � TM means that through
any point q � M we can draw a submanifold Nq whose tangent spaces are
elements of the distribution ��

Remark ����� If dim�q � �� then � is integrable by Theorem ���� on ex�
istence and uniqueness of solutions of ODEs� Indeed� in a neighborhood of
any point in M � we can �nd a base of the distribution �� i�e�� a vector �eld
V � VecM such that �q � span�V �q��� q �M � Then trajectories of the ODE
�q � V �q� are one�dimensional submanifolds with tangent spaces �q�

But in the general case �dim�q 	 ��� a distribution � may be noninte�
grable� Indeed� consider the family of vector �elds tangent to �


� � fV � VecM j V �q� � �q � q �Mg�

Assume that the distribution � is integrable� Any vector �eld from the fam�
ily� is tangent to integral manifoldsNq � thus the orbit Oq of the family� re�
stricted to a small enough neighborhood of q is contained in the integral man�
ifold Nq� Moreover� since dimOq � dim�q � dimNq� then locally Oq � Nq 

we can go in Nq in any direction along vector �elds of the family �� By the
Orbit Theorem� TqOq � Lieq�� that is why

Lieq� � �q�

This means that

�V�� V�� � � � V�� V� � �� ������

Let dim�q � k� In a neighborhood Oq� of a point q� �M we can �nd a base
of the distribution �


�q � span�f��q�� � � � � fk�q�� � q � Oq� �

Then inclusion ������ reads as Frobenius condition
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�fi� fj � �
kX
l��

clijfl � clij � C��Oq� �� ������

We have shown that integrability of a distribution implies Frobenius condition
for its base�
Conversely� if condition ������ holds in a neighborhood of any point q� �

M � then Lie��� � �� Thus Lie��� is a locally �nitely generated module over
C��M �� By Theorem �����

TqOq� � Lieq�� q � Oq� �
So

TqOq� � �q� q � Oq� �
i�e�� the orbit Oq� is an integral manifold of � through q�� We proved the
following proposition�

Theorem ���� �Frobenius�� A distribution � � TM is integrable if and
only if Frobenius condition ������ holds for any base of � in a neighborhood
of any point q� �M �

Remark ����� ��� In view of the Leibniz rule

�f� ag� � �fa�g  a�f� g�� f� g � VecM� a � C��M ��

Frobenius condition is independent on the choice of a base f�� � � � � fk
 if it
holds in one base� then it also holds in any other base�

��� One can also consider smooth distributions � with non�constant dim�q�
Such a distribution is de�ned as a locally �nitely generated over C��M �
submodule of VecM � For such distributions Frobenius condition implies inte�
grability� but dimension of integrable manifolds becomes� in general� di�erent�
although it stays constant along orbits of �� This is a generalization of phase
portraits of vector �elds� Although� notice once more that in general distri�
butions with dim�q 	 � are nonintegrable�

��
 State Equivalence of Control Systems

In this section we consider one more application of the Orbit Theorem ! to
the problem of equivalence of control systems �or families of vector �elds��
Let U be an arbitrary index set� Consider two families of vector �elds on

smooth manifoldsM and N parametrized by the same set U 


fU � ffu j u � Ug � VecM�

gU � fgu j u � Ug � VecN�

Take any pair of points x� �M � y� � N � and assume that the families fU � gU
are bracket�generating


Liex� fU � Tx�M� Liey� gU � Ty�N�
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De�nition ����� Families fU and gU are called locally state equivalent if
there exists a di
eomorphism of neighborhoods

� 
 Ox� �M � Oy� � N�

� 
 x� �� y��

that transforms one family to another�

��fu � gu � u � U�

Notation
 �fU � x�� � �gU � y���
Remark ����� Here we consider only smooth transformations of state x �� y�
while the controls u do not change� That is why this kind of equivalence is
called state equivalence� We already studied state equivalence of nonlinear
and linear systems� both local and global� see Chap� ��

Now� we �rst try to �nd necessary conditions for local equivalence of sys�
tems fU and gU � Assume that

�fU � x�� � �gU � y���
By invariance of Lie bracket� we get

���fu� � fu� � � ���fu� � ��fu� � � �gu� � gu��� u�� u� � U�

i�e�� relations between Lie brackets of vector �elds of the equivalent families fU
and gU must be preserved� We collect all relations between these Lie brackets
at one point
 de�ne the systems of tangent vectors

�u����uk � �fu� � �� � � � fuk � � � � ��x�� � Tx�M�

�u����uk � �gu�� �� � � � guk � � � � ��y�� � Ty�N�

Then we have

��jx� �u����uk � �u����uk � u�� � � � � uk � U� k � N�
Now we can state a necessary condition for local equivalence of families

fU and gU in terms of the linear isomorphism

��jx� � A 
 Tx�M � Ty�N�

If �fU � x�� � �gU � y��� then there exists a linear isomorphism
A 
 Tx�M � Ty�N

that maps the con�guration of vectors f�u����ukg to the con�guration f�u����ukg�
It turns out that in the analytic case this condition is su�cient� I�e�� in the
analytic case the combinations of partial derivatives of vector �elds fu� u � U �
that enter f�u����ukg� form a complete system of state invariants of a family fU �
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Theorem ����� Let fU and gU be real analytic and bracket�generating fam�
ilies of vector �elds on real analytic manifolds M and N respectively� Let
x� �M � y� � N � Then �fU � x�� � �gU � y�� if and only if there exists a linear
isomorphism

A 
 Tx�M � Ty�N

such that

Af�u����ukg � f�u����ukg � u�� � � � � uk � U� k � N� ������

Remark ����� If in additionM � N are simply connected and all the �elds fu�
gu are complete� then we have the global equivalence�

Before proving Theorem ����� we reformulate condition ������ and provide
a method to check it�
Let a family fU be bracket�generating


spanf�u����uk j u�� � � � � uk � U� k � Ng� Tx�M�

We can choose a basis


span����� � � � � � ���n� � Tx�M� &
i � �u�i� � � � � uki�� i � �� � � � � n� ������

and express all vectors in the con�guration � through the base vectors


�u����uk �
nX
i��

ciu����uk���i � ������

If there exists a linear isomorphism A 
 Tx�M � Ty�N with ������� then the
vectors

���i � i � �� � � � � n�

should form a basis of Ty�N 


span����� � � � � � ���n� � Ty�N� ������

and all vectors of the con�guration � should be expressed through the base
vectors with the same coe�cients as the con�guration �� see ������


�u����uk �
nX
i��

ciu����uk���i � ������

It is easy to see the converse implication
 if we can choose bases in Tx�M
and Ty�N from the con�gurations � and � as in ������ and ������ such that
decompositions ������ and ������ with the same coe�cients ciu����uk hold� then
there exists a linear isomorphism A with ������� Indeed� we de�ne then the
isomorphism on the bases


A 
 ���i �� ���� � i � �� � � � � n�
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We can obtain one more reformulation via the following agreement� Con�
�gurations f�u����ukg and f�u����ukg are called equivalent if the sets of rela�
tions K�fU � and K�gU � between elements of these con�gurations coincide

K�fU � � K�gU �� We denote here by K�fU � the set of all systems of coe��
cients such that the corresponding linear combinations vanish


K�fU � �

�
�bu����uk� j

X
u����uk

bu����uk�u����uk � �

�
�

Then Theorem ���� can be expressed in the following form�

Nagano Principle� All local information about bracket�generating families
of analytic vector �elds is contained in Lie brackets�

Notice� although� that the con�guration �u����uk and the system of relations
K�fU � are� in general� immense and cannot be easily characterized� Thus
Nagano Principle cannot usually be applied directly to describe properties of
control systems� but it is an important guiding principle�
Now we prove Theorem �����

Proof� Necessity was already shown� We prove su�ciency by reduction to the
Orbit Theorem� For this we construct an auxiliary system on the Cartesian
product

M �N � f�x� y� j x �M� y � Ng�
For vector �elds f � VecM � g � VecN � de�ne their direct product f � g �
Vec�M � N � as the derivation

�f � g�aj�x	y� � �fa�y�
��
x
 �ga�x�

��
y
� a � C��M � N �� ������

where the families of functions a�y � C��M �� a�x � C��N � are de�ned as
follows


a�y 
 x �� a�x� y�� a�x 
 y �� a�x� y�� x �M� y � N�

So projection of f � g to M is f � and projection to N is g� Finally� we de�ne
the direct product of systems fU and gU as

fU � gU � ffu � gu j u � Ug � Vec�M � N ��

We suppose that there exists a linear isomorphismA 
 Tx�M � Ty�N that
maps the con�guration � to � as in ������� and construct the local equivalence
�fU � x�� � �gU � y���
In view of de�nition ������� Lie bracket in the family fU � gU is computed

as
�fu� � gu� � fu� � gu� � � �fu�� fu� �� �gu� � gu��� u�� u� � U�

thus
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�fu� � gu�� �� � � � fuk � guk � � � � ��x�� y��

� �fu� � �� � � � fuk � � � � ��x�� � �gu�� �� � � � guk� � � � ��y��
� �u����uk � �u����uk � �u����uk �A�u����uk � u�� � � � � uk � U� k � N�

That is why
dimLie�x�	y���fU � gU� � n�

where n � dimM � By the analytic version of the Orbit Theorem �Corol�
lary ����� for the family fU � gU � Vec�M � N �� the orbit O of fU � gU
through the point �x�� y�� is an n�dimensional immersed submanifold �thus�
locally a submanifold� of M � N � The tangent space of the orbit is

T�x�	y��O � span��u����uk �A�u����uk�

� spanfv �Av j v � Tx�g � T�x�	y��M �N � Tx�M � Ty�N�

i�e�� the graph of the linear isomorphismA� Consider the canonical projections
onto the factors


�� 
 M �N �M� ���x� y� � x�

�� 
 M �N � N� ���x� y� � y�

The restrictions ��jO� ��jO are local di�eomorphisms since the di�erentials

���j�x�	y�� 
 �v�Av� �� v� v � Tx�M�

���j�x�	y�� 
 �v�Av� �� Av� v � Tx�M�

are one�to�one�
Now � � �� 	 ���jO���

is a local di�eomorphism from M to N with the
graph O� and

�� � ��� 	 ���jO���
� 
 fu �� gu� u � U�

Consequently� �fU � x�� � �gU � y��� ut



�

Rotations of the Rigid Body

In this chapter we consider rotations of a rigid body around a �xed point�
That is� we study motions of a body in the three�dimensional space such that


� distances between all points in the body remain �xed �rigidity�� and
� there is a point in the body that stays immovable during motion ��xed
point��

We consider both free motions �in the absence of external forces� and con�
trolled motions �when external forces are applied in order to bring the body
to a desired state��
Such system is a very simpli�ed model of a satellite in the space rotating

around its center of mass�
For details about ODEs describing rotations of the rigid body� see ������

��� State Space

The state of the rigid body is determined by its position and velocity�
We �x an orthonormal frame attached to the body at the �xed point �the

moving frame�� and an orthonormal frame attached to the ambient space at
the �xed point of the body �the �xed frame�� see Fig� ���� The set of positions
of the rigid body is the set of all orthonormal frames in the three�dimensional
space with positive orientation� This set can be identi�ed with SO���� the
group of linear orthogonal orientation�preserving transformations of R�� or�
equivalently� with the group of �� � orthogonal unimodular matrices


SO��� � fQ 
 R�� R� j �Qx�Qy� � �x� y�� detQ � �g
� fQ 
 R�� R� j QQ� � Id� detQ � �g�

The mapping Q 
 R� � R� transforms the coordinate representation of a
point in the moving frame to the coordinate representation of this point in
the �xed frame�
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Fig� ���� Fixed and moving frames

Remark ���� We denote above the standard inner product in R� by � 
 � 
 �� If
a pair of vectors x� y � R� have coordinates x � �x�� x�� x��� y � �y�� y�� y��
in some orthonormal frame� then �x� y� � x�y�  x�y�  x�y��

Notice that the set of positions of the rigid body SO��� is not a linear
space� but a nontrivial smooth manifold�
Now we describe velocities of the rigid body� Let Qt � SO��� be position

of the body at a moment of time t� Since the operators Qt 
 R� � R� are
orthogonal� then

�Qtx�Qty� � �x� y�� x� y � R�� t � R�
We di�erentiate this equality w�r�t� t and obtain

� �Qtx�Qty�  �Qtx� �Qty� � �� �����

The matrix
�t � Q��

t
�Qt

is called the body angular velocity � Since

�Qt � Qt�t�

then equality ����� reads

�Qt�tx�Qty�  �Qtx�Qt�ty� � ��

whence by orthogonality

��tx� y�  �x��ty� � ��

i�e��
��
t � ��t�

the matrix �t is antisymmetric� So velocities of the rigid body have the form
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�Qt � Qt�t� ��
t � ��t�

In other words� we found the tangent space

TQ SO��� � fQ� j �� � ��g� Q � SO����
The space of antisymmetric ��� matrices is denoted by so���� it is the tangent
space to SO��� at the identity


so��� � f� 
 R�� R� j �� � ��g � TId SO����

The space so��� is the Lie algebra of the Lie group SO����
To each antisymmetric matrix � � so���� we associate a vector � � R�


� � �� � �

�� � ��� ��

�� � ���

��� �� �

�A � � �

����

��

��

�A � �����

Then the action of the operator � on a vector x � R� can be represented via
the cross product in R�


�x � � � x� x � R��

Let x be a point in the rigid body� Then its position in the ambient space R�

is Qtx� Further� velocity of this point is

�Qtx � Qt�tx � Qt��t � x��

�t is the vector of angular velocity of the point x in the moving frame
 if we �x
the moving frameQt at one moment of time t� then the instantaneous velocity
of the point x at the moment of time t in the moving frame isQ��

t
�Qtx � �tx �

�t � x� i�e�� the point x rotates around the line through �t with the angular
velocity k�tk�
Introduce the following scalar product of matrices � � ��ij� � so���


h��� ��i � ��
�
tr������ �

�

�

�X
i	j��

��
ij�

�
ij �

X
i
j

��
ij�

�
ij�

This product is compatible with identi�cation of ��� antisymmetric matrices
and ��dimensional vectors �����


h��� ��i � ���� ����

�i � �i� �i � so���� �i � R�� i � �� ��

Moreover� this product is invariant in the following sense


h�AdQ���� �AdQ���i � h��� ��i� Q � SO���� ��� �� � so����
�����
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i�e�� AdQ 
 so��� � so��� is an orthogonal transformation w�r�t� h 
 � 
 i� In�
deed


tr��AdQ����AdQ���� � tr�Q��Q��Q��Q��� � tr�Q����Q���

� tr������

by invariance of trace�
Now we derive the in�nitesimal version of invariance ������ Take an arbi�

trary � � so��� and consider a smooth curve Qt � SO��� that starts from
identity with the velocity �


�Q� � �� Q� � Id �

Then
d

d t

����
�

AdQt � ad��

and di�erentiation of ����� w�r�t� t at t � � yields the equality


h�ad����� ��i  h��� �ad����i � �� �� ��� �� � so���� �����

i�e�� ad� 
 so���� so��� is antisymmetric w�r�t� h 
 � 
 i�
The vector �� � �� � R� corresponds to the matrix ���� ��� � so���

via isomorphism ������ thus equality ����� can be rewritten in terms of cross
product


�� � ��� ���  ���� � � ��� � �� �� ��� �� � R��

��� Euler Equations

We derive equations of motion of the rigid body from the least action principle�
Let the distribution of mass in the rigid body have density ��x�� where

� 
 R� � R� is an integrable nonnegative function with compact support�
Let Qt � SO��� be position and �t � so��� angular velocity of the body so
that

�Qt � Qt�t� �����

Take a point x in the body� Then position of this point in the ambient space
is Qtx� and velocity of this point is �Qtx� Distribution of the kinetic energy
in the body has density �

���x��
�Qtx� �Qtx�� thus the total kinetic energy of the

body at a moment of time t is

j��t� �
�

�

Z
R�

��x��Qt�tx�Qt�tx� dx �
�

�

Z
R�

��x���tx��tx� dx�

i�e�� a quadratic form j � j��t� on the space so���� The corresponding bilinear
form can be written as



��� Euler Equations ��Z
R�

��x����x���x� dx � hA��� ��i� ��� �� � so���

for some linear symmetric positive de�nite operator

A 
 so���� so���� A � A� 	 ��

called inertia tensor of the rigid body� Finally� the functional of action has the
form

J���� �

Z t�

�

j��t� dt �
�

�

Z t�

�

hA�t� �ti dt�

where � and t� are the initial and terminal moments of motion�
Let Q� and Qt� be the initial and terminal positions of the moving body�

By the least action principle� the motion Qt� t � ��� t��� of the body should be
an extremal of the following problem


J����� min�
�Qt � Qt�t� Q�� Qt� �xed�

�����

We �nd these extremals�
Let �t be angular velocity along the reference trajectory Qt� then

Q��
� 	Qt� �

��
exp

Z t�

�

�t dt�

Consider an arbitrary small perturbation of the angular velocity


�t  �Ut  O����� �� ��

In order that such perturbation was admissible� the starting point and end�
point of the corresponding trajectory should not depend on �


Q��
� 	Qt� �

��
exp

Z t�

�

�
�t  �Ut  O����

�
dt�

thus

� �
�

� �

����
���

Q��
� 	Qt� �

�

� �

����
���

��
exp

Z t�

�

�
�t  �Ut  O����

�
dt� �����

By formula ������ of derivative of a �ow w�r�t� parameter� the right� hand side
above is equal toZ t�

�

Ad

�
��
exp

Z t

�

�� d


�
Ut dt	 ��

exp

Z t�

�

�t dt

�

Z t�

�
Ad
�
Q��

� 	Qt

�
Ut dt 	Q��

� 	Qt�

� Q��
�

Z t�

�

AdQtUt dt 	Qt� �
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Taking into account ������ we obtainZ t�

�

AdQtUt dt � ��

Denote

Vt �

Z t

�

AdQ�U� d
� �����

then admissibility condition of a variation Ut takes the form

V� � Vt� � �� �����

Now we �nd extremals of problem ������

� �
�

� �

����
���

J����� �

Z t�

�

hA�t� Uti dt

by �����

�

Z t�

�

h�AdQt�A�t� �AdQt�Uti dt

by �����

�

Z t�

�

h�AdQt�A�t� �Vti dt

integrating by parts with the admissibility condition �����

� �
Z t�

�

�
d

d t
�AdQt�A�t� Vt

�
dt�

So the previous integral vanishes for any admissible operator Vt� thus

d

d t
�AdQt�A�t � �� t � ��� t���

Hence
AdQt���t� A�t�  A ��t� � �� t � ��� t���

that is why

A ��t � �A�t� �t�� t � ��� t��� ������

Introduce the operator
Mt � A�t�
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called kinetic momentum of the body� and denote

B � A���

We combine equations ������� ����� and come to Euler equations of rotations
of a free rigid body
�

�Mt � �Mt� BMt�� Mt � so����
�Qt � QtBMt� Qt � SO����

Remark ���� The presented way to derive Euler equations can be applied to
the curves on the group SO�n� of orthogonal orientation�preserving n � n
matrices with an arbitrary n 	 �� Then we come to equations of rotations of
a generalized n�dimensional rigid body�

Now we rewrite Euler equations via isomorphism ����� of so��� and R��
which is essentially ��dimensional and does not generalize to higher dimen�
sions� Recall that for an antisymmetric matrix

M �

�� � ��� ��
�� � ���
��� �� �

�A � so����
the corresponding vector � � R� is

� �

����
��
��

�A � M � ��

Now Euler equations read as follows
�
��t � �t � ��t� �t � R��
�Qt � Qt

b��t� Qt � SO����

where � 
 R�� R� and b� 
 R�� so��� are the operators corresponding to
B 
 so���� so��� via the isomorphism so���� R� ������
Eigenvectors of the symmetric positive de�nite operator � 
 R�� R� are

called principal axes of inertia of the rigid body� In the sequel we assume that
the rigid body is asymmetric� i�e�� the operator � has � distinct eigenvalues
��� ��� ��� We order the eigenvalues of �


�� 	 �� 	 ���

and choose an orthonormal frame e�� e�� e� of the corresponding eigenvectors�
i�e�� principal axes of inertia� In the basis e�� e�� e�� the operator � is diagonal


�

����
��
��

�A �
������

����
����

�A �
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and the equation ��t � �t � ��t reads as follows
����

��� � ��� � ��������

��� � ��� � ��������

��� � ��� � ��������

������

��� Phase Portrait

Now we describe the phase portrait of the �rst of Euler equations


��t � �t � ��t� �t � R�� ������

This equation has two integrals
 energy

��t� �t� � const

and moment of momentum

��t� ��t� � const �

Indeed


d

d t
��t� �t� � ���t � ��t� �t� � �����t� �t � �t� � ��

d

d t
��t� ��t� � ��t � ��t� ��t�  ��t� ���t � ��t�� � ���t � ��t� ��t�

� ����t� ��t � ��t� � �

by the invariance property ����� and symmetry of ��
So all trajectories �t of equation ������ satisfy the restrictions�

���  ���  ��� � const�

���
�
�  ���

�
�  ���

�
� � const�

������

i�e�� belong to intersection of spheres with ellipsoids� Moreover� since the di�er�
ential equation ������ is homogeneous� we draw its trajectories on one sphere
! the unit sphere

���  ���  ��� � �� ������

and all other trajectories are obtained by homotheties�
First of all� intersections of the unit sphere with the principal axes of

inertia� i�e�� the points
�e�� �e�� �e�

are equilibria� and there are no other equilibria� see equations �������
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e�

e�

e�

Fig� ���� Phase portrait of system �����


Further� the equilibria �e�� �e� corresponding to the maximal and min�
imal eigenvalues ��� �� are stable� more precisely� they are centers� and the
equilibria �e� corresponding to �� are unstable ! saddles� This is obvious
from the geometry of intersections of the unit sphere with ellipsoids

���
�
�  ���

�
�  ���

�
� � C�

Indeed� for C � �� the ellipsoids are inside the sphere and do not intersect it�
ForC � ��� the ellipsoid touches the unit sphere from inside at the points �e��
Further� for C 	 �� and close to ��� the ellipsoids intersect the unit sphere by
� closed curves surrounding e� and �e� respectively� The behavior of intersec�
tions is similar in the neighborhood of C � ��� If C 	 ��� then the ellipsoids
are big enough and do not intersect the unit sphere� for C � ��� the small
semiaxis of the ellipsoid becomes equal to radius of the sphere� so the ellipsoid
touches the sphere from outside at �e�� and for C � �� and close to �� the
intersection consists of � closed curves surrounding �e�� If C � ��� then the
ellipsoid touches the sphere at the endpoints of the medium semiaxes �e��
and in the neighborhood of each point e�� �e�� the intersection consists of
four separatrix branches tending to this point� Equations for the separatrices
are derived from the system�

���  ���  ��� � ��

���
�
�  ���

�
�  ���

�
� � ���

We multiply the �rst equation by �� and subtract it from the second equation


��� � ����
�
� � ��� � ����

�
� � ��
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Thus the separatrices belong to intersection of the unit sphere with two planes

��
def
� f���� ��� ��� � R� j

p
�� � �� �� � �

p
�� � �� ��g�

thus they are arcs of great circles�
It turns out that separatrices and equilibria are the only trajectories be�

longing to a ��dimensional plane� Moreover� all other trajectories satisfy the
following condition


� �� ��� � �� Rei 
 � � �� � $� �� �� ������

i�e�� the vectors �� ��� and $� are linearly independent� Indeed� take any trajec�
tory �t on the unit sphere� All trajectories homothetic to the chosen one form
a cone of the form

C����  ���  ���� � ���
�
�  ���

�
�  ���

�
�� �� � C � ��� ������

But a quadratic cone in R� is either degenerate or elliptic� The conditions
� �� ��� � �� Rei mean that C �� �i� i � �� �� �� i�e�� cone ������ is elliptic�
Now inequality ������ follows from the next two facts� First� �� �� �� �� i�e�� the
trajectory �t is not tangent to the generator of the cone� Second� the section
of an elliptic cone by a plane not containing the generator of the cone is an
ellipse ! a strongly convex curve�
In view of ODE ������� the convexity condition ������ for the cone gener�

ated by the trajectory is rewritten as follows


� �� ��� � �� Rei
 � � ��� ��� � ���� ��� � ��  �� ��� � ���� �� ��
������

The planar separatrix curves in the phase portrait are regular curves on
the sphere� hence

� � ��� � �� Re�
 � � �� �� ��
or� by ODE �������

� � ��� � �� Re�
 � � ��� ��� �� �� ������

��� Controlled Rigid Body� Orbits

Assume that we can control rotations of the rigid body by applying a torque
along a line that is �xed in the body� We can change the direction of torque
to the opposite one in any moment of time�
Then the control system for the angular velocity is written as

��t � �t � ��t � l� �t � R�� ������

and the whole control system for the controlled rigid body is
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��t � �t � ��t � l� �t � R��
�Qt � Qt

b��t� Qt � SO���� ������

where l �� � is a �xed vector along the chosen line�
Now we describe orbits and attainable sets of the ��dimensional control sys�

tem ������� But before that we study orbits of the ��dimensional system �������

����� Orbits of the ��Dimensional System

System ������ is analytic� thus dimension of the orbit through a point � � R�

coincides with dimension of the space

Lie���� �� � l� � Lie��� � ��� l��

Denote the vector �elds


f��� � � � ��� g��� � l�

and compute several Lie brackets


�g� f ���� �
d f

d �
g��� � d g

d �
f��� � l � ��  � � �l�

�g� �g� f ����� � l � �l  l � �l � �l � �l�

�

�
��g� �g� f ��� �g� f ����� � l � ��l � �l�  �l � �l� � �l�

We apply ������ with l � � and obtain that three constant vector �elds g�
�g� f �� ��g� �g� f ��� �g� f �� are linearly independent


g��� � �
�
�g� f ���� � �

�
��g� �g� f ��� �g� f �����

� l � l � �l � ��l � �l� � �l  l � ��l � �l�� �� �
if l �� ��� l �� Rei�
We obtain the following statement for generic disposition of the vector l�

Case �� l �� ��� l �� Rei�
Proposition ���� Assume that l �� ��� l �� Rei� Then Lie��f� g� � R� for
any � � R�� System ������ has one ��dimensional orbit� R��

Now consider special dispositions of the vector l�

Case �� Let l � ��� l �� Re�� Since the plane �� is invariant for the free
body ������ and l � ��� then the plane �� is also invariant for the controlled
body ������� i�e�� the orbit through any point of �� is contained in ��� On
the other hand� implication ������ yields

l � �l � �l� �� ��
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But the vectors l � g��� and l � �l � �
� �g� �g� f ����� form a basis of the

plane ��� thus �� is in the orbit through any point � � ��� Consequently�
the plane �� is an orbit of ������� If an initial point �� �� ��� then the
trajectory �t of ������ through �� is not �at� thus

��t � ��t� � l � �l � �l� �� ��

So the orbit through �� is ��dimensional� We proved the following statement�

Proposition ���� Assume that l � �� n Re�� Then system ������ has one
��dimensional orbit� the plane ��� and two ��dimensional orbits� connected
components of R� n���

The case l � �� nRe� is completely analogous� and there holds a similar
proposition with �� replaced by ���

Case �� Now let l � Re� n f�g� i�e�� l � ce�� c �� �� First of all� the line Re� is
an orbit� Indeed� if � � Re�� then f��� � �� and g��� � l is also tangent to
the line Re��
To �nd other orbits� we construct an integral of the control system ������

from two integrals ������ of the free body� Since g��� � l � ce�� we seek for
a linear combination of the integrals in ������ that does not depend on ���
We multiply the �rst integral by ��� subtract from it the second integral and
obtain an integral for the controlled rigid body


��� � ����
�
�  ��� � ����

�
� � C� ������

Since �� 	 �� 	 ��� this is an elliptic cylinder in R��
So each orbit of ������ is contained in a cylinder ������� On the other hand�

the orbit through any point �� � R� n Re� must be at least ��dimensional�
Indeed� if �� �� Re��Re�� then the free body has trajectories not tangent to
the �eld g� and if �� � Re� or Re�� this can be achieved by a small translation
of �� along the �eld g� Thus all orbits outside of the line Re� are elliptic
cylinders �������

Proposition ���� Let l � Re�nf�g� Then all orbits of system ������ have the
form ������� there is one ��dimensional orbit � the line Re� �C � ��� and an
in�nite number of ��dimensional orbits � elliptic cylinders ������ with C 	 ��
see Fig� ��	�

The case l � Re� n f�g is completely analogous to the previous one�
Proposition ���� Let l � Re�nf�g� Then system ������ has one ��dimensional
orbit � the lineRe�� and an in�nite number of ��dimensional orbits � elliptic
cylinders

��� � ����
�
�  ��� � ����

�
� � C� C 	 ��



��� Controlled Rigid Body� Orbits ��

e�

e�

e�

Fig� ���� Orbits in the case l � Re� n f	g

Case �� Finally� consider the last case
 let l � Re�n f�g� As above� we obtain
an integral of control system ������


��� � ����
�
� � ��� � ����

�
� � C� ������

If C �� �� this equation determines a hyperbolic cylinder� By an argument
similar to that used in Case �� we obtain the following description of orbits�

Proposition ���� Let l � Re�nf�g� Then there is one ��dimensional orbit �
the line Re�� and an in�nite number of ��dimensional orbits of the following
form�

��� connected components of hyperbolic cylinders ������ for C �� ��
��� half�planes � connected components of the set ��� ���� nRe��
see Fig� ����

e�

e�

e�

Fig� ���� Orbits in the case l � Re� n f	g
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So we considered all possible dispositions of the vector l � R�nf�g� and in
all cases described orbits of the ��dimensional system ������� Now we study
orbits of the full ��dimensional system �������

����� Orbits of the ��Dimensional System

The vector �elds in the right�hand side of the ��dimensional system ������ are

f�Q��� �

�
Qb��
�� ��

�
� g�Q��� �

�
�
l

�
� �Q��� � SO����R��

Notice the commutation rule for vector �elds of the form that appear in
our problem


fi�Q��� �

�
Qb�wi���
vi���

�
� Vec�SO����R���

�f�� f���Q��� �

�BBB�
Q�b�w�� b�w��so���  Qb��� w�

� �
v� � � w�

� �
v�

�
� v�
� �

v� � � v�
� �

v�

�CCCA �

We compute �rst the same Lie brackets as in the ��dimensional case


�g� f � �

�
Qb�l

l � ��  �� �l

�
�

�

�
�g� �g� f �� �

�
�

l � �l

�
�

�

�
��g� �g� f ��� �g� f �� �

�
�

l � ��l � �l�  �l � �l� � �l

�
�

Further� for any vector �eld X � Vec�SO����R�� of the form

X �

�
�
x

�
� x ! a constant vector �eld on R�� ������

we have

�X� f � �

�
Qb�x
�
�
� ������

To study the orbit of the ��dimensional system ������ through a point
�Q��� � SO��� �R�� we follow the di�erent cases for the ��dimensional sys�
tem ������ in Subsect� ������

Case �� l �� ��� l �� Rei� We can choose � linearly independent vector
�elds in Lie�f� g� of the form ������
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X� � g� X� �
�

�
�g� �g� f ��� X� �

�

�
��g� �g� f �� �g� f ���

By the commutation rule ������� we have � linearly independent vectors in
Lie�Q	���f� g�


X� �X� �X� � �X�� f � � �X�� f � � �X�� f � �� ��
Thus the orbit through �Q��� is ��dimensional�

Case �� l � �� nRe��
Case ���� � �� ��� First of all� Lie�f� g� contains � linearly independent

vector �elds of the form ������


X� � g� X� �
�

�
�g� �g� f ���

Since the trajectory of the free body inR� through � is not �at� we can assume
that the vector v � � � �� is linearly independent of l and l � �l� Now our
aim is to show that Lie�f� g� contains � vector �elds of the form

Y� �

�
QM�

v�

�
� Y� �

�
QM�

v�

�
� M� �M� �� �� ������

where the vector �elds v� and v� vanish at the point �� If this is the case� then
Lie�Q	���f� g� contains � linearly independent vectors


X��Q���� X��Q���� f�Q����

Y��Q��� �

�
QM�

�

�
� Y��Q��� �

�
QM�

�

�
�

�Y�� Y���Q��� �

�
Q�M��M��

�

�
�

and the orbit through the point �Q��� is ��dimensional�
Now we construct � vector �elds of the form ������ in Lie�f� g�� Taking

appropriate linear combinations with the �elds X�� X�� we project the second
component of the �elds �g� f � and �

� �f� �g� �g� f �� to the line Rv� thus we obtain
the vector �elds �

Qb�l
k�v

�
�

�
Qb��l � �l�

k�v

�
� Lie�f� g�� ������

If both k� and k� vanish at �� these vector �elds can be taken as Y�� Y�
in ������� And if k� or k� does not vanish at �� we construct such vector �elds
Y�� Y� taking appropriate linear combinations of �elds ������ and f with the
�elds g� �g� �g� f ���
So in Case ��� the orbit is ��dimensional�
Case ���� � � ��� There are � linearly independent vectors in the space

Lie�Q	���f� g�




�� � Rotations of the Rigid Body

X� � g� X� �
�

�
�g� �g� f ��� �X�� f �� �X�� f �� ��X�� f �� �X�� f ���

Since the orbit inR� is ��dimensional� the orbit in SO����R� is ��dimensional�
Case �� l � Re� n f�g�
Case ���� � �� Re�� The argument is similar to that of Case ���� We can

assume that the vectors l and v � �� �� are linearly independent� The orbit
in R� is ��dimensional and the vectors l� v span the tangent space to this
orbit� thus we can �nd vector �elds in Lie�f� g� of the form


Y� � �g� f �� C�g � C�f �

�
Qb�l  C�Qb��

�

�
�

Y� � �Y�� f � �

�
Q�b�l� b���  C�Qb��

�

�
for some real functions Ci� i � �� � � � � �� Then we have � linearly independent
vectors in Lie�Q	���f� g�


g� f� Y�� Y�� �Y�� Y���

So the orbit of the ��dimensional system ������ is ��dimensional �it cannot
have dimension � since the ��dimensional system ������ has a ��dimensional
orbit��

Case ���� � � Re�� The vectors

f�Q��� �

�
Qb��
�

�
� �g� f ��Q��� �

�
Qb�l
�

�
�

are linearly dependent� thus dimLie�Q	���f� g� � dim span�f� g�j�Q	�� � �� So
the orbit is ��dimensional�
The cases l � Rei n f�g� i � �� �� are similar to Case ��
We completed the study of orbits of the controlled rigid body ������ and

now summarize it�

Proposition ��	� Let �Q��� be a point in SO����R�� If the orbit O of the ��
dimensional system ������ through the point � is �� or ��dimensional� then the
orbit of the ��dimensional system ������ through the point �Q��� is SO����O�
i�e�� respectively �� or ��dimensional� If dimO � �� then the ��dimensional
system has a ��dimensional orbit�

We will describe attainable sets of this system in Sect� ��� after acquiring
some general facts on attainable sets�



�

Control of Con�gurations

In this chapter we apply the Orbit Theorem to systems which can be controlled
by the change of their con�guration� i�e�� of relative position of parts of the
systems� A falling cat exhibits a well�known example of such a control� If a
cat is left free over ground �e�g� if it falls from a tree or is thrown down by
a child�� then the cat starts to rotate its tail and bend its body� and �nally
falls to the ground exactly on its paws� regardless of its initial orientation over
the ground� Such a behavior cannot be demonstrated by a mechanical system
less skillful in turning and bending its parts �e�g� a dog or just a rigid body��
so the crucial point in the falling cat phenomenon seems to be control by the
change of con�guration� We present a simple model of systems controlled in
such a way� and study orbits in several simplest examples�


�� Model

A system of mass points� i�e�� a mass distribution in Rn� is described by a
nonnegative measure � in Rn� We restrict ourselves by measures with com�
pact support� For example� a system of points x�� � � � � xk � Rn with masses
��� � � � � �k 	 � is modeled by the atomic measure � �

Pk
i�� �i�xi � where �xi

is the Dirac function concentrated at xi� One can consider points xi free or
restricted by constraints in Rn� More generally� mass can be distributed along
segments or surfaces of various dimensions� So the state space M of a system
to be considered is a reasonable class of measures in Rn�
A controller is supposed to sit in the construction and change its con�gu�

ration� The system is conservative� i�e�� impulse and angular momentum are
conserved� Our goal is to study orbits of systems subject to such constraints�
Mathematically� conservation laws of a system come from N$other theorem

due to symmetries of the system� Kinetic energy of our system is

L �
�

�

Z
j �xj� d�� �����
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in particular� for an atomic measure � �
Pk

i�� �i�xi �

L �
�

�

kX
i��

�ij �xij��

By N$other theorem �see e�g� ������� if the �ow of a vector �eld V � VecRn
preserves a Lagrangian L� then the system has an integral of the form

� L

� �x
V �x� � const �

In our case� Lagrangian ����� is invariant w�r�t� isometries of the Euclidean
space� i�e�� translations and rotations in Rn�
Translations in Rn are generated by constant vector �elds


V �x� � a � Rn�
and our system is subject to the conservation lawsZ

h �x� ai d� � const � a � Rn�

That is� Z
�xd� � const�

i�e�� the center of mass of the system moves with a constant velocity �the total
impulse is preserved�� We choose the inertial frame of reference in which the
center of mass is �xed
 Z

�xd� � ��

For an atomic measure � �
Pk

i�� �i�xi � this equality takes the form

kX
i��

�ixi � const�

which is reduced by a change of coordinates in Rn to

kX
i��

�ixi � ��

Now we pass to rotations in Rn� Let a vector �eld

V �x� � Ax� x � Rn�
preserve the Euclidean structure in Rn� i�e�� its �ow

etV �x� � etAx




�� Model ��

preserve the scalar product


hetAx� etAyi � hx� yi� x� y � Rn�
Di�erentiation of this equality at t � � yields

hAx� yi  hx�Ayi � �� x� y � Rn�
i�e�� the matrix A is skew�symmetric


A� � �A�
Conversely� if the previous equality holds� then�

etA
��
� etA

�

� e�tA �
�
etA
���

�

i�e�� the matrix etA is orthogonal� We proved that the �ow etA preserves
the Euclidean structure in Rn if and only if A� � �A� Similarly to the ��
dimensional case considered in Sect� ���� the group of orientation�preserving
linear orthogonal transformations of the Euclidean space Rn is denoted by
SO�n�� and the corresponding Lie algebra of skew�symmetric transformations
in Rn is denoted by so�n�� In these notations�

etA � SO�n�� A � so�n��

Return to derivation of conservation laws for our system of mass points�
The Lagrangian L � �

�

R j �xj� d� is invariant w�r�t� rotations in Rn� so N$other
theorem gives integrals of the form

� L

� �x
V �x� �

Z
h �x�Axi d� � const� A � so�n��

For an atomic measure � �
Pk

i�� �i�xi � we obtain

kX
i��

�ih �xi� Axii � const� A � so�n�� �����

and we restrict ourselves by the simplest case where the constant in the right�
hand side is just zero�
Summingup� we have the following conservation laws for a system of points

x�� � � � � xk � Rn with masses ��� � � � � �k

kX
i��

�ixi � �� �����

kX
i��

�ih �xi� Axii � �� A � so�n�� �����
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The state space is a subset

M � Rn� 
 
 
 �Rn� 	z 

k

�

and admissible paths are piecewise smooth curves inM that satisfy constraints
������ ������ The �rst equality ����� determines a submanifold in M � in fact�
this equality can obviously be resolved w�r�t� any variable xi� and one can get
rid of this constraint by decreasing dimension ofM � The second equality �����
is a linear constraint for velocities �xi� it determines a distribution onM � So the
admissibility conditions ������ ����� de�ne a linear in control� thus symmetric�
control system on M � Notice that a more general condition ����� determines
an �a�ne distribution
� and control system ������ ����� is control�a�ne� thus�
in general� not symmetric�
We consider only the symmetric case ������ ������ Then orbits coincide

with attainable sets� We compute orbits in the following simple situations


��� Two free points
 k � ��
��� Three free points
 k � ��
��� A broken line with � links in R��


�� Two Free Points

We have k � �� and the �rst admissibility condition ����� reads

��x�  ��x� � �� x�� x� � Rn�
We eliminate the second point


x� � x� x� � ���
��

x�

and exclude collisions of the points


x �� ��
So the state space of the system is

M � Rn n f�g�
The second admissibility condition �����

��h �x�� Ax�i ��h �x�� Ax�i � �� A � so�n��
is rewritten as �

��  ������
� h �x�Axi � �� A � so�n��

i�e��

h �x�Axi � �� A � so�n�� �����

This equation can easily be analyzed via the following proposition�




�� Three Free Points �	�

Exercise ���� If A � so�n�� then hAx� xi � � for all x � Rn� Moreover� for
any vector x � Rnn f�g� the space fAx j A � so�n�g coincides with the whole
orthogonal complement x� � fy � Rn j hy� xi � �g�
So restriction ����� means that

�x � x � ��

i�e�� velocity of an admissible curve is proportional to the state vector� The
distribution determined by this condition is one�dimensional� thus integrable�
So admissible curves have the form

x�t� � 
�t�x���� 
�t� 	 ��

The orbit and admissible set through any point x � Rn n f�g is the ray

Ox � R�x � f
x j 
 	 �g�

The points x�� x� can move only along a �xed line inRn� and orientation of
the system cannot be changed� In order to have a more sophisticated behavior�
one should consider more complex systems�


�� Three Free Points

Now k � �� and we eliminate the third point via the �rst admissibility condi�
tion �����


x � ��x�� y � ��x��

x� � � �

��
�x y��

In order to exclude the singular con�gurations where the points x�� x�� x�
are collinear� we assume that the vectors x� y are linearly independent� So the
state space is

M � f�x� y� � Rn�Rn j x � y �� �g�
Introduce the notation

�i �
�

�i
� i � �� �� ��

Then the second admissibility condition ����� takes the form


h �x�A����  ���x ��y�i  h �y�A����  ���y  ��x�i � �� A � so�n��

It turns out then that admissible velocities �x� �y should belong to the plane
span�x� y�� This follows by contradiction from the following proposition�
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Lemma ���� Let vectors v� w� �� � � Rn satisfy the conditions

v � w �� �� span�v� w� �� �� �� span�v� w��
Then there exists A � so�n� such that

hAv� �i hAw� �i �� ��
Proof� First of all� we may assume that

hv� wi � �� �����

Indeed� choose a vector bw � span�v� w� such that hv� bwi � �� Then w � bw 
v
and

hAv� �i hAw� �i � hAv� �  
�i hA bw� �i�
thus we can replace w by bw�
Second� we can renormalize vectors v� w and assume that

jvj � jwj � �� �����

Now let � �� span�v� w�� we can assume this since the hypotheses of the
lemma are symmetric w�r�t� �� �� Then

� � 
v  �w  l

for some vector
l � span�v� w��

Choose an operator A � so�n� such that
Aw � ��

A 
 span�v� l�� span�v� l� is invertible�

Then
hAv� �i hAw� �i � hAv� li �� ��

i�e�� the operator A is the required one� ut
This lemma means that for any pair of initial points �x� y� � M � all ad�

missible curves xt and yt are contained in the plane span�x� y� � Rn� So we
can reduce our system to such a plane and thus assume that x� y � R��
Thus we obtain the following system


h �x�A����  ���x ��y�i  h �y�A����  ���y  ��x�i � �� A � so���� �����

�x� y� �M � f�v� w� � R��R� j v �w �� �g�
Consequently�

A � const 

�
� �
�� �

�
�




�� Three Free Points �	�

i�e�� equality ����� de�nes one linear equation on velocities� thus a rank �
distribution on a ��dimensional manifoldM � Using Exercise ���� it is easy to
see that this distribution is spanned by the following � linear vector �elds


V� � ����  ���x ��y�
�

� x
�

�
���  ���x ��y

�

�
� B�

�
x
y

�
�

V� � ����  ���y  ��x�
�

� y
�

�
�

��x ���  ���y

�
� B�

�
x
y

�
�

V� � x
�

� x
 y

�

� y
�

�
x
y

�
� Id

�
x
y

�
�

where

B� �

�
��  �� ��
� �

�
� B� �

�
� �
�� ��  ��

�
� Id �

�
� �
� �

�
�

In order to simplify notations� we write here ��dimensional vectors as ��di�
mensional columns
 e�g��

V� �

�
���  ���x ��y

�

�
�

�BB�
���  ���x�  ��y�
���  ���x�  ��y�

�
�

�CCA �

where

x �

�
x�
x�

�
� y �

�
y�
y�

�
�

The rank � distribution in question can have only orbits of dimensions �
or �� In order to �nd out� which of these possibilities are realized� compute
the Lie bracket


�V�� V�� � �B�� B��

�
x
y

�
�

�B�� B�� � ��

�
�� ��  ��

����  ��� ���
�
�

It is easy to check that

V� � V� � V� � �V�� V�� �� � � B� �B� � Id��B�� B�� �� ��

We write �� � matrices as vectors in the standard basis of the space gl���
�
� �
� �

�
�

�
� �
� �

�
�

�
� �
� �

�
�

�
� �
� �

�
�

then
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det�Id� B�� B�� �B�� B��� �

��������
� ��  �� � ��
� �� � ��  ��
� � �� ����  ���
� � ��  �� ���

��������
� ��������  ����  ����� 	 ��

Consequently� the �elds V�� V�� V�� �V�� V�� are linearly independent everywhere
onM � i�e�� the control system has only ��dimensional orbits� So the orbits co�
incide with connected components of the state space� The manifoldM is de�
composed into � connected components corresponding to positive or negative
orientation of the frame �x� y�


M �M� �M��
M� � f�x� y� � R��R� j det�x� y� � �g�

So the system on M has � orbits� thus � attainable sets
 M� and M�� Given
any pair of linearly independent vectors �x� y� � R�� R�� we can reach any
other nonsingular con�guration �"x� "y� � R� � R� with "x� "y � span�x� y� and
the frame �"x� "y� oriented in the same way as �x� y��
Returning to the initial problem for � points x�� x�� x� � Rn
 the ��dimen�

sional linear plane of the triangle �x�� x�� x�� should be preserved� as well
as orientation and center of mass of the triangle� Except this� the triangle
�x�� x�� x�� can be rotated� deformed or dilated as we wish�
Con�gurations of � points that de�ne distinct ��dimensional planes �or

de�ne distinct orientations in the same ��dimensional plane� are not mutually
reachable
 attainable sets from these con�gurations do not intersect one with
another� Although� if two con�gurations de�ne ��dimensional planes having
a common line� then intersection of closures of attainable sets from these
con�gurations is nonempty
 it consists of collinear triples lying in the common
line� Theoretically� one can imagine a motion that steers one con�guration into
another
 �rst the � points are made collinear in the initial ��dimensional plane�
and then this collinear con�guration is steered to the �nal one in the terminal
��dimensional plane�


�� Broken Line

Consider a system of � mass points placed at vertices of a broken line of �
segments in a ��dimensional plane� We study the most symmetric case� where
all masses are equal to � and lengths of all segments are also equal to �� see
Fig� ����
The holonomic constraints for the points

x�� x�� x�� x� � R� � C

have the form




�� Broken Line �	�

x�

x�

x�

x�

Fig� ���� Broken line

�X
j��

xj � �� jxj � xj��j � �� j � �� �� �� �����

Thus
xj � xj�� � ei�j � �j � S�� j � �� �� ��

Position of the system is determined by the ��tuple of angles ���� ��� ���� so
the state space is the ��dimensional torus


M � S� � S� � S� �T� � f���� ��� ��� j �j � S�� j � �� �� �g�
The nonholonomic constraints on velocities reduce to the equality

�X
j��

hixj � �xji � ��

In order to express this equality in terms of the coordinates �j � denote �rst

yj � xj � xj��� j � �� �� ��

Taking into account the condition
P�

j�� xj � �� we obtain


x� � ��y�
�
� y�
�
� y�
�
�

x� �
y�
�
� y�
�
� y�
�
�

x� �
y�
�
 

y�
�
� y�
�
�

x� �
y�
�
 

y�
�
 
�y�
�

�

Now compute the di�erential form
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� �
�X
j��

hixj� dxji � hi ������y�  �����y�  �����y�� � dy�i

 hi ������y�  y�  �����y�� � dy�i
 hi ������y�  �����y�  �����y�� � dy�i �

Since hiyj � dyki � hei�j � ei�kd�ki � cos��j � �k�d�k� we have

� � ������  ����� cos��� � ���  ����� cos��� � ���� d��

 ������ cos��� � ���  �  ����� cos��� � ���� d��

 ������ cos��� � ���  ����� cos��� � ���  ���� d���

Consequently� the system under consideration is the rank � distribution
� � Ker � on the ��dimensional manifold M � T�� The orbits can be �� or
��dimensional� To distinguish these cases� we can proceed as before
 �nd a
vector �eld basis and compute Lie brackets� But now we study integrability
of � in a dual way� via techniques of di�erential forms�
Assume that the distribution � has a ��dimensional integral manifold

N �M � Then
�jN � ��

consequently�
� � d ��jN � � �d��jN �

thus
� � d�qj�q

� d�qjKer�q
� q � N�

In terms of exterior product of di�erential forms�

�� � d��q � �� q � N�

We compute the di�erential and exterior product


d� � sin��� � ���d�� � d��  sin��� � ���d�� � d��  
�

�
sin��� � ���d�� � ���

� � d� �
�

�
�sin��� � ���  sin��� � ����d�� � d�� � d���

Thus � � d� � � if and only if

sin��� � ���  sin��� � ��� � ��

i�e��

�� � �� ������

or

��� � ���  ��� � ��� � �� ������




�� Broken Line �	


Fig� ���� Hard to control con�gu�
ration� �� � ��

Fig� ���� Hard to control con�gu�
ration� ��� � ��
 � ��� � ��
 � �

see Figs� ���� ����
Con�gurations ������ and ������ are hard to control
 if neither of these

equalities is satis�ed� then � � d� �� �� i�e�� the system has ��dimensional
orbits through such points� If we choose basis vector �elds X�� X� of the
distribution �� then already the �rst bracket �X�� X�� is linearly independent
of X�� X� at points where both equalities ������� ������ are violated�
Now it remains to study integrability of � at points of surfaces �������

������� Here �X�� X���q� � �q� but we may obtain nonintegrability of � via
brackets of higher order�
Consider �rst the two�dimensional surface

P � f�� � ��g�

If the orbit through a point q � P is two�dimensional� then the distribution �
should be tangent to P in the neighborhood of q� But it is easy to see that �
is everywhere transversal to P 
 e�g��

TqP � �

� ��

����
q

�� �q� q � P�

So the system has ��dimensional orbits through any point of P �
In the same way one can see that the orbits through points of the second

surface ������ are ��dimensional as well�
The state spaceM is connected� thus there is the only orbit �and attainable

set� ! the whole manifoldM � The system is completely controllable�





	

Attainable Sets

In this chapter we study general properties of attainable sets� We consider
families of vector �elds F on a smooth manifoldM that satisfy the property

Lieq F � TqM � q �M� �����

In this case the system F is called bracket�generating � or full�rank � By the
analytic version of the Orbit Theorem �Corollary ������ orbits of a bracket�
generating system are open subsets of the state space M �
If a family F � VecM is not bracket�generating� and M and F are real

analytic� we can pass from F to a bracket�generating family FjO � where O is
an orbit of F � Thus in the analytic case requirement ����� is not restrictive in
essence�

��� Attainable Sets of Full
Rank Systems

For bracket�generating systems both orbits and attainable sets are full�dimen�
sional� Moreover� there holds the following important statement�

Theorem 	�� �Krener�� If F � VecM is a bracket�generating system� then
Aq� � intAq� for any q� �M �

Remark ���� In particular� attainable sets for arbitrary time have nonempty
interior


intAq� �� ��
Attainable sets may be


� open sets� Fig� ����
� manifolds with smooth boundary� Fig� ����
� manifolds with boundary having singularities �corner or cuspidal points��
Fig� ���� ����
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M

Aq�

q�

M

Aq�

q�

Fig� 	��� Orbit an open set Fig� 	��� Orbit a manifold with
smooth boundary

M

Aq�

q�
M

Aq�

q�

Fig� 	��� Orbit a manifold with
nonsmooth boundary

Fig� 	��� Orbit a manifold with
nonsmooth boundary

One can easily construct control systems �e�g� in the plane� that realize these
possibilities�
On the other hand� Krener�s theorem prohibits an attainable set Aq� of a

bracket�generating family to be


� a lower�dimensional subset of M � Fig� ����
� a set where boundary points are isolated from interior points� Fig� ����

Now we prove Krener�s theorem�

Proof� Fix an arbitrary point q� � M and take a point q� � Aq� � We show
that

q� � intAq� � �����

��� There exists a vector �eld f� � F such that f��q�� �� �� otherwise
Lieq� �F� � � and dimM � �� The curve

s� �� q� 	 es�f� � � � s� � ��� �����

is a ��dimensional submanifold of M for small enough �� 	 ��
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M M

Fig� 	��� Prohibited orbit� subset
of non�full dimension

Fig� 	��� Prohibited orbit� subset
with isolated boundary points

If dimM � �� then q� 	 es�f� � intAq� for su�ciently small s� 	 �� and
inclusion ����� follows�

��� Assume that dimM 	 �� Then arbitrarily close to q� we can �nd a point q�
on curve ����� and a �eld f� � F such that the vector f��q�� is not tangent
to curve �����


q� � q� 	 et��f� � t�� su�ciently small�

�q� 	 f�� � �q� 	 f�� �� ��
otherwise dimLieq F � � for q on curve ����� with small s�� Then the mapping

�s�� s�� �� q� 	 es�f� 	 es�f� � �����

t�� � s� � t��  ��� � � s� � ���

is an immersion for su�ciently small �i� thus its image is a ��dimensional
submanifold of M �
If dimM � �� inclusion ����� is proved�

��� Assume that dimM 	 ��We can �nd a vector f��q�� f� � F � not tangent to
surface ����� su�ciently close to q�
 there exist t��� t�� 	 � and f� � F such that
the vector �eld f� is not tangent to surface ����� at a point q� � q�	et��f�	et��f� �
Otherwise the family F is not bracket�generating�
The mapping

�s�� s�� s�� �� q� 	 es�f� 	 es�f� 	 es�f� �
ti� � si � ti�  �i� i � �� �� � � s� � ���

is an immersion for su�ciently small �i� thus its image is a smooth ��
dimensional submanifold of M �
If dimM � �� inclusion ����� follows� Otherwise we continue this proce�

dure�

��� For dimM � n� inductively� we �nd a point
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�t�n��� t
�
n��� � � � � t

n��
n��� � Rn��� tin�� 	 �

and �elds f�� � � � � fn � F such that the mapping

�s�� � � � � sn� �� q� 	 es�f� 	 
 
 
 	 esnfn �
tin�� � si � tin��  �i� i � �� � � � � n� �� � � sn � �n�

qn�� � q� 	 et�n��f� 	 et�n��f� 	 
 
 
 	 etn��n��fn�� �

is an immersion� The image of this immersion is an n�dimensional submanifold
of M � thus an open set� This open set is contained in Aq� and can be chosen
as close to the point q� as we wish� Inclusion ����� is proved� and the theorem
follows� ut
We obtain the following proposition from Krener�s theorem�

Corollary 	��� Let F � VecM be a bracket�generating system� If Aq��F� �
M for some q� �M � then Aq� �F� �M �

Proof� Take an arbitrary point q �M � We show that q � Aq��F��
Consider the system

�F � f�V j V � Fg � VecM�

This system is bracket�generating� thus by Theorem ���

Aq��F� � intAq��F� �q �M�

Take any point bq � intAq��F� and a neighborhood of this point Obq �
Aq��F�� Since Aq� �F� is dense in M � then

Aq��F� �Obq �� ��
That is why Aq��F� �Aq��F� �� �� i�e�� there exists a point

q� � Aq��F� �Aq��F��
In other words� the point q� can be represented as follows


q� � q� 	 et�f� 	 
 
 
 	 etkfk � fi � F � ti 	 ��

q� � q 	 e�s�g� 	 
 
 
 	 e�slgl � gi � F � si 	 ��

We multiply both decompositions from the right by eslgl 	
 
 
	es�g� and obtain
q � q� 	 et�f� 	 
 
 
 	 etkfk 	 eslgl 	 
 
 
 	 es�g� � Aq� �F��

q�e�d� ut
The sense of the previous proposition is that in the study of controllability�

we can replace the attainable set of a bracket�generating system by its closure�
In the following section we show how one can add new vector �elds to a system
without change of the closure of its attainable set�
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��� Compatible Vector Fields and Relaxations

De�nition 	��� A vector �eld f � VecM is called compatible with a system
F � VecM if

Aq�F � f� � Aq�F� �q �M�

Easy compatibility condition is given by the following statement�

Proposition 	��� Let F � VecM � For any vector �elds f�� f� � F � and any
functions a�� a� � C��M �� a�� a� � �� the vector �eld a�f� a�f� is compatible
with F �
In view of Corollary ����� the following proposition holds�

Corollary 	��� If F � VecM is a bracket�generating system such that the
positive convex cone generated by F

cone�F� �
�

kX
i��

aifi j fi � F � ai � C��M �� ai � �� k � N
�
� VecM

is symmetric� then F is completely controllable�

Proposition ��� is a corollary of the following general and strong statement�

Theorem 	��� Let X� � Y� � 
 � ��� t��� be nonautonomous vector �elds with a
common compact support� Let � � 
�
 � � � be a measurable function� Then
there exists a sequence of nonautonomous vector �elds Zn

� � fX� � Y�g� i�e��
Zn
� � X� or Y� for any 
 and n� such that the �ow

��
exp

Z t

�
Zn
� d
 � ��

exp

Z t

�
�
�
 �X�  ��� 
�
 ��Y� � d
� n���

uniformly w�r�t� �t� q� � ��� t�� �M and uniformly with all derivatives w�r�t�
q �M �

Now Proposition ��� follows� In the case a��q� a��q� � � it is a corollary
of Theorem ���� Indeed� it is easy to show that the curves

q�t� � q� 	 et�a�f��a�f��

and

q�	 ��
exp

Z t

�
�
��
 �f�  
��
 �f�� d
� 
i�t� � ai�q�t���

coincide one with another �hint
 prove that the curve

q� 	 et�a�f��a�f��	 
�
exp

Z t

�

��
��
 �f� � 
��
 �f�� d
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X�

Y�

Z
n

�

Fig� 	��� Approximation of �ow� Th� ��


is constant�� For the case a��q�� a��q� 	 � we generalize by multiplication
of control parameters by arbitrary positive function �this does not change
attainable set for all nonnegative times�� and the case a��q�� a��q� � � is
obtained by passage to limit�

Remark ���� If the �elds X� � Y� are piecewise continuous w�r�t� 
 � then the
approximating �elds Zn

� in Theorem ��� can be chosen piecewise constant�

Theorem ��� follows from the next two lemmas�

Lemma 	�
� Under conditions of Theorem ���� there exists a sequence of
nonautonomous vector �elds Zn

� � fX� � Y�g such thatZ t

�

Zn
� d
 �

Z t

�

�
�
 �X�  ��� 
�
 ��Y� � d


uniformly w�r�t� �t� q� � ��� t�� �M and uniformly with all derivatives w�r�t�
q �M �

Proof� Fix an arbitrary positive integer n� We can choose a covering of the
segment ��� t�� by subsets

N�
i��

Ei � ��� t��

such that

�i � �� � � � � N �Xi� Yi � VecM s�t� kX��Xikn	K � �

n
� kY��Yikn	K � �

n
�

where K is the compact support of X� � Y� � Indeed� the �elds X� � Y� are
bounded in the norm k 
 kn��	K � thus they form a precompact set in the
topology induced by k 
 kn	K �
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Then divide Ei into n subsets of equal measure


Ei �
n�
j��

Eij� jEijj � �

n
jEij� i� j � �� � � � � n�

In each Eij pick a subset Fij so that

Fij � Eij� jFijj �
Z
Eij


�
 � d
�

Finally� de�ne the following vector �eld


Zn
� �

�
X� � 
 � Fij�
Y� � 
 � Eij n Fij�

Then the sequence of vector �elds Zn
� is the required one� ut

Now we prove the second part of Theorem ����

Lemma 	���� Let Zn
� � n � �� �� � � � � and Z� � 
 � ��� t��� be nonautonomous

vector �elds on M � bounded w�r�t� 
 � and let these vector �elds have a compact
support� If Z t

�

Zn
� d
 �

Z t

�

Z� d
� n���

then
��
exp

Z t

�

Zn
� d
 � ��

exp

Z t

�

Z� d
� n���

the both convergences being uniform w�r�t� �t� q� � ��� t�� � M and uniform
with all derivatives w�r�t� q �M �

Proof� ��� First we prove the statement for the case Z� � �� Denote the �ow

Pn
t �

��
exp

Z t

�

Zn
� d
�

Then

Pn
t � Id 

Z t

�
Pn
� 	 Zn

� d


integrating by parts

� Id Pn
t 	

Z t

�

Zn
� d
 �

Z t

�

�
Pn
� 	 Zn

� 	
Z �

�

Z�
� d�

�
d
�

Since

Z t

�

Zn
� d
 � �� the last two terms above tend to zero� thus
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Pn
t � Id�

and the statement of the lemma in the case Z� � � is proved�

��� Now we consider the general case� Decompose vector �elds in the sequence
as follows


Zn
� � Z�  V n

� �

Z t

�

V n
� d
 � �� n���

Denote Pn
t �

��
exp

Z t

�
V n
� d
 � From the variations formula� we have

��
exp

Z t

�

Zn
� d
 �

��
exp

Z t

�

�V n
�  Z� � d
 �

��
exp

Z t

�

AdPn
� Z� d
 	 Pn

t �

Since Pn
t � Id by part ��� of this proof and thus Ad Pn

t � Id� we obtain the
required convergence


��
exp

Z t

�

Zn
� d
 � ��

exp

Z t

�

Z� d
�

ut
So we proved Theorem ��� and thus Proposition ����

��� Poisson Stability

De�nition 	���� Let f � VecM be a complete vector �eld� A point q � M
is called Poisson stable for f if for any t 	 � and any neighborhood Oq of q

there exists a point q� � Oq and a time t� 	 t such that q� 	 et�f � Oq�

In other words� all trajectories cannot leave a neighborhood of a Pois�
son stable point forever� some of them must return to this neighborhood for
arbitrarily large times�

Remark ����� If a trajectory q 	 etf is periodic� then q is Poisson stable for f �

De�nition 	���� A complete vector �eld f � VecM is Poisson stable if all
points of M are Poisson stable for f �

The condition of Poisson stability seems to be rather restrictive� but never�
theless there are surprisingly many Poisson stable vector �elds in applications�
see Poincar#e�s theorem below�
But �rst we prove a consequence of Poisson stability for controllability�

Proposition 	���� Let F � VecM be a bracket�generating system� If a vector
�eld f � F is Poisson stable� then the �eld �f is compatible with F �



��� Poisson Stability ��


Proof� Choose an arbitrary point q� � M and a moment of time t 	 �� To
prove the statement� we should approximate the point q� 	 e�tf by reachable
points�
Since F is bracket�generating� we can choose an open set W � intAq� �F�

arbitrarily close to q�� Then the set W 	 e�tf is close enough to q� 	 e�tf �
By Poisson stability� there exists t� 	 t such that

� �� �W 	 e�tf� 	 et�f �W 	 e�tf � W 	 e�t��t�f �W 	 e�tf �

But W 	 e�t��t�f � Aq��F�� thus
Aq��F� �W 	 e�tf �� ��

So in any neighborhood of q� 	 e�tf there are points of the attainable set
Aq��F�� i�e�� q� 	 e�tf � Aq��F�� ut
Theorem 	��� �Poincar�e�� Let M be a smooth manifold with a volume
form Vol� Let a vector �eld f � VecM be complete and its �ow etf preserve
volume� Let W �M � W � intW � be a subset of �nite volume� invariant for f �

Vol�W � ��� W 	 etf � W �t 	 ��
Then all points of W are Poisson stable for f �

Proof� Take any point q � W and any its neighborhood O � M of �nite
volume� The set V � W � O contains an open nonempty subset intW � O�
thus Vol�V � 	 �� In order to prove the theorem� we show that

V 	 et�f � V �� � for some large t��

Fix any t 	 �� Then all sets

V 	 entf � n � �� �� �� � � � �

have the same positive volume� thus they cannot be disjoint� Indeed� if

V 	 entf � V 	 emtf � � �n� m � �� �� �� � � � �

then Vol�W � �� since all these sets are contained inW � Consequently� there
exist nonnegative integers n 	 m such that

V 	 entf � V 	 emtf �� ��
We multiply this inequality by e�mtf from the right and obtain

V 	 e�n�m�tf � V �� ��
Thus the point q is Poisson stable for f � Since q �W is arbitrary� the theorem
follows� ut



��� � Attainable Sets

A vector �eld that preserves volume is called conservative�
Recall that a vector �eld on Rn � f�x�� � � � � xn�g is conservative� i�e��

preserves the standard volume Vol�V � �
R
V

dx� � � � dxn i� it is divergence�
free


divx f �
nX
i��

� fi
� xi

� �� f �
nX
i��

fi
�

� xi
�

��� Controlled Rigid Body� Attainable Sets

We apply preceding general results on controllability to the control system
that governs rotations of the rigid body� see ������
�

�Q
��

�
� f�Q���� g�Q���� �Q��� � SO����R�� �����

f �

�
Qb��

�� ��

�
� g �

�
�
l

�
�

By Proposition ���� the vector �eld f � �
��f  g� �

� �f �g� is compatible with
system ������ We show now that this �eld is Poisson stable on SO����R��
Consider �rst the vector �eld f�Q��� on the larger space R


Q � R�
��

where R

Q is the space of all � � � matrices� Since div�Q	�� f � �� the �eld f

is conservative on R

Q�R�

��
Further� since the �rst component of the �eld f is linear in Q� it has the

following left�invariant property in Q


etf
�
Q
�

�
�

�
Qt

�t

�

 etf

�
PQ
�

�
�

�
PQt

�t

�
� �����

Q� Qt� P � R

Q� �� �t � R�

��

In view of this property� the �eld f has compact invariant sets in R

Q�R�

� of
the form

W � �SO���K�� f ��� �� � C g� K b R

Q� K � intK� C 	 ��

so that W � intW � By Poincar#e�s theorem� the �eld f is Poisson stable on
all such sets W � thus on R


Q� R�
�� In view of the invariance property ������

the �eld f is Poisson stable on SO��� �R��
Since f is compatible with ������ then �f is also compatible� The vector

�elds �g � �f � g� � f are compatible with ����� as well� So all vector �elds
of the symmetric system

span�f� g� � faf  bg j a� b � C�g
are compatible with the initial system� Thus closures of attainable sets of
the initial system ����� and the extended system span�f� g� coincide one with
another�



��� Controlled Rigid Body� Attainable Sets ���

Let the initial system be bracket�generating� Then the symmetric system
span�f� g� is bracket�generating as well� thus completely controllable� Hence
the initial system ����� is completely controllable in the bracket�generating
case�
In the non�bracket�generating cases� the structure of attainable sets is more

complicated� If l is a principal axis of inertia� then the orbits of system �����
coincide with attainable sets� If l � �� n Re�� they do not coincide� This
is easy to see from the phase portrait of the vector �eld f��� � � � �� in
the plane ��
 the line Re� consists of equilibria of f � and in the half�planes
�� nRe� trajectories of f are semicircles centered at the origin� see Fig� ����

��

Re�

f

Fig� 	�	� Phase portrait of f j
��

in the case l � �� nRe�

The �eld f is not Poisson stable in the planes ��� The case l � �� n
Re� di�ers from the bracket�generating case since the vector �eld f preserves
volume in R�� but not in ���
A detailed analysis of the controllability problem in the non�bracket�gene�

rating cases was performed in �����








Feedback and State Equivalence

of Control Systems

��� Feedback Equivalence

Consider control systems of the form

�q � f�q� u�� q �M� u � U� �����

We suppose that not onlyM � but also U is a smooth manifold� For the right�
hand side� we suppose that for all �xed u � U � f�q� u� is a smooth vector �eld
on M � and� moreover� the mapping

�u� q� �� f�q� u�

is smooth� Admissible controls are measurable locally bounded mappings

t �� u�t� � U

�for simplicity� one can consider piecewise continuous controls�� If such a con�
trol u�t� is substituted to control system ������ one obtains a nonautonomous
ODE

�q � f�q� u�t��� �����

with the right�hand side smooth in q and measurable� locally bounded in t� For
such ODEs� there holds a standard theorem on existence and uniqueness of
solutions� at least local� Solutions q� 
 � to ODEs ����� are Lipschitzian curves
in M �see Subsect� �������
In Sect� ��� we already considered state transformations of control systems�

i�e�� di�eomorphisms of M � State transformations map trajectories of control
systems to trajectories� with the same control� Now we introduce a new class
of feedback transformations� which also map trajectories to trajectories� but
possibly with a new control�
Denote the space of new control parameters by bU � We assume that it is a

smooth manifold�
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De�nition 
��� Let � 
 M� bU � U be a smooth mapping� A transformation
of the form

f�q� u� �� f�q� ��q� bu��� q �M� u � U� bu � bU�

is called a feedback transformation�

Remark 
��� A feedback transformation reparametrizes control u in a way
depending on q�
It is easy to see that any admissible trajectory q� 
 � of the system �q �

f�q� ��q� bu�� corresponding to a control bu� 
 � is also admissible for the system
�q � f�q� u� with the control u� 
 � � ��q� 
 �� bu� 
 ��� but� in general� not vice
versa�

In order to consider feedback equivalence� we consider invertible feedback
transformations with bU � U� �jq
U � Di� U�
Such mappings � 
 M � U � U generate feedback transformations

f�q� u� �� f�q� ��q� u���

The corresponding control systems

�q � f�q� u� and �q � f�q� ��q� u��

are called feedback equivalent �
Our aim is to simplify control systems with state and feedback transfor�

mations�

Remark 
�	� In mathematical physics� feedback transformations are often
called gauge transformations�

Consider control�a�ne systems

�q � f�q�  
kX
i��

uigi�q�� u � �u�� � � � � uk� � Rk� q �M� �����

To such systems� it is natural to apply control�a�ne feedback transformations


� � ���� � � � � �k� 
 M �Rk� Rk�

�i�q� u� � ci�q�  
kX
j��

dij�q�uj� i � �� � � � � k� �����

Our aim is to characterize control�a�ne systems ����� which are locally equi�
valent to linear controllable systems w�r�t� state and feedback transforma�
tions ����� and to classify them w�r�t� this class of transformations�



��� Linear Systems ���

��� Linear Systems

First we consider linear controllable systems

�x � Ax 
kX
i��

uibi� x � Rn� u � �u�� � � � � uk� � Rk� �����

where A is an n�n matrix and bi� i � �� � � � � k� are vectors in Rn� We assume
that the vectors b�� � � � � bk are linearly independent


dimspan�b�� � � � � bk� � k�

If this is not the case� we eliminate some bi�s� We �nd normal forms of linear
systems w�r�t� linear state and feedback transformations�
To linear systems ����� we apply feedback transformations which have the

form ����� and� moreover� preserve the linear structure


ci�x� � hci� xi� ci � Rn�� i � �� � � � � k�
dij�x� � dij � R� i� j � �� � � � � k�

�����

Denote by D 
 span�b�� � � � � bk� � span�b�� � � � � bk� the linear operator with
the matrix �dij� in the base b�� � � � � bk� Linear feedback transformations ������
����� map the vector �elds in the right�hand side of the linear system ����� as
follows


�Ax� b�� � � � � bk� ��
�
Ax 

kX
i��

hci� xibi� Db�� � � � � Dbk

�
� �����

Such mapping should be invertible� so we assume that the operator D �or�
equivalently� its matrix �dij�� is invertible�
Linear state transformations act on linear systems as follows


�Ax� b�� � � � � bk� ��
�
CAC��x�Cb�� � � � � Cbk

�
� �����

where C 
 Rn� Rn is an invertible linear operator� State equivalence of linear
systems means that these systems have the same coordinate representation in
suitably chosen bases in the state space Rn�


���� Linear Systems with Scalar Control

Consider a simple model linear control system ! scalar high�order control


x�n�  
n��X
i��


ix
�i� � u� u � R� x � R� �����

where 
�� � � � � 
n�� � R� We rewrite this system in the standard form in the
variables xi � x�i���� i � �� � � � � n
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�x� � x��


 
 

�xn�� � xn�

�xn � �
Pn��

i�� 
ixi��  u�

u � R� x � �x�� � � � � xn� � Rn� ������

It is easy to see that if we take �Pn��
i�� 
ixi�� u as a new control� i�e�� apply

the feedback transformation ������ ����� with

k � �� c � ��
�� � � � ��
n���� d � ��

then system ������ maps into the system��������

�x� � x��


 
 

�xn�� � xn�

�xn � u�

u � R� x � �x�� � � � � xn� � Rn� ������

which is written in the scalar form as

x�n� � u� u � R� x � R� ������

So system ������ is feedback equivalent to system �������
It turns out that the simple systems ������ and ������ are normal forms

of linear controllable systems with scalar control under state transformations
and state�feedback transformations respectively�

Proposition 
��� Any linear controllable system with scalar control

�x � Ax ub� u � R� x � Rn� ������

span�b� Ab� � � � � An��b� � Rn� ������

is state equivalent to a system of the form ������� thus state�feedback equivalent
to system �������

Proof� We �nd a basis e�� � � � � en in R
n in which system ������ is written in

the form ������� Coordinates y�� � � � � yn of a point x � Rn in a basis e�� � � � � en
are found from the decomposition

x �
nX
i��

yiei�

In view of the desired form ������� the vector b should have coordinates b �
��� � � � � �� ���� thus the n�th basis vector is uniquely determined


en � b�
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Now we �nd the rest basis vectors e�� � � � � en��� We can rewrite our linear
system ������ as follows


�x � Ax mod Rb�

then we obtain in coordinates


�x �
nX
i��

�yiei �
nX
i��

yiAei mod Rb�

thus
n��X
i��

�yiei �
n��X
i��

yi��Aei�� mod Rb�

The required di�erential equations


�yi � yi��� i � �� � � � � n� ��
are ful�lled in a basis e�� � � � � en if and only if the following equalities hold


Aei�� � ei  �ib� i � �� � � � � n� �� ������

Ae� � ��b ������

for some numbers ��� � � � � �n�� � R�
So it remains to show that we can �nd basis vectors e�� � � � � en�� which

satisfy equalities ������� ������� We rewrite equality ������ in the form

ei � Aei�� � �ib� i � �� � � � � n� �� ������

and obtain recursively


en � b�
en�� � Ab� �n��b�
en�� � A�b� �n��Ab� �n��b�

 
 

e� � An��b� �n��A

n��b� 
 
 
 � ��b�

������

So equality ������ yields

Ae� � Anb� �n��A
n��b� 
 
 
 � ��Ab � ��b�

The equality

Anb �
n��X
i��

�iA
ib ������

is satis�ed for a unique n�tuple ���� � � � � �n��� since the vectors b� Ab� � � � �
An��b form a basis of Rn �in fact� �i are coe�cients of the characteristic
polynomial of A��
With these numbers �i� the vectors e�� � � � � en given by ������ form the

required basis� Indeed� equalities ������� ������ hold by construction� The vec�
tors e�� � � � � en are linearly independent by the controllability condition �������

ut
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Remark 
��� The basis e�� � � � � en constructed in the previous proof is unique�
thus the state transformation that maps a controllable linear system with
scalar control ������ to the normal form ������ is also unique�


���� Linear Systems with Vector Control

Now consider general controllable linear systems


�x � Ax 
kX
i��

uibi� x � Rn� u � �u�� � � � � uk� � Rk� ������

spanfAjbi j j � �� � � � � n� �� i � �� � � � � kg � Rn� ������

Recall that we assume vectors b�� � � � � bk linearly independent�
In the case k � �� all controllable linear systems in Rn are state�feedback

equivalent to the normal form ������� thus there are no state�feedback invari�
ants in a given dimension n� If k 	 �� this is not the case� and we start from
description of state�feedback invariants�

Kronecker Indices

Consider the following subspaces in Rn


Dm � spanfAjbi j j � �� � � � �m� �� i � �� � � � � kg� m � �� � � � � n�
������

Invertible linear state transformations ����� preserve dimension of these sub�
spaces� thus the numbers

dimDm� m � �� � � � � n�

are state invariants�
Now we show that invertible linear feedback transformations ����� preserve

the spaces Dm� Any such transformation can be decomposed into two feedback
transformations of the form


�Ax� b�� � � � � bk� �� �Ax 
kX
i��

hci� xibi� b�� � � � � bk�� ������

�Ax� b�� � � � � bk� �� �Ax�Db�� � � � � Dbk�� ������

Transformations ������� i�e�� changes of bi� obviously preserve the spaces D
m�

Consider transformations ������� Denote the new matrix


bAx � Ax 
kX
i��

hci� xibi�
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We have
 bAjx � Ajx mod Dj � j � �� � � � � n� ��
But Dm�� � Dm� m � �� � � � � n� thus feedback transformations ������ pre�
serve the spaces Dm� m � �� � � � � n�
So the spaces Dm� m � �� � � � � n� are invariant under feedback transfor�

mations� and their dimensions are state�feedback invariants�
Now we express the numbers dimDm � m � �� � � � � n� through other inte�

gers !Kronecker indices� Construct the following n�kmatrix whose elements
are n�dimensional vectors
�BBB�

b� 
 
 
 bk
Ab� 
 
 
 Abk
���

���
���

An��b� 
 
 
 An��bk

�CCCA � ������

Replace each vector Ajbi� j � �� � � � � n � �� i � �� � � � � k� in this matrix by
a sign
 cross � or circle 	� by the following rule� We go in matrix ������ by
rows� i�e�� order its elements as follows


b�� � � � � bk� Ab�� � � � � Abk� � � � � A
n��b�� � � � � A

n��bk� ������

A vector Ajbi in matrix ������ is replaced by � if it is linearly independent of
the previous vectors in chain ������� otherwise it is replaced by 	� After this
procedure we obtain a matrix of the form


� �

�BBBBB�
� � � � 
 
 
 �
� 	 � � 
 
 
 	
� 	 	 � 
 
 
 	
���
���
���
���
���
���

	 	 	 � 
 
 
 	

�CCCCCA �

Notice that there are some restrictions on appearance of crosses and circles in
matrix�� The total number of crosses in this matrix is n �by the controllability
condition �������� and the �rst row is �lled only with crosses �since b�� � � � � bk
are linearly independent�� Further� if a column of � contains a circle� then
all elements below it are circles as well� Indeed� if a vector Ajbi in ������ is
replaced by circle in �� then

Ajbi � spanfAjb� j � � ig  spanfA�b� j � � j� � � �� � � � � kg�
Then the similar inclusions hold for all vectors Aj��bi� � � � � A

n��bi� i�e�� below
circles are only circles� So each column in the matrix � consists of a column
of crosses over a column of circles �the column of circles can be absent��
Denote by n� the height of the highest column of crosses in the matrix ��

by n� the height of the next highest column of crosses� � � � � and by nk the
height of the lowest column of crosses in �� The positive integers obtained




��� � Feedback and State Equivalence of Control Systems

n� � n� � 
 
 
 � nk

are called Kronecker indices of the linear control system ������� Since the total
number of crosses in matrix � is equal to dimension of the state space� then

kX
i��

ni � n�

Moreover� by the construction� we have

span�b�� Ab�� � � � � A
n���b�� � � � � bk� Abk� � � � � A

nk��bk� � R
n� ������

Now we show that Kronecker indices ni are expressed through the numbers
dimDi� We have


dimD� � k � number of crosses in the �rst row of ��

dimD� � number of crosses in the �rst � rows of ��


 
 

dimDi � number of crosses in the �rst i rows of ��

so that

��i�
def
� dimDi � dimDi�� � number of crosses in the i�th row of ��

Permute columns in matrix �� so that the �rst column become the highest
one� the second column becomes the next highest one� etc� We obtain an n�k�
matrix in the �block�triangular
 form� This matrix rotated at the angle ���
gives the subgraph of the function � 
 f�� � � � � ng � f�� � � � � kg� It is easy to
see that the values of the Kronecker indices is equal to the points of jumps of
the function �� and the number of Kronecker indices for each value is equal
to the height of the corresponding jump of ��
So Kronecker indices are expressed through dimDi� i � �� � � � � k� thus are

state�feedback invariants�

Brunovsky Normal Form

Now we �nd normal forms of linear systems under state and state�feedback
transformations� In particular� we show that Kronecker indices form a com�
plete set of state�feedback invariants of linear systems�

Theorem 
��� Any controllable linear system ������� ������ with k control
parameters is state equivalent to a system of the form
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�y�� � y�� �

� � �

�y�n��� � y�n� �

�y�n� � �
X

��j�k
��i�nj��


�
ijy

j
i��  u��

� � � � �

��������������


�yk� � yk� �

� � �

�yknk�� � yknk �

�yknk � �
X

��j�k
��i�nj��


kijy
j
i��  uk�

������

where

x �
X

��i�k
��j�ni

yije
i
j � ������

and state�feedback equivalent to a system of the form����

y
�n��
� � u��


 
 

y
�nk�
k � uk�

������

where ni� i � �� � � � � k� are Kronecker indices of system �������

System ������ is called the Brunovsky normal form of the linear sys�
tem �������
We prove Theorem ����

Proof� We show �rst that any linear controllable system ������ can be written�
in a suitable basis in Rn


e��� � � � � e
�
n�� � � � � � e

k
�� � � � � e

k
nk ������

in the canonical form �������
We proceed exactly as in the scalar�input case �Subsect� ������� The re�

quired canonical form ������ determines uniquely the last basis vectors in all k
groups


e�n� � b�� � � � � e
k
nk � bk� ������

Denote the space B � span�b�� � � � � bk�� Then our system

�x � Ax mod B

reads in coordinates as follows


�x �
X

��i�k
��j�ni

�yije
i
j �

X
��i�k
��j�ni

yijAe
i
j mod B�

In view of the required equations
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�yij � yij��� � � i � k� � � j � ni�

we have X
��i�k
��j
ni

yij��e
i
j �

X
��i�k
��j�ni

yijAe
i
j mod B�

or� equivalently� X
��i�k
��j�ni

yije
i
j�� �

X
��i�k
��j�ni

yijAe
i
j mod B�

So the following relations should hold for the required basis vectors


Aeij � eij�� mod B� � � i � k� � � j � ni� ������

Aei� � � mod B� � � i � k� ������

We resolve equations ������ recursively starting from ������� for all i �
�� � � � � k


eini � bi�

eini�� � Abi �
kX

���

��i	ni��b� �

eini�� � A�bi �
kX

���

��i	ni��Ab� �
kX

���

��i	ni��b� �

� � �

ei� � Ani��bi �
kX

���

��i	ni��A
ni��b� � 
 
 
 �

kX
���

��i	�b� �

while ������ yields

Aei� �
kX

���

��i	�b�

for some constants ��i	j� � � i � k� � � j � ni� � � � � k� We obtain the
equation

Anibi �
kX

���

��i	ni��A
ni��b�  
 
 
 

kX
���

��i	�b� �

which has a unique solution in ��i	j in view of �������
So we proved that there exists a unique linear state transformation that

maps a linear controllable system ������ to the canonical form �������
Choosing new controls

�
X

��j�k
��i�nj��


lijy
j
i��  ul� l � �� � � � � k�
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we see that each of the k subsystems in ������ is feedback equivalent to a sys�
tem of the form ������� or� equivalently� ������� Thus the whole system ������
is state�feedback equivalent to the Brunovsky normal form ������� ut

��� State
Feedback Linearizability

Consider a nonlinear control�a�ne system


�q � f�q�  
kX
j��

ujgj�q�� u � �u�� � � � � uk� � Rk� q �M� ������

We are interested� when such a system is locally state�feedback equivalent to
a controllable linear system�

De�nition 
��� System ������ is called locally state�feedback equivalent to a
linear system ������ in a neighborhood of a point q� �M � if there exist a state
transformation � a di
eomorphism

� 
 Oq� � bO � Rn
from a neighborhood Oq� of q� in M onto an open subset bO � Rn� and a
feedback transformation

� 
 Oq� �Rk� Rk�

��q� u� �

�� a��q�

 
 


ak�q�

�A D�q�u� ������

with an invertible and smooth in q matrix

D�q� � �dij�q��� i� j � �� � � � � k�

such that the state�feedback transformation ����� maps system ������ re�

stricted to Oq� to a linear system ������ restricted to bO�
We can generalize the construction of the subspaces Dm ������ for the case

of nonlinear systems ������
 consider the families of subspaces

Dm
q � spanf�ad f�jgi�q� j j � �� � � � �m� �� i � �� � � � � kg � TqM�

Notice that� in general� dimDm
q �� const� thus Dm is not a distribution�

Observe that for controllable linear systems ������� the following properties
hold for the family Dm

x � Dm� x � Rn

�� dimDm

x � const�
�� Dn

x � TxR
n�
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�� the distributionsDm�m � �� � � � � n� are integrable �since they are spanned
by the constant vector �elds Ajbi��

Before formulating conditions for state�feedback linearizability of nonlinear
systems� which are given in terms of the families Dm

q � we prove the following
property of these families�

Lemma 
�	� If the families Dm� m � �� � � � � n� are involutive� then they are
feedback�invariant�

Proof� Notice �rst that feedback transformations ������ can be decomposed
into transformations of the two kinds


�f� g�� � � � � gk� �� �f  ajgj� g�� � � � � gk�� ������

�f� g�� � � � � gk� �� �f�Dg�� � � � � Dgk�� ������

where D�q� � �dij�q��� i� j � �� � � � � k� is invertible and smooth w�r�t� q� We
prove the lemma by induction on m�
Let m � �� The family

D� � spanfgi j i � �� � � � � kg
is obviously preserved by the both transformations ������ and �������
Induction step
 we assume that the statement is proved for m � � and

prove it for m� The family

Dm � f�f�X� j X � Dm��g Dm��

is preserved by transformation ������� Consider transformation ������� We
have

�f  ajgj� X� � �f�X�� �X� ajgj � � �f�X�� �Xaj�gj � aj �X� gj��

Further


X � Dm�� 
 �f�X� � Dm�

�Xaj �gj � D� � Dm�

X � Dm��� gj � D� � Dm�� 
 �X� gj� � Dm�� � Dm�

thus
�f  ajgj� X� � Dm � X � Dm���

So Dm is preserved by feedback transformation ������� ut
Theorem 
�
� System ������ is locally state�feedback equivalent to a control�
lable linear system ������ if and only if�

��� dimDm
q � m � �� � � � � n� does not depend on q� i�e�� Dm are distributions�

���Dn
q � TqM �



��� State�Feedback Linearizability ���

��� the distributions Dm� m � �� � � � � n� are involutive�

Conditions ������� are necessary for local state�feedback linearizability� see
discussion before Lemma ����
We prove su�ciency in Theorem ���� below only in the case of scalar

control parameter� For k � � we have the system

�q � f�q�  ug�q�� u � R� q �M� ������

and the corresponding families of subspaces

Dm
q � spanf�ad f�ig�q� j i � �� �� � � � �m� �g� m � �� � � � � n� q �M�

In this case it happens that involutivity of Dn�� implies involutivity of Dm

with smaller m�

Theorem 
���� System ������ is locally state�feedback equivalent to a con�
trollable linear system ������ if and only if�

���Dn
q � TqM �

��� the distribution Dn�� is involutive�

First we prove the following proposition of general interest
 integral man�
ifolds of integrable distributions can be smoothly parametrized�

Lemma 
���� Let � � spanfX�� � � � � Xkg be an integrable distribution on a
smooth n�dimensional manifold M � dim�q � k� Then for any point q� �M
there exist a neighborhood q� � Oq� �M and a smooth vector�function

� 
 Oq� � Rn�k

such that�

��� rank��q � n� k� q � Oq� � and
��� ����y� is an integral manifold of � for any y � ��Oq��� or� equivalently�
���� ker��q � �q� q � Oq� �

Proof� Complete the vector �elds X�� � � � � Xk to a basis


spanfY�� � � � � Yn�k� X�� � � � � Xkg � VecOq� �

for a su�ciently small neighborhood q� � Oq� �M � Consider the mapping

� 
 �t� s� �� q� 	 et�Y� 	 
 
 
 	 etn�kYn�k 	 es�X� 	 
 
 
 	 eskXk �

t � �t�� � � � � tn�k� � Rn�k� s � �s�� � � � � sk� � Rk�

We have
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� �

� ti

����
�

� Yi� i � �� � � � � n� k�

� �

� si

����
�

� Xi� i � �� � � � � k�

thus � is a local di�eomorphism in a neighborhood of � � Rn�
Further� for �xed t � t�� the set

f��t�� s� j s � Rkg

is an integral manifold of ��
Finally� locally� by the implicit function theorem� there exists a well�de�ned

smooth mapping
� 
 ��t� s� �� t�

It is the required vector�function� ut
Now we prove Theorem �����

Proof� Necessity is already known since for linear controllable systems both
conditions ���� ��� hold� see discussion before Lemma ����
To prove su�ciency� we construct coordinates in which our system ������ is

simpli�ed� and then apply a feedback transformation which maps this system
to the normal form �������
Since the distribution Dn�� is integrable� then by Lemma ���� there exists

a smooth function
�� 
 Oq� � R

such that

dq�� �� �� hdq��� D
n��
q i � �� q � Oq� � ������

De�ne the following functions in the neighborhood Oq� 


�� � f�� � hd��� fi�
�� � f�� � f����


 
 

�n � f�n�� � fn����

�iterated directional derivatives along the vector �eld f��
We claim that the functions ��� � � � � �n �which will be the coordinates that

simplify ������� have the following property


�ad f�jg�l �

�
�� j  l � n�
��ad f�n��g�� �� �� j  l � n�

������

First of all� notice that b � �ad f�n��g��

��
Oq�

�� �� Indeed� we have
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Dn��
q � spanfg�q�� � � � � �ad f�n��g�q�g�

TqM � spanfg�q�� � � � � �ad f�n��g�q�g � spanfDn��
q � �adf�n��g�q�g�

thus the equality �ad f�n��g���q� � � is incompatible with properties �������
Now we prove ������ by induction on l� If l � �� there is nothing to prove�
Assume that equality ������ is proved for l� � and prove it for l� We have

�ad f�jg�l �
�
�ad f�jg 	 f��l��

�
�
�ad f�jg 	 f � f 	 �ad f�jg  f 	 �ad f�jg��l��

�
���f� �ad f�jg�  f 	 �ad f�jg��l��

�
���ad f�j��g  f 	 �ad f�jg��l���

If j  l � n� then j  l � � � n� and �ad f�jg�l�� � � by the induction
assumption� Thus

�ad f�jg�l � ��ad f�j��g�l�� for j  l � n�

and equality ������ for l follows from this equality for l � ��
So equality ������ is proved for all l� The vectors g�q�� � � � � �ad f�n��g�q�

span the tangent space TqM for q � Oq� � thus the mapping

� �

����


 
 

�n

�A 
 Oq� � Rn

is a local di�eomorphism
 the di�erentials dq��� � � � � dq�n form a basis of T
�
qM

dual to g�q�� � � � � �adf�n��g�q� � TqM �
Take � as a coordinate mapping� then coordinates of a point q �M are

xl � �l�q�� l � �� � � � � n�

Now we write our system �q � f�q�  ug�q� in these coordinates
 we di�eren�
tiate xl with respect to this system�

d

d t
xl �

d

d t
�l�q�t�� � �f  ug��l � f�l  ug�l�

If l � n� then g�l � � by equality ������� thus

d

d t
xl � f�l � �l�� � xl��� l � �� � � � � n� ��

And if l � n� then

d

d t
xn � f�n  ug�n � f�n � ub� b � g�n �� ��

So in coordinates x�� � � � � xn our system ������ takes the form
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�x� � x��


 
 

�xn�� � xn�

�xn � f�n � ub�

Now consider the feedback transformation

u ��  f�n � u

b
�

After this transformation the n�th component of our system reads

�xn � f�n �
�
 f�n � u

b

�
b � f�n � f�n  u � u�

i�e�� the whole system takes the required form ������� ut



��

Optimal Control Problem

���� Problem Statement

Consider a control system of the form

�q � fu�q�� q �M� u � U � Rm� ������

Here M is� as usual� a smooth manifold� and U an arbitrary subset of Rm�
For the right�hand side of the control system� we suppose that


q �� fu�q� is a smooth vector �eld on M for any �xed u � U� ������

�q� u� �� fu�q� is a continuous mapping for q �M � u � U � ������

and moreover� in any local coordinates on M

�q� u� �� � fu
� q

�q� is a continuous mapping for q �M � u � U � ������

Admissible controls are measurable locally bounded mappings

u 
 t �� u�t� � U�

Substitute such a control u � u�t� for control parameter into system �������
then we obtain a nonautonomous ODE �q � fu�q�� By the classical Carath#eo�
dory�s Theorem� for any point q� �M � the Cauchy problem

�q � fu�q�� q��� � q�� ������

has a unique solution� see Subsect� ������ We will often �x the initial point q�
and then denote the corresponding solution to problem ������ as qu�t��
In order to compare admissible controls one with another on a segment

��� t��� introduce a cost functional 
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J�u� �

Z t�

�

��qu�t�� u�t�� dt ������

with an integrand
� 
 M � U � R

satisfying the same regularity assumptions as the right�hand side f � see �������
�������
Take any pair of points q�� q� � M � We consider the following optimal

control problem�

Problem ����� Minimize the functional J among all admissible controls
u � u�t�� t � ��� t��� for which the corresponding solution qu�t� of Cauchy
problem ������ satis�es the boundary condition

qu�t�� � q�� ������

This problem can also be written as follows


�q � fu�q�� q �M� u � U � Rm� ������

q��� � q�� q�t�� � q�� ������

J�u� �

Z t�

�

��q�t�� u�t�� dt� min � �������

We study two types of problems� with �xed terminal time t� and free t�� A
solution u of this problem is called an optimal control � and the corresponding
curve qu�t� is an optimal trajectory �
So optimal control problem is the minimization problem for J�u� with

constraints on u given by control system and the �xed endpoints conditi�
ons ������� ������� These constraints cannot usually be resolved with respect
to u� thus solving optimal control problems requires special techniques�

���� Reduction to Study of Attainable Sets

Fix an initial point q� � M � Attainable set of control system ������ for time
t � � from q� with measurable locally bounded controls is de�ned as follows


Aq��t� � fqu�t� j u � L����� t�� U �g �

Similarly� one can consider the attainable sets for time not greater than t


Atq� �
�

����t
Aq� �
 �

and for arbitrary nonnegative time




�	�� Reduction to Study of Attainable Sets ���

Aq� �
�

���
�
Aq��
 ��

It turns out that optimal control problems on the state space M can be
essentially reduced to the study of attainable sets of some auxiliary control
systems on the extended state space

cM � R�M � fbq � �y� q� j y � R� q �Mg�

Namely� consider the following extended control system on cM 

d bq
d t
� bfu�bq�� bq � cM� u � U� �������

with the right�hand side

bfu�bq� � ���q� u�
fu�q�

�
� q �M� u � U�

where � is the integrand of the cost functional J � see ������� Denote by bqu�t�
the solution of the extended system ������� with the initial conditions

bqu��� � �y���
q���

�
�

�
�
q�

�
�

Proposition ����� Let q	u�t�� t � ��� t��� be an optimal trajectory in the prob�
lem �������������� with the �xed terminal time t�� Then the corresponding
trajectory bq	u�t� of the extended system ������� comes to the boundary of the
attainable set of this system�

bq	u�t�� � � bA��	q���t��� �������

Proof� Solutions bqu�t� of the extended system are expressed through solu�
tions qu�t� of the original system ������ as

bqu�t� � �Jt�u�
qu�t�

�
�

where

Jt�u� �

Z t

�

��qu�
 �� u�
 �� d
�

Thus attainable sets of the extended system ������� from the point ��� q��
have the form

bA��	q���t� � f�Jt�u�� qu�t�� j u � L����� t�� U �g �

The set bA��	q���t�� should not intersect the ray
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q� q�

q

y�

y

�y�� q��

�

bA���q���t��

bq�u�t�

Fig� ����� Optimal trajectory q�u�t


n
�y� q�� � cM j y � Jt��"u�

o
�

see Fig� �����
Indeed� suppose that there exists a point

�y� q�� � bA��	q���t��� y � Jt��"u��

Then the trajectory of the extended system bqu�t� that steers ��� q�� to �y� q��

bqu��� � � �q�

�
� bqu�t�� � � y

q�

�
�

gives a trajectory qu�t�� qu��� � q�� qu�t�� � q�� with a smaller value of the
cost functional


Jt��u� � y � Jt��"u��

a contradiction with optimality of the trajectory q	u�t�� The required inclu�
sion ������� follows� ut
So optimal trajectories �more precisely� their lift to the extended state

space cM � must come to the boundary of the attainable set bA��	q���t��� In
order to �nd optimal trajectories� we �nd those coming to the boundary ofbA��	q���t��� and then select optimal among them� The �rst step is much more
important than the second one� so solving optimal control problems essentially
reduces to the study of dynamics of boundary of attainable sets�

���� Compactness of Attainable Sets

Due to the reduction of optimal control problems to the study of attainable
sets� existence of optimal solutions to these problems is reduced to compact�
ness of attainable sets�
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For control system ������� su�cient conditions for compactness of the at�
tainable sets Aq� �t� for time t and Atq� for time not greater than t are given
in the following proposition�

Theorem ���� �Filippov�� Let the space of control parameters U b Rm be
compact� Let there exist a compact K b M such that fu�q� � � for q �� K�
u � U � Moreover� let the velocity sets

fU �q� � ffu�q� j u � Ug � TqM� q �M�

be convex� Then the attainable sets Aq� �t� and Atq� are compact for all q� �M �
t 	 ��

Remark ����� The condition of convexity of the velocity sets fU �q� is natural
in view of Theorem ���
 the �ow of the ODE

�q � 
�t�fu��q�  �� � 
�t��fu��q�� � � 
�t� � ��
can be approximated by �ows of the systems of the form

�q � fv�q�� where v�t� � fu��t�� u��t�g�
Now we give a sketch of the proof of Theorem �����

Proof� Notice �rst of all that all nonautonomous vector �elds fu�q� with ad�
missible controls u have a common compact support� thus are complete� Fur�
ther� under hypotheses of the theorem� velocities fu�q�� q � M � u � U � are
uniformly bounded� thus all trajectories q�t� of control system ������ start�
ing at q� are Lipschitzian with the same Lipschitz constant� Thus the set of
admissible trajectories is precompact in the topology of uniform convergence�
�We can embed the manifold M into a Euclidean space RN� then the space
of continuous curves q�t� becomes endowed with the uniform topology of con�
tinuous mappings from ��� t�� to RN�� For any sequence qn�t� of admissible
trajectories


�qn�t� � fun �qn�t��� � � t � t�� qn��� � q��

there exists a uniformly converging subsequence� we denote it again by qn�t�


qn� 
 �� q� 
 � in C��� t�� as n���

Now we show that q�t� is an admissible trajectory of control system �������
Fix a su�ciently small � 	 �� Then in local coordinates

�

�
�qn�t  �� � qn�t�� �

�

�

Z t��

t

fun �qn�
 �� d


� conv
�

���t	t���
fU �qn�
 �� � conv

�
q�Oq�t��c��

fU �q��
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where c is the doubled Lipschitz constant of admissible trajectories� Then we
pass to the limit n�� and obtain

�

�
�q�t �� � q�t�� � conv

�
q�Oq�t��c��

fU �q��

Now let �� �� If t is a point of di�erentiability of q�t�� then

�q�t� � fU �q�

since fU �q� is convex�
In order to show that q�t� is an admissible trajectory of control sys�

tem ������� we should �nd a measurable selection u�t� � U that generates q�t��
We do this via the lexicographic order on the set U � f�u�� � � � � um�g � Rm�
The set

Vt � fv � U j �q�t� � fv�q�t��g
is a compact subset of U � thus of Rm� There exists a vector vmin�t� � Vt
minimal in the sense of lexicographic order� To �nd vmin�t�� we minimize the
�rst coordinate on Vt


vmin
� � minf v� j v � �v�� � � � � vm� � Vt g�

then minimize the second coordinate on the compact set found at the �rst
step


vmin
� � minf v� j v � �vmin

� � v�� � � � � vm� � Vt g�
etc��

vmin
m � minf vm j v � �vmin

� � � � � � vmin
m��� vm� � Vt g�

The control vmin�t� � �vmin
� �t�� � � � � vmin

m �t�� is measurable� thus q�t� is an
admissible trajectory of system ������ generated by this control�
The proof of compactness of the attainable set Aq� �t� is complete� Com�

pactness of Atq� is proved by a slightly modi�ed argument� ut
Remark ����� In Filippov�s theorem� the hypothesis of common compact sup�
port of the vector �elds in the right�hand side is essential to ensure the uniform
boundedness of velocities and completeness of vector �elds� On a manifold�
su�cient conditions for completeness of a vector �eld cannot be given in terms
of boundedness of the vector �eld and its derivatives
 a constant vector �eld
is not complete on a bounded domain in Rn� Nevertheless� one can prove
compactness of attainable sets for many systems without the assumption of
common compact support� If for such a system we have a priori bounds on
solutions� then we can multiply its right�hand side by a cut�o� function� and
obtain a system with vector �elds having compact support� We can apply
Filippov�s theorem to the new system� Since trajectories of the initial and
new systems coincide in a domain of interest for us� we obtain a conclusion
on compactness of attainable sets for the initial system�
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For control systems on M � Rn� there exist well�known su�cient conditi�
ons for completeness of vector �elds
 if the right�hand side grows at in�nity
not faster than a linear �eld� i�e��

jfu�x�j � C��  jxj�� x � Rn� u � U� �������

for some constant C� then the nonautonomous vector �elds fu�x� are complete
�here jxj �

p
x��  
 
 
 x�n is the norm of a point x � �x�� � � � � xn� � Rn��

These conditions provide an a priori bound for solutions
 any solution x�t�
of the control system

�x � fu�x�� x � Rn� u � U� �������

with the right�hand side satisfying ������� admits the bound

jx�t�j � e�Ct �jx���j �� � t � ��
So Filippov�s theorem plus the previous remark imply the following su��

cient condition for compactness of attainable sets for systems in Rn�

Corollary ����� Let system ������� have a compact space of control parame�
ters U b Rm and convex velocity sets fU �x�� x � Rn� Suppose moreover that
the right�hand side of the system satis�es a bound of the form �������� Then
the attainable sets Ax��t� and Atx� are compact for all x� � Rn� t 	 ��

���� Time
Optimal Problem

Given a pair of points q� �M and q� � Aq� � the time�optimal problem consists
in minimizing the time of motion from q� to q� via admissible controls of
control system ������


min
u
ft� j qu�t�� � q�g� �������

That is� we consider the optimal control problem described in Sect� ���� with
the integrand ��q� u� � � and free terminal time t��
Reduction of optimal control problems to the study of attainable sets and

Filippov�s Theorem yield the following existence result�

Corollary ����� Under the hypotheses of Theorem ����� time�optimal prob�
lem ������� ������� has a solution for any points q� �M � q� � Aq� �

���� Relaxations

Consider a control system of the form ������ with a compact set of control
parameters U � There is a standard procedure called relaxation of control sys�
tem ������� which extends the velocity set fU �q� of this system to its convex
hull conv fU �q��



��� �	 Optimal Control Problem

Recall that the convex hull conv S of a subset S of a linear space is the
minimal convex set that contains S� A constructive description of convex hull
is given by the following classical proposition
 any point in the convex hull of
a set S in the n�dimensional linear space is contained in the convex hull of
some n � points in S�

Lemma ���	 �Carath�eodory�� For any subset S � Rn� its convex hull has
the form

convS �

�
nX
i��


ixi j xi � S� 
i � ��
nX
i��


i � �

�
�

For the proof of this lemma� one can consult e�g� ������
Relaxation of control system ������ is constructed as follows� Let n �

dimM be dimension of the state space� The set of control parameters of the
relaxed system is

V � �n � U � 
 
 
 � U� 	z 

n�� times

�

where

�n �

�
�
�� � � � � 
n� j 
i � ��

nX
i��


i � �

�
� Rn��

is the standard n�dimensional simplex� So the control parameter of the new
system has the form

v � �
� u�� � � � � un� � V� 
 � �
�� � � � � 
n� � �n� ui � U�

If U is compact� then V is compact as well�
The relaxed system is

�q � gv�q� �
nX
i��


ifui�q�� v � �
� u�� � � � � un� � V� q �M� �������

By Carath#eodory�s lemma� the velocity set gV �q� of system ������� is convex�
moreover�

gV �q� � conv fU �q��

If all vector �elds in the right�hand side of ������� have a common com�
pact support� we obtain by Filippov�s theorem that attainable sets for the
relaxed system are compact� By Theorem ���� any trajectory of relaxed sys�
tem ������� can be uniformly approximated by families of trajectories of initial
system ������� Thus attainable sets of the relaxed system coincide with closure
of attainable sets of the initial system�



��

Elements of Exterior Calculus

and Symplectic Geometry

In order to state necessary conditions of optimality for optimal control prob�
lems on smooth manifolds ! Pontryagin Maximum Principle� see Chap� ��
! we make use of some standard technique of Symplectic Geometry� In this
chapter we develop such a technique� Before this we recall some basic facts
on calculus of exterior di�erential forms on manifolds� The exposition in this
chapter is rather explanatory than systematic� it is not a substitute to a reg�
ular textbook� For a detailed treatment of the subject� see e�g� ������ ������
������

���� Di�erential �
Forms

������ Linear Forms

Let E be a real vector space of �nite dimension n� The set of linear forms
on E� i�e�� of linear mappings � 
 E � R� has a natural structure of a vector
space called the dual space to E and denoted by E�� If vectors e�� � � � � en
form a basis of E� then the corresponding dual basis of E� is formed by the
covectors e��� � � � � e

�
n such that

he�i � eji � �ij� i� j � �� � � �n

�we use the angle brackets to denote the value of a linear form � � E� on a
vector v � E
 h�� vi � ��v��� So the dual space has the same dimension as the
initial one


dimE� � n � dimE�

������ Cotangent Bundle

Let M be a smooth manifold and TqM its tangent space at a point q � M �
The space of linear forms on TqM � i�e�� the dual space �TqM �

�
to TqM � is
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called the cotangent space to M at q and is denoted as T �qM � The disjoint
union of all cotangent spaces is called the cotangent bundle of M 


T �M def
�

�
q�M

T �qM�

The set T �M has a natural structure of a smooth manifold of dimension �n�
where n � dimM � Local coordinates on T �M are constructed from local
coordinates on M �
Let O �M be a coordinate neighborhood and let

� 
 O � Rn� ��q� � �x��q�� � � � � xn�q���

be a local coordinate system� Di�erentials of the coordinate functions

dxijq � T �qM� i � �� � � � � n� q � O�

form a basis in the cotangent space T �qM � The dual basis in the tangent
space TqM is formed by the vectors

�

� xi

����
q

� TqM� i � �� � � � � n� q � O��
dxi�

�

� xj

�
� �ij � i� j � �� � � � � n�

Any linear form � � T �qM can be decomposed via the basis forms


� �
nX
i��

�i dxi�

So any covector � � T �M is characterized by n coordinates �x�� � � � � xn� of
the point q �M where � is attached� and by n coordinates ���� � � � � �n� of the
linear form � in the basis dx�� � � � � dxn� Mappings of the form

� �� ���� � � � � �n� x�� � � � � xn�

de�ne local coordinates on the cotangent bundle� Consequently� T �M is an
�n�dimensional manifold� Coordinates of the form ��� x� are called canonical
coordinates on T �M �
If F 
 M � N is a smooth mapping between smooth manifolds� then the

di�erential
F� 
 TqM � TF �q�N

has the adjoint mapping

F � def
� �F��� 
 T �F �q�N � T �qM

de�ned as follows




���� Di�erential k�Forms ��


F �� � � 	 F�� � � T �F �q�N�

hF ��� vi � h�� F�vi� v � TqM�

A vector v � TqM is pushed forward by the di�erential F� to the vector
F�v � TF �q�N � while a covector � � T �F �q�N is pulled back to the covector
F �� � T �q M � So a smooth mapping F 
 M � N between manifolds induces
a smooth mapping F � 
 T �N � T �M between their cotangent bundles�

������ Di�erential ��Forms

A di
erential ��form on M is a smooth mapping

q �� �q � T �qM� q �M�

i�e� a family � � f�qg of linear forms on the tangent spaces TqM smoothly
depending on the point q �M � The set of all di�erential ��forms on M has a
natural structure of an in�nite�dimensional vector space denoted as ��M �
Like linear forms on a vector space are dual objects to vectors of the

space� di�erential forms on a manifold are dual objects to smooth curves in
the manifold� The pairing operation is the integral of a di�erential ��form
� � ��M along a smooth oriented curve � 
 �t�� t���M � de�ned as follows
Z

�

�
def
�

Z t�

t�

h���t�� ���t�i dt�

The integral of a ��form along a curve does not change under orientation�
preserving smooth reparametrizations of the curve and changes its sign under
change of orientation�

���� Di�erential k
Forms

A di�erential k�form on M is an object to integrate over k�dimensional sur�
faces inM � In�nitesimally� a k�dimensional surface is presented by its tangent
space� i�e�� a k�dimensional subspace in TqM � We thus need a dual object to
the set of k�dimensional subspaces in the linear space� Fix a linear space E�
A k�dimensional subspace is de�ned by its basis v�� � � � � vk � E� The dual
objects should be mappings

�v�� � � � � vk� �� ��v�� � � � � vk� � R
such that ��v�� � � � � vk� depend only on the linear hull spanfv�� � � � � vkg
and the oriented volume of the k�dimensional parallelepiped generated by
v�� � � � � vk� Moreover� the dependence on the volume should be linear� Recall
that the ratio of volumes of the parallelepipeds generated by vectors wi �Pk

j�� 
ijvj� i � �� � � � � k� and the vectors v�� � � � � vk� equals det�
ij�
k
i	j��� and

that determinant of a k � k matrix is a multilinear skew�symmetric form of
the columns of the matrix� This is why the following de�nition of the �dual
objects
 is quite natural�
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������ Exterior k�Forms

Let E be a �nite�dimensional real vector space� dimE � n� and let k � N� An
exterior k�form on E is a mapping

� 
 E � 
 
 
 � E� 	z 

k times

� R�

which is multilinear


��v�� � � � � 
�v
�
i  
�v

�
i � � � � � vk�

� 
���v�� � � � � v
�
i � � � � � vk�  
���v�� � � � � v

�
i � � � � � vk�� 
�� 
� � R�

and skew�symmetric


��v�� � � � � vi� � � � � vj� � � � � vk� � ���v�� � � � � vj� � � � � vi� � � � � vk��
i� j � �� � � � � k�

The set of all exterior k�forms onE is denoted by �kE� By the skew�symmetry�
any exterior form of order k 	 n is zero� thus �kE � f�g for k 	 n�
Exterior forms can be multiplied by real numbers� and exterior forms of the

same order k can be added one with another� so each �kE is a vector space�
We construct a basis of �kE after we consider another operation between
exterior forms ! the exterior product� The exterior product of two forms
�� � �k�E� �� � �k�E is an exterior form �� � �� of order k�  k��
Given linear ��forms ��� �� � ��E� we have a natural �tensor� product for

them

�� ! �� 
 �v�� v�� �� ���v�����v��� v�� v� � E�

The result is a bilinear but not a skew�symmetric form� The exterior product
is the anti�symmetrization of the tensor one


�� � �� 
 �v�� v�� �� ���v�����v��� ���v�����v��� v�� v� � E�

Similarly� the tensor and exterior products of forms �� � �k�E and �� � �k�E
are the following forms of order k�  k�


�� ! �� 
 �v�� � � � � vk��k�� �� ���v�� � � � � vk�����vk���� � � � � vk��k���

�� � �� 
 �v�� � � � � vk��k� � ��
�

k�� k��

X
�

�����������v����� � � � � v��k������v��k����� � � � � v��k��k���� ������

where the sum is taken over all permutations � of order k�  k� and  ���
is parity of a permutation �� The factor �

k�� k��
normalizes the sum in ������

since it contains k�� k�� identically equal terms
 e�g�� if permutations � do not
mix the �rst k� and the last k� arguments� then all terms of the form



���� Di�erential k�Forms ���

�����������v����� � � � � v��k������v��k����� � � � � v��k��k���

are equal to

���v�� � � � � vk�����vk���� � � � � vk��k���

This guarantees the associative property of the exterior product


�� � ��� � ��� � ��� � ��� � ��� �i � �kiE�

Further� the exterior product is skew�commutative


�� � �� � ����k�k��� � ��� �i � �kiE�

Let e�� � � � � en be a basis of the space E and e��� � � � � e
�
n the corresponding

dual basis of E�� If � � k � n� then the following
�
n
k

�
elements form a basis

of the space �kE


e�i� � � � �� e�ik � � � i� � i� � 
 
 
 � ik � n�

The equalities

�e�i� � � � �� e�ik��ei� � � � � � eik� � ��
�e�i� � � � �� e�ik��ej� � � � � � ejk� � �� if �i�� � � � � ik� �� �j�� � � � � jk�

for � � i� � i� � 
 
 
 � ik � n imply that any k�form � � �kE has a unique
decomposition of the form

� �
X

��i�
i�
			
ik�n
�i����ike

�
i� � � � �� e�ik

with
�i����ik � ��ei� � � � � � eik��

Exercise ����� Show that for any ��forms ��� � � ��p � ��E and any vectors
v�� � � � � vp � E there holds the equality

��� � � � �� �p��v�� � � � � vp� � det �h�i� vji�pi	j�� � ������

Notice that the space of n�forms of an n�dimensional space E is one�di�
mensional� Any nonzero n�form on E is a volume form� For example� the value
of the standard volume form e��� � � �� e�n on an n�tuple of vectors �v�� � � � � vn�
is

�e�� � � � �� e�n��v�� � � � � vn� � det �he�i � vji�ni	j�� �

the oriented volume of the parallelepiped generated by the vectors v�� � � � � vn�
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������ Di�erential k�Forms

A di
erential k�form on M is a mapping

� 
 q �� �q � �kTqM� q �M�

smooth w�r�t� q � M � The set of all di�erential k�forms on M is denoted
by �kM � It is natural to consider smooth functions on M as ��forms� so
��M � C��M ��
In local coordinates �x�� � � � � xn� on a domain O � M � any di�erential

k�form � � �kM can be uniquely decomposed as follows


�x �
X

i�
			
ik
ai����ik�x�dxi� � � � �� dxik � x � O� ai����ik � C��O��

������

Any smooth mapping
F 
 M � N

induces a mapping of di�erential forms

bF 
 �kN � �kM

in the following way
 given a di�erential k�form � � �kN � the k�form bF� �
�kM is de�ned as

� bF��q�v�� � � � � vk� � �F �q��F�v�� � � � � F�vk�� q �M� vi � TqM�

For ��forms� pull�back is a substitution of variables


bFa�q� � a 	 F �q�� a � C��M �� q �M�

The pull�back bF is linear w�r�t� forms and preserves the exterior product


bF ��� � ��� � bF�� � bF���

Exercise ����� Prove the composition law for pull�back of di�erential forms


�F� 	 F� � bF� 	 bF�� ������

where F� 
 M� �M� and F� 
 M� �M� are smooth mappings�

Now we can de�ne the integral of a k�form over an oriented k�dimensional
surface� Let � � Rk be a k�dimensional open oriented domain and

� 
 � � ���� �M

a di�eomorphism� Then the integral of a k�form � � �kM over the k�dimen�
sional oriented surface ���� is de�ned as follows




���� Exterior Di�erential ���Z
����

�
def
�

Z
�

b���
it remains only to de�ne the integral over � in the right�hand side� Sinceb�� � �kRk is a k�form on Rk� it is expressed via the standard volume form
dx� � � � �� dxk � �kRk


�b���x � a�x� dx� � 
 
 
 � dxk� x � ��

We set Z
�

b�� def
�

Z
�

a�x� dx� � � �dxk�

a usual multiple integral�
The integral

R
���� � is de�ned correctly with respect to orientation�preser�

ving reparametrizations of the surface ����� Although� if a parametrization
changes orientation� then the integral changes sign�
The notion of integral is extended to arbitrary submanifolds as follows�

Let N � M be a k�dimensional submanifold and let � � �kM � Consider a
covering of N by coordinate neighborhoods Oi �M 


N �
�
i

�N �Oi��

Take a partition of unity subordinated to this covering



i � C��M �� supp
i � Oi� � � 
i � ��X
i


i � ��

Then Z
N

�
def
�

X
i

Z
N�Oi


i��

The integral thus de�ned does not depend upon the choice of partition of
unity�

Remark ���	� Another possible approach to de�nition of integral of a di�eren�
tial form over a submanifold is based upon triangulation of the submanifold�

���� Exterior Di�erential

Exterior di�erential of a function �i�e�� a ��form� is a ��form
 if a � C��M � �
��M � then its di�erential

dqa � T �qM

is the functional �directional derivative�
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hdqa� vi � va� v � TqM� ������

so
da � ��M�

By the Newton�Leibniz formula� if � � M is a smooth oriented curve
starting at a point q� �M and terminating at q� �M � thenZ

�

da � a�q��� a�q���

The right�hand side can be considered as the integral of the function a over
the oriented boundary of the curve
 �� � q� � q�� thusZ

�

da �

Z

�

a� ������

In the exposition above� Newton�Leibniz formula ������ comes as a conse�
quence of de�nition ������ of di�erential of a function� But one can go the
reverse way
 if we postulate Newton�Leibniz formula ������ for any smooth
curve � � M and pass to the limit q� � q�� we necessarily obtain de�ni�
tion ������ of di�erential of a function�
Such approach can be realized for higher order di�erential forms as well�

Let � � �kM � We de�ne the exterior di
erential

d� � �k��M

as the di�erential �k  ���form for which Stokes formula holds
Z
N

d� �

Z

N

� ������

for �k  ���dimensional submanifolds with boundary N � M �for simplicity�
one can take here N equal to a di�eomorphic image of a �k  ���dimensional
polytope�� The boundary �N is oriented by a frame of tangent vectors
e�� � � � ek � Tq��N � in such a way that the frame en� e�� � � � � ek � TqN de�
�ne a positive orientation of N � where en is the outward normal vector to N
at q�
The existence of a form d� that satis�es Stokes formula ������ comes

from the fact that the mapping N �� R

N

� is additive w�r�t� domain
 if
N � N� �N�� N� �N� � �N� � �N�� thenZ


N

� �

Z

N�

�  

Z

N�

�

�notice that orientation of the boundaries is coordinated
 �N� and �N� have
mutually opposite orientations at points of their intersection�� Thus the inte�
gral

R

N

� is a kind of measure w�r�t� N � and one can recover �d��q passing
to limit in ������ as the submanifold N contracts to a point q�
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We recall some basic properties of exterior di�erential� First of all� it is
obvious from the Stokes formula that d 
 �kM � �k��M is a linear operator�
Further� if F 
 M � N is a di�eomorphism� then

d bF� � bFd�� � � �kN� ������

Indeed� if W �M � thenZ
F �W �

� �

Z
W

bF�� � � �kN�

thus Z
W

d bF� �

Z

W

bF� �

Z
F �
W �

� �

Z

F �W �

� �

Z
F �W �

d�

�

Z
W

bFd��

and equality ������ follows�
Another basic property of exterior di�erential is given by the equality

d 	 d � ��

which follows since ���N � � � for any submanifold with boundary N �M �
Exterior di�erential is an antiderivation


d��� � ��� � �d��� � ��  ����k��� � d��� �i � �kiM�

this equality is dual to the formula of boundary ��N� �N���
In local coordinates exterior di�erential is computed as follows
 if

� �
X

i�
			
ik
ai����ikdxi� � � � �� dxik� ai����ik � C��

then
d� �

X
i�
			
ik

�dai����ik� � dxi� � � � �� dxik �

this formula is forced by above properties of di�erential forms�

���� Lie Derivative of Di�erential Forms

The �in�nitesimal version
 of the pull�back bP of a di�erential form by a �ow P
is given by the following operation�

Lie derivative of a di�erential form � � �kM along a vector �eld f �
VecM is the di�erential form Lf� � �kM de�ned as follows
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Lf�
def
�

d

d �

����
���

ce�f�� ������

Since cetf ��� � ��� � cetf�� � cetf���

Lie derivative Lf is a derivation of the algebra of di�erential forms


Lf ��� � ��� � �Lf��� � ��  �� �Lf���

Further� we have cetf 	 d � d 	 cetf �
thus

Lf 	 d � d 	 Lf �
For ��forms� Lie derivative is just the directional derivative


Lfa � fa� a � C��M ��

since cetfa � etf a

is a substitution of variables�
Now we obtain a useful formula for the action of Lie derivative on di�er�

ential forms of an arbitrary order�
Consider� along with exterior di�erential

d 
 �kM � �k��M

the interior product of a di�erential form � with a vector �eld f � VecM 

if 
 �

kM � �k��M�

�if���v�� � � � � vk���
def
� ��f� v�� � � � � vk���� � � �kM� vi � TqM�

which acts as substitution of f for the �rst argument of �� By de�nition� for
��order forms

ifa � �� a � ��M�

Interior product is an antiderivation� as well as the exterior di�erential


if ��� � ��� � �if��� � ��  ����k��� � if��� �i � �kiM�

Now we prove that Lie derivative of a di�erential form of an arbitrary
order can be computed by the following formula


Lf � d 	 if  if 	 d �������

called Cartan�s formula� for short �L � di  id 
� Notice �rst of all that the
right�hand side in ������� has the required order
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d 	 if  if 	 d 
 �kM � �kM�

Further� d	if  if 	d is a derivation as it is obtained from two antiderivations�
Moreover� this derivation commutes with di�erential


d 	 �d 	 if  if 	 d� � d 	 if 	 d�
�d 	 if  if 	 d� 	 d � d 	 if 	 d�

Now we check formula ������� on ��forms
 if a � ��M � then

�d 	 if �a � ��
�if 	 d�a � hda� fi � fa � Lfa�

So equality ������� holds for ��forms� The properties of the mappings Lf and
d 	 if  if 	 d established and the coordinate representation ������ reduce the
general case of k�forms to the case of ��forms� Formula ������� is proved�
The di�erential de�nition ������ of Lie derivative can be integrated� i�e��

there holds the following equality on �kM 
�
��
exp

Z t

�

f� d


� d
�
��
exp

Z t

�

Lf� d
� �������

in the following sense� Denote the �ow

P t�
t� �

��
exp

Z t�

t�

f� d
�

The family of operators on di�erential forms

cP t
� 
 �

kM � �kM

is a unique solution of the Cauchy problem

d

d t
cP t
� �

cP t
� 	 Lft � cP t

�

���
t��

� Id� �������

compare with Cauchy problems for the �ow P t
� ����� and for the family of

operators AdP t
� ������� ������� and this solution is denoted as

��
exp

Z t

�

Lf� d

def
�

�
��
exp

Z t

�

f� d


� d
�

In order to verify the ODE in �������� we prove �rst the following equality
for operators on forms


d

d �

����
���

�P t��
t � � Lft�� � � �kM� �������
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This equality is straightforward for ��order forms


d

d �

����
���

�P t��
t a �

d

d �

����
���

P t��
t a � fta � Lfta� a � C��M ��

Further� the both operators d
d �

��
���
�P t��
t and Lft commute with d and satisfy

the Leibniz rule w�r�t� product of a function with a di�erential form� Then
equality ������� follows for forms of arbitrary order� as in the proof of Cartan�s
formula�
Now we easily verify the ODE in �������


d

d t
cP t
� �

d

d �

����
���

�P t��
� �

d

d �

����
���

�P t
� 	 P t��

t

by the composition rule ������

�
d

d �

����
���

cP t
� 	�P t��

t � cP t
� 	

d

d �

����
���

�P t��
t

�cP t
� 	 Lft �

Exercise ����� Prove uniqueness for Cauchy problem ��������

For an autonomous vector �eld f � VecM � equality ������� takes the form
cetf � etLf �

Notice that the Lie derivatives of di�erential forms Lf and vector �elds
�� ad f� are in a certain sense dual one to another� see equality ������� below�
That is� the function

h��Xi 
 q �� h�q� X�q�i� q �M�

de�nes a pairing of ��M and VecM over C��M �� Then the equality

h bP��Xi � P h��AdP��Xi� P � Di�M� X � VecM� � � ��M�

has an in�nitesimal version of the form

hLY ��Xi � Y h��Xi � h�� �adY �Xi� X� Y � VecM� � � ��M�
�������

Taking into account Cartan�s formula� we immediately obtain the following
important equality


d��Y�X� � Y h��Xi �Xh�� Y i � h�� �Y�X�i� X� Y � VecM� � � ��M�
�������



���� Elements of Symplectic Geometry ��


���� Elements of Symplectic Geometry

We have already seen that the cotangent bundle T �M � �q�MT �qM of an n�
dimensional manifoldM is a �n�dimensional manifold� Any local coordinates
x � �x�� � � � � xn� on M determine canonical local coordinates on T �M of the
form ��� x� � ���� � � � � �n� x�� � � � � xn� in which any covector � � T �q�M has
the decomposition � �

Pn
i�� �i dxijq� �

������ Liouville Form and Symplectic Form

The �tautological� ��form �or Liouville ��form� on the cotangent bundle

s � ���T �M �

is de�ned as follows� Let � � T �M be a point in the cotangent bundle and
w � T��T �M � a tangent vector to T �M at �� Denote by � the canonical
projection from T �M to M 


� 
 T �M �M�

� 
 � �� q� � � T �qM�

Di�erential of � is a linear mapping

�� 
 T��T �M �� TqM� q � �����

The tautological ��form s at the point � acts on the tangent vector w in the
following way


hs�� wi def
� h�� ��wi�

That is� we project the vector w � T��T
�M � to the vector ��w � TqM � and

then act by the covector � � T �qM � So

s�
def
� � 	 ���

The title �tautological
 is explained by the coordinate representation of the
form s� In canonical coordinates ��� x� on T �M � we have


� �
nX
i��

�idxi� �������

w �
nX
i��


i
�

� �i
 �i

�

� xi
�

The projection written in canonical coordinates

� 
 ��� x� �� x
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is a linear mapping� its di�erential acts as follows


��

�
�

� �i

�
� �� i � �� � � � � n�

��

�
�

� xi

�
�

�

� xi
� i � �� � � � � n�

Thus

��w �
nX
i��

�i
�

� xi
�

consequently�

hs�� wi � h�� ��wi �
nX
i��

�i�i�

But �i � hdxi� wi� so the form s has in coordinates ��� x� exactly the same
expression

s� �
nX
i��

�idxi �������

as the covector �� see �������� Although� de�nition of the form s does not
depend on any coordinates�

Remark ����� In mechanics� the tautological form s is denoted as p dq�

Consider the exterior di�erential of the ��form s


�
def
� ds�

The di�erential ��form � � ���T �M � is called the canonical symplectic struc�
ture on T �M � In canonical coordinates� we obtain from �������


� �
nX
i��

d�i � dxi� �������

This expression shows that the form � is nondegenerate� i�e�� the bilinear
skew�symmetric form

�� 
 T��T
�M �� T��T

�M �� R
has no kernel


��w� 
 � � � 
 w � �� w � T��T
�M ��

In the following basis in the tangent space T��T
�M �

�

� x�
�

�

� ��
� � � � �

�

� xn
�

�

� �n
�
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the form �� has the block matrix�BBBBB�
� �
�� �

�� �

� �
�� �

�CCCCCA �

The form � is closed

d� � �

since it is exact
 � � ds� and d 	 d � ��
Remark ����� ��� A closed nondegenerate exterior di�erential ��form on a �n�
dimensional manifold is called a symplectic structure� A manifold with a sym�
plectic structure is called a symplectic manifold � The cotangent bundle T �M
with the canonical symplectic structure � is the most important example of
a symplectic manifold�
��� In mechanics� the ��form � is known as the form dp� dq�

������ Hamiltonian Vector Fields

Due to the symplectic structure � � ���T �M �� we can develop the Hamilto�
nian formalism on T �M � A Hamiltonian is an arbitrary smooth function on
the cotangent bundle


h � C��T �M ��

To any Hamiltonian h� we associate the Hamiltonian vector �eld

!h � Vec�T �M �

by the rule


��� 
 �!h� � d�h� � � T �M� �������

In terms of the interior product iv�� 
 � 
 � � ��v� 
 �� the Hamiltonian vector
�eld is a vector �eld !h that satis�es

i�h� � �dh�

Since the symplectic form � is nondegenerate� the mapping

w �� ��� 
 � w�

is a linear isomorphism

T��T
�M �� T �� �T

�M ��
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thus the Hamiltonian vector �eld !h in ������� exists and is uniquely deter�
mined by the Hamiltonian function h�
In canonical coordinates ��� x� on T �M we have

dh �
nX
i��

�
� h

� �i
d�i  

� h

� xi
dxi

�
�

then in view of �������

!h �
nX
i��

�
� h

� �i

�

� xi
� � h

� xi

�

� �i

�
� �������

So the Hamiltonian system of ODEs corresponding to h

�� � !h���� � � T �M�

reads in canonical coordinates as follows
����

�xi �

� h

� �i
� i � �� � � � � n�

��i � � � h

� xi
� i � �� � � � � n�

The Hamiltonian function can depend on a parameter
 ht� t � R� Then
the nonautonomous Hamiltonian vector �eld !ht� t � R is de�ned in the same
way as in the autonomous case�
The �ow of a Hamiltonian system preserves the symplectic form ��

Proposition ����� Let !ht be a nonautonomous Hamiltonian vector �eld on
T �M � Then �

��
exp

Z t

�

!h� d


� d
� � ��

Proof� In view of equality �������� we have�
��
exp

Z t

�

!h� d


� d
�
��
exp

Z t

�

L�h� d
�

thus the statement of this proposition can be rewritten as

L�ht� � ��

But this Lie derivative is easily computed by Cartan�s formula


L�ht� � i�ht 	 d��	z

��

 d 	 i�ht��	z

��dht

� �d 	 dht � ��

ut
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Moreover� there holds a local converse statement
 if a �ow preserves ��
then it is locally Hamiltonian� Indeed��

��
exp

Z t

�

f� d


� d
� � � � Lft� � ��

further
Lft� � ift 	 d��	z


��

 d 	 ift��

thus
Lft� � � � d 	 ift� � ��

If the form ift� is closed� then it is locally exact �Poincar#e�s Lemma�� i�e��

there exists a Hamiltonian ht such that locally ft � !ht�
Essentially� only Hamiltonian �ows preserve � �globally� �multi�valued Ha�

miltonians
 can appear�� If a manifoldM is simply connected� then there holds
a global statement
 a �ow on T �M is Hamiltonian if and only if it preserves
the symplectic structure�
The Poisson bracket of Hamiltonians a� b � C��T �M � is a Hamiltonian

fa� bg � C��T �M �

de�ned in one of the following equivalent ways


fa� bg � !ab � hdb�!ai � ��!a�!b� � ���!b�!a� � �!ba�

It is obvious that Poisson bracket is bilinear and skew�symmetric


fa� bg � �fb� ag�

In canonical coordinates ��� x� on T �M �

fa� bg �
nX
i��

�
� a

� �i

� b

� xi
� � a

� xi

� b

� �i

�
� �������

Leibniz rule for Poisson bracket easily follows from de�nition


fa� bcg � fa� bgc bfa� cg

�here bc is the usual pointwise product of functions b and c��
Symplectomorphisms of cotangent bundle preserve Hamiltonian vector

�elds� the action of a symplectomorphism P � Di��T �M �� bP� � �� on a

Hamiltonian vector �eld !h reduces to the action of P on the Hamiltonian
function as substitution of variables


AdP !h �
��
Ph �
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This follows from the chain

�
�
X�AdP !h

�
� bP�

�
X�AdP !h

�
� P�

�
AdP��X�!h

�
� P hdh�AdP��Xi � X�Ph�� X � Vec�T �M ��

In particular� a Hamiltonian �ow transforms a Hamiltonian vector �eld into
a Hamiltonian vector �eld


AdP t!bt �
��
P tbt� P t �

��
exp

Z t

�

!a� d
� �������

In�nitesimally� this equality implies Jacobi identity for Poisson bracket�

Proposition ���	�

fa� fb� cgg fb� fc� agg fc� fa� bgg� �� a� b� c � C��T �M �� �������

Proof� Any symplectomorphism P � Di��T �M �� bP� � �� preserves Poisson
brackets


Pfb� cg � P�
�
!b�!c
�
� bP�

�
AdP!b�AdP !c

�
� �

���
Pb�

��
Pc

�
� fPb� Pcg�

Taking P � et�a and di�erentiating at t � �� we come to Jacobi identity


fa� fb� cgg� ffa� bg� cg fb� fa� cgg�

ut
So the space of all Hamiltonians C��T �M � forms a Lie algebra with Pois�

son bracket as a product� The correspondence

a �� !a� a � C��T �M �� �������

is a homomorphism from the Lie algebra of Hamiltonians to the Lie algebra
of Hamiltonian vector �elds on M � This follows from the next statement�

Corollary ���
�
��
fa� bg� �!a�!b� for any Hamiltonians a� b � C��T �M ��

Proof� Jacobi identity can be rewritten as

ffa� bg� cg� fa� fb� cgg� fb� fa� cgg�

i�e��
��
fa� bg c � !a 	!b c�!b 	 !a c � �!a�!b� c� c � C��T �M ��

ut
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It is easy to see from the coordinate representation ������� that the kernel
of the mapping a �� !a consists of constant functions� i�e�� this is isomorphism
up to constants� On the other hand� this homomorphism is far from being
onto all vector �elds on T �M � Indeed� a general vector �eld on T �M is locally
de�ned by arbitrary �n smooth real functions of �n variables� while a Hamil�
tonian vector �eld is determined by just one real function of �n variables� a
Hamiltonian�

Theorem ����� �N�other�� A function a � C��T �M � is an integral of a
Hamiltonian system of ODEs

�� � !h���� � � T �M� �������

i�e��

et
�ha � a t � R�

if and only if it Poisson�commutes with the Hamiltonian�

fa� hg � ��

Proof� et
�ha � a� � � !ha � fh� ag� ut

Corollary ������ et
�hh � h� i�e�� any Hamiltonian h � C��T �M � is an in�

tegral of the corresponding Hamiltonian system ��������

Further� Jacobi identity for Poisson brackets implies that the set of inte�
grals of the Hamiltonian system ������� forms a Lie algebra with respect to
Poisson brackets�

Corollary ������ fh� ag � fh� bg � �
 fh� fa� bgg� ��
Remark ����	� The Hamiltonian formalismdeveloped generalizes for arbitrary
symplectic manifolds�

Now we introduce a construction that works only on T �M � Given a vector
�eld X � VecM � we de�ne a Hamiltonian function

X� � C��T �M ��

which is linear on �bers T �qM � as follows


X���� � h��X�q�i� � � T �M� q � �����

In canonical coordinates ��� x� on T �M we have


X �
nX
i��

ai�x�
�

� xi
�

X� �
nX
i��

�iai�x�� �������
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This coordinate representation implies that

fX�� Y �g � �X�Y ��� X� Y � VecM�

i�e�� Poisson brackets of Hamiltonians linear on �bers in T �M contain usual
Lie brackets of vector �elds on M �

The Hamiltonian vector �eld
��
X�� Vec�T �M � corresponding to the Hamil�

tonian function X� is called the Hamiltonian lift of the vector �eld X �
VecM � It is easy to see from the coordinate representations �������� �������
that

��

���
X�
�
� X�

Now we pass to nonautonomous vector �elds� Let Xt be a nonautonomous
vector �eld and

P�	t �
��
exp

Z t

�

X� d�

the corresponding �ow on M � The �ow P � P�	t acts on M 


P 
 M �M� P 
 q� �� q��

its di�erential pushes tangent vectors forward


P� 
 Tq�M � Tq�M�

and the dual mapping P � pulls covectors back


P � 
 T �q�M � T �q�M�

Thus we have a �ow on covectors �i�e�� on points of the cotangent bundle�


P ��	t 
 T
�M � T �M�

Let Vt be the nonautonomous vector �eld on T �M that generates the �ow
P ��	t


Vt �
d

d �

����
���

P �t	t���

Then

d

d t
P ��	t �

d

d �

����
���

P ��	t�� �
d

d �

����
���

P �t	t�� 	 P ��	t � Vt 	 P ��	t�

so the �ow P ��	t is a solution to the Cauchy problem

d

d t
P ��	t � Vt 	 P ��	t� P ��	� � Id�

i�e�� it is the left chronological exponential
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P ��	t �

�
exp

Z t

�

V� d��

It turns out that the nonautonomous �eld Vt is simply related with the
Hamiltonian vector �eld corresponding to the Hamiltonian X�

t 


Vt � �
��
X�
t � �������

Indeed� the �ow P ��	t preserves the tautological form s� thus

LVts � ��

By Cartan�s formula�
iVt� � �dhs� Vti�

i�e�� the �eld Vt is Hamiltonian


Vt �
��
hs� Vti �

But ��Vt � �Xt� consequently�

hs� Vti � �X�
t �

and equality ������� follows� Taking into account relation ������ between the
left and right chronological exponentials� we obtain

P ��	t �

�
exp

Z t

�

�
��
X�
� d� �

��
exp

Z �

t

��
X�
� d��

We proved the following statement�

Proposition ������ Let Xt be a complete nonautonomous vector �eld on M �
Then �

��
exp

Z t

�

X� d�

��
�
��
exp

Z �

t

��
X�
� d��

In particular� for autonomous vector �elds X � VecM ��
etX
��
� e�t

��

X�

�

������ Lagrangian Subspaces

A linear space � endowed with a bilinear skew�symmetric nondegenerate
form � is called a symplectic space� For example� � � T��T

�M � with the
canonical symplectic form � � �� is a symplectic space�
Any subspace L of a symplectic space � has the skew�orthogonal comple�

ment
L� � fx � � j ��x� L� � �g�
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A subspace L � � is called isotropic if

L � L��

Since the symplectic form � is nondegenerate� then

dimL� � codimL�

In particular� if a subspace L is isotropic� then dimL � �
� dim�� Isotropic

subspaces of maximal dimension


L � L�� dimL �
�

�
dim� � L � L��

are called Lagrangian subspaces�
For example� in canonical coordinates �p� q� on �� the vertical subspace

fq � �g and the horizontal subspace fp � �g are Lagrangian�
There exists a standard way to construct a Lagrangian subspace that con�

tains any given isotropic subspace� Let � � � be an isotropic subspace and
� � � a Lagrangian subspace� Then the subspace

��
def
� � � ��  � � ��  � � � �� �������

is Lagrangian �check��� It is clear that

�� � ��

In particular� any line in � is contained in some Lagrangian subspace�



��

Pontryagin Maximum Principle

In this chapter we prove the fundamental necessary condition of optimality
for optimal control problems ! Pontryagin Maximum Principle �PMP�� In
order to obtain a coordinate�free formulation of PMP on manifolds� we apply
the technique of Symplectic Geometry developed in the previous chapter� The
�rst classical version of PMP was obtained for optimal control problems in Rn

by L� S� Pontryagin and his collaborators �����

���� Geometric Statement of PMP and Discussion

Consider the optimal control problem stated in Sect� ���� for a control system

�q � fu�q�� q �M� u � U � Rm� ������

with the initial condition

q��� � q�� ������

De�ne the following family of Hamiltonians


hu��� � h�� fu�q�i� � � T �qM� q �M� u � U�

In terms of the previous section�

hu��� � f�u����

Fix an arbitrary instant t� 	 ��
In Sect� ���� we reduced the optimal control problem to the study of

boundary of attainable sets� Now we give a necessary optimality condition in
this geometric setting�

Theorem ���� �PMP�� Let "u�t�� t � ��� t��� be an admissible control and
"q�t� � q	u�t� the corresponding solution of Cauchy problem ������� ������� If
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"q�t�� � �Aq� �t���
then there exists a Lipschitzian curve in the cotangent bundle

�t � T �	q�t�M� � � t � t��

such that

�t �� �� ������

��t � !h	u�t���t�� ������

h	u�t���t� � max
u�U

hu��t� ������

for almost all t � ��� t���
If u�t� is an admissible control and �t a Lipschitzian curve in T �M such

that conditions ������������� hold� then the pair �u�t�� �t� is said to satisfy
PMP� In this case the curve �t is called an extremal � and its projection "q�t� �
���t� is called an extremal trajectory �

Remark ����� If a pair �"u�t�� �t� satis�es PMP� then

h	u�t���t� � const� t � ��� t��� ������

Indeed� since the admissible control "u�t� is bounded� we can take maximum

in ������ over the compact f"u�t� j t � ��� t��g � eU � Further� the function
���� � max

u�eU
hu���

is Lipschitzian w�r�t� � � T �M � We show that this function has zero derivative�
For any admissible control u�t��

���t� � hu�����t�� ���� � � hu������ ��

thus
���t�� ���� �

t� 

� hu�����t�� hu������ �

t� 

� t 	 
�

Consequently�
d

d t

����
t��

���t� � fhu���� hu���g � �

if 
 is a di�erentiability point of ���t�� Similarly�

���t�� ���� �

t� 

� hu�����t�� hu������ �

t� 

� t � 
�

thus
d

d t

����
t��

���t� � ��
So

d

d t
���t� � ��

and identity ������ follows�
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The Hamiltonian system of PMP

��t � !hu�t���t� ������

is an extension of the initial control system ������ to the cotangent bundle�
Indeed� in canonical coordinates � � ��� x� � T �M � the Hamiltonian system
yields

�x �
� hu�t�

� �
� fu�t��x��

That is� solutions �t to ������ are Hamiltonian lifts of solutions q�t� to ������


���t� � qu�t��

Before proving Pontryagin Maximum Principle� we discuss its statement�
First we give a heuristic explanation of the way the covector curve �t

appears naturally in the study of trajectories coming to boundary of the at�
tainable set� Let

q� � "q�t�� � �Aq� �t��� ������

The idea is to take a normal covector to the attainable set Aq� �t�� near
q�� more precisely ! a normal covector to a kind of a convex tangent cone
to Aq� �t�� at q�� By virtue of inclusion ������� this convex cone is proper�
Thus it has a hyperplane of support� i�e�� a linear hyperplane in Tq�M

bounding a half�space that contains the cone� Further� the hyperplane of sup�
port is a kernel of a normal covector �t� � T �q�M � �t� �� �� see Fig� ����� The
covector �t� is an analog of Lagrange multipliers�
In order to construct the whole curve �t� t � ��� t��� consider the �ow

generated by the control "u� 
 �


Pt	t� �
��
exp

Z t�

t

f	u��� d
� t � ��� t���

It is easy to see that

Pt	t��Aq� �t�� � Aq� �t��� t � ��� t���
Indeed� if a point q � Aq��t� is reachable from q� by a control u�
 �� 
 � ��� t��
then the point Pt	t��q� is reachable from q� by the control

v�
 � �

�
u�
 �� 
 � ��� t��
"u�
 �� 
 � �t� t���

Further� the di�eomorphism Pt	t� 
 M �M satis�es the condition

Pt	t��"q�t�� � "q�t�� � q�� t � ��� t���
Thus if "q�t� � intAq� �t�� then q� � intAq� �t��� By contradiction� inclu�
sion ������ implies that
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Aq�
�t��

�t�

q�

q�

Fig� ����� Hyperplane of support and normal covector to at�
tainable set Aq��t�
 at the point q�

"q�t� � �Aq� �t�� t � ��� t���

The tangent cone to Aq� �t� at the point "q�t� � Pt�	t�q�� has the normal
covector �t � P �t	t���t��� By Proposition ������ the curve �t� t � ��� t��� is a
trajectory of the Hamiltonian vector �eld !h	u�t�� i�e�� of the Hamiltonian system
of PMP�
One can easily get the maximality condition of PMP as well� The tangent

cone to Aq��t�� at q� should contain the in�nitesimal attainable set from the
point q�


fU �q�� � f	u�t���q���

i�e�� the set of vectors obtained by variations of the control "u near t�� Thus
the covector �t� should determine a hyperplane of support to this set


h�t� � fu � f	u�t��i � �� u � U�

In other words�

hu��t�� � h�t� � fui � h�t� � f	u�t��i � h	u�t����t��� u � U�

Translating the covector �t� by the �ow P �t	t�� we arrive at the maximality
condition of PMP


hu��t� � h	u�t���t�� u � U� t � ��� t���

The following statement shows the power of PMP�



���� Geometric Statement of PMP and Discussion �
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Proposition ����� Assume that the maximized Hamiltonian of PMP

H��� � max
u�U

hu���� � � T �M�

is de�ned and C��smooth on T �M n f� � �g�
If a pair �"u�t�� �t�� t � ��� t��� satis�es PMP� then

��t � !H��t�� t � ��� t��� ������

Conversely� if a Lipschitzian curve �t �� � is a solution to the Hamiltonian
system ������� then one can choose an admissible control "u�t�� t � ��� t��� such
that the pair �"u�t�� �t� satis�es PMP�

That is� in the favorable case when the maximized Hamiltonian H is C��
smooth� PMP reduces the problem to the study of solutions to just one Hamil�
tonian system ������� From the point of view of dimension� this reduction
is the best one we can expect� Indeed� for a full�dimensional attainable set
�dimAq��t�� � n� we have dim�Aq� �t�� � n � �� i�e�� we need an �n � ���
parameter family of curves to describe the boundary �Aq� �t��� On the other
hand� the family of solutions to Hamiltonian system ������ with the initial
condition ����� � q� is n�dimensional� Taking into account that the Hamil�
tonian H is homogeneous


H�c�� � cH���� c 	 ��

thus

et
�H�c��� � cet

�H����� � 	 et �H�c��� � � 	 et �H�����
we obtain the required �n� ���dimensional family of curves�
Now we prove Proposition �����

Proof� We show that if an admissible control "u�t� satis�es the maximality
condition ������� then

!h	u�t���t� � !H��t�� t � ��� t��� �������

By de�nition of the maximized Hamiltonian H�

H���� h	u�t���� � � � � T �M� t � ��� t���
On the other hand� by the maximality condition of PMP ������� along the
extremal �t this inequality turns into equality


H��t�� h	u�t���t� � �� t � ��� t���
That is why

d�tH � d�th	u�t�� t � ��� t���
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But a Hamiltonian vector �eld is obtained from di�erential of the Hamiltonian
by a standard linear transformation� thus equality ������� follows�
Conversely� let �t �� � be a trajectory of the Hamiltonian system ��t �

!H��t�� In the same way as in the proof of Filippov�s theorem� one can choose
an admissible control "u�t� that realizes maximum along �t


H��t� � h	u�t���t� � max
u�U

hu��t��

As we have shown above� then there holds equality �������� So the pair
�"u�t�� �t� satis�es PMP� ut

���� Proof of PMP

We start from two auxiliary propositions�
Denote the positive orthant in Rm as

Rm� � f�x�� � � � � xm� � Rm j xi � �� i � �� � � � �mg�

Lemma ����� Let a vector�function F 
 Rm� Rn be Lipschitzian� F ��� � ��
and di
erentiable at ��

� F �� �
dF

dx

����
�

�

Assume that
F ���R

m
�� � R

n�

Then for any neighborhood of the origin O� � Rm

� � intF �O� �Rm���

Remark ����� ��� The statement of this lemma holds if the orthant Rm� is
replaced by an arbitrary convex cone C � Rm� In this case the proof given
below works without any changes�
��� For a smooth vector�function F � the statement this lemma follows from

the implicit function theorem�

Proof� Choose points y�� � � � � yn � Rn that generate an n�dimensional simplex
centered at the origin


�

n �

nX
i��

yi � ��

Since the mapping F �� 
 R
m
� � Rn is surjective and the positive orthant Rm�

is convex� it is easy to show that restriction to the interior F ��jintRm� is also

surjective


� vi � intRm� such that F ��vi � yi� i � �� � � � � n�



���� Proof of PMP �
�

The points y�� � � � � yn are a�nely independent in R
n� thus their preimages

v�� � � � � vn are also a�nely independent in R
m� The mean

v �
�

n �

nX
i��

vi

belongs to intRm� and satis�es the equality

F ��v � ��

Further� the subspace

W � spanfvi � v j i � �� � � � � ng � Rm

is n�dimensional� Since v � intRm�� we can �nd an n�dimensional ball B� �W
of a su�ciently small radius � centered at the origin such that

v  B� � intRm� �

Since F ���vi � v� � F ��vi� then F ��W � Rn� i�e�� the linear mapping F �� 
 W �
Rn is invertible�
Consider the following family of mappings


G� 
 B� � Rn� 
 � ��� 
���

G��w� �
�



F �
�v  w��� 
 	 ��

G��w� � F ��w�

By the hypotheses of the proposition�

F �x� � F ��x o�x�� x � Rm� x� ��

thus

G��w� � F ��w  o���� 
� �� w � B� � �������

Since the mapping F is Lipschitzian� all mappings G� are Lipschitzian with
a common constant� Thus the family G� is equicontinuous� Equality �������
means that

G� � G�� 
� ��

pointwise� thus uniformly�
So the continuous mapping G� 	 G��

� 
 G��B�� � Rn is uniformly close
to the identity mapping� hence the di�erence Id�G� 	G��

� is uniformly close
to the zero mapping� For any "x � Rn su�ciently close to the origin� the
continuous mapping

Id�G� 	G��
�  "x



�
� �� Pontryagin Maximum Principle

transforms the set G��B�� into itself� By Brower�s �xed point theorem� this
mapping has a �xed point x � G��B��


x�G� 	G��
� �x�  "x � x�

i�e��
G� 	G��

� �x� � "x�

It follows that intG� 	 G��
� �B�� � �� consequently� intF �
B�� � � for small


 	 �� ut
Now we start to compute a convex approximation of the attainable

set Aq��t�� at the point q� � "q�t��� Take any admissible control u�t� and
express the endpoint of a trajectory via Variations Formula ������


qu�t�� � q�	 ��
exp

Z t�

�

fu��� d
 � q�	 ��
exp

Z t�

�

f	u���  �fu��� � f	u���� d


� q�	 ��
exp

Z t�

�

f	u��� d
	 ��
exp

Z t�

�

�
P t�
�

�
� �fu��� � f	u���� d


� q�	 ��
exp

Z t�

�

�
P t�
�

�
� �fu��� � f	u���� d
�

Introduce the following vector �eld depending on two parameters


g�	u �
�
P t�
�

�
� �fu � f	u����� 
 � ��� t��� u � U� �������

We showed that

qu�t�� � q�	 ��
exp

Z t�

�

g�	u��� d
� �������

Notice that
g�		u��� � �� 
 � ��� t���

Lemma ����� Let T � ��� t�� be the set of Lebesgue points of the control "u� 
 ��
If

Tq�M � conefg�	u�q�� j 
 � T � u � Ug�
then

q� � intAq� �t���
Remark ����� The set conefg�	u�q�� j 
 � T � u � Ug � Tq�M is a local convex
approximation of the attainable set Aq� �t�� at the point q��
Recall that a point 
 � ��� t�� is called a Lebesgue point of a function

u � L���� t�� if

lim
t��

�

jt� 
 j
Z t

�

ju��� � u�
 �j d� � ��
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�

At Lebesgue points of u� the integral

Z t

�

u��� d� is di�erentiable and

d

d t

�Z t

�

u��� d�

�
� u�t��

The set of Lebesgue points has the full measure in the domain ��� t��� For
details on this subject� see e�g� ������
Now we prove Lemma �����

Proof� We can choose vectors

g�i 	ui�q�� � Tq�M� 
i � T � ui � U� i � �� � � � � k�

that generate the whole tangent space as a positive convex cone


cone fg�i 	ui�q�� j i � �� � � � � kg � Tq�M�

moreover� we can choose points 
i distinct
 
i �� 
j� i �� j� Indeed� if 
i � 
j for
some i �� j� we can �nd a su�ciently close Lebesgue point 
 �j �� 
j such that
the di�erence g� �j 	uj �q�� � g�j 	uj �q�� is as small as we wish� This is possible
since for any 
 � T and any � 	 �

�

jt� 
 j measft
� � �
� t� j ju�t��� u�
 �j � �g � � as t� 
�

We suppose that 
� � 
� � 
 
 
 � 
k�
We de�ne a family of variations of controls that follow the control "u� 
 �

everywhere except neighborhoods of 
i� and follow ui near 
i �such variations
are called needle�like��
More precisely� for any s � �s�� � � � � sk� � Rk� consider a control of the

form

us�t� �

�
ui� t � �
i� 
i  si��
"u�t�� t �� �ki���
i� 
i  si��

�������

For small s� the segments �
i� 
i  si� do not overlap since 
i �� 
j � i �� j� In
view of formula �������� the endpoint of the trajectory corresponding to the
control constructed is expressed as follows


qus�t�� � q�	 ��
exp

Z t�

�

fus�t� dt

� q�	 ��
exp

Z ���s�

��

gt	u� dt 	 ��
exp

Z ���s�

��

gt	u� dt 	 
 
 


	 ��
exp

Z �k�sk

�k

gt	uk dt�

The mapping
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F 
 s � �s�� � � � � sk� �� qus�t��

is Lipschitzian� di�erentiable at s � �� and

� F

� si

����
s��

� g�i	ui�q���

By Lemma �����
F ��� � q� � intF �O� �Rk��

for any neighborhood O� � Rk� But the curve qus�t�� t � ��� t��� is an
admissible trajectory for small s � Rk�� thus F �O� � Rk�� � Aq��t�� and
q� � intAq� �t��� ut
Now we can prove the geometric statement of Pontryagin MaximumPrin�

ciple� Theorem �����

Proof� Let the endpoint of the reference trajectory

q� � "q�t�� � �Aq� �t���
By Lemma ����� the origin � � Tq�M belongs to the boundary of the convex
set conefgt	u�q�� j t � T � u � Ug� so this set has a hyperplane of support at
the origin


� �t� � T �q�M� �t� �� ��

such that

h�t� � gt	u�q��i � � � a�e� t � ��� t��� u � U�

Taking into account de�nition ������� of the �eld gt	u� we rewrite this inequal�
ity as follows


h�t� �
�
P t�
t� fu

�
�q��i � h�t� �

�
P t�
t� f	u�t�

�
�q��i�

i�e��
h�P t�

t

��
�t� � fu�"q�t��i � h

�
P t�
t

��
�t� � f	u�t��"q�t��i�

The action of the �ow P t�
t on covectors de�nes the curve in the cotangent

bundle

�t

def
�
�
P t�
t

��
�t� � T �	q�t�M� t � ��� t���

In terms of this covector curve� the inequality above reads

h�t� fu�"q�t��i � h�t� f	u�t��"q�t��i�
Thus the maximality condition of PMP ������ holds along the reference tra�
jectory


hu��t� � h	u�t���t� � u � U � a�e� t � ��� t���



���� Geometric Statement of PMP for Free Time �



By Proposition ������ the curve �t is a trajectory of the nonautonomous
Hamiltonian �ow with the Hamiltonian function f�	u�t� � h	u�t�


�t � �t� 	
�
��
exp

Z t�

t

f	u��� d�

��
� �t�	

��
exp

Z t

t�

!h	u��� d��

thus it satis�es the Hamiltonian equation of PMP ������

��t � !h	u�t���t��

ut

���� Geometric Statement of PMP for Free Time

In the previous section we proved Pontryagin MaximumPrinciple for the case
of �xed terminal time t�� Now we consider the case of free t��

Theorem ���	� Let "u� 
 � be an admissible control for control system ������
such that

"q�t�� � �
��jt�t�j
�Aq� �t��

for some t� 	 � and � � ��� t��� Then there exists a Lipschitzian curve

�t � T �	q�t�M� �t �� �� � � t � t��

such that

��t � !h	u�t���t��

h	u�t���t� � max
u�U

hu��t��

h	u�t���t� � � �������

for almost all t � ��� t���
Remark ���
� In problems with free time� there appears one more variable�
the terminal time t�� In order to eliminate it� we have one additional con�
dition ! equality �������� This condition is indeed scalar since the previous
two equalities imply that h	u�t���t� � const� see remark after formulation of
Theorem �����

Proof� We reduce the case of free time to the case of �xed time by exten�
sion of the control system via substitution of time� Admissible trajectories of
the extended system are reparametrized admissible trajectories of the initial
system �the positive direction of time on trajectories is preserved��
Let a new time be a smooth function



�
� �� Pontryagin Maximum Principle

� 
 R� R� �� 	 ��

We �nd an ODE for a reparametrized trajectory


d

d t
qu���t�� � ���t�fu���t���qu���t����

so the required equation is

�q � ���t�fu���t���q��

Now consider along with the initial control system

�q � fu�q�� u � U�

an extended system of the form

�q � vfu�q�� u � U� jv � �j � �� �������

where � � ��t� � ��� ��� Admissible controls of the new system are

w�t� � �v�t�� u�t���

and the reference control corresponding to the control "u� 
 � of the initial sys�
tem is

"w�t� � ��� "u�t���

It is easy to see that since "q�t�� � �
��jt�t�j
�Aq��t��� then the trajectory of

the new system through the point q� corresponding to the control "w� 
 � comes
at the moment t� to the boundary of the attainable set of the new system for
time t�� Thus "w�t� satis�es PMP with �xed time� We apply Theorem ���� to
the new system �������� The Hamiltonian for the new system is vhu���� Then
the maximality condition ������ reads

� 
 h	u�t���t� � max
u�U	 jv��j
�

vhu��t��

We take u � "u�t� under the maximum and obtain

h	u�t���t� � ��

then we restrict the maximum to the set v � � and come to

h	u�t���t� � max
u�U

hu��t��

The Hamiltonian systems along "w� 
 � and "u� 
 � coincide one with another�
thus the proposition follows� ut
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�

���� PMP for Optimal Control Problems

Now we apply PMP in geometric form to optimal control problems� starting
from problems with �xed time�
For a control system

�q � fu�q�� q �M� u � U� �������

with the boundary conditions

q��� � q�� q�t�� � q�� q�� q� �M �xed� �������

t� 	 � �xed� �������

and the cost functional

J�u� �

Z t�

�

��qu�t�� u�t�� dt �������

we consider the optimal control problem

J�u�� min � �������

We transform the problem as in Sect� ����� We extend the state space


bq � �y
q

�
� R�M�

de�ne the extended vector �eld bfu � Vec�R�M �


bfu�q� � ���q� u�
fu�q�

�
�

and come to the new control system


d bq
d t
� bfu�q� �

�
�y � ��q� u��

�q � fu�q�
�������

with the boundary conditions

bq��� � bq� � � �q�
�
� bq�t�� � �J�u�

q�

�
�

If a control "u� 
 � is optimal for problem ���������������� then the trajectorybq	u�t� of the extended system ������� starting from bq� satis�es the condition
bq	u�t�� � � bAbq� �t���

where bAbq� �t�� is the attainable set of system ������� from the point bq� for
time t�� So we can apply Theorem �����
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But the geometric form of PMP applied to the extended system �������
does not distinguish minimumand maximumof the cost J�u�� In order to have
conditions valid only for minimum� we introduce a new control parameter v
and consider a new system of the form�

�y � ��q� u�  v�

�q � fu�q��
v � �� u � U� �������

Now the trajectory of system ������� corresponding to the controls "v�t� � ��
"u�t�� comes to the boundary of the attainable set of this system at time t��
We apply Theorem ���� to system �������� We have

T�y	q��R�M � � R" TqM�

T ��y	q��R�M � � R" T �qM � f� � ��g�
The Hamiltonian function for system ������� has the form

bh�v	u�� � �� � h�� fui  �� v��

and the Hamiltonian system of PMP is����

� � 
 bh


 y � ��

�y � ��q� u�  v�
�� � !h	u�t�� � ���

�������

Here !hu� � �� is the Hamiltonian vector �eld with the Hamiltonian function

hu� � �� � h�� fui   ��

The �rst of equations ������� means that

 � const

along the reference trajectory�
The maximality condition has the form

h�t� f	u�t�i   ��"q�t�� "u�t�� � max
u�U	 v��

�h�t� fui   ��"q�t�� u�   v� �

Since the previous maximum is attained� we have

 � ��
thus we can set v � � in the right�hand side of the maximality condition


h�t� f	u�t�i   ��"q�t�� "u�t�� � max
u�U

�h�t� fui  ��"q�t�� u�� �

So we proved the following statement�
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Theorem ������ Let "u�t�� t � ��� t��� be an optimal control for problem
����������������

J�"u� � minfJ�u� j qu�t�� � q�g�
De�ne a Hamiltonian function

h�u��� � h�� fui   ��q� u�� � � T �qM� u � U�  � R�

Then there exists a nontrivial pair�

� � �t� �� ��  � R� �t � T �	q�t�M�

such that the following conditions hold�

��t � !h�	u�t���t��

h�	u�t���t� � max
u�U

h�u��t� � a�e� t � ��� t���
 � ��

Remark ������ ��� If we have a maximization problem instead of minimization
problem �������� then the preceding inequality for  should be reversed


 � ��

��� For the problem with free time t�
 �������� �������� �������� ��������
necessary optimality conditions of PMP are the same as in Theorem �����
plus one additional scalar equality h�	u�t���t� � � �exercise��
There are two distinct possibilities for the constant parameter  in Theo�

rem �����


�a� if  �� �� then the curve �t is called a normal extremal � Since the pair � � �t�
can be multiplied by any positive number� we can normalize  � � and assume
that  � �� in the normal case�
�b� if  � �� then �t is an abnormal extremal �

So we can always assume that  � �� or ��
Now consider the time�optimal problem


�q � fu�q�� q �M� u � U�

q��� � q�� q�t�� � q�� q�� q� �xed�

t� �

Z t�

�
� dt� min �

For the time�optimal problem� Pontryagin Maximum Principle takes the
following form�
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Corollary ������ Let an admissible control "u�t�� t � ��� t��� be time�optimal�
De�ne a Hamiltonian function

hu��� � h�� fui� � � T �qM� u � U�

Then there exists a Lipschitzian curve

�t � T �M� �t �� �� t � ��� t���
such that the following conditions hold for almost all t � ��� t���

��t � !h	u�t���t��

h	u�t���t� � max
u�U

hu��t��

h	u�t���t� � �� �������

Proof� Apply Theorem ����� and the second remark after it� taking � � ��
Then the Hamiltonian system and the maximality condition follow� Inequal�
ity ������� is equivalent to conditions h	u�t���t�   � � and  � ��
The inequality �t �� � is obtained as follows
 if �t � �� then h	u�t���t� � ��

thus  � �� But the pair � � �t� must be nontrivial� consequently� �t �� �� ut

���� PMP with General Boundary Conditions

In this section we prove versions of Pontryagin MaximumPrinciple for optimal
control problems in which boundary points of trajectories belong to prescribed
manifolds�
First consider the following problem


�q � fu�q�� q �M� u � U � Rm� �������

q��� � N�� q�t�� � N�� �������

t� 	 � �xed� �������

J�u� �

Z t�

�

��q�t�� u�t�� dt� min � �������

Here N� and N� are given immersed submanifolds of the state space M � So
the boundary points q��� and q�t�� are not �xed as before� but should belong
to N� and N� respectively�
If a trajectory "q�t� is optimal for this problem� then it is optimal as well for

the problemwith the �xed boundary points "q���� "q�t�� considered in Sect� �����
Consequently� the statement of Theorem ����� should be satis�ed for "q�t��
But now we need additional conditions that select boundary points "q��� � N�

and "q�t�� � N�� It is reasonable to expect that they should be determined
by �dimN�  dimN�� scalar equalities� Such conditions can easily be formu�
lated in the Hamiltonian framework� they are called transversality conditions�
see ������� below�
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Theorem ������ Let "u�t�� t � ��� t��� be an optimal control in problem
���������������� De�ne a family of Hamiltonians�

h�u��� � h�� fu�q�i  ��q� u�� � � T �qM� q �M�  � R� u � U�

Then there exists a Lipschitzian curve �t � T �	q�t�M � t � ��� t��� and a number
 � R such that�

��t �
��
h�	u�t� ��t�� �������

h�	u�t���t� � max
u�U

h�u��t�� �������

��t�  � �� ��� ��� t � ��� t��� �������

 � �� �������

�� � T	q���N�� �t� � T	q�t��N�� �������

N� N�

���

�t�
�q���

�q�t��

Fig� ����� Transversality conditions ������


Remark ������ ��� Any linear functional on a linear space acts naturally on a
subspace by restriction� so transversality conditions ������� read respectively
as follows


h��� vi � �� v � T	q���N��

h�t� � wi � �� w � T	q�t��N��

��� The problem with free time
 �������� �������� �������� is reduced to the
case of �xed t� in the same way as in Sect� ����� so for this problem holds the
previous theorem with the additional condition h�	u�t���t� � ��
Now we prove Theorem ������

Proof� The scheme of proof of PMP developed in Theorems ����� ����� can
be applied to much more general problems after appropriate modi�cations�
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Now we only indicate how the proofs of these theorems should be changed in
order to cover the new boundary conditions q��� � N�� q�t�� � N��
��� First consider the special case where the initial point is �xed
 let

N� � fq�g
for some point q� �M �
As in the proof of Theorem ������ we introduce an extended system on

R�M 


bq � � y
q

�
� R�M�

bfu�q� � ���q� u�  v
fu�q�

�
� T�y	bq��R�M � � R� TqM�

d bq
d t
� bfu�q� �

�
�y � ��q� u�  v�

�q � fu�q��
�������

bq��� � bq� � � �q�
�
�

Further� in the case of �xed terminal point q�t��� the necessary condition for
optimality of the trajectory q	u�t� was the following


bq� � � bAbq� �t��� �������

Here bA is the attainable set of the extended system ������� and bq� � bq	u�t���
Now� when the target manifold N� is not a point� we should modify the

argument� In a sense� we reduce the target manifold to a point de�ning it
locally by an equation � � �� Choose a submersion

� 
 Oq	u�t��
� Rp� p � dimM � dimN��

of a small neighborhood Oq	u�t��
�M � so that

������ � N� �Oq	u�t��
�

Further� extend the submersion
 de�ne the mapping

b� 
 R� Oq	u�t��
� R��p� b��y

q

�
�

�
y

��q�

�
�

Since the control "u�t� is optimal in our problem ���������������� then

b��bq�� � � b�� bAbq��t���� �������

So we replace the necessary optimality condition ������� by ������� and return
to the scheme of proof of Theorems ����� ������
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Take any k � N and any needle�like variation ������� of the optimal control

us�t�� s � Rk�� u��t� � "u�t�� t � ��� t���

De�ne the mappings

G 
 Rk� R�M� G�s� � bqus�t�� � bq� 	 ��
exp

Z t�

�

bfus�t� dt� �������

F 
 Rk� R��p� F �s� � b��G�s�� � bq� 	 ��
exp

Z t�

�

bfus�t� dt 	 b��
�������

Then it follows from inclusion ������� that

b��bq�� � F ��� � �F �Rk��� �������

By Lemma �����

F ���R
k
�� � cone

�
� F

� si

����
�

j i � �� � � � � k
�
�� R��p�

thus there exists a plane of support� i�e��

� b� � �R��p
��

� b� �� ��
such that �b�� � F

� si

����
�

�
� �� i � �� � � � � k� �������

We compute the derivative by the chain rule


� F

� si

����
�

� b�� � G

� si

����
�

� �������

and rewrite inequalities ������� as follows
�b��b�� � G
� si

����
�

�
�

�b�� b�� � G

� si

����
�

�
� �� i � �� � � � � k� �������

Then we denote the covector

b�t� � b��b� � �  
�t�

�
� Tbq� �R�M � �������

and obtain conclusions ��������������� in the same way as in Theorem ������

The only distinction now is that the covector b�t� is not arbitrary
 equal�
ity ������� implies the second of the transversality conditions �������� Indeed�
we have
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�t� � ���� � � �Rp�� �
thus

h�t� � Tq	u�t��N�i � h���� Tq	u�t��N�i � h�� ��Tq	u�t��N�� 	z 

��

i � ��

The �rst transversality condition ������� is now trivially satis�ed� so the proof
of this theorem in the case N� � fq�g is complete�
��� Let now the initial manifoldN� be an arbitrary immersed submanifold

of M � We can modify the scheme presented above to cover this case as well�
Since now the initial point q��� is not �xed� we add variations of q����
Replace mappings �������� ������� by the following ones


G 
 N� �Rk� R�M� G�q� s� � bq 	 ��
exp

Z t�

�

bfus�t� dt�
F 
 N� �Rk� R��p� F �q� s� � b��G�q� s�� � bq 	 ��

exp

Z t�

�

bfus�t� dt 	 b��
where bq � ��� q� � R�M � Then the necessary optimality condition ������� is
replaced by the inclusion

F �"q���� �� � �F �N� �Rk��� �������

Apply Lemma ���� to restriction of the mapping F to the space

Rm �� O	q��� �Rk� m � l  k� l � dimN��

where O	q��� � N� is a small neighborhood of "q���� By the remark after
Lemma ����� inclusion ������� implies that

F ��	q���	���R
l"Rk�� �� R��p�

i�e�� there exists a covector

b� � �R��p
��

� b� �� �� b� � � 
�

�
�

such that �b�� � F

� q
v

�
� �� v � T	q���N���b�� � F

� si

�
� �� i � �� � � � � k� �������

In the �rst inequality v belongs to a linear space� thus it turns into equality
�b�� � F

� q
v

�
� �� v � T	q���N�� �������
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Compute by Leibniz rule the partial derivative


� F

� q

����
�	q���	��


 T	q���N� � R��p�

� F

� q

����
�	q���	��

v �

�
�
v

�
	 ��
exp

Z t�

�

bf	u�t� dt 	 b� � � �
v 	 P t� 	 �

�
�

�
�

��P t�� v

�
� v � T	q���N��

Here we applied formula ������ to the �ow

P t� �
��
exp

Z t�

�

f	u�t� dt�

Then conditions �������� ������� read as follows
�
�� ��P t�� v

�
� �� v � T	q���N�� ������� b��b�� � G

� si

����
�	q���	��

!
� �� i � �� � � � � k�

As before� introduce the covector b�t� � � � �t�� by equality �������� then
conclusions ��������������� of this theorem and the second transversality con�
dition ������� follow�
The �rst transversality condition is also satis�ed
 equality ������� can be

rewritten as �
�t� � P

t�� v
�
� �� v � T	q���N��

But �� � P �t��t� � thus

h��� vi �
�
P �t��t� � v

�
� �� v � T	q���N��

The theorem is completely proved� ut
Now consider even more general problem with mixed boundary conditions�

see inclusion ������� below� Pontryagin Maximum Principle easily generalizes
to this case� both in formulation and in proof�
We study optimal control problem of the form


�q � fu�q�� q �M� u � U � Rm� �������

�q���� q�t��� � N �M �M� �������

t� 	 � �xed� �������

J�u� �

Z t�

�

��q�t�� u�t�� dt� min� �������

where N is a smooth immersed submanifold of M �M �
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Theorem ������ Let "u be an optimal control in problem ����������������
Then there hold all statements of Theorem ����� except its transversality con�
dition �������� which is replaced now by the relation

����� �t�� � T�	q���		q�t���N� �������

Remark ������ ��� We identify

T ��q�	q���M �M � �� T �q�M " T �q�M�

so the transversality condition ������� makes sense�
��� An important particular case of mixed boundary conditions ������� is

the case of periodic trajectories


q�t�� � q���� �������

Indeed� then

N � �
def
� f�q� q� j q �Mg �M �M� �������

the diagonal of the product M �M � In this case the transversality condi�
tion ������� reads

h����� �t��� �v� v�i � �h��� vi h�t� � vi � �� v � Tq���M � Tq�t��M�

i�e��
�� � �t� �

That is� an optimal trajectory in the problem with periodic boundary condi�
tions ������� possesses a periodic Hamiltonian lift �extremal��

Now we prove Theorem ������

Proof� We reduce our problem to the case of separated boundary conditions
by introducing an auxiliary problem on M �M 
�

�x � ��

�q � fu�q��
�x� q� �M �M� u � U�

�x���� q���� � �� �x�t��� q�t��� � N�

�the diagonal � is de�ned in ������� above�

J�u� �

Z t�

�

��q�t�� u�t�� dt� min �

It is obvious that this problem is equivalent to our problem ����������������
We apply a version of PMP �Theorem ������ to the auxiliary problem� The
Hamiltonian is the same as for the initial problem
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h�u��� �� � h�u��� � h�� fu�q�i  ��q� u�� ��� �� � T �M " T �M�

The corresponding Hamiltonian system is�
��t � ��

��t �
��
h�	u�t� ��t��

�������

All required statements of PMP obviously follow� we should only check
transversality conditions�
At the initial instant t � � the �rst of conditions ������� reads


h���� ���� �v� v�i � h��� vi  h��� vi � �� v � T	q���M�

i�e��
��  �� � ��

or� taking into account the �rst of equations ��������

�t� � ����

And at the terminal instant t � t�


��t�� �t�� � T�	x�t��		q�t���N�

that is�
����� �t�� � T�	q���		q�t���N�

which is the required transversality condition �������� ut
Remark ������ ��� Needless to say� if the terminal time t� is free� then one
should add to statements of Theorem ����� the additional equality h�	u�t���t� �
��
��� Pontryagin Maximum Principle withstands further generalizations to

wider classes of cost functionals and boundary conditions� After certain mod�
i�cations of argument� the general scheme provides necessary optimality con�
ditions for more general problems�





��

Examples of Optimal Control Problems

In this chapter we apply Pontryagin Maximum Principle to solve concrete
optimal control problems�

���� The Fastest Stop of a Train at a Station

Consider a train moving on a railway� The problem is to drive the train to a
station and stop it there in a minimal time�
Describe position of the train by a coordinate x� on the real line� the origin

� � R corresponds to the station� Assume that the train moves without fric�
tion� and we can control acceleration of the train by applying a force bounded
by absolute value� Using rescaling if necessary� we can assume that absolute
value of acceleration is bounded by ��
We obtain the control system

$x� � u� x� � R� juj � ��
or� in the standard form��

�x� � x��

�x� � u�
x �

�
x�
x�

�
� R�� juj � �� ������

The time�optimal control problem is

x��� � x�� x�t�� � �� ������

t� � min � ������

First we verify existence of optimal controls by Filippov�s theorem� The
set of control parameters U � ���� �� is compact� the vector �elds in the
right�hand side

f�x� u� �

�
x�
u

�
� juj � ��
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are linear� and the set of admissible velocities at a point

f�x� U � � ff�x� u� j juj � �g
is convex� By Corollary ����� the time�optimal control problem has a solution
if the origin � � R� is attainable from the initial point x�� We will show that
any point x � R� can be connected with the origin by an extremal curve�
Now we apply Pontryagin Maximum Principle� Introduce canonical coor�

dinates on the cotangent bundle


M � R��

T �M � T �R� � R���R� �

�
� � ��� x� j x �

�
x�
x�

�
� � � ���� ���

�
�

The control�dependent Hamiltonian function of PMP is

hu��� x� � ���� ���

�
x�
u

�
� ��x�  ��u�

and the corresponding Hamiltonian system has the form����

�x �

� hu
� �

�

�� � �� hu
� x

�

In coordinates this system splits into two independent subsystems
�
�x� � x��

�x� � u�

�
��� � ��
��� � ����

������

By PMP� if a control "u� 
 � is time�optimal� then the Hamiltonian system has
a nontrivial solution ���t�� x�t��� ��t� �� �� such that

h	u�t����t�� x�t�� � maxjuj��
hu���t�� x�t�� � ��

From this maximality condition� if ���t� �� �� then "u�t� � sgn ���t�� Notice
that the maximized Hamiltonian

max
juj��

hu��� x� � ��x�  j��j

is not smooth� So we cannot apply Proposition ����� but we can obtain de�
scription of optimal controls directly from Pontryagin Maximum Principle�
without preliminary maximization of Hamiltonian�
Since

$�� � ��

then �� is linear
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���t� � 
 �t� 
� � � const�

hence the optimal control has the form

"u�t� � sgn�
 �t��

So "u�t� is piecewise constant� takes only the extremal values ��� and has not
more than one switching �discontinuity point��
New we �nd all trajectories x�t� that correspond to such controls and come

to the origin� For controls u � ��� the �rst of subsystems ������ reads�
�x� � x��

�x� � ���
Trajectories of this system satisfy the equation

d x�
d x�

� �x��

thus are parabolas of the form

x� � �x��
�
 C� C � const �

First we �nd trajectories from this family that come to the origin without
switchings
 these are two semiparabolas

x� �
x��
�
� x� � �� �x� 	 �� ������

and

x� � �x��
�
� x� 	 �� �x� � �� ������

for u �  � and �� respectively�
Now we �nd all extremal trajectories with one switching� Let �x�s� x�s� �

R� be a switching point for anyone of curves ������� ������� Then extremal
trajectories with one switching coming to the origin have the form

x� �

��
�x
�
���  x��s��  x�s� x� 	 x�s� �x� � ��

x���� � 	 x� 	 x�s� �x� 	 ��
������

and

x� �

��

x����� x��s��  x�s� x� � x�s� �x� 	 ��

�x���� � � x� � x�s� �x� � ��
������

It is easy to see that through any point �x�� x�� of the plane passes exactly
one curve of the forms �������������� So for any point of the plane there exists
exactly one extremal trajectory steering this point to the origin� Since optimal
trajectories exist� then the solutions found are optimal� The general view of
the optimal synthesis is shown at Fig� �����
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Fig� ����� Optimal synthesis in problem �����
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���� Control of a Linear Oscillator

Consider a linear oscillator whose motion can be controlled by force bounded
in absolute value� The corresponding control system �after appropriate rescal�
ing� is

$x�  x� � u� juj � �� x� � R�
or� in the canonical form
�

�x� � x��

�x� � �x�  u�
juj � ��

�
x�
x�

�
� R�� ������

We consider the time�optimal problem for this system


x��� � x�� x�t�� � �� �������

t� � min � �������

By Filippov�s theorem� optimal control exists� Similarly to the previous
problem� we apply Pontryagin Maximum Principle
 the Hamiltonian function
is

hu��� x� � ��x� � ��x�  ��u� ��� x� � T �R� � R���R��

and the Hamiltonian system reads
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�x� � x��

�x� � �x�  u�

�
��� � ���
��� � ����

The maximality condition of PMP yields

���t�"u�t� � maxjuj��
���t�u�

thus optimal controls satisfy the condition

"u�t� � sgn ���t� if ���t� �� ��

For the variable �� we have the ODE

$�� � ����

hence
�� � 
 sin�t ��� 
� � � const �

Notice that 
 �� �
 indeed� if �� � �� then �� � � ����t� � �� thus ��t� �
����t�� ���t�� � �� which is impossible by PMP� Consequently�

"u�t� � sgn�
 sin�t ����

This equality yields a complete description of possible structure of optimal
control� The interval between successive switching points of "u�t� has the
length �� Let 
 � ��� �� be the �rst switching point of "u�t�� Then

"u�t� �

�
sgn "u���� t � ��� 
 �� �
  �� 
  ��� � �
  ��� 
  ��� � � � �
� sgn "u���� t � �
� 
  �� � �
  ��� 
  ��� � � � �

That is� "u�t� is parametrized by two numbers
 the �rst switching time 
 �
��� �� and the initial sign sgn "u��� � f��g�
Optimal control "u�t� takes only the extremal values ��� Thus optimal

trajectories �x��t�� x��t�� consist of pieces that satisfy the system�
�x� � x��

�x� � �x� � ��
�������

i�e�� arcs of the circles

�x� � ���  x�� � C� C � const�

passed clockwise�
Now we describe all optimal trajectories coming to the origin� Let � be

any such trajectory� If � has no switchings� then it is an arc belonging to one
of the semicircles
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�x� � ���  x�� � �� x� � �� �������

�x�  ��
�  x�� � �� x� � � �������

and containing the origin� If � has switchings� then the last switching can
occur at any point of these semicircles except the origin� Assume that � has
the last switching on semicircle �������� Then the part of � before the last
switching and after the next to last switching is a semicircle of the circle
�x� ��� x�� � C passing through the last switching point� The next to last
switching of � occurs on the curve obtained by rotation of semicircle �������
around the point ���� �� in the plane �x�� x�� by the angle �� i�e�� on the
semicircle

�x�  ��
�  x�� � �� x� � �� �������

To obtain the geometric locus of the previous switching of �� we have to
rotate semicircle ������� around the point ��� �� by the angle �� we come to
the semicircle

�x� � ���  x�� � �� x� � ��
The previous switching of � takes place on the semicircle

�x�  ��
�  x�� � �� x� � ��

and so on�
The case when the last switching of � occurs on semicircle ������� is ob�

tained from the case just considered by the central symmetry of the plane
�x�� x�� w�r�t� the origin
 �x�� x�� �� ��x���x��� Then the successive switch�
ings of � �in the reverse order starting from the end� occur on the semicircles

�x�  ��
�  x�� � �� x� � ��

�x� � ���  x�� � �� x� � ��
�x�  ��

�  x�� � �� x� � ��
�x� � ���  x�� � �� x� � ��

etc� We obtained the switching curve in the plane �x�� x��


�x� � ��k � ����  x�� � �� x� � �� k � N�
�x�  ��k � ����  x�� � �� x� � �� k � N� �������

This switching curve divides the plane �x�� x�� into two parts� Any ex�
tremal trajectory �x��t�� x��t�� in the upper part of the plane is a solution
of ODE ������� with �� in the second equation� and in the lower part it is a
solution of ������� with  �� For any point of the plane �x�� x�� there exists
exactly one curve of this family of extremal trajectories that comes to the
origin �it has the form of a �spiral
 with a �nite number of switchings�� Since
optimal trajectories exist� the constructed extremal trajectories are optimal�



���� The Cheapest Stop of a Train ��


The time�optimal control problem is solved
 in the part of the plane �x�� x��
over the switching curve ������� the optimal control is "u � ��� and below this
curve "u �  �� Through any point of the plane passes one optimal trajectory
which corresponds to this optimal control rule� After �nite number of switch�
ings� any optimal trajectory comes to the origin� The general view of the
optimal synthesis is shown at Fig� �����
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Now we consider optimal control problems with the same dynamics as in
the previous two sections� but with another cost functional�

���� The Cheapest Stop of a Train

As in Sect� ����� we control motion of a train� Now the goal is to stop the
train at a �xed instant of time with a minimum expenditure of energy� which
is assumed proportional to the integral of squared acceleration�
So the optimal control problem is as follows




��� �� Examples of Optimal Control Problems�
�x� � x��

�x� � u�
x �

�
x�
x�

�
� R�� u � R�

x��� � x�� x�t�� � �� t� �xed�

�

�

Z t�

�

u� dt� min �

Filippov�s theorem cannot be applied directly since the right�hand side
of the control system is not compact� Although� one can choose a new time
t �� �

�

R t
� u

��
 � d
  C and obtain a bounded right�hand side� then compactify
it and apply Filippov�s theorem� In such a way existence of optimal control
can be proved� See also the general theory of linear quadratic problems below
in Chap� ���
To �nd optimal control� we apply PMP� The Hamiltonian function is

h�u��� x� � ��x�  ��u 
 

�
u�� ��� x� � R���R��

Along optimal trajectories

 � ��  � const �

From the Hamiltonian system of PMP� we have�
��� � ��
��� � ����

�������

Consider �rst the case of abnormal extremals


 � ��

The triple ���� ���  � must be nonzero� thus

���t� �� ��

But the maximality condition of PMP yields

"u�t����t� � max
u�R

u ���t�� �������

Since ���t� �� �� the maximum above does not exist� Consequently� there are
no abnormal extremals�
Consider the normal case
  �� �� we can take  � ��� The normal Hamil�

tonian function is

hu��� x� � h��
u ��� x� � ��x�  ��u� �

�
u��



���� Control of a Linear Oscillator with Cost ���

Maximality condition of PMP is equivalent to 
 hu

 u � �� thus

"u�t� � ���t�

along optimal trajectories� Taking into account system �������� we conclude
that optimal control is linear


"u�t� � 
t �� 
� � � const �

The maximized Hamiltonian function

H��� x� � max
u

hu��� x� � ��x�  
�

�
���

is smooth� That is why optimal trajectories satisfy the Hamiltonian system��������

�x� � x��

�x� � ���
��� � ��
��� � ����

For the variable x� we obtain the boundary value problem

x
���
� � ��

x���� � x��� �x���� � x��� x��t�� � �� �x��t�� � �� �������

For any �x��� x
�
��� there exists exactly one solution x��t� of this problem ! a

cubic spline� The function x��t� is found from the equation x� � �x��
So through any initial point x� � R� passes a unique extremal trajectory

arriving at the origin� It is a curve �x��t�� x��t��� t � ��� t��� where x��t� is a
cubic polynomial that satis�es the boundary conditions �������� and x��t� �
�x��t�� In view of existence� this is an optimal trajectory�

���� Control of a Linear Oscillator with Cost

We control a linear oscillator� say a pendulum with a small amplitude� by an
unbounded force u� but take into account expenditure of energy measured by
the integral �

�

R t�
� u��t� dt� The optimal control problem reads�
�x� � x��

�x� � �x�  u�
x �

�
x�
x�

�
� R�� u � R�

x��� � x�� x�t�� � �� t� �xed�

�

�

Z t�

�

u� dt� min �
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Existence of optimal control can be proved by the same argument as in
the previous section�
The Hamiltonian function of PMP is

h�u��� x� � ��x� � ��x�  ��u 
 

�
u��

The corresponding Hamiltonian system yields�
��� � ���
��� � ����

In the same way as in the previous problem� we show that there are no
abnormal extremals� thus we can assume  � ��� Then the maximality con�
dition yields

"u�t� � ���t��

In particular� optimal control is a harmonic


"u�t� � 
 sin�t  ��� 
� � � const �

The system of ODEs for extremal trajectories�
�x� � x��

�x� � �x�  
 sin�t  ��

is solved explicitly


x��t� � �


�
t cos�t  ��  a sin�t b��

x��t� �



�
t sin�t  �� � 


�
cos�t ��  a cos�t b�� a� b � R�

�������

Exercise ����� Show that exactly one extremal trajectory of the form �������
satis�es the boundary conditions�

In view of existence� these extremal trajectories are optimal�

���� Dubins Car

In this section we study a time�optimal problem for a system called Du�
bins car � see equations ������� below� This system was �rst considered by
A�A� Markov back in ���� ������
Consider a car moving in the plane� The car can move forward with a �xed

linear velocity and simultaneously rotate with a bounded angular velocity�
Given initial and terminal position and orientation of the car in the plane�
the problem is to drive the car from the initial con�guration to the terminal
one for a minimal time�



���� Dubins Car �	�

Admissible paths of the car are curves with bounded curvature� Suppose
that curves are parametrized by length� then our problem can be stated ge�
ometrically� Given two points in the plane and two unit velocity vectors at�
tached respectively at these points� one has to �nd a curve in the plane that
starts at the �rst point with the �rst velocity vector and comes to the sec�
ond point with the second velocity vector� has curvature bounded by a given
constant� and has the minimal length among all such curves�

Remark �	��� If curvature is unbounded� then the problem� in general� has no
solutions� Indeed� the in�mum of lengths of all curves that satisfy the bound�
ary conditions without bound on curvature is the distance between the initial
and terminal points
 the segment of the straight line through these points
can be approximated by smooth curves with the required boundary conditi�
ons� But this in�mum is not attained when the boundary velocity vectors do
not lie on the line through the boundary points and are not collinear one to
another�

After rescaling� we obtain a time�optimal problem for a nonlinear system
����

�x� � cos ��

�x� � sin ��
�� � u�

�������

x � �x�� x�� � R�� � � S�� juj � ��
x���� ����� x�t��� ��t�� �xed�

t� � min �

Existence of solutions is guaranteed by Filippov�s Theorem� We apply
Pontryagin Maximum Principle�
We have �x�� x�� �� � M � R�

x � S�
� � let ���� ��� �� be the corresponding

coordinates of the adjoint vector� Then

� � �x� �� �� �� � T �M�

and the control�dependent Hamiltonian is

hu��� � �� cos �  �� sin �  �u�

The Hamiltonian system of PMP yields

�� � �� �������

�� � �� sin � � �� cos �� �������

and the maximality condition reads

��t�u�t� � max
juj��

��t�u� �������
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Equation ������� means that � is constant along optimal trajectories� thus the
right�hand side of ������� can be rewritten as

�� sin � � �� cos � � 
 sin��  ��� 
� � � const� 
 �
q
���  ��� � ��

�������

So the Hamiltonian system of PMP ��������������� yields the following sys�
tem
 �

�� � 
 sin��  ���
�� � u�

Maximality condition ������� implies that

u�t� � sgn��t� if ��t� �� �� �������

If 
 � �� then ���� ��� � � and � � const �� �� thus u � const � ��� So
the curve x�t� is an arc of a circle of radius ��
Let 
 �� �� then in view of �������� we have 
 	 �� Conditions ��������

�������� ������� are preserved if the adjoint vector ��� �� is multiplied by any
positive constant� Thus we can choose ��� �� such that 
 �

p
���  ��� � ��

That is why we suppose in the sequel that


 � ��

Condition ������� means that behavior of sign of the function ��t� is crucial
for the structure of optimal control� We consider several possibilities for ��t��
��� If the function ��t� does not vanish on the segment ��� t��� then the

optimal control is constant


u�t� � const � ��� t � ��� t��� �������

and the optimal trajectory x�t�� t � ��� t��� is an arc of a circle� Notice that
an optimal trajectory cannot contain a full circle
 a circle can be eliminated
so that the resulting trajectory satisfy the same boundary conditions and is
shorter� Thus controls ������� can be optimal only if t� � ���
In the sequel we can assume that the set

N � f
 � ��� t�� j ��
 � �� �g
does not coincide with the whole segment ��� t��� Since N is open� it is a union
of open intervals in ��� t��� plus� may be� semiopen intervals of the form ��� 
���
�
�� t���
��� Suppose that the set N contains an interval of the form

�
�� 
�� � ��� t��� 
� � 
�� �������

We can assume that the interval �
�� 
�� is maximal w�r�t� inclusion




���� Dubins Car �	�

��
�� � ��
�� � �� �j���	��� �� ��
From PMP we have the inequality

hu�t����t�� � cos���t�  ��  ��t�u�t� � ��
Thus

cos���
��  �� � ��
This inequality means that the angleb� � ��
��  �

satis�es the inclusion b� � h�� �
�

i
�
�
��

�
� ��

�
�

Consider �rst the case b� � ��� �
�

i
�

Then ���
�� � sin b� 	 �� thus at 
� control switches from �� to  �� so
���t� � u�t� � �� t � �
�� 
���

We evaluate the distance 
� � 
�� Since

��
�� �

Z ��

��

sin�b�  
 � 
�� d
 � ��

then 
� � 
� � ��� � b��� thus

� � 
� � ��� ���� �������

In the case b� � ���
�
� ��

�
inclusion ������� is proved similarly�and in the case b� � � we obtain no optimal
controls �the curve x�t� contains a full circle� which can be eliminated��
Inclusion ������� means that successive roots 
�� 
� of the function ��t�

cannot be arbitrarily close one to another� Moreover� the previous argument
shows that at such instants 
i optimal control switches from one extremal
value to another� and along any optimal trajectory the distance between any
successive switchings 
i� 
i�� is the same�
So in case ��� an optimal control can only have the form

u�t� �

�
�� t � �
�k��� 
�k��
��� t � �
�k� 
�k����

�������

� � ���

i�� � 
i � const � ��� ���� i � �� � � � � n� �� �������


� � ��� ����
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here we do not indicate values of u in the intervals before the �rst switching�
t � ��� 
��� and after the last switching� t � �
n� t��� For such trajectories�
control takes only extremal values �� and the number of switchings is �nite
on any compact time segment� Such a control is called bang�bang �
Controls u�t� given by �������� ������� satisfy PMP for arbitrarily large t�

but they are not optimal if the number of switchings is n 	 �� Indeed� suppose
that such a control has at least � switchings� Then the piece of trajectory x�t��
t � �
�� 
��� is a concatenation of three arcs of circles corresponding to the
segments of time �
�� 
��� �
�� 
��� �
�� 
�� with


� � 
� � 
� � 
� � 
� � 
� � ��� ����
Draw the segment of line

"x�t�� t � ��
�  
����� �
�  
����� �

����d "xd t
���� � ��

the common tangent to the �rst and third circles through the points

x ��
�  
����� and x ��
�  
����� �

see Fig� ����� Then the curve

y�t� �

�
x�t�� t �� ��
�  
����� �
�  
����� �
"x�t�� t � ��
�  
����� �
�  
����� �

is an admissible trajectory and shorter than x�t�� We proved that optimal
bang�bang control can have not more than � switchings�

x�t�

�x�t�

Fig� ����� Elimination of � switchings

��� It remains to consider the case where the set N does not contain inter�
vals of the form �������� Then N consists of at most two semiopen intervals




���� Dubins Car �	�

N � ��� 
�� � �
�� t��� 
� � 
��

where one or both intervals may be absent� If 
� � 
�� then the function ��t�
has a unique root on the segment ��� t��� and the corresponding optimal control
is determined by condition �������� Otherwise


� � 
��

and

�j��	��� �� �� �j��� 	��� � �� �j��� 	t�� �� �� �������

In this case the maximality condition of PMP ������� does not determine
optimal control u�t� uniquely since the maximumis attained for more than one
value of control parameter u� Such a control is called singular � Nevertheless�
singular controls in this problem can be determined from PMP� Indeed� the
following identities hold on the interval �
�� 
��


�� � sin��  �� � � 
 �  � � �k 
 � � const 
 u � ��

Consequently� if an optimal trajectory x�t� has a singular piece� which is a
line� then 
� and 
� are the only switching times of the optimal control� Then

uj��	��� � const � ��� uj��� 	t�� � const � ���
and the whole trajectory x�t�� t � ��� t��� is a concatenation of an arc of a
circle of radius �

x�t�� u�t� � ��� t � ��� 
���
a line

x�t�� u�t� � �� t � �
�� 
���
and one more arc of a circle of radius �

x�t�� u�t� � ��� t � �
�� t���
So optimal trajectories in the problem have one of the following two types

��� concatenation of a bang�bang piece �arc of a circle� u � ���� a singular

piece �segment of a line� u � ��� and a bang�bang piece� or
��� concatenation of bang�bang pieces with not more than � switchings�

the arcs of circles between switchings having the same central angle � ��� ����
If boundary points x���� x�t�� are su�ciently far one from another� then

they can be connected only by trajectories containing singular piece� For
such boundary points� we obtain a simple algorithm for construction of an
optimal trajectory� Through each of the points x��� and x�t��� construct
a pair of circles of radius � tangent respectively to the velocity vectors
�x��� � �cos ����� sin ����� and �x�t�� � �cos ��t��� sin ��t���� Then draw com�
mon tangents to the circles at x��� and x�t�� respectively� so that direction of
motion along these tangents was compatible with direction of rotation along
the circles determined by the boundary velocity vectors �x��� and �x�t��� see
Fig� ����� Finally� choose the shortest curve among the candidates obtained�
This curve is the optimal trajectory�
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�x���

x���

x�t��

�x�t��

Fig� ����� Construction of the shortest motion for far boundary points



��

Hamiltonian Systems

with Convex Hamiltonians

A well�known theorem states that if a level surface of a Hamiltonian is convex�
then it contains a periodic trajectory of the Hamiltonian system ������ ������
In this chapter we prove a more general statement as an application of optimal
control theory for linear systems�

Theorem ����� Let S be a strongly convex compact subset of Rn� n even�
and let the boundary of S be a level surface of a Hamiltonian H � C��Rn��
Then for any vector v � Rn there exists a chord in S parallel to v such that
there exists a trajectory of the Hamiltonian system �x � !H�x� passing through
the endpoints of the chord�

We assume here thatRn is endowed with the standard symplectic structure

��x� x� � hx� Jxi� J �

�
� Id
� Id �

�
�

i�e�� the Hamiltonian vector �eld corresponding to a Hamiltonian H has the
form !H � J gradH�
The theorem on periodic trajectories of Hamiltonian systems is a particular

case of the previous theorem with v � �� Now we prove Th� �����

Proof� Without loss of generality� we can assume that � � intS�
Consider the polar of the set S


S� � fu � Rn j sup
x�S

hu� xi � �g�

It follows from the separation theorem that

�S��� � S� � � intS��

and that S� is a strongly convex compact subset of Rn�
Introduce the following linear optimal control problem




�	� �� Hamiltonian Systems with Convex Hamiltonians

�x � u� u � S�� x � Rn�
x��� � a� x��� � b�Z �

�

hx� Jui dt� min � ������

Here a and b are any points in S� su�ciently close to the origin and such that
the vector J�b � a� is parallel to v� By Filippov�s theorem� this problem has
optimal solutions� We use these solutions in order to construct the required
trajectory of the Hamiltonian system on �S�
The control�dependent Hamiltonian of PMP has the form


h�u�p� x� � pu  hx� Jui�

We show �rst that abnormal trajectories cannot be optimal� Let  � ��
Then the adjoint equation is �p � �� thus

p � p� � const �

The maximality condition of PMP reads

p�u�t� � max
v�S�

p�v�

Since the polar S� is strictly convex� then

u�t� � const� u�t� � �S��

Consequently� abnormal trajectories are lines with velocities separated from
zero� For points a� b su�ciently close to the origin� abnormal trajectories
cannot meet the boundary conditions�
Thus optimal trajectories are normal� so we can set  � ��� The normal

Hamiltonian is
hu�p� x� � pu� hx� Jui�

and the corresponding Hamiltonian system reads�
�p � Ju�

�x � u�

The normal Hamiltonian can be written as

hu�p� x� � hy� ui�
y � p Jx�

where the vector y satis�es the equation

�y � �Ju�



�� Hamiltonian Systems with Convex Hamiltonians �	�

Along a normal trajectory

hu�t��p�t�� x�t�� � hy�t�� u�t�i � max
v�S�

hy�t�� vi � C � const � ������

Consider �rst the case C �� �� thus C 	 �� Then

z�t� �
�

C
y�t� � �S��� � S�

i�e�� z�t� � S� Moreover� z�t� � �S and the vector u�t� is a normal to �S
at the point z�t�� Consequently� the curve z�t� is� up to reparametrization�

a trajectory of the Hamiltonian �eld !H � J gradH� Compute the boundary
conditions


p���� p��� � J�x���� x�����

y��� � y��� � �J�x���� x���� � �J�b� a��

z���� z��� �
�

C
J�b� a��

Thus z�t� is the required trajectory
 the chord z��� � z��� is parallel to the
vector v�
In order to complete the proof� we show now that the case C � � in ������

is impossible� Indeed� if C � �� then y�t� � �� thus u�t� � �� If a �� b�
then the boundary conditions for x are not satis�ed� And if a � b� then the
pair �u�t�� x�t�� � ��� �� does not realize minimum of functional ������� which
can take negative values
 for any admissible ��periodic trajectory x�t�� the
trajectory %x�t� � x��� t� is periodic with the costZ �

�

h%x� J �%xi dx � �
Z �

�

hx� Jui dx�

ut





��

Linear Time�Optimal Problem

���� Problem Statement

In this chapter we study the following optimal control problem


�x � Ax Bu� x � Rn� u � U � Rm�
x��� � x�� x�t�� � x�� x�� x� � Rn �xed�
t� � min�

������

where U is a compact convex polytope in Rm� and A and B are constant
matrices of order n� n and n�m respectively� Such problem is called linear
time�optimal problem�
The polytope U is the convex hull of a �nite number of points a�� � � � � ak

in Rm

U � convfa�� � � � � akg�

We assume that the points ai do not belong to the convex hull of all the rest
points aj � j �� i� so that each ai is a vertex of the polytope U �
In the sequel we assume the following General Position Condition

For any edge �ai� aj� of U � the vector eij � aj � ai satis�es the equality

span�Beij � ABeij � � � � � A
n��Beij� � R

n� ������

This condition means that no vector Beij belongs to a proper invariant
subspace of the matrixA� By Theorem ���� this is equivalent to controllability
of the linear system �x � Ax Bu with the set of control parameters u � Reij�
Condition ������ can be achieved by a small perturbation of matrices A�B�
We considered examples of linear time�optimal problems in Sects� �����

����� Here we study the structure of optimal control� prove its uniqueness�
evaluate the number of switchings�
Existence of optimal control for any points x�� x� such that x� � A�x��

is guaranteed by Filippov�s theorem� Notice that for the analogous problem
with an unbounded set of control parameters� optimal control may not exist

it is easy to show this using linearity of the system�



��� �� Linear Time�Optimal Problem

Before proceeding with the study of linear time�optimalproblems� we recall
some basic facts on polytopes�

���� Geometry of Polytopes

The convex hull of a �nite number of points a�� � � � � ak � Rm is the set

U � convfa�� � � � � akg def
�

�
kX
i��


iai j 
i � ��
kX
i��


i � �

�
�

An a�ne hyperplane in Rm is a set of the form

� � fu � Rm j h�� ui � cg� � � Rm� n f�g� c � R�

A hyperplane of support to a polytope U is a hyperplane � such that

h�� ui � c �u � U

for the covector � and number c that de�ne �� and this inequality turns into
equality at some point u � �U � i�e�� � � U �� ��

a�

a�a�

a�

�

�

U

Fig� ����� Polytope U with hyperplane of support �

A polytope U � convfa�� � � � � akg intersects with any its hyperplane of
support � � fu j h�� ui � cg by another polytope


U �� � convfai�� � � � � ailg�
h�� ai�i � 
 
 
 � h�� aili � c�

h�� aji � c� j �� fi�� � � � � ilg�



���� Bang�Bang Theorem ���

Such polytopes U�� are called faces of the polytope U � Zero�dimensional and
one�dimensional faces are called respectively vertices and edges� A polytope
has a �nite number of faces� each of which is the convex hull of a �nite number
of vertices� A face of a face is a face of the initial polytope� Boundary of a
polytope is a union of all its faces� This is a straightforward corollary of the
separation theorem for convex sets �or the Hahn�Banach Theorem��

���� Bang
Bang Theorem

Optimal control in the linear time�optimal problem is bang�bang� i�e�� it is
piecewise constant and takes values in vertices of the polytope U �

Theorem ����� Let u�t�� � � t � t�� be an optimal control in the linear
time�optimal control problem ������� Then there exists a �nite subset

T � ��� t��� 'T ���

such that

u�t� � fa�� � � � � akg� t � ��� t�� n T � ������

and restriction u�t�jt���	t��nT is locally constant�

Proof� Apply Pontryagin MaximumPrinciple to the linear time�optimal prob�
lem ������� State and adjoint vectors are

x �

�B� x�
���
xn

�CA � Rn� � � ���� � � � � �n� � Rn��

and a point in the cotangent bundle is

� � ��� x� � Rn��Rn � T �Rn�

The control�dependent Hamiltonian is

hu��� x� � �Ax �Bu

�we multiply rows by columns�� The Hamiltonian system and maximality
condition of PMP take the form
�

�x � Ax Bu�
�� � ��A�

��t� �� ��
��t�Bu�t� � max

u�U
��t�Bu� ������
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The Hamiltonian system implies that adjoint vector

��t� � ����e�tA� ���� �� �� ������

is analytic along the optimal trajectory�
Consider the set of indices corresponding to vertices where maximum������

is attained


J�t� �

�
� � j � k j ��t�Baj � max

u�U
��t�Bu � maxf��t�Bai j i � �� � � � � kg

�
�

At each instant t the linear function ��t�B attains maximum at vertices of
the polytope U � We show that this maximum is attained at one vertex always
except a �nite number of moments�
De�ne the set

T � ft � ��� t�� j 'J�t� 	 �g�
By contradiction� suppose that T is in�nite
 there exists a sequence of distinct
moments

f
�� � � � � 
n� � � �g � T �
Since there is a �nite number of choices for the subset J�
n� � f�� � � � � kg� we
can assume� without loss of generality� that

J�
�� � J�
�� � 
 
 
 � J�
n� � 
 
 
 �

Denote J � J�
i��
Further� since the convex hull

convfaj j j � Jg

is a face of U � then there exist indices j�� j� � J such that the segment �aj�� aj� �
is an edge of U � We have

��
i�Baj� � ��
i�Baj� � i � �� �� � � � �

For the vector e � aj� � aj� we obtain

��
i�Be � �� i � �� �� � � � �

But ��
i� � ����e��iA by ������� so the analytic function

t �� ����e�tABe

has an in�nite number of zeros on the segment ��� t��� thus it is identically
zero


����e�tABe � ��
We di�erentiate this identity successively at t � � and obtain
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����Be � �� ����ABe � �� � � � � ����An��Be � ��

By General Position Condition ������� we have ���� � �� a contradiction
to ������� So the set T is �nite�
Out of the set T � the function ��t�B attains maximum on U at one vertex

aj�t�� fj�t�g � J�t�� thus the optimal control u�t� takes value in the vertex
aj�t�� Condition ������ follows� Further�

��t�Baj�t� 	 ��t�Bai� i �� j�t��

But all functions t �� ��t�Bai are continuous� so the preceding inequality
preserves for instants close to t� The function t �� j�t� is locally constant on
��� t�� n T � thus the optimal control u�t� is also locally constant on ��� t�� n T �

ut
In the sequel we will need the following statement proved in the preceding

argument�

Corollary ����� Let ��t�� t � ��� t��� be a nonzero solution of the adjoint
equation �� � ��A� Then everywhere in the segment ��� t��� except a �nite
number of points� there exists a unique control u�t� � U such that ��t�Bu�t� �
max
u�U

��t�Bu�

���� Uniqueness of Optimal Controls and Extremals

Theorem ����� Let the terminal point x� be reachable from the initial point
x��

x� � A�x���
Then linear time�optimal control problem ������ has a unique solution�

Proof� As we already noticed� existence of an optimal control follows from
Filippov�s Theorem�
Suppose that there exist two optimal controls
 u��t�� u��t�� t � ��� t��� By

Cauchy�s formula


x�t�� � et�A
�
x�  

Z t�

�
e�tABu�t� dt

�
�

we obtain

et�A
�
x�  

Z t�

�

e�tABu��t� dt

�
� et�A

�
x�  

Z t�

�

e�tABu��t� dt

�
�

thus Z t�

�

e�tABu��t� dt �

Z t�

�

e�tABu��t� dt� ������
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Let ���t� � �����e
�tA be the adjoint vector corresponding by PMP to the

control u��t�� Then equality ������ can be written in the formZ t�

�

���t�Bu��t� dt �

Z t�

�

���t�Bu��t� dt� ������

By the maximality condition of PMP

���t�Bu��t� � max
u�U

���t�Bu�

thus
���t�Bu��t� � ���t�Bu��t��

But this inequality together with equality ������ implies that almost every�
where on ��� t��

���t�Bu��t� � ���t�Bu��t��

By Corollary �����
u��t� � u��t�

almost everywhere on ��� t��� ut
So for linear time�optimal problem� optimal control is unique� The stan�

dard procedure to �nd the optimal control for a given pair of boundary points
x�� x� is to �nd all extremals ���t�� x�t�� steering x� to x� and then to seek for
the best among them� In the examples considered in Sects� ����� ����� there
was one extremal for each pair x�� x� with x� � �� We prove now that this is
a general property of linear time�optimal problems�

Theorem ����� Let x� � � � A�x�� and � � U n fa�� � � � � akg� Then there
exists a unique control u�t� that steers x� to � and satis�es Pontryagin Max�
imum Principle�

Proof� Assume that there exist two controls

u��t�� t � ��� t��� and u��t�� t � ��� t���
that steer x� to � and satisfy PMP�
If t� � t�� then the argument of the proof of preceding theorem shows that

u��t� � u��t� a�e�� so we can assume that

t� 	 t��

Cauchy�s formula gives

et�A
�
x�  

Z t�

�

e�tABu��t� dt

�
� ��

et�A
�
x�  

Z t�

�
e�tABu��t� dt

�
� ��
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thus Z t�

�

e�tABu��t� dt �

Z t�

�

e�tABu��t� dt� ������

According to PMP� there exists an adjoint vector ���t�� t � ��� t��� such that
���t� � �����e

�tA� ����� �� �� ������

���t�Bu��t� � max
u�U

���t�Bu� �������

Since � � U � then

���t�Bu��t� � �� t � ��� t��� �������

Equality ������ can be rewritten asZ t�

�

���t�Bu��t� dt �

Z t�

�

���t�Bu��t� dt� �������

Taking into account inequality �������� we obtainZ t�

�

���t�Bu��t� dt �
Z t�

�

���t�Bu��t� dt� �������

But maximality condition ������� implies that

���t�Bu��t� � ���t�Bu��t�� t � ��� t��� �������

Now inequalities ������� and ������� are compatible only if

���t�Bu��t� � ���t�Bu��t�� t � ��� t���
thus inequality ������� should turn into equality� In view of �������� we haveZ t�

t�

���t�Bu��t� dt � ��

Since the integrand is nonnegative� see �������� then it vanishes identically


���t�Bu��t� � �� t � �t�� t���
By the argument of Theorem ����� the control u��t� is bang�bang� so there
exists an interval I � �t�� t�� such that

u��t�jI � aj �� ��
Thus

���t�Baj � �� t � I�

But ���t�� � �� this is a contradiction with uniqueness of the control for which
maximum in PMP is obtained� see Corollary ����� ut
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���� Switchings of Optimal Control

Now we evaluate the number of switchings of optimal control in linear time�
optimal problems� In the examples of Sects� ����� ���� we had respectively one
switching and an arbitrarily large number of switchings� although �nite on any
segment� It turns out that in general there are two cases
 non�oscillating and
oscillating� depending on whether the matrix A of the control system has real
spectrum or not� Recall that in the example with one switching� Sect� �����
we had

A �

�
� �
� �

�
� Sp�A� � f�g � R�

and in the example with arbitrarily large number of switchings� Sect� �����

A �

�
� �
�� �

�
� Sp�A� � f�ig �� R�

We consider systems with scalar control


�x � Ax ub� u � U � �
� �� � R� x � Rn�
under the General Position Condition

span�b� Ab� � � � � An��b� � Rn�

Then attainable set of the system is full�dimensional for arbitrarily small
times� We can evaluate the minimal number of switchings necessary to �ll a
full�dimensional domain� Optimal control is piecewise constant with values in
f
� �g� Assume that we start from the initial point x� with the control 
�
Without switchings we �ll a piece of a ��dimensional curve e�Ax��b�tx�� with
� switching we �ll a piece of a ��dimensional surface e�Ax��b�t� 	 e�Ax��b�t�x��
with � switchings we can attain points in a ��dimensional surface� etc� So the
minimal number of switchings required to reach an n�dimensional domain is
n� ��
We prove now that in the non�oscillating case we never need more than

n� � switchings of optimal control�
Theorem ����� Assume that the matrix A has only real eigenvalues�

Sp�A� � R�
Then any optimal control in linear time�optimal problem ������ has no more
than n� � switchings�
Proof� Let u�t� be an optimal control and ��t� � ����e�tA the corresponding
solution of the adjoint equation �� � ��A� The maximality condition of PMP
reads

��t�bu�t� � max
u���	��

��t�bu�
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thus

u�t� �

�
� if ��t�b 	 ��


 if ��t�b � ��

So the number of switchings of the control u�t�� t � ��� t��� is equal to the
number of changes of sign of the function

y�t� � ��t�b� t � ��� t���
We show that y�t� has not more than n� � real roots�
Derivatives of the adjoint vector have the form

��k��t� � ����e�tA��A�k�
By Cayley Theorem� the matrix A satis�es its characteristic equation


An  c�A
n��  
 
 
 cn Id � ��

where
det�t Id�A� � tn  c�t

n��  
 
 
 cn�

thus
��A�n � c���A�n��  
 
 
 ����ncn Id � ��

Then the function y�t� satis�es an n�th order ODE


y�n��t� � c�y
�n����t�  
 
 
 ����ncny�t� � �� �������

It is well known �see e�g� ������ that any solution of this equation is a
quasipolynomial


y�t� �
kX
i��

e��itPi�t��

Pi�t� a polynomial�

�i �� �j for i �� j�

where �i are eigenvalues of the matrix A and degree of each polynomial Pi is
less than multiplicity of the corresponding eigenvalue �i� thus

kX
i��

degPi � n� k�

Now the statement of this theorem follows from the next general lemma� ut
Lemma ����� A quasipolynomial

y�t� �
kX
i��

e�itPi�t��
kX
i��

degPi � n� k� �������

�i �� �j for i �� j�

has no more than n� � real roots�
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Proof� Apply induction on k�
If k � �� then a quasipolynomial

y�t� � e�tP �t�� degP � n� ��
has no more than n� � roots�
We prove the induction step for k 	 �� Denote

ni � degPi� i � �� � � � � k�

Suppose that the quasipolynomial y�t� has n real roots� Rewrite the equation

y�t� �
k��X
i��

e�itPi�t�  e�ktPk�t� � �

as follows


k��X
i��

e��i��k�tPi�t�  Pk�t� � �� �������

The quasipolynomial in the left�hand side has n roots� We di�erentiate this
quasipolynomial successively �nk  �� times so that the polynomial Pk�t� dis�
appear� After �nk  �� di�erentiations we obtain a quasipolynomial

k��X
i��

e��i��k�tQi�t�� degQi � degPi�

which has �n � nk � �� real roots by Rolle�s Theorem� But by induction
assumption the maximal possible number of real roots of this quasipolynomial
is

k��X
i��

ni  k � � � n � nk � ��

The contradiction �nishes the proof of the lemma� ut
So we completed the proof of Theorem ����
 in the non�oscillating case

an optimal control has no more than n � � switchings on the whole domain
�recall that n�� switchings are always necessary even on short time segments
since the attainable sets Aq� �t� are full�dimensional for all t 	 ���
For an arbitrary matrix A� one can obtain the upper bound of �n � ��

switchings for su�ciently short intervals of time�

Theorem ����� Consider the characteristic polynomial of the matrix A�

det�t Id�A� � tn  c�t
n��  
 
 
 cn�

and let
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c � max
��i�n

jcij�

Then for any time�optimal control u�t� and any &t � R� the real segment�
&t� &t ln

�
�  

�

c

��
contains not more than �n� �� switchings of an optimal control u�t��

In the proof of this theorem we will require the following general proposi�
tion� which we learned from S� Yakovenko�

Lemma ���	� Consider an ODE

y�n�  c��t�y
�n���  
 
 
 cn�t�y � �

with measurable and bounded coe�cients�

ci � max
t���t	�t���

jci�t�j�

If

nX
i��

ci
�i

i�
� �� �������

then any nonzero solution y�t� of the ODE has not more than n � � roots on
the segment t � �&t� &t ���

Proof� By contradiction� suppose that the function y�t� has at least n roots
on the segment t � �&t� &t ��� By Rolle�s Theorem� derivative �y�t� has not less
than n � � roots� etc� Then y�n����t� has a root tn�� � �&t� &t ��� Thus

y�n����t� �

Z t

tn��

y�n��
 � d
�

Let tn�� � �&t� &t �� be a root of y�n����t�� then

y�n����t� �

Z t

tn��

d
�

Z ��

tn��

y�n��
�� d
��

We continue this procedure by integrating y�n�i����t� from a root tn�i �
�&t� &t �� of y�n�i��t� and obtain

y�n�i��t� �
Z t

tn�i

d
�

Z ��

tn�i��

d
� 
 
 

Z �i��

tn��

y�n��
i� d
i� i � �� � � � � n�

There holds a bound




��� �� Linear Time�Optimal Problem���y�n�i��t���� � Z t

tn�i

d
�

Z ��

tn�i��

d
� 
 
 

Z �i��

tn��

���y�n��
i���� d
i
�
Z �t��

�t

d
�

Z ��

�t

d
� 
 
 

Z �i��

�t

���y�n��
i���� d
i
� �i

i�
sup

t���t	�t���

���y�n��t���� �
Then�����

nX
i��

ci�t�y
�n�i��t�

����� �
nX
i��

jci�t�j
���y�n�i��t���� � nX

i��

ci
�i

i�
sup

t���t	�t���

���y�n��t���� �
i�e�� ���y�n��t���� � nX

i��

ci
�i

i�
sup

t���t	�t���

���y�n��t���� �
a contradiction with �������� The lemma is proved� ut
Now we prove Theorem �����

Proof� As we showed in the proof of Theorem ����� the number of switchings
of u�t� is not more than the number of roots of the function y�t� � ��t�b�
which satis�es ODE ��������
We have

nX
i��

jcij�
i

i�
� c�e� � �� �� 	 ��

By Lemma ����� if

c�e� � �� � �� �������

then the function y�t� has not more than n � � real roots on any interval of
length �� But inequality ������� is equivalent to the following one


� � ln
�
�  

�

c

�
�

so y�t� has not more than n� � roots on any interval of the length ln ��  �
c

�
�
ut
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Linear�Quadratic Problem

���� Problem Statement

In this chapter we study a class of optimal control problems very popular in
applications� linear�quadratic problems� That is� we consider linear systems
with quadratic cost functional


�x � Ax Bu� x � Rn� u � Rm� ������

x��� � x�� x�t�� � x�� x�� x�� t� �xed�

J�u� �
�

�

Z t�

�

hRu�t�� u�t�i hPx�t�� u�t�i hQx�t�� x�t�i dt� min �

Here A� B� R� P � Q are constant matrices of appropriate dimensions� R and Q
are symmetric


R� � R� Q� � Q�

and angle brackets h 
 � 
 i denote the standard inner product in Rm and Rn�
One can show that the conditionR � � is necessary for existence of optimal

control� We do not touch here the case of degenerate R and assume that R 	 ��
The substitution of variables u �� v � R���u transforms the functional J�u�
to a similar functional with the identity matrix instead of R� That is why
we assume in the sequel that R � Id� A linear feedback transformation kills
the matrix P �exercise
 �nd this transformation�� So we can write the cost
functional as follows


J�u� �
�

�

Z t�

�

ju�t�j� hQx�t�� x�t�i dt�

For dynamics of the problem� we assume that the linear system is control�
lable


rank�B�AB� � � � � An��B� � n� ������
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���� Existence of Optimal Control

Since the set of control parameters U � Rm is noncompact� Filippov�s The�
orem does not apply� and existence of optimal controls in linear�quadratic
problems is a nontrivial problem�
In this chapter we assume that admissible controls are square�integrable


u � Lm� ��� t��

and use the Lm� norm for controls


kuk �
�Z t�

�

ju�t�j� dt
����

�

�Z t�

�

u���t�  
 
 
 u�m�t� dt

����

�

Consider the set of all admissible controls that steer the initial point to
the terminal one


U�x�� x�� � fu � Lm� ��� t�� j x�t�� u� x�� � x�g �
We denote by x�t� u� x�� the trajectory of system ������ corresponding to an
admissible control u � Lm� starting at a point x� � Rn� By Cauchy�s formula�
the endpoint mapping

u �� x�t�� u� x�� � et�Ax�  

Z t�

�

e�t����ABu�
 � d


is an a�ne mapping from Lm� ��� t�� to R
n� Controllability of the linear sys�

tem ������ means that for any x� � Rn� t� 	 �� the image of the endpoint
mapping is the whole Rn� The subspace

U�x�� x�� � Lm� ��� t��

is a�ne� the subspace
U��� �� � Lm� ��� t��

is linear� moreover�

U�x�� x�� � u U��� �� for any u � U�x�� x���

Thus it is natural that existence of optimal controls is closely related to be�
havior of the cost functional J�u� on the linear subspace U��� ���
Proposition ����� ��� If there exist points x�� x� � Rn such that

inf
u�U�x�	x��

J�u� 	 ��� ������

then
J�u� � � �u � U��� ���
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��� Conversely� if

J�u� 	 � �u � U��� �� n ��
then the minimum is attained�

� min
u�U�x�	x��

J�u� �x�� x� � Rn�

Remark ����� That is� the inequality

J jU��	�� � �
is necessary for existence of optimal controls at least for one pair �x�� x��� and
the strict inequality

J jU��	��n� 	 �
is su�cient for existence of optimal controls for all pairs �x�� x���

In the proof of Proposition ����� we will need the following auxiliary propo�
sition�

Lemma ����� If J�v� 	 � for all v � U��� �� n �� then
J�v� � 
kvk� for some 
 	 � and all v � U��� ���

or� which is equivalent�

inffJ�v� j kvk � �� v � U��� ��g 	 ��
Proof� Let vn be a minimizing sequence of the functional J�v� on the sphere
fkvk � �g � U��� ��� Closed balls in Hilbert spaces are weakly compact� thus
we can �nd a subsequence weakly converging in the unit ball and preserve the
notation vn for its terms� so that

vn � bv weakly as n��� kbvk � �� bv � U��� ���
J�vn�� inffJ�v� j kvk � �� v � U��� ��g� n��� ������

We have

J�vn� �
�

�
 
�

�

Z t�

�

hQxn�
 �� xn�
 �i d
�
Since the controls converge weakly� then the corresponding trajectories con�
verge strongly


xn� 
 �� xbv� 
 �� n���

thus

J�vn�� �

�
 
�

�

Z t�

�

hQxbv�
 �� xbv�
 �i d
� n���

In view of ������� the in�mum in question is equal to

�

�
 
�

�

Z t�

�

hQxbv�
 �� xbv�
 �i d
 � �

�

�
�� kbvk�� J�bv� 	 ��

ut
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Now we prove Proposition �����

Proof� ��� By contradiction� suppose that there exists v � U��� �� such that
J�v� � �� Take any u � U�x�� x��� then u sv � U�x�� x�� for any s � R�
Let y�t�� t � ��� t��� be the solution to the Cauchy problem

�y � Ay  Bv� y��� � ��

and let

J�u� v� �
�

�

Z t�

�

hu�
 �� v�
 �i hQx�
 �� y�
 �i d
�

Then the quadratic functional J on the family of controls u  sv� s � R� is
computed as follows


J�u sv� � J�u�  �sJ�u� v�  s�J�v��

Since J�v� � �� then J�u  sv� � �� as s � �� The contradiction with
hypothesis ������ proves item ����
��� We have

J�u� �
�

�
kuk�  �

�

Z t�

�

hQx�
 �� x�
 �i d
�

The norm kuk is lower semicontinuous in the weak topology on Lm� � and

the functional
R t�
�
hQx�
 �� x�
 �i d
 is weakly continuous on Lm� � Thus J�u� is

weakly lower semicontinuous on Lm� � Since balls are weakly compact in Lm�
and the a�ne subspace U�x�� x�� is weakly compact� it is enough to prove
that J�u��� when u��� u � U�x�� x���
Take any control u � U�x�� x��� Then any control from U�x�� x�� has the

form u v for some v � U��� ��� We have

J�u v� � J�u�  �kvkJ
�
u�

v

kvk
�
 J�v��

Denote J�u� � C�� Further�
���J �u� v

kvk
���� � C� � const for all v � U��� �� n

�� Finally� by Lemma ����� J�v� � 
kvk�� 
 	 �� for all v � U��� �� n ��
Consequently�

J�u  v� � C� � �kvkC�  
kvk� ��� v ��� v � U��� ���

Item ��� of this proposition follows� ut
So we reduced the question of existence of optimal controls in linear�qua�

dratic problems to the study of the restriction J jU��	��� We will consider this
restriction in detail in Sect� �����



���� Extremals ��


���� Extremals

We cannot directly apply Pontryagin Maximum Principle to the linear�
quadratic problem since we have conditions for existence of optimal controls
in Lm� only� while PMP requires controls from Lm�� Although� suppose for a
moment that PMP is applicable to the linear�quadratic problem� It is easy to
write equations for optimal controls and trajectories that follow from PMP�
moreover� it is natural to expect that such equations should hold true� Now
we derive such equations� and then substantiate them�
So we write PMP for the linear�quadratic problem� The control�dependent

Hamiltonian is

hu��� x� � �Ax �Bu�  

�
�juj�  hQx� xi�� x � Rn� � � Rn��

Consider �rst the abnormal case
  � �� By PMP� adjoint vector along an
extremal satis�es the ODE �� � ��A� thus ��t� � ����e�tA� The maximality
condition implies that � � ��t�B � ����e�tAB� We di�erentiate this identity
n� � times� take into account the controllability condition ������ and obtain
���� � �� This contradicts PMP� thus there are no abnormal extremals�
In the normal case we can assume  � �� Then the control�dependent

Hamiltonian takes the form

hu��� x� � �Ax �Bu � �
�
�juj�  hQx� xi�� x � Rn� � � Rn��

The term �Bu � �
� juj� depending on u has a unique maximum in u � Rm at

the point where
� hu
� u

� �B � u� � ��

thus

u � B���� ������

So the maximized Hamiltonian is

H��� x� � max
u�Rm

hu��� x� � �Ax� �
�
hQx� xi �

�
jB���j�

� �Ax� �
�
hQx� xi �

�
jB�j��

The Hamiltonian function H��� x� is smooth� thus normal extremals are solu�
tions of the corresponding Hamiltonian system

�x � Ax BB���� ������

�� � x�Q� �A� ������

Now we show that optimal controls and trajectories in the linear�quadratic
problem indeed satisfy equations �������������� Consider the extended system
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�x � Ax Bu�

�y �
�

�
�juj�  hQx� xi��

and the corresponding endpoint mapping


F 
 u �� �x�t�� u� x��� y�t�� u� ���� F 
 Lm� ��� t��� Rn�R�
This mapping can be written explicitly via Cauchy�s formula


x�t�� u� x�� � et�A
�
x�  

Z t�

�

e�tABu�t� dt

�
� ������

y�t�� u� �� �
�

�

Z t�

�

ju�t�j�  hQx�t�� x�t�i dt� ������

Let "u� 
 � be an optimal control and "x� 
 � � x� 
 � "u� x�� the corresponding
optimal trajectory� then

F �"u� � � ImF�

By implicit function theorem� the di�erential

D	uF 
 Lm� ��� t��� Rn"R
is not surjective� i�e�� there exists a covector �
� �� � Rn� " R�� �
� �� �� ��
such that

�
� �� � D	uFv� v � Lm� ��� t��� �������

The di�erential of the endpoint mapping is found from the explicit formu�
las ������� ������


D	uFv �

�Z t�

�

e�t��t�ABv�t� dt�Z t�

�

�
"u�t�  

Z t�

t

B�e���t�A
�

Q"x�
 � d
� v�t�

�
dt

�
�

Then the orthogonality condition ������� reads
Z t�

�

�
B�e�t��t�A

�


 �"u�t�  �

Z t�

t

B�e���t�A
�

Q"x�
 � d
� v�t�

�
dt � ��

v � Lm� ��� t���

that is�

B�e�t��t�A
�


 �"u�t�  �

Z t�

t

B�e���t�A
�

Q"x�
 � d
 � �� t � ��� t���
�������
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The case � � � is impossible by condition ������� Denote � � �
��� then
equality ������� reads

"u�t� � B����t��

where

��t� � ��e�t��t�A �
Z t�

t

"x��
 �Qe���t�A dt� �������

So we proved equalities ������� ������� Di�erentiating �������� we arrive at the
last required equality �������
So we proved that optimal trajectories in the linear�quadratic problem are

projections of normal extremals of PMP ������� ������� while optimal con�
trols are given by ������� In particular� optimal trajectories and controls are
analytic�

���� Conjugate Points

Now we study conditions of existence and uniqueness of optimal controls de�
pending upon the terminal time� So we write the cost functional to be mini�
mized as follows


Jt�u� �
�

�

Z t

�

ju�
 �j�  hQx�
 �� x�
 �i d
�

Denote

Ut��� �� � fu � Lm� ��� t� j x�t� u� x�� � x�g �
��t�

def
� inffJt�u� j u � Ut��� ��� kuk � �g� �������

We showed in Proposition ���� that if ��t� 	 � then the problem has solu�
tion for any boundary conditions� and if ��t� � � then there are no solutions
for any boundary conditions� The case ��t� � � is doubtful� Now we study
properties of the function ��t� in detail�

Proposition ����� ��� The function t �� ��t� is monotone nonincreasing and
continuous�
��� For any t 	 � there hold the inequalities

� � ���t� � �� t�

�
e�tkAkkBk�kQk� �������

��� If � 	 ���t�� then the in�mum in ������� is attained� i�e�� it is mini�
mum�
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Proof� ��� Denote

It�u� �
�

�

Z t

�

hQx�
 �� x�
 �i d
�

the functional It�u� is weakly continuous on Lm� � Notice that

Jt�u� �
�

�
 It�u� on the sphere kuk � ��

Take a minimizing sequence of the functional It�u� on the sphere fkuk �
�g � Ut��� ��� Since the ball fkuk � �g is weakly compact� we can �nd a
weakly converging subsequence


un � bu weakly as n��� kbuk � �� bu � Ut��� ���
It�un�� It�bu� � inffIt�u� j kuk � �� u � Ut��� ��g� n���

If bu � �� then It�bu� � �� thus ��t� � �
� � which contradicts hypothesis of

item ����

So bu �� �� It�bu� � �� and It � bu
kbuk
�
� It�bu�� Thus kbuk � �� and Jt�u� attains

minimum on the sphere fkuk � �g � Ut��� �� at the point bu�
��� Let kuk � � and x� � �� By Cauchy�s formula�

x�t� �

Z t

�

e�t���ABu�
 � d
�

thus

jx�t�j �
Z t

�

e�t���kAkkBk 
 ju�
 �j d


by Cauchy�Schwartz inequality

� kuk
�Z t

�

e�t����kAkkBk� d

����

�

�Z t

�

e�t����kAkkBk� d

����

�

We substitute this estimate of x�t� into Jt and obtain the second inequality
in ��������
The �rst inequality in ������� is obtained by considering a weakly con�

verging sequence un � �� n��� in the sphere kunk � �� un � Ut��� ���
��� Monotonicity of ��t�� Take any %t 	 t� Then the space Ut��� �� is iso�

metrically embedded into U
t��� �� by extending controls u � Ut��� �� by zero

u � Ut��� �� 
 bu � U
t��� ���bu�
 � � �u�
 �� 
 � t�

�� 
 	 t�
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Moreover�
J
t�bu� � Jt�u��

Thus

��t� � inffJt�u� j u � Ut��� ��� kuk� �g
� inffJ
t�u� j u � U
t��� ��� kuk� �g � ��%t��

Continuity of ��t�
 we show separately continuity from the right and from
the left�
Continuity from the right� Let tn # t� We can assume that ��tn� �

�
�

�otherwise ��tn� � ��t� � �
� �� thus minimum in ������� is attained


��tn� �
�

�
 Itn�un�� un � Utn��� ��� kunk � ��

Extend the functions un � Lm� ��� tn� to the segment ��� t�� by zero� Choosing
a weakly converging subsequence in the unit ball� we can assume that

un � u weakly as n��� u � Ut��� ��� kuk � ��

thus

Itn �un�� It�u� � inffIt�v� j v � Ut��� ��� kvk � �g� tn # t�

Then

��t� � �

�
 lim

tn�t
Itn�un� � lim

tn�t
��tn��

By monotonicity of ��
��t� � lim

tn�t
��tn��

i�e�� continuity from the right is proved�
Continuity from the left� We can assume that ��t� � �

� �otherwise ��
 � �
��t� � �

� for 
 � t�� Thus minimum in ������� is attained


��t� �
�

�
 It�bu�� bu � Ut��� ��� kbuk � ��

For the trajectory bx�
 � � x�
� bu� ���
we have bx�
 � � Z �

�

e�����ABbu��� d��
Denote


��� � k buj��	�� k
and notice that


���� �� �� ��
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Denote the ball

B� � fu � Lm� j kuk � �� u � U��� ��g�
Obviously�

x��� B����� �� � bx����
The mapping u �� x��� u� �� from Lm� to Rn is linear� and the system �x �
Ax  Bu is controllable� thus x��� B����� �� is a convex full�dimensional set
in Rn such that the positive cone generated by this set is the whole Rn� That
is why

x��� �B����� �� � �x��� B����� �� � Ox��	B����	��

for some neighborhood Ox��	B����	�� of the set x��� B����� ��� Further� there
exists an instant t� 	 � such that

bx�t�� � x��� �B����� ���

consequently� bx�t�� � x��� v�� ��� kv�k � �
����
Notice that we can assume t� � � as �� �� Consider the following family of
controls that approximate bu


u��
 � �

�
v��
 �� � � 
 � ��bu�
  t� � ��� � � 
 � t  � � t��

We have

u� � Ut���t���� ���
kbu� u�k � �� �� ��

But t �� t� � t and � is nonincreasing� thus it is continuous from the left�
Continuity from the right was already proved� hence � is continuous� ut
Now we prove that the function � can have not more than one root�

Proposition ����� If ��t� � � for some t 	 �� then ��
 � � � for all 
 	 t�

Proof� Let ��t� � �� t 	 �� By Proposition ����� in�mum in ������� is attained
at some control bu � Ut��� ��� kbuk � �


��t� � minfJt�u� j u � Ut��� ��� kuk � �g
� Jt�bu� � ��

Then
Jt�u� � Jt�bu� � � �u � Ut��� ���

i�e�� the control bu is optimal� thus it satis�es PMP� There exists a solution
���
 �� x�
 ��� 
 � ��� t�� of the Hamiltonian system
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�� � x�Q� �A�

�x � Ax BB����

with the boundary conditions

x��� � x�t� � ��

and
u�
 � � B����
 �� 
 � ��� t��

We proved that for any root t of the function �� any control u � Ut��� ���
kuk � �� with Jt�u� � � satis�es PMP�
Now we prove that ��
 � � � for all 
 	 t� By contradiction� suppose that

the function � vanishes at some instant t� 	 t� Since � is monotone� then

�j�t	t�� � ��

Consequently� the control

u��
 � �
�bu�
 �� 
 � t�
�� 
 � �t� t���

satis�es the conditions


u� � Ut���� ��� ku�k � ��
Jt��u

�� � ��

Thus u� satis�es PMP� i�e��

u��
 � � B��
���
 �� 
 � ��� t���

is an analytic function� But u�j�t	t�� � �� thus u� � �� a contradiction with

ku�k � �� ut
It would be nice to have a way to solve the equation ��t� � � without

performing the minimization procedure in �������� This can be done in terms
of the following notion�

De�nition ����� A point t 	 � is conjugate to � for the linear�quadratic
problem in question if there exists a nontrivial solution ���
 �� x�
 �� of the
Hamiltonian system �

�� � x�Q� �A�

�x � Ax BB���

such that x��� � x�t� � ��

Proposition ����� The function � vanishes at a point t 	 � if and only if t
is the closest to � conjugate point�
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Proof� Let ��t� � �� t 	 �� First of all� t is conjugate to �� we showed this in
the proof of Proposition �����
Suppose that t� 	 � is conjugate to �� Compute the functional Jt� on the

corresponding control u�
 � � B����
 �� 
 � ��� t��


Jt��u� �
�

�

Z t�

�

hB����
 �� B����
 �i hQx�
 �� x�
 �i d


�
�

�

Z t�

�
hBB����
 �� ���
 �i hQx�
 �� x�
 �i d


�
�

�

Z t�

�

��
 �� �x�
 � �Ax�
 ��  x��
 �Qx�
 � d


�
�

�

Z t�

�

�� �x  ��x� d


�
�

�
���t��x�t��� ����x���� � ��

Thus ��t�� � Jt�
�

u
kuk
�
� �� Now the result follows since � is nonincreasing�

ut
The �rst �closest to zero� conjugate point determines existence and unique�

ness properties of optimal control in linear�quadratic problems�
Before the �rst conjugate point� optimal control exists and is unique for any

boundary conditions �if there are two optimal controls� then their di�erence
gives rise to a conjugate point��
At the �rst conjugate point� there is existence and nonuniqueness for some

boundary conditions� and nonexistence for other boundary conditions�
And after the �rst conjugate point� the problem has no optimal solutions

for any boundary conditions�



��

Su
cient Optimality Conditions�

Hamilton�Jacobi Equation�

and Dynamic Programming

�
�� Su�cient Optimality Conditions

Pontryagin Maximum Principle is a universal and powerful necessary opti�
mality condition� but the theory of su�cient optimality conditions is not so
complete� In this section we consider an approach to su�cient optimality
conditions that generalizes �elds of extremals of the Classical Calculus of
Variations�
Consider the following optimal control problem


�q � fu�q�� q �M� u � U� ������

q��� � q�� q�t�� � q�� q�� q�� t� �xed� ������Z t�

�
��q�t�� u�t�� dt� min � ������

The control�dependent Hamiltonian of PMP corresponding to the normal case
is

hu��� � h�� fu�q�i � ��q� u�� � � T �M� q � ���� �M� u � U�

Assume that the maximized Hamiltonian

H��� � max
u�U

hu��� ������

is de�ned and smooth on T �M � We can assume smoothness of H on an open
domain O � T �M and modify respectively the subsequent results� But for
simplicity of exposition we prefer to take O � T �M � Then trajectories of the
Hamiltonian system

�� � !H���

are extremals of problem �������������� We assume that the Hamiltonian vec�

tor �eld !H is complete�
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������ Integral Invariant

First we consider a general construction that will play a key role in the proof
of su�cient optimality conditions�
Fix an arbitrary smooth function

a � C��M ��

Then the graph of di�erential da is a smooth submanifold in T �M 


L� � fdqa j q �Mg � T �M�

dimL� � dimM � n�

Translations of L� by the �ow of the Hamiltonian vector �eld

Lt � et
�H�L��

are smooth n�dimensional submanifolds in T �M � and the graph of the map�
ping t �� Lt�

L � f��� t� j � � Lt� � � t � t�g � T �M �R
is a smooth �n ���dimensional submanifold in T �M �R�
Consider the ��form

s�H dt � ���T �M �R��

Recall that s is the tautological ��form on T �M � s� � �	��� and its di�erential
is the canonical symplectic structure on T �M � ds � �� In mechanics� the form
s�H dt � p dq �H dt is called the integral invariant of Poincar�e�Cartan on
the extended phase space T �M �R�
Proposition ����� The form �s �H dt�jL is exact�

Proof� First we prove that the form is closed


� � d�s �H dt�jL � �� � dH � dt�jL � ������

��� Fix Lt � L�ft � constg and consider restriction of the form ��dH�dt
to Lt� We have

�� � dH � dt�jLt � �jLt
since dtjLt � �� Recall that

d
et �H � � �� thus

�jLt �
�d
et �H �

�����
L�
� �jL� � dsjL� �

But sjL� � d�a 	 ��jL� � hence
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dsjL� � d 	 d�a 	 ��jL� � ��
We proved that �� � dH � dt�jLt � ��
��� The manifold L is the image of the smooth mapping

��� t� ��
�
et
�H�� t

�
�

thus the tangent vector to L transversal to Lt is
!H���  

�

� t
� T��	t�L�

So

T��	t�L � T��	t�Lt "R
�
!H���  

�

� t

�
�

To complete the proof� we substitute the vector !H��� 


 t as the �rst argument

to � � dH � dt and show that the result is equal to zero� We have


i �H� � �dH� i �
� t
� � ��

i �H �dH � dt� �
�
i �HdH

�� 	z 

��

� dt� dH � �i �Hdt�� 	z 

��

� ��

i �
� t
�dH � dt� �

�
i �
� t
dH
�

� 	z 

��

� dt� dH �
�
i �
� t
dt
�

� 	z 

��

� �dH�

consequently�
i �H� �

� t
�� � dH � dt� � �dH  dH � ��

We proved that the form �s�H dt�jL is closed�
��� Now we show that this form is exact� i�e��Z

�

s�H dt � � ������

for any closed curve

� 
 
 �� ���
 �� t�
 �� � L� 
 � ��� ���
The curve � is homotopic to the curve

�� 
 
 �� ���
 �� �� � L�� 
 � ��� ���
Since the form �s�H dt�jL is closed� Stokes� theorem yields thatZ

�

s�H dt �

Z
��

s �H dt�

But the integral over the closed curve �� � L� is easily computed
Z
��

s �H dt �

Z
��

s �

Z
��

d�a 	 �� � ��

Equality ������ follows� i�e�� the form �s �H dt�jL is exact� ut
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������ Problem with Fixed Time

Now we prove su�cient optimality conditions for problem ��������������

Theorem ����� Assume that the restriction of projection �jLt is a di
eo�
morphism for any t � ��� t��� Then for any �� � L�� the normal extremal
trajectory

"q�t� � � 	 et �H����� � � t � t��

realizes a strict minimum of the cost functional
R t�
� ��q�t�� u�t�� dt among all

admissible trajectories q�t�� � � t � t�� of system ������ with the same bound�
ary conditions�

q��� � "q���� q�t�� � "q�t��� ������

Remark ���	� ��� Under the hypotheses of this theorem� no check of existence
of optimal control is required�
��� If all assumptions �smoothness of H� extendibility of trajectories of !H

to the time segment ��� t��� di�eomorphic property of �jLt� hold in a proper
open domain O � T �M � then the statement can be modi�ed to give local
optimality of "q� 
 � in ��O�� These modi�cations are left to the reader�

Now we prove Theorem �����

Proof� The curve "q�t� is projection of the normal extremal

"�t � et
�H�����

Let "u�t� be an admissible control that maximizes the Hamiltonian along this
extremal


H�"�t� � h	u�t��"�t��

On the other hand� let q�t� be an admissible trajectory of system ������ gen�
erated by a control u�t� and satisfying the boundary conditions ������� We
compare costs of the pairs �"q� "u� and �q� u��
Since � 
 Lt � M is a di�eomorphism� the trajectory fq�t� j � � t �

t�g � M can be lifted to a smooth curve f��t� j � � t � t�g � T �M 


�t � ��� t�� �� ��t� � Lt such that ����t�� � q�t��

Then Z t�

�
��q�t�� u�t�� dt �

Z t�

�
h��t�� fu�t��q�t��i � hu�t����t�� dt

�
Z t�

�

h��t�� �q�t�i �H���t�� dt ������

�

Z t�

�
hs��t�� ���t�i �H���t�� dt

�

Z
�

s �H dt�
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where
� 
 t �� ���t�� t� � L� t � ��� t���

By Proposition ����� the form �s �H dt�jL is exact� Then integral of the form
�s�H dt�jL along a curve depends only upon endpoints of the curve� The
curves � and

"� 
 t �� �"�t� t� � L� "�t � et
�H ����� t � ��� t���

have the same endpoints �see Fig� ������ thusZ
�

s �H dt �

Z
	�

s �H dt �

Z t�

�

h"�t� �"q�t�i �H�"�t� dt

�

Z t�

�

h"�t� f	u�t��"q�t��i � h	u�t��"�t� dt

�

Z t�

�
��"q�t�� "u�t�� dt�

So Z t�

�

��q�t�� u�t�� dt �
Z t�

�

��"q�t�� "u�t�� dt� ������

i�e�� the trajectory "q�t� is optimal�

M

q�t�
�q�t��

�q���
�q�t�

��t�

���t�

���t�
� t��

���� ��
L

Fig� ����� Proof of Th� �
��

It remains to prove that the minimum of the pair �"q�t�� "u�t�� is strict� i�e�
that inequality ������ is strict�
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For a �xed point q � M � write cotangent vectors as � � �p� q�� where p
are coordinates of a covector � in T �qM � The control�dependent Hamiltonians
hu�p� q� are a�ne w�r�t� p� thus their maximumH�p� q� is convex w�r�t� p� Any
vector � � TqM such that

hp� �i � max
u�U

hp� fu�q�i

de�nes a hyperplane of support to the epigraph of the mapping p �� H�p� q��
Since H is smooth in p� such a hyperplane of support is unique and max�
imum in ������ is attained at a unique velocity vector� If q�t� �� "q�t�� then
inequality ������ becomes strict� as well as inequality ������� The theorem is
proved� ut
Su�cient optimality condition of Theorem ���� is given in terms of the

manifolds Lt� which are in turn de�ned by a function a and the Hamiltonian
�ow of !H� One can prove optimality of a normal extremal trajectory "q�t��
t � ��� t��� if one succeeds to �nd an appropriate function a � C��M � for
which the projections � 
 Lt �M � t � ��� t��� are di�eomorphisms�
For t � � the projection � 
 L� �M is a di�eomorphism� So for small t 	

� any function a � C��M � provides manifoldsLt projecting di�eomorphically
toM � at least if we restrict ourselves by a compactK bM � Thus the su�cient
optimality condition for small pieces of extremal trajectories follows�

Corollary ����� For any compact K b M that contains a normal extremal
trajectory

"q�t� � � 	 et �H����� � � t � t��

there exists t�� � ��� t�� such that the piece

"q�t�� � � t � t���

is optimal w�r�t� all trajectories contained in K and having the same boundary
conditions�

In many problems� one can choose a su�ciently large compact K � "q such
that the functional J is separated from below from zero on all trajectories
leaving K �this is the case� e�g�� if ��q� u� 	 ��� Then small pieces of "q are
globally optimal�

������ Problem with Free Time

For problems with integral cost and free terminal time t�� a su�cient opti�
mality condition similar to Theorem ���� is valid� see Theorem ���� below�
Recall that all normal extremals of the free time problem lie in the zero

level H����� of the maximized Hamiltonian H� First we prove the following
auxiliary proposition�



�
�� Su�cient Optimality Conditions ���

Proposition ����� Assume that � is a regular value of the restriction HjL� �
i�e� d� HjT	L� �� � for all � � L� �H������ Then the mapping

� 
 L� �H����� �R� T �M� ����� t� � et
�H �����

is an immersion and b�s is an exact form�

Proof� First of all� regularity of the value � for HjL� implies that L��H�����

is a smooth manifold� Then� the exactness of b�s easily follows from Proposi�
tion ����� To prove that � is an immersion� it is enough to show that the vector

 �

 t ���� t� �

!H��t�� �t � ����� t�� is not tangent to the image of L� �H�����

under the di�eomorphism et
�H 
 T �M � T �M for all �� � L��H������ Note

that et
�H�L��H������ � Lt�H������ We are going to prove a little bit more

than we need� namely� that !H��t� is not tangent to Lt�
Indeed� Proposition ���� implies that �jLt � dsjLt � �� Hence it is enough

to show that the form �i �H��jLt does not vanish at the point �t� Recall that
the Hamiltonian �ow et

�H preserves both � and !H� In particular�

�i �H��jLt �det �H ��i �H��jL�
�
� �det �H �dHjL�� �

The mapping
d
et �H is invertible� So it is enough to prove that dHjL� does not

vanish at ��� But the last statement is our assumption� ut
Now we obtain a su�cient optimality condition for the problem with free

time�

Theorem ����� Let W be a domain in L� �H������R such that

� 	 �jW 
 W �M

is a di
eomorphism of W onto a domain in M � and let

"�t � et
�H�"���� t � ��� t���

be a normal extremal such that �"��� t� � W for all t � ��� t��� Then the extremal
trajectory "q�t� � ��"�t� �with the corresponding control "u�t�� realizes a strict
minimum of the cost

R �
�
��q�t�� u�t�� dt among all admissible trajectories such

that q�t� � � 	 ��W � for all t � ��� 
 �� q��� � "q���� q�
 � � "q�t��� 
 	 ��

Proof� Set L � ��W �� then � 
 L � ��L� is a di�eomorphism and sjL is
an exact form� Let q�t�� t � ��� 
 �� be an admissible trajectory generated by a
control u�t� and contained in ��L�� with the boundary conditions q��� � "q����
q�
 � � "q�t��� Then q�t� � ����t��� � � t � 
 � where t �� ��t� is a smooth
curve in L such that ���� � "��� ��
 � � "�t� �
We have

R
�� 	 �

s �
R
	� �

s� Further�
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Z
	� �

s �

t�Z
�

D
"�t� �"q�t�

E
dt �

t�Z
�

D
"�t� f	u�t��"q�t��

E
dt �

t�Z
�

��"q�t�� "u�t�� dt�

The last equality follows from the fact thatD
"��t�� f	u�t��"q�t��

E
� ��"q�t�� "u�t�� � H�"��t�� � ��

On the other hand�

Z
�� 	 �

s �

�Z
�

h��t�� �q�t�i dt �
�Z

�

hu�t����t�� dt  

�Z
�

��q�t�� u�t�� dt

�
�Z

�

��q�t�� u�t�� dt�

The last inequality follows since max
u�U

hu���t�� � H���t�� � �� Moreover� the

inequality is strict if the curve t �� ��t� is not a solution of the equation
�� � !H���� i�e�� if it does not coincide with "��t�� Summing up�

t�Z
�

��"q�t�� "u�t�� dt �
�Z

�

��q�t�� u�t�� dt

and the inequality is strict if q di�ers from "q� ut

�
�� Hamilton
Jacobi Equation

Suppose that conditions of Theorem ���� are satis�ed� As we showed in the
proof of this theorem� the form �s �H dt�jL is exact� thus it coincides with
di�erential of some function


�s �H dt�jL � dg� g 
 L � R� �������

Since the projection � 
 Lt � M is one�to�one� we can identify ��� t� �
Lt �R� L with �q� t� �M �R and de�ne g as a function on M �R


g � g�q� t��

In order to understand the meaning of the function g for our optimal control
problem� consider an extremal

"�t � et
�H����



�
�� Hamilton�Jacobi Equation ���

and the curve
"� � L� "� 
 t �� �"�t� t��

as in the proof of Theorem ����� ThenZ
	�
s�H dt �

Z t�

�
��"q�
 �� "u�
 �� d
� �������

where "q�t� � ��"�t� is an extremal trajectory and "u�t� is the control that
maximizes the Hamiltonian hu��� along "�t� Equalities ������� and �������
mean that

g�"q�t�� t� � g�q�� ��  

Z t

�

��"q�
 �� "u�
 �� d
�

i�e�� g�q� t��g�q�� �� is the optimal cost of motion between points q� and q for
the time t� Initial value for g can be chosen of the form

g�q�� �� � a�q��� q� �M� �������

Indeed� at t � � de�nition ������� of the function g reads

dgjt�� � �s �H dt�jL� � sjL� � da�

which is compatible with ��������
We can rewrite equation ������� as a partial di�erential equation on g� In

local coordinates on M and T �M � we have

q � x �M� � � ��� x� � T �M� g � g�x� t��

Then equation ������� reads

�� dx�H��� x� dt�jL � dg�x� t��

i�e�� ����

� g

� x
� ��

� g

� t
� �H��� x��

This system can be rewritten as a single �rst order nonlinear partial di�eren�
tial equation


� g

� t
 H

�
� g

� x
� x

�
� �� �������

which is called Hamilton�Jacobi equation� We showed that the optimal cost
g�x� t� satis�es Hamilton�Jacobi equation ������� with initial condition ��������
Characteristic equations of PDE ������� have the form
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�x �

� H

� �
�

�� � �� H

� x
�

d

d t
g�x�t�� t� � � �x�H�

The �rst two equations form the Hamiltonian system �� � !H��� for normal
extremals� Thus solving our optimal control problem ������������� leads to
the method of characteristics for the Hamilton�Jacobi equation for optimal
cost�

�
�� Dynamic Programming

One can derive the Hamilton�Jacobi equation for optimal cost directly� with�
out Pontryagin MaximumPrinciple� due to an idea going back to Huygens and
constituting a basis for Bellman�s method of Dynamic Programming � see ����
For this� it is necessary to assume that the optimal cost g�q� t� exists and is
C��smooth�
Let an optimal trajectory steer a point q� to a point q for a time t� Apply

a constant control u on a time segment �t� t �t� and denote the trajectory
starting at the point q by qu�
 �� 
 � �t� t �t�� Since qu�t �t� is the endpoint
of an admissible trajectory starting at q�� the following inequality for optimal
cost holds


g�qu�t �t�� t �t� � g�q� t�  

Z t��t

t

��qu�
 �� u� d
�

Divide by �t


�

�t
�g�qu�t �t�� t �t�� g�q� t�� � �

�t

Z t��t

t

��qu�
 �� u� d


and pass to the limit as �t� �
�
� g

� q
� fu�q�

�
 

� g

� t
� ��q� u��

So we obtain the inequality

� g

� t
 hu

�
� g

� q
� q

�
� �� u � U� �������

Now let �"q�t�� "u�t�� be an optimal pair� Let t 	 � be a Lebesgue point of
the control "u� Take any �t � ��� t�� A piece of an optimal trajectory is optimal�
thus "q�t� �t� is the endpoint of an optimal trajectory� as well as "q�t�� So the
optimal cost g satis�es the equality




�
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g�"q�t�� t� � g�"q�t� �t�� t� �t�  

Z t

t��t
��"q�
 �� "u�
 �� d
�

We repeat the above argument


�

�t
�g�"q�t�� t�� g�"q�t� �t�� t� �t�� �

�

�t

Z t

t��t
��"q�
 �� "u�
 �� d
�

take the limit �t� �


� g

� t
 h	u�t�

�
� g

� q
� q

�
� �� �������

This equality together with inequality ������� means that

h	u�t�

�
� g

� q
� q

�
� max

u�U
hu

�
� g

� q
� q

�
�

We denote
H��� q� � max

u�U
hu��� q�

and write ������� as Hamilton�Jacobi equation


� g

� t
 H

�
� g

� q
� q

�
� ��

Thus derivative of the optimal cost
� g

� q
is equal to the impulse � along the

optimal trajectory "q�t��
We do not touch here a huge theory on nonsmooth generalized solutions

of Hamilton�Jacobi equation for smooth and nonsmooth Hamiltonians�
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Hamiltonian Systems

for Geometric Optimal Control Problems

���� Hamiltonian Systems
on Trivialized Cotangent Bundle

�	���� Motivation

Consider a control system described by a �nite set of vector �elds on a man�
ifoldM 


�q � fu�q�� u � f�� � � � � kg� q �M� ������

We construct a parametrization of the cotangent bundle T �M adapted to this
system� First� choose a basis in tangent spaces TqM of the �elds fu�q� and
their iterated Lie brackets


TqM � span�f��q�� � � � � fn�q���

we assume that the system is bracket�generating� Then we have special coor�
dinates in the tangent spaces


� v � TqM v �
nX
i��

�ifi�q��

���� � � � � �n� � Rn�

Thus any tangent vector to M can be represented as an �n ���tuple

���� � � � � �n� q�� ���� � � � � �n� � Rn� q �M�

i�e�� we obtain a kind of parametrization of the tangent bundle TM �
�q�MTqM � One can construct coordinates on TM by choosing local coor�
dinates in M � but such a choice is extraneous to our system� and we stay
without any coordinates in M �



��� �� Hamiltonian Systems for Geometric Optimal Control Problems

Having in mind the Hamiltonian system of PMP� we pass to the cotangent
bundle� Construct the dual basis in T �M 
 choose di�erential forms

��� � � � � �n � ��M

such that
h�i� fji � �ij � i� j � �� � � � � n�

Then the cotangent spaces become endowed with special coordinates


� � � T �qM � �
nX
i��

�i�iq�

���� � � � � �n� � Rn�
So we obtain a kind of parametrization of the cotangent bundle


� �� ���� � � � � �n� q�� ���� � � � � �n� � Rn� q �M�

In notation of Sect� �����

�i � f�i ��� � h�� fi�q�i
is the linear on �bers Hamiltonian corresponding to the �eld fi� Canonical
coordinates on T �M arise in a similar way from commuting vector �elds
fi �




 xi
� i � �� � � � � n� corresponding to local coordinates �x�� � � � � xn�

on M � Consequently� in the �only interesting in control theory� case where
the �elds fi do not commute� the �coordinates
 ���� � � � � �n� q� on T �M are
not canonical�
Now our aim is to write Hamiltonian system in these nonstandard coordi�

nates on T �M � or in other natural coordinates adapted to the control system
in question�

�	���� Trivialization of T �
M

Let M be a smooth manifold of dimension n� and let E be an n�dimensional
vector space� Suppose that we have a trivialization of the cotangent bun�
dle T �M � i�e�� a di�eomorphism

� 
 E �M � T �M

such that


��� the diagram

E �M
������ T �M""y ""y�

M M
is commutative� i�e��

� 	 ��e� q� � q� e � E� q �M�
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��� for any q �M the mapping

e �� ��e� q�� e � E�

is a linear isomorphism of vector spaces


�� 
 � q� 
 E � T �qM�

So the space E is identi�ed with any vertical �ber T �qM � it is a typical �ber
of the cotangent bundle T �M �
For a �xed vector e � E� we obtain a di�erential form on M 


�e
def
� ��e� 
 � � ��M�

In the previous section we had

E � f���� � � � � �n�g � Rn�

��e� q� �
nX
i��

�i�iq�

but now we do not �x any basis in E�

�	���� Symplectic Form on E �M

In order to write a Hamiltonian system on E �M �� T �M � we compute the
symplectic form b�� on E �M � We start from the Liouville form

s � ���T �M �

and evaluate its pull�back b�s � ���E �M ��

The tangent and cotangent spaces are naturally identi�ed with the direct
products


T�e	q��E �M � �� TeE " TqM �� E " TqM�

T ��e	q��E �M � �� T �eE " T �qM �� E� " T �qM�

Any vector �eld V � Vec�E�M � is a sum of its vertical and horizontal parts


V � Vv  Vh� Vv�e� q� � E� Vh�e� q� � TqM�

Similarly� any di�erential form

� � ���E �M �

is decomposed into its vertical and horizontal parts
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� � �v  �h� �v �e	q� � E�� �h �e	q� � T �qM�

The vertical part �v vanishes on horizontal tangent vectors� while the hori�
zontal one �h vanishes on vertical tangent vectors�
In particular� vector �elds and di�erential forms onM �possibly depending

on e � E� can be considered as horizontal vector �elds and di�erential forms
on E �M 


TqM � �" TqM � T�e	q��E �M ��

T �qM � �" T �qM � T ��e	q��E �M ��

Compute the action of the form b�s on a tangent vector ��� v� � TeE"TqM 


hb�s� ��� v�i � hs��e	q�� ����� v�i � hs��e	q�� ����� v�i � h��e� q�� vi�
Thus

�b�s��e	q� � ��e� q�� ������

where � in the right�hand side of ������ is considered as a horizontal form on
E �M �
We go on and compute the pull�back of the standard symplectic form


b�� � b�ds � db�s � d��

Recall that di�erential of a form � � ���N � can be evaluated by for�
mula �������


d��W��W�� � W�h��W�i �W�h��W�i � h�� �W��W��i�
W�� W� � VecN� ������

In our case N � E �M we take test vector �elds of the form

Wi � ��i� Vi� � Vec�E �M �� i � �� ��

where �i � const � E are constant vertical vector �elds and Vi � VecM are
horizontal vector �elds� By �������

d������ V��� ���� V���

� ���� V��h�� 
 � 
 �� V�i � ���� V��h�� 
 � 
 �� V�i � h�� 
 � 
 �� �V�� V��i

since ����� V��� ���� V��� � �V�� V��� Further�

����� V��h�� 
 � 
 �� V�i��e	
� � ���h�� 
 � 
 �� V�i  V�h�� 
 � 
 �� V�i��e	
�

and taking into account that � is linear w�r�t� e
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� h��� � V�i  V�h�e� V�i�
Consequently�

d������ V��� ���� V����e	
� �
h��� � V�i � h��� � V�i V�h�e� V�i � V�h�e� V�i � h�e� �V�� V��i�

We denote the �rst two terms

e������ V��� ���� V��� � h��� � V�i � h��� � V�i�
and apply formula ������ to the horizontal form �e


d�e�V�� V�� � V�h�e� V�i � V�h�e� V�i � h�e� �V�� V��i�
Finally� we obtain the expression for pull�back of the symplectic form


b���e	
������ V��� ���� V��� � e������ V��� ���� V���  d�e�V�� V��� ������

i�e�� b���e	
� � e� d�e�

Remark ����� In the case of canonical coordinates we can take test vector
�elds Vi �




 xi
� then it follows that d�e � ��

�	���� Hamiltonian System on E �M

Formula ������ describes the symplectic structure b�� on E � M � Now we
compute the Hamiltonianvector �eld corresponding to a Hamiltonian function

h � C��E �M ��

One can consider h as a family of functions on M parametrized by vectors
from E


he � h�e� 
 � � C��M �� e � E�

Decompose the required Hamiltonian vector �eld into the sum of its vertical
and horizontal parts


!h � X  Y�

X � X�e� q� � E�

Y � Y �e� q� � TqM�

By de�nition of a Hamiltonian �eld�

iX�Y
b�� � �dh� ������

Transform the both sides of this equality
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�dh � �� h

� e� 	z 

�E�

� dhe�	z

�T�M

�

iX�Y je b�� � iX�Y je �e� d�e� � i�X	Y �

��
e
e� i�X	Y �

��
e
d�e

� h�X � 
 i� 	z 

�T�M

�h�
� Y i� 	z 

�E�

 iY d�e� 	z 

�T�M

�

Now we equate the vertical parts of ������


h�
� Y i � � h

� e
� ������

from this equation we can �nd the horizontal part Y of the Hamiltonian�eld !h�
Indeed� the linear isomorphism

�� 
 � q� 
 E � T �qM

has a dual mapping
��� 
 � q� 
 TqM � E��

Then equation ������ can be written as

��� 
 � q�Y � � h

� e
�e� q�

and then solved w�r�t� Y 


Y � ���� � h

� e
�

To �nd the vertical part X of the �eld !h� we equate the horizontal parts
of ������


�X  iY d�e � �dhe�
rewrite as

�X � �iY d�e � dhe�

and solve this equation w�r�t� X


X � �����iY d�e  dhe��

Thus the Hamiltonian system on E�M corresponding to a Hamiltonian h
has the form
 ��
 �q � ����� h

� e
�

�e � �����i �qd�e  dhe��
������

Now we write this system using coordinates in the cotangent and tangent
spaces �we do not require any coordinates on M ��
Choose a basis in E
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E � span�e�� � � � � en��

so that vectors u � E are decomposed as

u �
nX
i��

uiei�

Then

��u� 
 � � �

�
nX
i��

uiei� 

�
�

nX
i��

ui�i�

where
�i � �ei � ���M �� i � �� � � � � n�

are basis ��forms on M � Further� the wedge products

�i � �j � ���M �� � � i � j � n�

form a basis in the space ���M � of ��forms onM � Decompose the di�erentials
in this basis


d�k �
X

��i
j�n
ckij �i � �j �

nX
i	j��

�

�
ckij �i � �j�

where coe�cients are smooth functions

ckij � C��M �� i� j� k � �� � � � � n�

skew�symmetric w�r�t� lower indices


ckij � �ckji�

The coe�cients ckij are called structural constants �although� in general� they
are not constant�� We explain the name and give a simple recipe for computing
them below in Proposition �����
Choose a frame in TqM dual to the frame ��� � � � � �n


V�� � � � � Vn � VecM�

h�i� Vji � �ij � i� j � �� � � � � n�

Now we compute our Hamiltonian system ������ in the coordinates introduced�
The Hamiltonian function has the form

h � C��Rn�M ��

h � h�u�� � � � � un� q�� �u�� � � � � un� � Rn� q �M�

We have
h���Vi�� eji � h�ej � Vii � h�j � Vii � �ij�
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thus

���Vi� � e�i �

�BBBB�
�

 
 

�

 
 

�

�CCCCA �

the only unit is the i�th component� Consequently� the horizontal part of the
�eld !h decomposes along the basis horizontal �elds as follows


Y �
nX
i��

� h

� ui
Vi�

Consider the vertical part of !h


X � �����iY d�u  dhu��

The second term is easily computed since

dhu �
nX
i��

�Vihu��i�

this decomposition is immediately checked on basis vector �elds Vi� And the
�rst term has the form

����iY d�u �
nX

i	j	k��

�

�
ukc

k
ij

�
� h

� uj

�

� ui
� � h

� ui

�

� uj

�
�

we leave this as an exercise for the reader�
Finally� the Hamiltonian system in the moving frames �V�� � � � � Vn� and

���� � � � � �n� reads
����������

�q �

nX
i��

� h

� ui
Vi�

�ui � �Vihu  
nX

j	k��

ukc
k
ij

� h

� uj
� i � �� � � � � n�

Remark ����� This system becomes especially simple �triangular� when the
Hamiltonian does not depend upon the point in the base


� h

� q
� ��

The vertical subsystem simpli�es even more when

ckij � const� i� j� k � �� � � � � n�

Both these conditions are satis�ed for invariant problems on Lie groups dis�
cussed in subsequent sections�
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The structural constants ckij can easily be expressed in terms of Lie brackets
of basis vector �elds�

Proposition �	��� Let the frame of vector �elds V�� � � � � Vn � VecM be dual
to the frame of ��forms ��� � � � � �n � ���M ��

h�i� Vji � �ij� i� j � �� � � � � n�

Then

d�k �
nX

i	j��

�

�
ckij �i � �j� k � �� � � � � n�

if and only if

�Vi� Vj � � �
nX
k��

ckij Vk� i� j � �� � � � � n�

Proof� The equality for d�k can be written as

hd�k� �Vi� Vj�i � ckij � i� j� k � �� � � � � n�

The left�hand side is computed by formula ������


hd�k� �Vi� Vj�i � Vih�k� Vji� 	z 

��

�Vjh�k� Vii� 	z 

��

�h�k� �Vi� Vj�i�

and the statement follows� ut
If the coe�cients ckij are constant� then the vector �elds V�� � � � � Vn span

a �nite�dimensional Lie algebra� and the numbers ckij are called structural
constants of this Lie algebra� As we mentioned above� for general vector �elds
ckij �� const�

���� Lie Groups

State spaces for many interesting problems in geometry� mechanics� and ap�
plications are often not just smooth manifolds but Lie groups� in particular�
groups of transformations� A manifold with a group structure is called a Lie
group if the group operations are smooth� The cotangent bundle of a Lie group
has a natural trivialization� We develop an approach of the previous section
and study optimal control problems on Lie groups�
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�	���� Examples of Lie Groups

The most important examples of Lie groups are given by groups of linear
transformations of �nite�dimensional vector spaces�
The group of all nondegenerate linear transformations of Rn is called the

general linear group


GL�n� � fX 
 Rn� Rn j detX �� �g�
Linear volume�preserving transformations of Rn form the special linear group


SL�n� � fX 
 Rn� Rn j detX � �g�
Another notation for these groups is respectively GL�Rn� and SL�Rn�� The
orthogonal group is formed by linear transformations preserving Euclidean
structure


O�n� � fX 
 Rn� Rn j X�X � Idg�
and orthogonal orientation�preserving transformations form the special or�
thogonal group


SO�n� � fX 
 Rn� Rn j X�X � Id� detX � �g�
One can also consider the complex and Hermitian versions of these groups


GL�Cn �� SL�Cn �� U�n�� SU�n��

for this one should replace in the de�nitions above Rn by Cn � Each of these
groups realizes as a subgroup of the corresponding real or orthogonal group�
Namely� the general linear group GL�Cn � and the unitary group U�n� can
be considered respectively as the subgroups of GL�R�n� or O��n� commuting
with multiplication by the imaginary unit


GL�C n� �

��
A B
�B A

�
j A� B 
 Rn� Rn� det�A det�B �� �

�
� GL�R�n��

U�n� �

��
A B
�B A

�
j A� B 
 Rn� Rn�

AA�  BB� � Id� BA� �AB� � �
�
� GL�Cn � �O��n��

The special linear group SL�Cn � and the special unitary group SU�n� realize
as follows


SL�Cn � �

��
A B
�B A

�
j A� B 
 Rn� Rn� det�A iB� � �

�
� SL�R�n��
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SU�n� �

��
A B
�B A

�
j A� B 
 Rn� Rn�

AA�  BB� � Id� BA� �AB� � �� det�A iB� � �

�
� U�n� � SL�Cn� � SO��n��

Lie groups of linear transformations are called linear Lie groups� These
groups often appear as a state space of a control system
 e�g�� SO�n� arises in
the study of rotating con�gurations� For such systems� one can consider� as
usual� the problems of controllability and optimal control�

�	���� Lie�s Theorem for Linear Lie Groups

Consider a control system of the form

�X � XA� X �M � GL�N �� A � A � gl�N �� ������

where A is an arbitrary subset of gl�N �� the space of all real N �N matrices�
We compute orbits of this system� Systems of the form ������ are called left�
invariant 
 they are preserved by multiplication from the left by any constant
matrix Y � GL�N ��
Notice that the ODE with a constant matrix A

�X � XA

is solved by the matrix exponential


X�t� � X���etA�

Lie bracket of left�invariant vector �elds is left�invariant as well


�XA�XB� � X�A�B�� ������

this follows easily from the coordinate expression for commutator �exercise��

Remark ����� Instead of left�invariant systems �X � XA� we can consider
right�invariant ones
 �X � CX� These forms are equivalent and transformed
one into another by the inverse of matrix� Although� the Lie bracket for right�
invariant vector �elds is

�CX�DX� � �D�C�X�

which is less convenient than �������

Return to control system ������� By the Orbit Theorem� the orbit through
identity OId�A� is an immersed submanifold of GL�N �� Moreover� by de�ni�
tion� the orbit admits the representation via composition of �ows
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OId�A� � fId 	et�A� 	 
 
 
 	 etkAk j ti � R� Ai � A� k � Ng

thus via products of matrix exponentials

� fet�A� 
 
 
 
 
 etkAk j ti � R� Ai � A� k � Ng�
Consequently� the orbit OId�A� is a subgroup of GL�N �� Further� in the proof
of the Orbit Theorem we showed that the point q 	 et�A� 	 
 
 
 	 etkAk depends
continuously on �t�� � � � � tk� in the �strong
 topology of the orbit� thus it
depends smoothly�
To summarize� we showed that the orbit through identity has the following

properties


���OId�A� is an immersed submanifold of GL�N ��
���OId�A� is a subgroup of GL�N ��
��� the group operations �X�Y � �� XY � X �� X�� in OId�A� are smooth�
In other words� the orbit OId�A� is a Lie subgroup of GL�N ��
The tangent spaces to the orbit are easily computed via the analytic version

of the Orbit theorem �system ������ is real analytic�


TIdOId�A� � Lie�A�� �������

TXOId�A� � X Lie�A��
The orbit of the left�invariant system ������ through any pointX � GL�N �

is obtained by left translation of the orbit through identity


OX �A� � fXet�A� 
 
 
etkAk j ti � R� Ai � A� k � Ng� XOId�A��
We considered before system ������ de�ned by an arbitrary subset A �

gl�N �� Restricting to Lie subalgebras

A � Lie�A� � gl�N ��
we see that the following proposition was proved
 to any Lie subalgebra
A � gl�N �� there corresponds a connected Lie subgroup M � GL�N � such
that TIdM � A� Here M � OIdA� Now we show that this correspondence is
invertible�
Let M be a connected Lie subgroup of GL�N �� i�e�


���M is an immersed connected submanifold of GL�N ��
���M is a group w�r�t� matrix product�
��� the group operations �X�Y � �� XY � X �� X�� in M are smooth map�
pings�

Then Id � M � Consider the tangent space

TIdM �

�
A �

d

d t

����
t��

�t j �t �M� �t smooth� �� � Id

�
�
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Since M � GL�N � � gl�N �� then
TIdM � gl�N ��

Further�
A � TIdM� X �M 
 XA � TXM

since

XA �
d

d t

����
t��

X�t�

the velocity of the curve X�t� where A � ���� Consequently� for any A � TIdM
the vector �eldXA is identically tangent toM � So the following control system
is well�de�ned on M 


�X � XA� X �M� A � TIdM�

This system has a full rank� Since the state space M is connected� it coincides
with the orbit OId of this system through identity� We have already computed
the tangent space to the orbit of a left�invariant system� see �������� thus

TIdM � TId�OId� � Lie�TIdM ��

That is� TIdM is a Lie subalgebra of gl�N �� We proved the following classical
proposition�

Theorem �	�� �Lie�� There exists a one�to�one correspondence between Lie
subalgebras A � gl�N � and connected Lie subgroups M � GL�N � such that
TIdM � A�
We showed that Lie�s theorem for linear Lie algebras and Lie groups follows

from the Orbit Theorem
 connected Lie subgroups are orbits of left�invariant
systems de�ned by Lie subalgebras� and Lie subalgebras are tangent spaces
to Lie subgroups at identity�

�	���� Abstract Lie Groups

An abstract Lie group is an abstract smooth manifold �not considered embed�
ded into any ambient space� which is simultaneously a group� with smooth
group operations� There holds Ado�s theorem ����� stating that any �nite�
dimensional Lie algebra is isomorphic to a Lie subalgebra of gl�N �� A similar
statement for Lie groups is not true
 a Lie group can be represented as a Lie
subgroup of GL�N � only locally� but� in general� not globally� Although� the
major part of properties of linear Lie groups can be generalized for abstract
Lie groups�
In particular� let M be a Lie group� For any point q �M � the left product

by q

&q 
 M �M� &q�x� � qx� x �M�
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is a di�eomorphism of M � Any tangent vector

v � TIdM

can be shifted to any point q �M by the left translation &q


V �q� � &q�v � TqM� q �M�

thus giving rise to a left�invariant vector �eld on M 


V � VecM� &q�V � V� q �M�

There is a one�to�one correspondence between left�invariant vector �elds on
M and tangent vectors to M at identity


V �� V �Id� � v�

Left translations inM preserve �ows of left�invariant vector �elds on M � thus
�ows of their commutators� Consequently� left�invariant vector �elds on a Lie
group M form a Lie algebra� called the Lie algebra of the Lie group M � The
tangent space TIdM is thus also a Lie algebra�
Then� similar to the linear case� one can prove Lie�s theorem on one�to�one

correspondence between Lie subgroups of a Lie group M and Lie subalgebras
of its Lie algebra A�

���� Hamiltonian Systems on Lie Groups

�	���� Trivialization of the Cotangent Bundle of a Lie Group

Let M � GL�N � be a Lie subgroup� Denote by M the corresponding Lie
subalgebra


M � TIdM � gl�N ��
The cotangent bundle of M admits a trivialization of the form

� 
 M� �M � T �M�

whereM� is the dual space to the Lie algebraM� We start from describing
the dual mapping

�� 
 TM �M�M�

Recall that TqM � qTIdM � qM for any q �M � We set

�� 
 qa �� �a� q�� a �M� q �M� qa � TqM� �������

I�e�� the value of a left�invariant vector �eld qa at a point q is mapped to the
pair consisting of the value of this �eld at identity and the point q� Then the
trivialization � has the form


� 
 �x� q� �� &xq� x �M�� q �M� &xq � T �qM� �������

where &x is the left�invariant ��form on M coinciding with x at identity


h&xq � qai def
� hx� ai�
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�	���� Hamiltonian System onM�
�M

The Hamiltonian system corresponding to a Hamiltonian

h � h�x� q� � C��M� �M �

was computed in Sect� ����� see ������
��
 �q � ���� � h
� x

�

�x � �����dhx  i �qd�x��
�������

Taking into account de�nition ������� of ��� we can write the �rst equation
as follows


�q � q
� h

� x
�

Here
� h

� x
is the vertical part of dh � ���M� �M �� i�e��

� h

� x
�x� q� � �M��� �M� �x� q� �M� �M�

In order to �nd �x� compute the action of the di�erential d&x � d�x on
left�invariant vector �elds by formula �������


d&x�qa� qb� � �qa� hx� bi� 	z 

�const

��qb� hx� ai� 	z 

�const

�hx� �a� b�i � �hx� �a� b�i�

Then

���i �qd�x � ���iq � h
� x

d&x � �
�
x�

�
� h

� x
� 

��

� �
�
x�

�
ad

� h

� x

�


�

� �
��
ad

� h

� x

��
x� 


�
� �

�
ad

� h

� x

��
x�

So Hamiltonian system ������� takes the form
����

�q � q

� h

� x
�

�x �

�
ad

� h

� x

��
x� ���dhx�

�������

Recall that dhx is the horizontal part of dh� thus

�dhx�q � T �qM� �x� q� �M� �M�

and
���dhx �M��
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System ������� describes the Hamiltonian system for an arbitrary Lie group
and any Hamiltonian function h�
In the case of commutative Lie groups �which arise in trivialization of T �M

generated by local coordinates in M �� the �rst term in the second equation
������� vanishes� and we obtain the usual form of Hamiltonian equations in
canonical coordinates
 ��
 �q � q

� h

� x
�

�x � ����dhx�

On the contrary� if the Hamiltonian is left�invariant


h � h�x��

then Hamiltonian system ������� becomes triangular
����

�q � q

� h

� x
�

�x �

�
ad

� h

� x

��
x�

�������

Here the second equation does not contain q� So in left�invariant control prob�
lems� where the Hamiltonian h of PMP is left�invariant� one can solve the
equation for vertical coordinates x independently� and then pass to the hori�
zontal equation for q�

�	���� Compact Lie Groups

The Hamiltonian system ������� simpli�es even more in the case of compact
Lie groups�
Let M be a compact Lie subgroup of GL�N �� Then M can be considered

as a Lie subgroup of the orthogonal group O�N �� Indeed� one can choose a
Euclidean structure h 
 � 
 i in RN invariant w�r�t� all transformations fromM 


hAv�Awi � hv� wi� v� w � RN� A �M � GL�N ��
Such a structure can be obtained from any Euclidean structure g� 
 � 
 � on RN
by averaging over A � M using a volume form �� � � � � � �n� where �i are
basis left�invariant forms on M 


hv� wi �
Z
M

�v	w �� � � � �� �n�

�v	w�A� � g�Av�Aw�� A �M�

So we will assume that elements ofM are orthogonal N�N matrices� and
the tangent space to M at identity consists of skew�symmetric matrices


M � TIdM � TId O�N � � so�N � � fa 
 RN � RN j a�  a � �g�
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There is an invariant scalar product on so�N � de�ned as follows


ha� bi � � tr ab� a� b � so�N ��
This product is invariant in the sense that

het ad ca� etad cbi � ha� bi� a� b� c � so�N �� t � R� �������

i�e�� the operator
Ad etc � et ad c 
 so�N �� so�N �

is orthogonal w�r�t� this product� Equality ������� is a corollary of the invari�
ance of trace


het ad ca� etad cbi � h�Ad etc�a� �Ad etc�bi � hetcae�tc� etcbe�tci
� � tr�etcae�tcetcbe�tc� � � tr�etcabe�tc� � � tr�ab�
� ha� bi�

The sign minus in the de�nition of the invariant scalar product on so�N �
provides positive�de�niteness of the product� This can be easily seen in coor�
dinates
 if

a � �aij�� b � �bij� � so�N ��
aij � �aji� bij � �bji� i� j � �� � � � � N�

then

� tr�ab� � �
NX

i	j��

aijbji �
NX

i	j��

aijbij�

The norm on so�N � is naturally de�ned


jaj �
p
ha� ai� a � so�N ��

The in�nitesimal version of the invariance property ������� is easily ob�
tained by di�erentiation at t � �


h�c� a�� bi ha� �c� b�i� �� a� b� c � so�N �� �������

That is� all operators

ad c 
 so�N �� so�N �� c � so�N ��
are skew�symmetric w�r�t� the invariant scalar product� Equality ������� is a
multidimensional generalization of a property of vector and scalar products
in R� �� so����
Since M � so�N �� there is an invariant scalar product in the Lie alge�

bra M� Then the dual space M� can be identi�ed with the Lie algebraM
via the scalar product h 
 � 
 i
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M�M�� a �� ha� 
 i�

In terms of this identi�cation� the operator �ad a��� a �M� takes the form


�ad a�� 
 M�M� �ada�� � � ad a�

In the case of a compact Lie group M � Hamiltonian system ������� for an
invariant Hamiltonian h � h�a� becomes de�ned onM�M and reads����


�q � q
� h

� a
�

�a �

�
a�

� h

� a

�
�

�������

We apply this formula in the next chapter for solving several geometric
optimal control problems�



�


Examples of Optimal Control Problems

on Compact Lie Groups

���� Riemannian Problem

Let M be a compact Lie group� The invariant scalar product h 
 � 
 i in the Lie
algebraM � TIdM de�nes a left�invariant Riemannian structure on M 


hqu� qviq def
� hu� vi� u� v �M� q �M� qu� qv � TqM�

So in every tangent space TqM there is a scalar product h 
 � 
 iq� For any
Lipschitzian curve

q 
 ��� ���M

its Riemannian length is de�ned as integral of velocity


l �

Z �

�
j �q�t�j dt� j �qj �

p
h �q� �qi�

The problem is stated as follows
 given any pair of points q�� q� �M � �nd the
shortest curve in M that connects q� and q��
The corresponding optimal control problem is as follows


�q � qu� q �M� u �M� ������

q��� � q�� q��� � q�� ������

q�� q� �M �xed� ������

l�u� �

Z �

�

ju�t�j dt� min �

First of all� we prove existence of optimal controls� Parametrizing trajec�
tories of control system ������ by arc length� we see that the problem with un�
bounded admissible control u �M on the �xed segment t � ��� �� is equivalent
to the problem with the compact space of control parameters U � fjuj � �g
and free terminal time� Obviously� afterwards we can extend the set of control
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parameters to U � fjuj � �g so that the set of admissible velocities fU �q�
become convex� Then Filippov�s theorem implies existence of optimal controls
in the problem obtained� thus in the initial one as well�
By Cauchy�Schwartz inequality�

�l�u��� �

�Z �

�

ju�t�j dt
��

�
Z �

�

ju�t�j� dt�

moreover� the equality occurs only if ju�t�j � const� Consequently� the Rie�
mannian problem l� min is equivalent to the problem

J�u� �
�

�

Z �

�

ju�t�j� dt� min � ������

The functional J is more convenient than l since J is smooth and its extremals
are automatically curves with constant velocity� In the sequel we consider the
problem with the functional J 
 �������������� The Hamiltonian of PMP for
this problem has the form


h�u�a� q� � h&aq � qui 
 

�
juj� � ha� ui  

�
juj��

The maximality condition of PMP is


h�u�t��a�t�� q�t�� � max
v�M

�ha�t�� vi   

�
jvj���  � ��

��� Abnormal case
  � ��
The maximality condition implies that a�t� � �� This contradicts PMP

since the pair � � a� should be nonzero� So there are no abnormal extremals�
��� Normal case
  � ���
The maximality condition gives u�t� � a�t�� thus the maximized Hamilto�

nian is smooth


H�a� �
�

�
jaj��

Notice that the Hamiltonian H is invariant �does not depend on q�� which is
a corollary of left�invariance of the problem�
Optimal trajectories are projections of solutions of the Hamiltonian system

corresponding to H� This Hamiltonian system has the form �see ��������
�
�q � qa�

�a � �a� a� � ��

Thus optimal trajectories are left translations of one�parameter subgroups
in M 


q�t� � q�e
ta� a �M�

recall that an optimal solution exists� In particular� for the case q� � Id� we
obtain that any point q� �M can be represented in the form
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q� � ea� a �M�

That is� any element q� in a compact Lie group M has a logarithm a in the
Lie algebraM�

���� A Sub
Riemannian Problem

Now we modify the previous problem� As before� we should �nd the shortest
path between �xed points q�� q� in a compact Lie group M � But now ad�
missible velocities �q are not free
 they should be tangent to a left�invariant
distribution �of corank �� onM � That is� we de�ne a left�invariant �eld of tan�
gent hyperplanes on M � and �q�t� should belong to the hyperplane attached
at the point q�t�� A problem of �nding shortest curves tangent to a given
distribution is called a sub�Riemannian problem� see Fig� �����

q��� q�t��

q�t�

�q�t�

�q�t�

�q�t� � �q�t�

l�q����� min

Fig� �
��� Sub�Riemannian problem

To state the problem as an optimal control one� choose any element b �M�
jbj � �� Then the set of admissible velocities at identity is the hyperplane

U � b� � fu � M j hu� bi � �g�
Remark �
��� In the case M � SO���� this restriction on velocities means that
we �x an axis b in a rigid body and allow only rotations of the body around
any axis u orthogonal to b�

The optimal control problem is stated as follows�

�q � qu� q �M� u � U�

q��� � q�� q��� � q��

q�� q� �M �xed�

l�u� �

Z �

�

ju�t�j dt� min �

Similarly to the Riemannian problem� Filippov�s theorem guarantees exis�
tence of optimal controls� and the length minimization problem is equivalent
to the problem
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J�u� �
�

�

Z �

�
ju�t�j� dt� min �

The Hamiltonian of PMP is the same as in the previous problem


h�u�a� q� � ha� ui 
 

�
juj��

but the maximality condition di�ers since now the set U is smaller


h�u�t��a�t�� q�t�� � max
v�b�

�ha�t�� vi   

�
jvj���

Consider �rst the normal case
  � ��� Then the Lagrange multipliers
rule implies that the maximum

max
v�b�

h��
v �a� q�

is attained at the vector
vmax � a� ha� bib�

the orthogonal projection of a to U � b�� The maximized Hamiltonian is
smooth


H�a� �
�

�
�jaj� � ha� bi���

and the Hamiltonian system for normal extremals reads as follows
�
�q � q�a� ha� bib��
�a � ha� bi�b� a��

The second equation has an integral of the form

ha� bi � const�

this is easily veri�ed by di�erentiation w�r�t� this equation


d

d t
ha� bi � ha� bih�b� a�� bi

by invariance of the scalar product

� �ha� biha� �b� b�i � ��
Consequently� the equation for a can be written as

�a � ha�� bi�b� a� � ad�ha�� bib�a�
where a� � a���� This linear ODE is easily solved


a�t� � etad�ha�	bib�a��
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Now consider the equation for q


�q � q
�
et ad�ha�	bib�a� � ha�� bib

�
since et ad�ha�	bib�b � b

� qet ad�ha� 	bib��a� � ha�� bib�� ������

This ODE can be solved with the help of the Variations formula� Indeed� we
have �see �������


et�f�g� �
��
exp

Z t

�

e� ad fg d
 	 etf �

i�e��

��
exp

Z t

�

e� ad fg d
 � et�f�g� 	 e�tf ������

for any vector �elds f and g� Taking

f � ha�� bib� g � a� � ha�� bib�
we solve ODE ������


q�t� � q� e
ta� e�tha�	bib� ������

Consequently� normal trajectories are products of two one�parameter sub�
groups�
Consider the abnormal case
  � �� The Hamiltonian

h�u�a� q� � ha� ui� u � b�

attains maximum only if

a�t� � 
�t�b� 
�t� � R� ������

But the second equation of the Hamiltonian system reads

�a � �a� u�� ������

thus
h �a� ai � h�a� u�� ai � �hu� �a� a�i� ��

That is� �a � a� In combination with ������ this means that

a�t� � const � 
b� 
 �� �� 
 � R� �������

Notice that 
 �� � since the pair � � a�t�� should be nonzero� Equalities ������
and ������� imply that abnormal extremal controls u�t� satisfy the relation
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�u�t�� b� � ��

That is� u�t� belong to the Lie subalgebra

Hb � fc �M j �c� b� � �g � M�

For generic b � M the subalgebra Hb is a Cartan subalgebra ofM� thus Hb

is Abelian� In this case the �rst equation of the Hamiltonian system

�q � qu

contains only mutually commuting controls


u�
 � � Hb 
 �u�
��� u�
��� � ��

and the equation is easily solved


q�t� � q�e
R
t

� u��� d� � �������

Conversely� any trajectory of the form ������� with u�
 � � Hb� 
 � ��� t� is
abnormal
 it is a projection of abnormal extremal �q�t�� a�t�� with a�t� � 
b
for any 
 �� ��
We can give an elementary explanation of the argument on Cartan subal�

gebra in the case M � so�n�� Any skew�symmetric matrix b � so�n� can be
transformed by a change of coordinates to the diagonal form


TbT�� �

�BBBBB�
i
�

�i
�

i
�

�i
�

� � �

�CCCCCA �������

for some T � GL�n� C �� But changes of coordinates �even complex� do not
a�ect commutativity


�c� b� � � � �TcT��� T bT��� � ��

thus we can compute the subalgebra Hb using new coordinates


Hb � T��HTbT��T�

Generic skew�symmetric matrices b � so�n� have distinct eigenvalues� thus for
generic b the diagonal matrix ������� has distinct diagonal entries� For such b
the Lie algebra HTbT�� is easily found� Indeed� the commutator of a diagonal
matrix

b �

�BBB�
��

��
� � �

�n

�CCCA
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with any matrix c � �cij� is computed as follows


�ad b� c � ���i � �j�cij��

If a diagonal matrix b has simple spectrum


�i � �j �� �� i �� j�

then the Lie algebra Hb consists of diagonal matrices of the form ��������
consequently Hb is Abelian�
So for a matrix b � so�n� with mutually distinct eigenvalues �i�e�� for

generic b � so�n�� the Lie algebra HTbT�� is Abelian� thus Hb is Abelian as
well�
Returning to our sub�Riemannian problem� we conclude that we de�

scribed all normal extremal curves ������� and described abnormal extremal
curves ������� for generic b �M�

Exercise �
��� Consider a more general sub�Riemannian problem stated in
the same way as in this section� but with the space of control parameters
U � M any linear subspace such that its orthogonal complement U� w�r�t�
the invariant scalar product is a Lie subalgebra


�U�� U�� � U�� �������

Prove that normal extremals in this problem are products of two one�
parameter groups �as in the corank one case considered above�


a� � const� �������

aU �t� � et ad a� a�U � a�U � aU ���� �������

q�t� � q� e
ta e�ta�� �������

where a � aU  a� is the decomposition of a vector a �M corresponding to
the splittingM � U " U�� We apply these results in the next problem�

���� Control of Quantum Systems

This section is based on the paper of U� Boscain� T� Chambrion� and J��
P� Gauthier ������
Consider a three�level quantum system described by the Schr$odinger equa�

tion �in a system of units such that � � ��


i �� � H�� �������

where � 
 R� C � � � � ���� ��� ���� is a wave function and
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H �

��E� �� �
�� E� ��

� �� E�

�A �������

is the Hamiltonian� Here E� � E� � E� are constant energy levels of the
system and �i 
 R� C are controls describing the in�uence of the external
pulsed �eld� The controls are connected to the physical parameters by �j�t� �
�jFj�t���� j � �� �� with Fj the external pulsed �eld and �j the couplings
�intrinsic to the quantum system� that we have restricted to couple only levels
j and j  � by pairs�
This �nite�dimensional problem can be thought as the reduction of an in�

�nite�dimensional problem in the following way� We start with a Hamiltonian
which is the sum of a drift�termH�� plus a time dependent potential V �t� �the
control term� i�e�� the lasers�� The drift term is assumed to be diagonal� with
eigenvalues �energy levels� E� � E� � E� � 
 
 
 � Then in this spectral reso�
lution of H�� we assume the control term V �t� to couple only the energy levels
E��E� andE��E�� The projected problem in the eigenspaces corresponding to
E�� E�� E� is completely decoupled and is described by Hamiltonian ��������
The problem is stated as follows� Assume that at the initial instant t � �

the state of the system lies in the eigenspace corresponding to the ground
eigenvalue E�� The goal is to determine controls ��� �� that steer the system
at the terminal instant t � t� to the eigenspace corresponding to E�� requiring
that these controls minimize the cost �energy in the following�


J �

Z T

�

�j���t�j�  j���t�j�
�
dt�

From the physical viewpoint� this problem may be considered either with
arbitrary controls �i�t� � C � or with controls �in resonance



�j�t� � uj�t�e
i��j t��j�� �j � Ej�� � Ej� �������

uj 
 R� R� 
j � ���� ��� j � �� �� �������

In the sequel we call this second problem of minimizing the energy J � which
in this case reduces to Z t�

�

�
u���t�  u���t�

�
dt� �������

the �real�resonant
 problem� The �rst problem �with arbitrary complex con�
trols� will be called the �general�complex
 problem�
Since Hamiltonian ������� is self�adjoint
 H� � H� it follows that Schr$o�

dinger equation ������� is well�de�ned on the unit sphere

SC � S� �
#
� � ���� ��� ��� � C � j j�j� � j��j�  j��j�  j��j� � �

$
�

The source and the target� i�e�� the initial and the terminal manifolds in the
general�complex problem are respectively the circles
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SdC � f�ei�� �� �� j � � Rg� T dC � f��� �� ei�� j � � Rg�

The meaning of the label �d� here will be clari�ed later�
Summing up� the general�complex problem is stated as follows


i �� � H�� � � S�� ��� �� � C �
���� � SdC� ��t�� � T dC �Z t�

�

�j��j�  j��j�
�
dt� min�

with the Hamiltonian H de�ned by ��������
For the real�resonant case� the control system is ������� with Hamiltonian

�������� admissible controls �������� �������� and cost �������� The natural
state space� source� and target in this problem will be found later�

�
���� Elimination of the Drift

We change variables in order to transfer the a�ne in control system ��������
������� to a system linear in control� both in the general�complex and real�
resonant cases�
For � � C � denote by Mj��� and Nj��� the n� n matrices


Mj���k	l � �j	k�j��	l�  �j��	k�j	l�

Nj���k	l � �j	k�j��	l� � �j��	k� �j	l�� j � �� �� �������

where � is the Kronecker symbol
 �i	j � � if i � j� �i	j � � if i �� j� Let
� � diag�E�� E�� E��� �j � Ej���Ej� j � �� �� We will consider successively
the general�complex problem


i �� � H�� H � � 
�X

j��

Mj��j�� �j � C �

and the real�resonant problem


i �� � H�� H � � 
�X

j��

Mj�e
i��jt��j�uj�� uj � 
j � R�

In both cases� we �rst make the change of variable � � e�it�� to get


i �� �
�X

j��

�
Ad eit�Mj��j�

�
� �

�X
j��

Mj

�
e�it�j�j���

The source S and the target T are preserved by this �rst change of coordinates�
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The General�Complex Case

In that case� we make the time�dependent cost preserving change of controls


e�it�j�j � i "�j �

Hence our problem becomes �after the change of notation �� �� "�j � uj�


�� �
�X

j��

Nj�uj�� � eHC�� uj � C � �������

Z t�

�

�ju�j�  ju�j�� dt� min� �������

���� � SdC� ��t�� � T dC � �������

where

eHC �
�� � u��t� �
�&u��t� � u��t�
� �&u��t� �

�A � �������

Notice that the matrices Nj���� Nj�i� generate su��� as a Lie algebra� The
cost and the relation between controls before and after elimination of the drift
are


J �

Z t�

�

�ju��t�j�  ju��t�j�� dt� �������

���t� � u��t�e
i��E��E��t������ �������

���t� � u��t�e
i��E��E��t������ �������

The Real�Resonant Case

In this case �j � uje
i��j t��j�� and we have


i �� �
�X

j��

Mj

�
ei�juj

�
�� uj � R�

We make another diagonal� linear change of coordinates


� � eiL"� L � diag���� ��� ���� �j � R�

which gives


i �" �
�X
j��

Mj

�
ei��j��j����j�uj

�
"�
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Choosing the parameters �j such that e
i��j��j����j� � i� we get


�" �
�X
j��

Nj�uj�"� uj � R� �������

The source and the target are also preserved by this change of coordinates�
Notice that the matrices N����� N���� in ������� generate so��� as a Lie alge�
bra� This means that the orbit of system ������� through the points ���� �� ��
is the real sphere S�� Hence �by multiplication on the right by ei��� the orbit
through the points ��ei�� �� �� is the set S�ei�� Therefore �after the change of
notation "� �� the real�resonant problem is well�de�ned on the real sphere

SR� S� �
#
� � ���� ��� ��� � R� j j�j� � ��

�  ��
�  ��

� � �
$
�

as follows


�� �
�X

j��

Nj�uj�� � "HR�� � � S�� uj � R� �������

Z t�

�

�
u��  u��

�
dt� min� �������

���� � f���� �� ��g� ��t�� � f��� �����g� �������

where

"HR�

�� � u��t� �
�u��t� � u��t�
� �u��t� �

�A � �������

The cost is given again by formula ������� and the relation between controls
before and after elimination of the drift is


�j�t� � uj�t� e
i��j t��j�� �j � Ej�� � Ej�

uj 
 R� R� 
j � ���� ��� j � �� ��

In the following we will use the labels �C� and �R� to indicate respectively
the general�complex problem and the real�resonant one� When these labels
are dropped in a formula� we mean that it is valid for both the real�resonant
and the general�complex problem� With this notation


SdC � f�ei�� �� ��g� T d
C � f��� �� ei��g�

SdR� f���� �� ��g� T d
R� f��� �����g�

�
���� Lifting of the Problems to Lie Groups

The problems ��������������� and ��������������� on the spheres SC � S�

and SR� S� are naturally lifted to right�invariant problems on the Lie groups
MC � SU��� and MR� SO��� respectively� The lifted systems read
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�q � eHq� q �M� �������

Denote the projections

�C 
 SU���� S�� �R
 SO���� S�

both de�ned as

q �� q

����
�

�A �

i�e�� a matrix maps to its �rst column� We call problems ������� on the Lie
groups M problems upstairs� and problems �������� ������� on the spheres S
problems downstairs� We denote the problem upstairs by the label �u� in
parallel with the label �d� for the problem downstairs�
Now we compute boundary conditions for the problems upstairs� De�ne

the corresponding sources and targets


Su � ����Sd�� T u � ����T d��
The source Su

C consists of all matrices q � SU��� with the �rst column in SdC


q �

�BB�

 �

� A

�CCA � 
 � U���� A � U���� det q � ��

We denote the subgroup of SU��� consisting of such matrices by S�U��� �
U����� So the source upstairs in the general�complex problem is the subgroup

SuC � S�U���� U�����
Further� the matrix

bq �
�� � � �� � �
� � �

�A
maps Sd

C
into T d

C
� thus

T uC � bq SuC � bq S�U��� �U�����
Similarly� in the real case the source upstairs is

SuR� S�O���� O�����
the subgroup of SO��� consisting of the matrices

q �

�BB�

 �

� A

�CCA � 
 � O���� A � O���� det q � ��
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and the target is
T uR� bq SuR� bq S�O��� �O�����

Summingup� we state the lifted problems� The real problem upstairs reads


�q � eHRq � �u�X�  u�X�� q� q � SO���� u�� u� � R� �������

q��� � SuR� q�t�� � T uR�Z t�

�

�
u��  u��

�
dt� min�

where

X� �

�� � � �
�� � �
� � �

�A � X� �

�� � � �
� � �
� �� �

�A � �������

Notice that the real problem upstairs is a right�invariant sub�Riemannian
problem on the compact Lie group SO��� with a corank one set of control
parameters U � so���� i�e�� a problem already considered in Sect� ����� We
have

U � span�X�� X��� U� � span�X��� X� �

�� � � �
� � �
�� � �

�A �

Moreover� the frame ������� is orthonormal w�r�t� the invariant scalar product

hX�Y i � ��
�
tr�XY �� X� Y � so����

The complex problem upstairs is stated as follows


�q � eHC q � �u�X�  u�X�  u�Y�  u�Y�� q� q � SU���� uj � R�

�������

q��� � SuC � q�t�� � T uC �Z t�

�

�
u��  u��  u��  u��

�
dt� min �

Here X� and X� are given by ������� and

Y� �

�� � i �
i � �
� � �

�A � Y� �

��� � �� � i
� i �

�A �

The set of control parameters is

U � span�X�� X�� Y�� Y���
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Notice that its orthogonal complement is

U� � span�Z�� Z�� Z�� Z���

where

Z� �

�� � � �
� � �
�� � �

�A � Z� �

�� � � i
� � �
i � �

�A �

Z� �

�� i � �
� �i �
� � �

�A � Z� �

�� � � �� i �
� � �i

�A �

and it is easy to check that U� is a Lie subalgebra� So the general�complex
problem is of the form considered in Exercise ����� Again the distribution is
right�invariant and the frame �X�� X�� Y�� Y�� is orthonormal for the metric

hX�Y i � ��
�
tr�XY �� X� Y � su����

The problems downstairs and upstairs are related as follows� For any tra�
jectory upstairs q�t� � M satisfying the boundary conditions in M � its pro�
jection ��t� � ��q�t�� � S is a trajectory of the system downstairs satisfying
the boundary conditions in S� And conversely� any trajectory downstairs ��t�
with the boundary conditions can be lifted to a trajectory upstairs q�t� with
the corresponding boundary conditions �such q�t� is a matrix fundamental
solution of the system downstairs�� The cost for the problems downstairs and
upstairs is the same� Thus solutions of the optimal control problems down�
stairs are projections of the solutions upstairs�

�
���� Controllability

The set of control parameters U in the both problems upstairs �������� �������
satis�es the property �U�U � � U�� thus

U  �U�U � �M � TIdM� �������

The systems upstairs have a full rank and are symmetric� thus they are com�
pletely controllable on the corresponding Lie groups SU���� SO���� Passing to
the projections �� we obtain that the both systems downstairs �������� �������
are completely controllable on the corresponding spheres S�� S��

�
���� Extremals

The problems upstairs are of the form considered in Sect� ���� and Exer�
cise ����� but right�invariant not left�invariant ones� Thus normal extremals
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are given by formulas ���������������� where multiplication from the left is
replaced by multiplication from the right


a� � const�

aU �t� � e�tad a� a�U � a�U � aU ����

q�t� � e�ta� eta q�� �������

for any a� � U�� a�U � U � Geodesics are parametrized by arclength i�

ha�U � a�Ui � �� �������

Equality ������� means that in the problems upstairs� vector �elds in the
right�hand sides and their �rst order Lie brackets span the whole tangent
space� Such control systems are called ��generating� In Chap� �� we prove
that for such systems strictly abnormal geodesics �i�e�� trajectories that are
projections of abnormal extremals but not projections of normal ones� are not
optimal� see the argument before Example ������ Thus we do not consider
abnormal extremals in the sequel�

�
���� Transversality Conditions

In order to select geodesics meeting the boundary conditions� we analyze trans�
versality conditions upstairs�
Transversality conditions of PMP on T �M corresponding to the boundary

conditions
q��� � S� q�t�� � T � S� T � M�

read as follows


h��� Tq���Si � h�t� � Tq�t��T i � �� �������

Via trivialization ������� of T �M � transversality conditions ������� are rewrit�
ten for the extremal �x�t�� q�t�� �M� �M in the form
�

x���� q����� Tq���S
�
�
�
x�t��� q�t��

�� Tq�t��T
�
� ��

Here the brackets h 
 � 
 i denote action of a covector on a vector� The transver�
sality conditions for the extremal �a�t�� q�t�� �M�M read as follows
�

a���� q����� Tq���S
�
�
�
a�t��� q�t��

�� Tq�t��T
�
� ��

where the brackets denote the invariant scalar product inM�
For the right�invariant problem� transversality conditions are written in

terms of right translations
�
a���� �Tq���S� q�����

�
�
�
a�t��� �Tq�t��T � q�t����

�
� �� �������

The following features of transversality conditions for our problems up�
stairs simpli�es their analysis�
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Lemma �
��� ��� Transversality conditions at the source are required only at
the identity�

��� Transversality conditions at the source imply transversality conditions at
the target�

Proof� Item ��� follows since the problem is right�invariant and the source Su
is a subgroup�
Item ���� Let �t � T �q�t�M be a normal extremal for the problem upstairs

such that q��� � Id� We assume the transversality conditions at the source


h��� TIdSui � ��

and prove the transversality conditions at the target


h�t� � Tq�t��T ui � �� �������

Notice �rst of all that since q�t�� � T u � bq Su� then bq��q�t�� � Su and

T u � bq Su � bq �bq��q�t���Su � q�t��Su�

Then transversality conditions at the target ������� read

h�t� � Tq�t�� �q�t��Su�i � ��

In order to complete the proof� we show that the function

I�t� � h�t� Tq�t� �q�t�Su�i� t � ��� t���

is constant� Denote the tangent space S � TIdSu� Then we have


I�t� � h�t� q�t�Si �
�
x�t�� q�t�Sq�t���

�
� hx�t�� �Ad q�t��Si � ha�t�� �Ad q�t��Si
�
D
�Ad e�ta��a���� �Ad e�ta���Ad e�ta����S

E
by invariance of the scalar product

�
D
a���� �Ad e�ta����S

E
�
D
�Ad e�ta����a���� S

E
� ha���� Si

� I����

That is� I�t� � const� and item ��� of this lemma follows� ut

�
���� Optimal Geodesics Upstairs and Downstairs

Similarly to N�� N� �see formula ��������� let us de�ne N�	� by
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N�	��a�e
i��� �

�� � � a�ei��

� � �
�a�e�i�� � �

�A �

Let us set� in the real�resonant case

a�U � a�N����  a�N����� a� � a�N�	�����

In the general complex case� set

a�U � N��a�e
i���  N��a�e

i���� a� � a�Z�  a�Z�  N�	��a�e
i����

Here ai � R and �i � ���� ���

The Real�Resonant Case

Proposition �
��� For the real�resonant problem� transversality condition at
the identity in the source ha� TIdSuRi � � means that a� � ��

Proof� We have

TIdSuR�
��

�� � � �
� � ��
� � �

�A � � � R
%&' �

thus the equation ha� TIdSuRi � � is satis�ed for every � � R if and only if
a� � �� ut
From Proposition ���� and condition �������� one gets the covectors to be

used in formula �������


a� �

�� � �� a�
 � � �
�a� � �

�A � �������

Proposition �
��� Geodesics ������� with the initial condition q��� � Id and
matrix a given by ������� reach the target T u

R
for the smallest time �ar�

clength� jtj� if and only if a� � ���p�� Moreover� the � geodesics �corre�
sponding to a� and to the signs � in a�� have the same length and reach the
target at the time

t� �

p
�

�
��

Proof� Computing q�t� � e�a�te�a��a�U �t� with a given by formula ��������
and recalling that

��t� � q�t�

�� ��
�

�A �
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one gets for the square of the third component of the wave function


����t��
� �

�
cos�t a�� sin �t �� a� � � cos �t �� sin�t a�� ��

��
��

� �������

� �
q
�  a���

Then the following lemma completes the proof of this proposition� ut
Lemma �
��� Set fa � cos�ta� sin�t

p
�  a�� ap

��a�
� cos�tp�  a�� sin�ta��

then jfaj � �� Moreover� jfaj � � i

jajp
��a�

�
��� ��k  k�

k

��� � �� k �� � and

t � k�p
��a�

� In particular� the smallest jtj is obtained for k � ��� a � � �p
�
�

t � ��p�
� �

Proof� Set � � ap
��a�

� � � t
p
�  a�� then


fa�t� � � cos���� sin��� � cos��� sin����
� h�� cos����� sin������ �sin����� cos����i
� hv�� v�i�

Both v�� v� have norm � � and jfaj � �� Hence� for jfaj � �� we must have
jv�j � jv�j � �� v� � �v�� It follows that cos���� � � and cos��� � ��� Hence
� � k�� �� � �

�  k��� � � �
�k  

k�

k � Therefore�
��� ��k  k�

k

��� � � � �� Conversely�

choose k� k� meeting this condition� and � � k�� Then cos��� � ��� sin���� �
��� fa�t� � ��� Now� jtj � k�p

��a�
� and the smallest jtj is obtained for k � ��

�if k � �� � � � and fa�t� � ��� Moreover�
��� ��k  k�

k

��� � � is possible only

for �k� k�� � ��� �� or ������ or ���� �� or �������� In all cases� j�j � �
� �

a � � �p
�
� and t � ��

p
�

�
� ut

Let us �x for instance the sign � in ������� and a� �  ��
p
�� The expres�

sions of the three components of the wave function are


���t� � cos

�
tp
�

��

�

���t� �

p
�

�
sin

�
� tp
�

�
�

���t� � �sin
�

tp
�

��

�

Notice that this curve is not a circle on S��
Controls can be obtained with the following expressions


u� � � �qq
����	�� u� � � �qq

����	��
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We get


u��t� � � cos
�

tp
�

�
�

u��t� � sin

�
tp
�

�
�

Using conditions ��������������� �resonance hypothesis�� we get for the exter�
nal �elds


���t� � � cos
�
t�
p
�
�
ei���t�����

���t� � sin
�
t�
p
�
�
ei���t�����

Notice that the phases 
�� 
� are arbitrary�

The General�Complex Case

Proposition �
��� For the general�complex problem� transversality condition
at the identity in the source ha� TIdSuCi � � means that a� � a� � a� � ��

Proof� We have


TIdSuC �
��

�� i
� � �

� i�
� � 
�� ��  i��
� ���  i�� �i
�

�A � 
�� 
�� ��� �� � R
%&' �

The equation ha� TIdSuCi � � is satis�ed for every 
�� 
�� ��� �� � R if and only
if a� � a� � a� � �� ut
The covector to be used in formula ������� is then


a���	��� �

�� � ei�� a�e
i��

�e�i�� � �
�a�e�i�� � �

�A � �������

Proposition �
�	� The geodesics �������� with a given by formula �������
�for which q��� � Id�� reach the target T uC for the smallest time �arclength� jtj�
if and only if a� � ���

p
�� Moreover� all the geodesics of the two parameter

family corresponding to ��� �� � ���� ��� have the same length�

t� �

p
�

�
��

Proof� The explicit expression for j��j� is given by the right�hand side of
formula �������� The conclusion follows as in the proof of Proposition �����

ut
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The expressions of the three components of the wave function and of op�
timal controls are


���t� � cos

�
tp
�

��

�

���t� � �
p
�

�
sin

�
� tp
�

�
e�i�� �

���t� � �sin
�

tp
�

��

e�i�� �

and

u��t� � cos
�
t�
p
�
�
ei�� �

u��t� � � sin
�
t�
p
�
�
ei��������

Notice that all the geodesics of the family described by Proposition ����
have the same length as the � geodesics described by Proposition ����� This
proves that the use of the complex Hamiltonian ������� instead of the real
one ������� does not allow to reduce the cost �������� We obtain the following
statement�

Proposition �
�
� For the three�level problem with complex controls� opti�
mality implies resonance� More precisely� controls ��� �� are optimal if and
only if they have the following form�

���t� � cos�t�
p
��ei��E��E��t�����

���t� � sin�t�
p
��ei��E��E��t�����

where ��� �� are two arbitrary phases� Here the �nal time t� is �xed in such a
way sub�Riemannian geodesics are parametrized by arclength� and it is given

by t� �
p
�
� ��

���� A Time
Optimal Problem on SO��	

Consider a rigid body in R�� Assume that the body can rotate around some
axis �xed in the body� At each instant of time� orientation of the body in R�

de�nes an orthogonal transformation q � SO���� We are interested in the
length of the curve in SO��� corresponding to the motion of the body� Choose
a natural parameter �arc length� t� then the curve q � q�t� satis�es the ODE

�q � qf�

where
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f � so���� jf j � ��
is the unit vector of angular velocity corresponding to the �xed axis of rotation
in the body� The curve is a one�parameter subgroup in SO���


q�t� � q���etf �

and we obviously have no controllability on SO����
In order to extend possibilities of motion in SO���� assume now that there

are two linearly independent axes in the body


f� g � so���� jf j � jgj � �� f � g �� ��

and we can rotate the body around these axes in certain directions� Now we
have a control system

�q �

�
qf

qg
�

which is controllable on SO���


Lie�qf� qg� � span�qf� qg� q�f� g�� � q so��� � Tq SO����

In order to simplify notation� choose vectors

a� b � so���

such that
f � a b� g � a� b�

Then the control system reads

�q � q�a � b��

We are interested in the shortest rotation of the body steering an initial ori�
entation q� to a terminal orientation q�� The corresponding optimal control
problem is

q��� � q���� q�t�� � q��

l �

Z t�

�

j �qj dt� min �

Since j �qj � ja�bj� �� this problem is equivalent to the time�optimal problem


t� � min �

Notice that

ha� bi � h�f  g���� �f � g���i � �� �������
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Moreover� by rescaling time we can assume that

jaj � �� �������

Passing to convexi�cation� we obtain the following �nal form of the problem


�q � q�a ub�� u � ���� ��� q � SO����
q��� � q�� q�t�� � q��

t� � min�

where a� b � so��� are given vectors that satisfy equalities �������� ��������
Now we study this time�optimal problem�
By PMP� if a pair �u� 
 �� q� 
 �� is optimal� then there exists a Lipschitzian

curve x�t� � so��� such that
�
�q � q�a u�t�b��

�x � �x� a u�t�b��

hu�t��x�t�� � hx�t�� a u�t�bi � max
jvj��

hx�t�� a vbi � ��

moreover�

hu�t��x�t�� � const �

The maximality condition for the function

v �� hx�t�� a vbi � hx�t�� ai vhx�t�� bi� v � ���� ���

is easily resolved if the switching function

x �� hx� bi� x �M�

does not vanish at x�t�� Indeed� in this case optimal control can take only
extremal values ��


hx�t�� bi �� � 
 u�t� � sgnhx�t�� bi�

If the switching function has only isolated roots on some real segment� then
the corresponding control u�t� takes on this segment only extremal values�
Moreover� the instants where u�t� switches from one extremal value to another
are isolated� Such a control is called bang�bang �
Now we study the structure of optimal controls� Take an arbitrary extremal

with the curve x�t� satisfying the initial condition

hx���� bi �� ��
Then the ODE
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�x � �x� a� b�� � � sgnhx���� bi
is satis�ed for t 	 � until the switching function hx�t�� bi remains nonzero�
Thus at such a segment of time

x�t� � e�t ad�a�b�x����

We study the switching function hx�t�� bi� Notice that its derivative does not
depend upon control


d

d t
hx�t�� bi � h�x�t�� a u�t�b�� bi � �hx�t�� �a� b�i�

If the switching function vanishes


hx�t�� bi � �

at a point where
hx�t�� �a� b�i �� ��

then the corresponding control switches� i�e�� changes its value from  � to ��
or from �� to  �� In order to study� what sequences of switchings of opti�
mal controls are possible� it is convenient to introduce coordinates in the Lie
algebraM�
In view of equalities �������� �������� the Lie bracket �a� b� satis�es the

conditions
�a� b� � a� �a� b� � b� j�a� b�j� jbj�

this follows easily from properties of cross�product in R�� Thus we can choose
an orthonormal basis


so��� � span�e�� e�� e��

such that
a � e�� b �  e�� �a� b� �  e��  	 ��

In this basis� switching points belong to the horizontal plane span�e�� e���
Let x�
�� be a switching point� i�e�� t � 
� is a positive root of hx�t�� bi� As�

sume that at this point control switches from  � to �� �the case of switching
from �� to  � is completely similar� we show this later�� Then

h �x�
��� bi � �h �x�
��� �a� b�i � ��

thus
hx�
��� e�i � ��

Further� since the Hamiltonian of PMP is nonnegative� then

hu�����x�
��� � hx�
��� ai � hx�
��� e�i � ��

So the point x�
�� lies in the �rst quadrant of the plane span�e�� e��
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x�
�� � cone�e�� e���
Let x�
�� be the next switching point after 
�� The control has the form

u�t� �

�
�� t � �
� � �� 
���

��� t � �
�� 
���

and the curve x�t� between the switchings is an arc of the circle obtained by
rotation of the point x�
�� around the vector a � b � e� �  e�


x�t� � e�t ad�a�b�x�
��� t � �
�� 
���
The switching points x�
��� x�
�� satisfy the equalities


hx�
��� e�i � hx�
��� e�i � ��
hx�
��� e�i � hx�
��� e�i � hu�������x�
� � ����

jx�
�� � jx�
��j�
Consequently�

hx�
��� e�i � �hx�
��� e�i�
i�e�� x�
�� is the re�ection of x�
�� w�r�t� the plane span�e�� e��� Geometrically
it is easy to see that the angle of rotation � from x�
�� to x�
�� around a� b
is bounded as follows


� � ��� ����
see Fig� ����� The extremal values of � are attained when the point x�
�� is
on the boundary of cone�e�� e��


x�
�� � R�e� 
 � � ��

x�
�� � R�e� 
 � � ���

In the second case the point x�t�� as well as the point q�t�� makes a complete
revolution at the angle ��� Such an arc cannot be a part of an optimal trajec�
tory
 it can be eliminated with decrease of the terminal time t�� Consequently�
the angle between two switchings is

� � ��� ����
Let x�
�� be the next switching after x�
��� The behavior of control after

the switching x�
�� from �� to  � is similar to the behavior after x�
���
Indeed� our time�optimal problem admits the symmetry

b �� �b�
After the change of basis

e� �� �e�� e� �� �e�� e� �� e�
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e�

e� � a

e�

b � �e�

�a� b� � �e�

a� b

�

x����

x����

Fig� �
��� Estimate of rotation angle �

the curve x�t� is preserved� but now it switches at x�
�� from  � to ��� This
case was already studied� thus the angle of rotation from x�
�� to x�
�� is
again �� moreover� x�
�� � x�
��� The next switching point is x�
�� � x�
���
and so on�
Thus the structure of bang�bang optimal trajectories is quite simple� Such

trajectories contain a certain number of switching points� Between these
switching points the vector x�t� rotates alternately around the vectors a  b
and a � b at an angle � � ��� ��� constant along each bang�bang trajectory�
Before the �rst switching and after the last switching the vector x�t� can ro�
tate at angles �� and �� respectively� � � ��� �� � �� The system of all optimal
bang�bang trajectories is parametrized by � continuous parameters ��� �� ���
and � discrete parameters
 the number of switchings and the initial control
sgnhx���� bi�
An optimal trajectory can be not bang�bang only if the point x�
�� cor�

responding to the �rst nonnegative root of the equation hx�t�� bi � � satis�es
the equalities

hx�
��� bi � hx�
��� �a� b�i� ��
Then

x�
�� � �e�� � �� ��
There can be two possibilities


��� either the switching function hx�t�� bi takes nonzero values for some t 	 
�
and arbitrarily close to 
��

��� or
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hx�t�� bi � �� t � �
�� 
�  ��� �������

for some � 	 ��

We start from the �rst alternative� From the analysis of bang�bang tra�
jectories it follows that switching times cannot accumulate to 
� from the
right
 the angle of rotation between two consecutive switchings � � �� Thus
in case ��� we have

hx�t�� bi 	 �� t � �
�� 
�  ���

for some � 	 �� That is� 
� is a switching time� Since x�
�� � Re�� then the
angle of rotation until the next switching point is � � ��� which is not optimal�
So case ��� cannot occur for an optimal trajectory�
Consider case ���� We di�erentiate identity ������� twice w�r�t� t


d

d t
hx�t�� bi � �hx�t�� �a� b�i � ��

d

d t
hx�t�� �a� b�i � h�x�t�� a u�t�b� �a� b�i� u�t�h�x�t�� b�� �a� b�i

� ��

Then x�t� � ��t�e�� t � �
�� 
�  ��� thus

u�t�h�a� b�� �a� b�i� ��
i�e��

u�t� � �� t � �
�� 
�  ���

This control is not determined directly from PMP �we found it with the help
of di�erentiation�� Such a control is called singular �
Optimal trajectories containing a singular part �corresponding to the con�

trol u�t� � �� can have an arc with u � �� before the singular part� with
the angle of rotation around a� b less then ��� such an arc can also be after
the singular one� So there can be � types of optimal trajectories containing a
singular arc


 �  �  � �� � �  � � � � �

The family of such trajectories is parametrized by � continuous parameters
�angles of rotation at the corresponding arcs� and by � discrete parameters
�signs at the initial and �nal segments��
So we described the structure of all possible optimal trajectories
 the bang�

bang one� and the strategy with a singular part� The domains of points in
SO��� attained via these strategies are ��dimensional� and the union of these
domains covers the whole group SO���� But it is easy to see that a su�ciently
long trajectory following any of the two strategies is not optimal
 the two
domains in SO��� overlap� Moreover� each of the strategies overlaps with itself�
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In order to know optimal trajectory for any point in SO���� one should study
the interaction of the two strategies and intersections of trajectories that follow
the same strategy� This interesting problem remains open�
Notice that the structure of optimal trajectories in this left�invariant time�

optimal problem on SO��� is similar to the structure of optimal trajectories
for Dubins car �Sect� ������ This resemblance is not accidental
 the problem
on Dubins car can be formulated as a left�invariant time�optimal problem on
the group of isometries of the plane�





��

Second Order Optimality Conditions

���� Hessian

In this chapter we obtain second order necessary optimality conditions for
control problems� As we know� geometrically the study of optimality reduces
to the study of boundary of attainable sets �see Sect� ������ Consider a control
system

�q � fu�q�� q �M� u � U � intU � Rm� ������

where the state space M is� as usual� a smooth manifold� and the space of
control parameters U is open �essentially� this means that we study optimal
controls that do not come to the boundary of U � although a similar theory
for bang�bang controls can also be constructed�� The attainable set Aq��t��
of system ������ is the image of the endpoint mapping

Ft� 
 u� 
 � �� q�	 ��
exp

Z t�

�

fu�t� dt�

We say that a trajectory q�t�� t � ��� t��� is geometrically optimal for sys�
tem ������ if it comes to the boundary of the attainable set for the terminal
time t�


q�t�� � �Aq� �t���
Necessary conditions for this inclusion are given by Pontryagin Maximum
Principle� A part of the statements of PMP can be viewed as the �rst order
optimality condition �we see this later�� Now we seek for optimality conditions
of the second order�
Consider the problem in a general setting� Let

F 
 U �M

be a smooth mapping� where U is an open subset in a Banach space and M
is a smooth n�dimensional manifold �usually in the sequel U is the space of
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admissible controls L����� t��� U � and F � Ft� is the endpoint mapping of a
control system�� The �rst di�erential

DuF 
 Tu U � TF �u�M

is well de�ned independently on coordinates� This is not the case for the second
di�erential� Indeed� consider the case where u is a regular point for F � i�e�� the
di�erential DuF is surjective� By implicit function theorem� the mapping F
becomes linear in suitably chosen local coordinates in U and M � thus it has
no intrinsic second di�erential� In the general case� well de�ned independently
of coordinates is only a certain part of the second di�erential�
The di�erential of a smooth mapping F 
 U �M can be de�ned via the

�rst order derivative

DuF v �
d

d �

����
���

F ������ ������

along a curve � 
 ����� ���� U with the initial conditions

���� � u � U � ����� � v � Tu U �

In local coordinates� this derivative is computed as

dF

du
��� �� � ������

In other coordinates "q in M � derivative ������ is evaluated as

d eF
du

�� �
d "q

d q

dF

du
���

Coordinate representation of the �rst order derivative ������ transforms under
changes of coordinates as a tangent vector to M ! it is multiplied by the

Jacobian matrix
d "q

d q
�

The second order derivative

d�

d ��

����
���

F ������� ������

���� � u � U � ����� � v � Tu U �

is evaluated in coordinates as

d� F

du�
� ��� ���  

dF

du
$��

Transformation rule for the second order directional derivative under changes
of coordinates has the form




�	�� Hessian ���

d� eF
du�

� ��� ���  
d eF
du

$� �
d "q

d q

�
d�F

du�
� ��� ���  

dF

du
$�

�
 

d� "q

d q�

�
dF

du
���
dF

du
��

�
� ������

The second order derivative ������ transforms as a tangent vector in TF �u�M
only if �� � v � KerDuF � i�e�� if term ������ vanishes� Moreover� it is deter�
mined by u and v only modulo the subspace ImDuF � which is spanned by

the term
dF

du
$��

Thus intrinsically de�ned is the quadratic mapping

KerDuF � TF �u�M� ImDuF�

v �� d�

d ��

����
���

F ������ mod ImDuF� ������

After this preliminary discussion� we turn to formal de�nitions�
The Hessian of a smooth mapping F 
 U � M at a point u � U is a

symmetric bilinear mapping

Hessu F 
 KerDuF � KerDuF � CokerDuF � TF �u�M� ImDuF� ������

In particular� at a regular point CokerDuF � �� thus Hessu F � �� Hessian
is de�ned as follows� Let

v� w � KerDuF

and
� � �ImDuF �

� � T �F �u�M�

In order to de�ne the value

�HessuF �v� w��

take vector �elds

V� W � Vec U � V �u� � v� W �u� � w�

and a function
a � C��M �� dF �u�a � ��

Then

�HessuF �v� w�
def
� V 	W �a 	 F �ju � ������

We show now that the right�hand side does not depend upon the choice
of V � W � and a� The �rst Lie derivative is

W �a 	 F � � hdF � 	 �a� F�W � 
 �i�
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and the second Lie derivative V 	W �a 	 F �ju does not depend on second
derivatives of a since F�W �u� � �� Moreover� the second Lie derivative obvi�
ously depends only on the value of V at u but not on derivatives of V at u�
In order to show the same for the �eld W � we prove that the right�hand side
of the de�nition of Hessian is symmetric w�r�t� V and W 


�W 	 V �a 	 F �� V 	W �a 	 F ��ju � �W�V � �a 	 F �ju
� dF �u�a� 	z 


��

	DuF �W�V ��u� � �

since � � ImDuF � We showed that the mapping Hessu F given by ������ is
intrinsically de�ned independently of coordinates as in �������

Exercise ����� Show that the quadratic mapping ������ de�ned via the sec�
ond order directional derivative coincides with Hessu F �v� v��

If we admit only linear changes of variables in U � then we can correctly
de�ne the full second di
erential

D�
uF 
 KerDuF �KerDuF � TF �u�M

in the same way as Hessian ������� but the covector is arbitrary


� � T �F �u�M�

and the vector �elds are constant


V � v� W � w�

The Hessian is the part of the second di�erential independent on the choice
of linear structure in the preimage�

Exercise ����� Compute the Hessian of the restriction F jf����� of a smooth
mapping F to a level set of a smooth function f � Consider the restriction
of a smooth mapping F 
 U � M to a smooth hypersurface S � f������
f 
 U � R� df �� �� and let u � S be a regular point of F � Prove that the
Hessian of the restriction is computed as follows


�Hessu �F jS� � �D�
uF � d�uf� � � ImDu F jS � � � T �F �u�M n f�g�

and the covector � is normalized so that

�DuF � duf�
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���� Local Openness of Mappings

A mapping F 
 U �M is called locally open at a point u � U if
F �u� � intF �Ou�

for any neighborhood Ou � U of u� In the opposite case� i�e�� when
F �u� � �F �Ou�

for some neighborhood Ou� the point u is called locally geometrically optimal
for F �
A point u � U is called locally �nite�dimensionally optimal for a map�

ping F if for any �nite�dimensional smooth submanifold S � U � u � S� the
point u is locally geometrically optimal for the restriction F jS �

������ Critical Points of Corank One

Corank of a critical point u of a smooth mapping F is by de�nition equal to
corank of the di�erential DuF 


corankDuF � codimImDuF�

In the sequel we will often consider critical points of corank one� In this case
the Lagrange multiplier

� � �ImDuF �
�� � �� ��

is de�ned uniquely up to a nonzero factor� and

�HessuF 
 KerDuF �KerDuF � R
is just a quadratic form �in the case corankDuF 	 �� we should consider a
family of quadratic forms��
Now we give conditions of local openness of a mapping F at a corank one

critical point u in terms of the quadratic form �Hessu F �

Theorem ����� Let F 
 U � M be a continuous mapping having smooth
restrictions to �nite�dimensional submanifolds of U � Let u � U be a corank
one critical point of F � and let � � �ImDuF ��� � �� ��
��� If the quadratic form �HessuF is sign�inde�nite� then F is locally open at

u�
��� If the form �HessuF is negative �or positive�� then u is locally �nite�

dimensionally optimal for F �

Remark ����� A quadratic form is locally open at the origin i� it is sign�
inde�nite�
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Proof� The statements of the theorem are local� so we �x local coordinates
in U and M centered at u and F �u� respectively� and assume that U is a
Banach space and M � Rn�
��� Consider the splitting into direct sum in the preimage


Tu U � E " KerDuF� dimE � n � �� ������

and the corresponding splitting in the image


TF �u�M � ImDuF " V� dimV � �� ������

The quadratic form �Hessu F is sign�inde�nite� i�e�� it takes values of both
signs on KerDuF � Thus we can choose vectors

v� w � KerDuF

such that
�F ��u �v� v� � �� �F ��u �v� w� �� ��

we denote by F �� F �� derivatives of the vector function F in local coordinates�
Indeed� let the quadratic form Q � �F ��u take values of opposite signs at
some v�� w � KerDuF � By continuity of Q� there exists a nonzero vector v �
span�v�� w� at which Q�v� v� � �� Moreover� it is easy to see that Q�v� w� �� ��
Since the �rst di�erential is an isomorphism


DuF � F �u 
 E � ImDuF � ���

there exists a vector x� � E such that

F �ux� � �
�

�
F ��u �v� v��

Introduce the following family of mappings


�� 
 E �R�M� � � R�
���x� y� � F ���v  ��yw  ��x�  ��x�� x � E� y � R�

notice that
Im�� � ImF

for small �� Thus it is su�cient to show that �� is open� The Taylor expansion

���x� y� � ���F �ux yF ��u �v� w��  O����� �� ��

implies that the family �
�
�� is smooth w�r�t� parameter � at � � �� For � � �

this family gives a surjective linear mapping� By implicit function theorem�
the mappings �

�

�� are submersions� thus are locally open for small � 	 ��

Thus the mapping F is also locally open at u�
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��� Take any smooth �nite�dimensional submanifold S � U � u � S� Simi�
larly to ������� ������� consider the splittings in the preimage


S �� TuS � L" KerDu F jS �

and in the image


M �� TF �u�M � ImDu F jS "W�

dimW � k � corankDu F jS � ��
Since the di�erential DuF 
 E � ImDuF is an isomorphism� we can choose�
by implicit function theorem� coordinates �x� y� in S and coordinates in M
such that the mapping F takes the form

F �x� y� �

�
x

��x� y�

�
� x � L� y � KerDu F jS �

Further� we can choose coordinates � � ���� � � � � �k� in W such that

�F �x� y� � ���x� y��

Now we write down hypotheses of the theorem in these coordinates� Since
ImDu F jS �W � f�g� then

D��	���� � ��

Further� the hypothesis that the form �HessuF is negative reads

�� ��

� y�

����
��	��

� ��

Then the function
����� y� � � for small y�

Thus the mapping F jS is not locally open at u� ut
There holds the following statement� which is much stronger than the

previous one�

Theorem ���� �Generalized Morse�s lemma�� Suppose that u � U is a
corank one critical point of a smooth mapping F 
 U �M such that Hessu F
is a nondegenerate quadratic form� Then there exist local coordinates in U and
M in which F has only terms of the �rst and second orders�

F �x� v� � DuF x 
�

�
Hessu F �v� v��

�x� v� � U �� E "KerDuF�

We do not prove this theorem since it will not be used in the sequel�
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������ Critical Points of Arbitrary Corank

The necessary condition of local openness given by item ��� of Theorem ����
can be generalized for critical points of arbitrary corank�
Recall that positive �negative� index of a quadratic form Q is the maximal

dimension of a positive �negative� subspace of Q


ind� Q � max
n
dimL j QjLnf�g 	 �

o
�

ind�Q � max
n
dimL j QjLnf�g � �

o
�

Theorem ����� Let F 
 U � M be a continuous mapping having smooth
restrictions to �nite�dimensional submanifolds� Let u � U be a critical point
of F of corank m� If

ind� �HessuF � m � � � ImDuF� � �� ��

then the mapping F is locally open at the point u�

Proof� First of all� the statement is local� so we can choose local coordinates
and assume that U is a Banach space and u � �� andM � Rn with F ��� � ��
Moreover� we can assume that the space U is �nite�dimensional� now we

prove this� For any � � ImDuF � � �� �� there exists a subspace

E� � U � dimE� � m�

such that
�Hessu F jE	nf�g � ��

We take � from the unit sphere

Sm�� �
n
� � �ImDuF �

� j j�j � �
o
�

For any � � Sm��� there exists a neighborhood O� � Sm��� � � O�� such
that E�� � E� for any �

� � O�� this easily follows from continuity of the form
��HessuF on the unit sphere in E�� Choose a �nite covering


Sm�� �
N�
i��

O�i�

Then restriction of F to the �nite�dimensional subspace
PN

i��E�i satis�es the
hypothesis of the theorem� Thus we can assume that U is �nite�dimensional�
Then the theorem is a consequence of the following Lemmas ���� and ����� ut
Lemma ����� Let F 
 RN � Rn be a smooth mapping� and let F ��� � ��
Assume that the quadratic mapping
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Q � Hess�F 
 KerD�F � CokerD�F

has a regular zero�

� v � KerD�F s�t� Q�v� � �� DvQ surjective�

Then the mapping F has regular zeros arbitrarily close to the origin in RN�

Proof� We modify slightly the argument used in the proof of item ��� of The�
orem ����� Decompose preimage of the �rst di�erential


RN � E "KerD�F� dimE � n�m�

then the restriction
D�F 
 E � ImD�F

is one�to�one� The equality Q�v� � Hess� F �v� � � means that

F ��� �v� v� � ImD�F�

Then there exists x� � E such that

F ��x� � �
�

�
F ��� �v� v��

De�ne the family of mappings

���x� y� � F ���v  ��y  ��x�  ��x�� x � E� y � KerD�F�

The �rst four derivatives of �� vanish at � � �� and we obtain the Taylor
expansion

�

��
���x� y� � F ��x F ��� �v� y�  O���� �� ��

Then we argue as in the proof of Theorem ����� The family �
�
�� is smooth and

linear surjective at � � �� By implicit function theorem� the mappings �
�
�� are

submersions for small � 	 �� thus they have regular zeros in any neighborhood
of the origin in RN� Consequently� the mapping F also has regular zeros
arbitrarily close to the origin in RN� ut
Lemma ���	� Let Q 
 RN � Rm be a quadratic mapping such that

ind� �Q � m � � � Rm�� � �� ��

Then the mapping Q has a regular zero�

Proof� We can assume that the quadratic form Q has no kernel


Q�v� 
 � �� � � v �� �� �������
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If this is not the case� we factorize by kernel of Q� Since DvQ � �Q�v� 
 ��
condition ������� means that DvQ �� � for v �� ��
Now we prove the lemma by induction on m�
In the case m � � the statement is obvious
 a sign�inde�nite quadratic

form has a regular zero�
Induction step
 we prove the statement of the lemma for any m 	 � under

the assumption that it is proved for all values less than m�

��� Suppose �rst that Q����� �� f�g� Take any v �� � such that Q�v� � ��
If v is a regular point of Q� then the statement of this lemma follows� Thus
we assume that v is a critical point of Q� Since DvQ �� �� then

rankDvQ � k� � � k � m�

Consider Hessian of the mapping Q


HessvQ 
 KerDvQ� Rm�k�
The second di�erential of a quadratic mapping is the doubled mapping itself�
thus

�Hessv Q � � �QjKerDvQ
�

Further� since ind� �Q � m and codimKerDvQ � k� then

ind� �Hessv Q � ind� �QjKerDvQ
� m � k�

By the induction assumption� the quadratic mapping Hessv Q has a regular
zero� Then Lemma ���� applied to the mapping Q yields that Q has a regular
zero as well� The statement of this lemma in case ��� follows�

��� Consider now the second case
 Q����� � f�g�
���a� It is obvious that ImQ is a closed cone�
���b� Moreover� we can assume that ImQ n f�g is open� Indeed� suppose

that there exists
x � Q�v� � � ImQ� x �� ��

Then v is a critical point ofQ� and in the same way as in case ��� the induction
assumption for Hessv Q yields that HessvQ has a regular zero� By Lemma�����
Q is locally open at v and Q�v� � int ImQ� Thus we assume in the sequel that
ImQ n f�g is open� Combined with item �a�� this means that Q is surjective�
���c� We show now that this property leads to a contradiction which proves

the lemma�
The smooth mapping

Q

jQj 
 S
N�� � Sm��� v �� Q�v�

jQ�v�j � v � SN���

is surjective� By Sard�s theorem� it has a regular value� Let x � Sm�� be a
regular value of the mapping Q�jQj�
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Now we proceed as follows� We �nd the minimal a 	 � such that

Q�v� � ax� v � SN���

and apply optimality conditions at the solution v� to show that ind� �Q �
m� �� a contradiction�
So consider the following �nite�dimensional optimization problem with

constraints


a� min� Q�v� � ax� a 	 �� v � SN��� �������

This problem obviously has a solution� let a pair �v�� a�� realize minimum�We
write down �rst� and second�order optimality conditions for problem ��������
There exist Lagrange multipliers

� � �� �� ��  � R� � � T �a�xR
m�

such that the Lagrange function

L� � �� a� v� �  a ��Q�v� � ax�

satis�es the stationarity conditions


� L
� a

�  � �x � �� �������

� L
� v

����
�v�	a��

� �Dv�QjSN�� � ��

Since v� is a regular point of the mapping Q�jQj� then  �� �� thus we can set

 � ��

Then second�order necessary optimality condition for problem ������� reads

�Hessv� QjSN�� � �� �������

Recall that Hessian of restriction of a mapping is not equal to restriction
of Hessian of this mapping� see Exercise ���� above�

Exercise ���
� Prove that

� �Hessv QjSN�� � �u� � ���Q�u� � juj��Q�v���
v � SN��� u � KerDv QjSN�� �

That is� inequality ������� yields

�Q�u�� juj��Q�v�� � �� u � KerDv� QjSN�� �
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thus
�Q�u� � juj��Q�v�� � juj�a��x � juj�a� � juj�a� 	 ��

i�e��
�Q�u� � �� u � KerDv� QjSN�� �

Moreover� since v� �� Tv�S
N��� then

�QjL � �� L � KerDv� QjSN�� "Rv��

Now we compute dimension of the nonnegative subspace L of the quadratic

form �Q� Since v� is a regular value of
Q

jQj � then

dimImDv�

Q

jQj � m� ��

Thus ImDv� QjSN�� can have dimensionm or m��� But v� is a critical point
of QjSN�� � thus

dimImDv� QjSN�� � m � �
and

dimKerDv� QjSN�� � N � �� �m � �� � N �m�

Consequently� dimL � N �m  �� thus ind� �Q � m� �� which contradicts
the hypothesis of this lemma�
So case �c� is impossible� and the induction step in this lemma is proved�

ut
Theorem ���� is completely proved�

���� Di�erentiation of the Endpoint Mapping

In this section we compute di�erential and Hessian of the endpoint mapping
for a control system

�q � fu�q�� u � U � Rm� U � intU� q �M� �������

q��� � q��

u� 
 � � U � L����� t��� U ��

with the right�hand side fu�q� smooth in �u� q�� We study the endpoint map�
ping

Ft� 
 U �M�

Ft� 
 u� 
 � �� q�	 ��
exp

Z t�

�

fu�t� dt
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in the neighborhood of a �xed admissible control

"u � "u� 
 � � U �

In the same way as in the proof of PMP �see Sect� ������ the Variations formula
yields a decomposition of the �ow


Ft��u� � q� 	 ��
exp

Z t�

�

gt	u�t� dt 	 Pt��

where

Pt �
��
exp

Z t

�

f	u��� d
�

gt	u � P��
t� �fu � f	u�t���

Further� introduce an intermediate mapping

Gt� 
 U �M�

Gt� 
 u �� q� 	 ��
exp

Z t�

�
gt	u�t� dt�

Then
Ft��u� � Pt��Gt��u���

consequently�

D	uFt� � Pt��D	uGt� �

Hess	u Ft� � Pt��Hess	uGt��

so di�erentiation of Ft� reduces to di�erentiation of Gt� � We compute deriva�
tives of the mapping Gt� using the asymptotic expansion of the chronological
exponential


a�Gt��u��

� q� 	
��Id Z t�

�

g�	u��� d
  

ZZ
��������t�

g�� 	u���� 	 g��	u���� d
� d
�
�A a

 O
�ku� "uk�L	� � �������

Introduce some more notations
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g�� �
�

� u

����
	u���

g�	u�

g��� �
��

� u�

����
	u���

g�	u�

hu��� � h�� fu�q�i� � � T �q M�

h�� �
�

� u

����
	u���

hu�

h��� �
��

� u�

����
	u���

hu�

Then di�erential �the �rst variation� of the mapping Gt� has the form


�D	uGt��v � q� 	
Z t�

�

g�tv�t� dt� v � v� 
 � � T	u U �

The control "u is a critical point of Ft� �or� which is equivalent� of Gt�� if and
only if there exists a Lagrange multiplier

�� � T �q�M� �� �� ��
such that

���D	uGt��v � � � v � T	u U �
i�e��

��g
�
t�q�� � �� t � ��� t���

Translate the covector �� along the reference trajectory

q�t� � q� 	 Pt�
we obtain the covector curve

�t � P ���
t �� � ��P

��
t� � T �q�t�M�

which is a trajectory of the Hamiltonian system

��t � !h	u�t���t�� t � ��� t���
see Proposition ������ Then

��g
�
t�q�� � ��P

��
t�

�

� u

����
	u�t�

fu�q�t�� � h�t��t��

We showed that "u is a critical point of the endpoint mapping Ft� if and only
if there exists a covector curve

�t � T �q�t�M� �t �� �� t � ��� t���
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such that

��t � !h	u�t���t�� �������

� hu
� u

����
	u�t�

��t� � �� t � ��� t��� �������

In particular� any Pontryagin extremal is a critical point of the endpoint map�
ping� Pontryagin Maximum Principle implies �rst order necessary optimality
conditions �������� �������� Notice that PMP contains more than these con�
ditions
 by PMP� the Hamiltonian hu��t� is not only critical� as in ��������
but attains maximum along the optimal "u�t�� We go further to second order
conditions�
Asymptotic expansion ������� yields the expression for the second di�er�

ential


D�
	uGt��v� w� a

� q�	
��Z t�

�

g��� �v�
 �� w�
 �� d
  �
ZZ

��������t�

�g���v�
��� 	 g���w�
�� d
�d
�

�A a�

where a � C��M � and

v� w � KerD	uGt� � KerD	uFt��

i�e��

q� 	
Z t�

�

g�tv�t� dt � q� 	
Z t�

�

g�tw�t� dt � ��

Now we transform the formula for the second variation via the following de�
composition into symmetric and antisymmetric parts�

Exercise ������ Let X� be a nonautonomous vector �eld on M � ThenZZ
��������t

X�� 	X�� d
�d
�

�
�

�

Z t

�
X� d
 	

Z t

�
X� d
  

�

�

ZZ
��������t

�X�� � X�� � d
�d
��

Choosing Xt � g�tv�t� and taking into account that q� 	
Z t�

�
g�tv�t� dt � ��

we obtain


q� 	
ZZ

��������t�

X�� 	X�� d
�d
� �
�

�
q� 	

ZZ
��������t�

�X�� � X�� � d
�d
��
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thus

D�
	uGt��v� w�a

� q� 	
��Z t�

�

g��� �v�
 �� w�
 �� d
  
ZZ

��������t�

�g���v�
��� g
�
��w�
��� d
� d
�

�A a

� q� 	
�Z t�

�

g��� �v�
 �� w�
 �� d
  
Z t�

�

�Z ��

�

g���v�
�� d
�� g
�
��w�
��

�
d
�

�
a�

The �rst term can conveniently be expressed in Hamiltonian terms since

��g�	u � ��P
��
�� �fu � f	u���� � hu��� �� h	u������ ��

Then

�t�D
�
	uFt��v� w� � ��D

�
	uGt��v� w�

�

Z t�

�

h��� ��� ��v�
 �� w�
 �� d
  
Z t�

�

��

�Z ��

�

g���v�
�� d
�� g
�
��w�
��

�
d
��

�������

In order to write also the second term in this expression in the Hamiltonian
form� compute the linear on �bers Hamiltonian corresponding to the vector
�eld g�� v


��g
�
� v �

�
��� P

��
��

�

� u
fuv

�
�

�
P ���
� ���

�

� u
fuv

�
�

�

� u

�
P ���
� ��� fu

�
v �

�

� u
hu 	 P ���

� ����v�

where derivatives w�r�t� u are taken at u � "u�
 �� Introducing the Hamiltonian

hu	� ��� � hu�P
���
� �����

we can write the second term in expression ������� for the second variation
as follows
Z t�

�

Z ��

�

��
(
g���v�
��� g

�
��w�
��

)
d
�d
�

�

Z t�

�

Z ��

�

�
�

� u
hu	�� v�
���

�

� u
hu	�� w�
��

�
���� d
� d
�

�

Z t�

�

Z ��

�

���

�
�

� u

��
hu	�� v�
���

�

� u

��
hu	�� w�
��

�
d
� d
�� �������

Here the derivatives
�

� u
hu	�i and

�

� u

��
hu	�i are evaluated at u � "u�
i��
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���� Necessary Optimality Conditions

Now we apply our results on second variation and obtain necessary conditions
for geometric optimality of an extremal trajectory of system �������

������ Legendre Condition

Fix an admissible control "u which is a corank m � � critical point of the
endpoint mapping Ft�� For simplicity� we will suppose that "u� 
 � is piecewise
smooth� Take any Lagrange multiplier

�� � �ImD	uFt��
� n f�g�

then

�t � P ���
t �� � �� 	 ��

exp

Z t

�

!h	u��� d
� t � ��� t���

is a trajectory of the Hamiltonian system of PMP� Denote the corresponding
quadratic form that evaluates Hessian of the endpoint mapping in �������


Q 
 T	u U � R�

Q�v� �

Z t�

�

h��� ��� ��v�
 �� v�
 �� d
  
Z t�

�

��

�Z ��

�

g���v�
�� d
�� g
�
��
v�
��

�
d
��

Then ������� reads

�t� Hess	uFt��v� v� � Q�v�� v � KerD	uFt� �

By Theorem ����� if a control "u is locally geometrically optimal �i�e�� the
endpoint mapping Ft� is not locally open at "u�� then there exists a Lagrange
multiplier �� such that the corresponding form Q satis�es the condition

ind� QjKerD	uFt�
� m � corankD	uFt� � �������

The kernel of the di�erential D	uFt� is de�ned by a �nite number of scalar
linear equations


KerD	uFt� �

�
v � T	u U j q� 	

Z t�

�

g�tv�t� dt � �
�
�

i�e�� it has a �nite codimension in T	u U � Thus inequality ������� implies that
ind�Q �  �

for the corresponding extremal �t� If we take the extremal ��t projecting to
the same extremal curve q�t�� then we obtain a form Q with a �nite positive
index� So local geometric optimality of "u implies �niteness of positive index
of the form Q for some Lagrange multiplier ���
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Proposition ������ If the quadratic form Q has a �nite positive index� then
there holds the following inequality along the corresponding extremal �t�

h��t ��t��v� v� � �� t � ��� t��� v � Rm� �������

Inequality ������� is called Legendre condition�
In particular� if a trajectory q�t� is locally geometrically optimal� then Leg�

endre condition holds for some extremal �t� ���t� � q�t�� However� necessity
of Legendre condition for optimality follows directly from the maximality con�
dition of PMP �exercise�� But we will need in the sequel the stronger statement
related to index of Q as in Proposition ������
Notice once more that in the study of geometric optimality�all signs may be

reversed
 multiplying�t by ��� we obtain a quadratic formwith ind�Q �  �
and the reversed Legendre condition h��t ��t��v� v� � �� Of course� this is true
also for subsequent conditions related to geometric optimality�
Now we prove Proposition ������

Proof� Take a smooth vector function

v 
 R� Rm� supp v � ��� ���
and introduce a family of variations of the form


v�� 	��
 � � v

�

 � &

�

�
� &
 � ��� t��� � 	 ��

Notice that the vector function v�� 	� is concentrated at the segment �&
 � &
  ���
Compute asymptotics of the form Q on the family introduced


Q�v��	�� � �

Z �

�

h������s������s��v�s�� v�s�� ds

 ��
Z �

�

��

�Z �

�

g�����s�v�s�� ds�� g
�
����s�v�s��

�
ds� �������

� �

Z �

�

h���� ���� ��v�s�� v�s�� ds  O�����

where O���� is uniform w�r�t� v in the L� norm�
Suppose� by contradiction� that

h���� ���� ��v� v� 	 �

for some &
 � ��� t��� v � Rm� In principal axes� the quadratic form becomes a
sum of squares


h���� ���� ��v� v� �
mX
i��


i�� �v
i��

with at least one coe�cient
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i�� 	 ��

Choose a vector function v of the form

v�s� �

�BBBB�
v��s�

 
 

vi�s�

 
 


vm�s�

�CCCCA �
�BBBB�

�

 
 

vi�s�

 
 

�

�CCCCA
with the only nonzero component vi�s�� For su�ciently small � 	 �� Q�v�� 	�� 	
�� But for any �xed &
 and �� the space of vector functions v�� 	� is in�nite�
dimensional� Thus the quadratic form Q has an in�nite positive index� By
contradiction� the proposition follows� ut

������ Regular Extremals

We proved that Legendre condition is necessary for �niteness of positive index
of the quadratic form Q� The corresponding su�cient condition is given by
the strong Legendre condition


h��t ��t��v� v� � �
jvj�� t � ��� t��� v � Rm� �������


 	 ��

An extremal that satis�es the strong Legendre condition is called regular �no�
tice that this de�nition is valid only in the case of open space of control
parameters U � where Legendre condition is related to maximality of hu��

Proposition ������ If �t� t � ��� t��� is a regular extremal� then�

��� For any 
 � ��� t�� there exists � 	 � such that the form Q is negative on
the space Lm��
� 
  ���

��� The form Q has a �nite positive index on the space T	u U � Lm���� t���

Proof� ��� We have


Q�v� � Q��v�  Q��v��

Q��v� �

Z t�

�
h��� ��� ��v�
 �� v�
 �� d
�

Q��v� �

Z t�

�

��

�Z ��

�

g���v�
�� d
�� g
�
��v�
��

�
d
�

�

Z t�

�

���

�Z ��

�

�

� u

��
hu	�� v�
���

�

� u

��
hu	�� v�
��

�
d
� d
��

By continuity of h��� ��� � w�r�t� 
 � the strong Legendre condition implies that

Q�

�
vj��	����

�
� �


�
� kvk�L�
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for small � 	 �� It follows by the same argument as in ������� that the term Q�

dominates on short segments


Q�

�
vj��	����

�
� O����kvk�L� � �� ��

thus
Q
�
vj��	����

�
� �

for su�ciently small � 	 � and all v � Lm���� t��� v �� ��
��� We show that the form Q is negative on a �nite codimension subspace

in Lm���� t��� this implies that ind� Q ���
By the argument used in the proof of item ���� any point 
 � ��� t�� can

be covered by a segment �
 � �� 
  �� such that the form Q is negative on the
space Lm��
��� 
 ��� Choose points � � 
� � 
� � 
 
 
 � 
N � t� such that Q
is negative on the spaces Lm��
i��� 
i�� i � �� � � � � N � De�ne the following �nite
codimension subspace of Lm���� t��


L �

�
v � Lm���� t�� j �� 	

Z �i

�i��

�

� u

��
hu	� v�
 � d
 � �� i � �� � � � � N

�
�

For any v � L� v �� ��

Q�v� �
NX
i��

Q
�
vj��i�� 	�i�

�
� ��

Thus L is the required �nite codimension negative subspace of the quadratic
form Q� Consequently� the form Q has a �nite positive index� ut
Propositions ����� and ����� relate sign�de�niteness of the form h��� ��t�

with sign�de�niteness of the form Q� thus� in the corank one case� with local
geometric optimality of the reference control "u �via Theorem ������ Legendre
condition is necessary for �niteness of ind� Q� thus for local geometric op�
timality of "u� On the other hand� strong Legendre condition is su�cient for
negativeness of Q on short segments� thus for local �nite�dimensional optimal�
ity of "u on short segments� Notice that we can easily obtain a much stronger
result from the theory of �elds of extremals �Sect� ������ Indeed� under the
strong Legendre condition the maximized Hamiltonian of PMP is smooth�
and Corollary ���� gives local optimality on short segments �in C���� t���M �
topology� thus in L����� t��� U � topology and in topology of convergence on
�nite�dimensional submanifolds in U��

������ Singular Extremals

Now we consider the case where the second derivative of the Hamiltonian hu
vanishes identically along the extremal� in particular� the case of control�a�ne
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systems �q � f��q�  
Pm

i�� uifi�q�� So we assume that an extremal �t satis�es
the identity

h��t ��t� � �� t � ��� t��� �������

Such an extremal is called totally singular � As in the case of regular extremals�
this de�nition is valid only if the set of control parameters U is open�
For a totally singular extremal� expression ������� for the Hessian takes

the form


�t� Hess	uFt��v�� v�� � ��

Z t�

�

�Z ��

�

g���v��
�� d
�� g
�
��
v��
��

�
d
��

In order to �nd the dominating term of the Hessian �concentrated on the
diagonal 
� � 
��� we integrate by parts� Denote

wi�
 � �

Z t�

�

vi�s� ds�

�g�� �
d

d 

g�� �

Then

�t� Hess	u Ft��v�� v��

� ��

�Z t�

�

�
�g���w��
��  g��w����  

Z ��

�

�g���w��
�� d
�� g���v��
��
�
d
�

�
� ��

�
�
Z t�

�

�g��w��
 �� g
�
�v��
 �� d
  �g

�
�w����� g

�
�w�����

 

�
g��w�����

Z t�

�

�g��w��
 � d


�
 

Z t�

�

� �g��w��
 �� g
�
�w��
 �� d


 

Z t�

�

�
�g���w��
���

Z t�

��

�g���w��
�� d
�

�
d
�

�
� �������

We integrate by parts also the admissibility condition q� 	
Z t�

�
g�tvi�t� dt �

�


q� 	
�Z t�

�
�g�twi�t� dt g��wi���

�
� �� �������

In the sequel we take variations vi subject to the restriction

wi��� �

Z t�

�

vi�t� dt � �� i � �� ��

We assume that functions v�s� used in construction of the family v�� 	��
 � �
v
�
����
�

�
satisfy the equality
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�
v�s� ds � ��

then the primitive

w�s� �

Z s

�

v�s�� ds�

is also concentrated at the segment ��� ��� Then the last term in expressi�
on ������� of the Hessian vanishes� and equality ������� reduces to

q� 	
Z t�

�

�g�twi�t� dt � ��

Asymptotics of the Hessian on the family v�� 	� has the form


�t� Hess	u Ft��v�� 	�� v��	�� � Q�v�� 	�� � ����

Z �

�

�g���w�s�� g
�
�� v�s�� ds  O�����

The study of this dominating term provides necessary optimality conditions�

Proposition ������ Let �t� t � ��� t��� be a totally singular extremal� If the
quadratic form Q � �t� Hess	u Ft� has a �nite positive index� then

���g
�
tv�� g

�
tv�� � � � v�� v� � Rm� t � ��� t��� �������

Equality ������� is called Goh condition� It can be written also as follows


�t

�
� fu
� u

v��
� fu
� u

v�

�
� ��

or in Hamiltonian form
�
� hu
� ui

�
� hu
� uj

�
��t� � ��t

�
�

� ui
!hu�

�

� uj
!hu

�
� ��

i� j � �� � � � �m� t � ��� t���

As before� derivatives w�r�t� u are evaluated at u � "u�t��
Now we prove Proposition ������

Proof� Take a smooth vector function v 
 R� Rm concentrated at the seg�
ment ��� ��� such that

Z ��

�

v�s� ds � �� and construct as before the variation

of controls

v�� 	��
 � � v

�

 � &

�

�
�

Then

Q�v�� 	�� � ��
Z ��

�

���g
�
��w�s�� g

�
��v�s�� ds  O����kvk�L� �
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where w�s� �

Z s

�

v�s�� ds�� The leading term is the integral

Z ��

�

���g
�
��w�s�� g

�
��v�s�� ds �

Z ��

�

��w�s�� v�s�� ds� �������

��x� y� � ���g
�
��x� g

�
��y�� x� y � Rm�

notice that the bilinear skew�symmetric form � enters Goh condition ��������
In order to prove the proposition� we show that if � �� �� then the leading
term ������� of Hessian has a positive subspace of arbitrarily large dimension�
Let � �� � for some &
 � ��� t��� then rank� � �l 	 �� and there exist

coordinates in Rm in which the form � reads

��x� y� �
lX

i��

�xiyi�l � xi�lyi��

x �

�� x�


 
 

xm

�A � y �

�� y�


 
 

ym

�A �

Take a vector function v of the form

v�s� �

�BBBBBBBBBB�

v��s�
�

 
 

�

vl���s�
�

 
 

�

�CCCCCCCCCCA
�

v��s� �
X
k��

�k cos ks� vl���s� �
X
k��

�k sin ks�

Substituting v�s� to �������� we obtain
Z ��

�

��w�s�� v�s�� ds � ���
X
k��

�

k
�k�k�

This form obviously has a positive subspace of in�nite dimension�
For an arbitrarily great N � we can �nd an N �dimensional positive space LN

for form �������� There exists �N 	 � such that Q�v�� 	�N � 	 � for any v � LN �
Thus ind� Q ��� By contradiction� Goh condition follows� ut
Exercise ������ Show that Goh condition is satis�ed not only for piecewise
smooth� but also for measurable bounded extremal control "u at Lebesgue
points�
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Goh condition imposes a strong restriction on a totally singular optimal
control "u� For a totally singular extremal� the �rst two terms in ������� vanish
by Goh condition� Moreover� under the condition w��� � �� the third term
in ������� vanishes as well� Thus the expression for Hessian ������� reduces to
the following two terms


�t� Hess	u Ft��v� v� � Q�v�

� ��

�Z t�

�
� �g��w�
 �� g

�
�w�
 �� d
  

Z t�

�

�
�g���w�
���

Z t�

��

�g���w�
�� d
�

�
d
�

�
�

�������

Suppose that the quadratic form Q has a �nite positive index� Then by the
same argument as in Proposition ����� we prove one more pointwise condition


��� �g
�
tv� g

�
tv� � � � v � Rm� t � ��� t��� �������

This inequality is called generalized Legendre condition�
Notice that generalized Legendre condition can be rewritten in Hamilto�

nian terms
##
h	u�t�� h

�
tv
$
� h�tv

$
��t� 

#
h��t � �"u�t�� v�� h

�
tv
$
��t� � �� v � Rm� t � ��� t���

This easily follows from the equalities


g�tv � P��
t�

� fu
� u

v � AdPt
� fu
� u

v�

�g�tv �
d

d t

��
exp

Z t

�
adf	u��� d


� fu
� u

v

� P��
t�

�
f	u�t��

� fu
� u

v

�
 P��

t�
�� fu
� u�

� �"u�t�� v��

The strong version ������� of generalized Legendre condition plays in the
totally singular case the role similar to that of the strong Legendre condition
in the regular case�

Proposition ������ Let an extremal �t be totally singular� satisfy Goh con�
dition� the strong generalized Legendre condition�##

h	u�t�� h
�
tv
$
� h�tv

$
��t�  

#
h��t � �"u�t�� v�� h

�
tv
$
��t� � �
jvj��
v � Rm� t � ��� t��� �������

for some 
 	 �� and the following nondegeneracy condition�

the linear mapping
� fu�q��

� u

����
	u���


 Rm� Tq�M is injective� �������

Then the quadratic form QjKerD	uFt
is negative on short segments and has a

�nite positive index on Lm���� t���
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Proof� This proposition is proved similarly to Proposition ������ In decom�
position ������� the �rst two terms vanish by Goh condition� and the fourth
term is negative and dominates on short segments� The third term is small
on short segments since

q� 	 g��w���� �
� fu�q��

� u

����
	u���

w�����

and condition ������� allows to express w���� through the integral
R t�
� w��
 � d


on the kernel of D	uFt� � which is de�ned by equality �������� ut
We call an extremal that satis�es all hypotheses of Proposition ����� a

nice singular extremal �

������ Necessary Conditions

Summarizing the results obtained in this section� we come to the following
necessary conditions for the quadratic form Q to have a �nite positive index�

Theorem ������ Let a piecewise smooth control "u � "u�t�� t � ��� t��� be a
critical point of the endpoint mapping Ft�� Let a covector �t� � T �Ft� �	u�M be

a Lagrange multiplier�

�t�D	uFt� � �� �t� �� ��
If the quadratic form Q has a �nite positive index� then�

�I� The trajectory �t of the Hamiltonian system of PMP

��t � !h	u�t���t��

hu��� � h�� fu�q�i�
satis�es the equality

h�t��t� � �� t � ��� t���
�II��� Legendre condition is satis�ed�

h��t ��t��v� v� � �� v � Rm� t � ��� t���
�II��� If the extremal �t is totally singular�

h��t ��t��v� v� � �� v � Rm� t � ��� t���
then there hold Goh condition�

fh�tv�� h�tv�g ��t� � �� v�� v� � Rm� t � ��� t��� �������

and generalized Legendre condition�##
h	u�t�� h

�
tv
$
� h�tv

$
��t�  

#
h��t � �"u�t�� v�� h

�
tv
$
��t� � ��

v � Rm� t � ��� t��� �������
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Remark ������ If the Hamiltonian hu is a�ne in u �for control�a�ne systems��
then the second term in generalized Legendre condition ������� vanishes�

Recall that the corresponding su�cient conditions for �niteness of index
of the second variation are given in Propositions ����� and ������
Combining Theorems ����� and ����� we come to the following necessary

optimality conditions�

Corollary ����	� If a piecewise smooth control "u � "u�t� is locally geomet�
rically optimal for control system �������� then �rst�order conditions �I� and
second�order conditions �II���� �II��� of Theorem ����� hold along the corre�
sponding extremal �t�

���� Applications

In this section we apply the second order optimality conditions obtained to
particular problems�

������ Abnormal Sub�Riemannian Geodesics

Consider the sub�Riemannian problem


�q �
mX
i��

uifi�q�� q �M� u � �u�� � � � � um� � Rm�

q��� � q�� q��� � q��

J�u� �
�

�

Z �

�

mX
i��

u�i dt �
�

�

Z �

�

juj� dt� min �

The study of optimality is equivalent to the study of boundary of attainable
set for the extended system
������


�q �
mX
i��

uifi�q�� q �M�

�y �
�

�
juj�� y � R�

The Hamiltonian is

hu���  � �
mX
i��

uih�� fi�q�i   

�
juj�� � � T �M�  � R� � R�

The parameter  is constant along any geodesic �extremal�� If  �� � �the
normal case�� then extremal control can be recovered via PMP� In the sequel
we consider the abnormal case
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 � ��

Then

hu��� � hu��� �� �
mX
i��

uihi����

hi��� � h�� fi�q�i� i � �� � � � �m�

The maximality condition of PMP does not determine controls in the ab�
normal case directly �abnormal extremals are totally singular�� What that
condition implies is that abnormal extremals �t satisfy� in addition to the
Hamiltonian system

��t �
mX
i��

ui�t�!hi��t��

the following identities


hi��t� � �� i � �� � � � �m�

We apply second order conditions� As we already noticed� Legendre con�
dition degenerates� Goh condition reads


fhi� hjg��t� � �� i� j � �� � � �m�

If an abnormal extremal �t projects to an optimal trajectory q�t�� then at any
point q of this trajectory there exists a covector

� � T �qM� � �� ��
such that

h�� fi�q�i � �� i � �� � � � �m�

h�� �fi� fj��q�i � �� i� j � �� � � � �m�

Consequently� if

span�fi�q�� �fi� fj ��q�� � TqM� �������

then no locally optimal strictly abnormal trajectory passes through the
point q� An extremal trajectory is called strictly abnormal if it is a projec�
tion of an abnormal extremal and it is not a projection of a normal extremal�
Notice that in the case corank 	 � extremal trajectories can be abnormal
but not strictly abnormal �i�e�� can be abnormal and normal simultaneously��
there can be two Lagrange multipliers ��� �� and ����  �� ��� Small arcs of
such trajectories are always local minimizers since the normal Hamiltonian
H � �

�

Pm
i�� h

�
i is smooth �see Corollary ������

Distributions span�fi�q�� that satisfy condition ������� are called ��ge�
nerating � E�g�� the left�invariant bracket�generating distributions appearing
in the sub�Riemannian problem on a compact Lie group in Sect� ���� and
Exercise ���� are ��generating� thus there are no optimal strictly abnormal
trajectories in those problems�
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Example ����
� Consider the following left�invariant sub�Riemannian problem
on GL�n� with a natural cost


�Q � QV� Q � GL�n�� V � V �� �������

J�V � �
�

�

Z �

�

trV � dt� min � �������

Exercise ������ Show that normal extremals in this problem are products
of � one�parameter subgroups� �Hint
 repeat the argument of Sect� ������ Then
it follows that any nonsingular matrix can be represented as a product of two
exponentials eV e�V�V

����� Notice that not any nonsingular matrix can be
represented as a single exponential eV �

There are many abnormal extremals in problem �������� �������� but they
are never optimal� Indeed� the distribution de�ned by the right�hand side of
the system is ��generating� We have

�QV�� QV�� � Q�V�� V���

and if matrices Vi are symmetric then their commutator �V�� V�� is antisym�
metric� Moreover� any antisymmetric matrix appears in this way� But any
n � n matrix is a sum of symmetric and antisymmetric matrices� Thus the
distribution fQV j V � � V g is ��generating� and strictly abnormal extremal
trajectories are not optimal�

������ Local Controllability of Bilinear System

Consider a bilinear control system of the form

�x � Ax uBx  vb� u� v � R� x � Rn� �������

We are interested� when the system is locally controllable at the origin� i�e��

� � intA��t� � t 	 ��

Negation of necessary conditions for geometric optimality gives su�cient con�
ditions for local controllability�Now we apply second order conditions of Corol�
lary ����� to our system� Suppose that

� � �A��t� for some t 	 ��

Then the reference trajectory x�t� � � is geometrically optimal� thus it satis�
�es PMP� The control�dependent Hamiltonian is

hu	v�p� x� � pAx upBx vpb� � � �p� x� � T �Rn � Rn��Rn�
The vertical part of the Hamiltonian system along the reference trajectory x�t�
reads
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�p � �pA� p � Rn�� �������

It follows from PMP that

p�
 �b � p���e�A� b � �� 
 � ��� t��
i�e��

p���Aib � �� i � �� � � � � n� �� �������

for some covector p��� �� �� thus
span�b� Ab� � � � � An��b� �� Rn�

We pass to second order conditions� Legendre condition degenerates since the
system is control�a�ne� and Goh condition takes the form


p�
 �Bb � �� 
 � ��� t��
Di�erentiating this identity by virtue of Hamiltonian system �������� we ob�
tain� in addition to �������� new restrictions on p���


p���AiBb � �� i � �� � � � � n� ��
Generalized Legendre condition degenerates�
Summing up� the inequality

span�b� Ab� � � � � An��b� Bb�ABb� � � � � An��Bb� �� Rn

is necessary for geometric optimality of the trajectory x�t� � �� In other
words� the equality

span�b� Ab� � � � � An��b� Bb�ABb� � � � � An��Bb� � Rn

is su�cient for local controllability of bilinear system ������� at the origin�

���� Single
Input Case

In this section we apply �rst� and second�order optimality conditions to the
simplest �and the hardest to control� case with scalar input


�q � f��q�  uf��q�� u � �
� �� � R� q �M� �������

Since the system is control�a�ne� Legendre condition automatically degener�
ates� Further� control is one�dimensional� thus Goh condition is trivial� Al�
though� generalized Legendre condition works �we write it down later�� We
apply �rst Pontryagin Maximum Principle� Introduce the following Hamilto�
nians linear on �bers of the cotangent bundle
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hi��� � h�� fi�q�i� i � �� ��

then the Hamiltonian of the system reads

hu��� � h����  uh�����

We look for extremals corresponding to a control

u�t� � �
� ��� �������

The Hamiltonian system of PMP reads

��t � !h���t�  u�t�!h���t�� �������

and maximality condition reduces to the identity

h���t� � �� �������

Extremals �t are Lipschitzian� so we can di�erentiate the preceding identity


�h���t� �
d

d t
h���t� � fh�  u�t�h�� h�g��t� � fh�� h�g��t� � �� �������

Equalities �������� �������� which hold identically along any extremal �t that
satis�es �������� do not allow us to determine the corresponding control u�t��
In order to obtain an equality involving u�t�� we proceed with di�erentiation


$h���t� � fh�  u�t�h�� fh�� h�gg��t�
� fh�� fh�� h�gg��t�  u�t�fh�� fh�� h�gg��t� � ��

Introduce the notation for Hamiltonians


hi�i����ik � fhi� � fhi�� � � � � fhik��� hikg � � �gg� ij � f�� �g�
then any extremal �t with ������� satis�es the identities

h���t� � h����t� � �� �������

h�����t�  u�t�h�����t� � �� �������

If h�����t� �� �� then extremal control u � u��t� is uniquely determined by �t


u��t� � �h�����t�

h�����t�
� �������

Notice that the regularity condition h�����t� �� � is closely related to gener�
alized Legendre condition� Indeed� for the Hamiltonian hu � h�  uh� gener�
alized Legendre condition takes the form

ffh�  uh�� h�g� h�g��t� � �h�����t� � ��
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i�e��
h�����t� � ��

And if this inequality becomes strong� then the control is determined by re�
lation ��������
Assume that h�����t� �� � and plug the control u��� � �h�������h������

given by ������� to the Hamiltonian system �������


�� � !h����  u���!h����� �������

Any extremal with ������� and h�����t� �� � is a trajectory of this system�
Lemma ������ The manifold

f� � T �M j h���� � h����� � �� h������ �� �g �������

is invariant for system ��������

Proof� Notice �rst of all that the regularity condition h������ �� � guarantees
that conditions ������� determine a smooth manifold since d�h� and d�h��
are linearly independent� Introduce a Hamiltonian

���� � h����  u���h�����

The corresponding Hamiltonian vector �eld

!���� � !h����  u���!h����  h����!u���

coincides with �eld ������� on the manifold fh� � h�� � �g� so it is su�cient
to show that !� is tangent to this manifold�
Compute derivatives by virtue of the �eld !�


�h� � fh�  uh�� h�g � h�� � �!h�u�h��
�h�� � fh�  uh�� h��g � h���  uh���� 	z 


��

��!h��u�h� � ��!h��u�h��

The linear system with variable coe�cients for h��t� � h���t�� h���t� �
h����t� �

�h��t� � h���t�� �!h�u���t�h��t��
�h���t� � ��!h��u���t�h��t�

has a unique solution� Thus for the initial condition h���� � h����� � � we
obtain the solution h��t� � h���t� � �� So manifold ������� is invariant for
the �eld !����� thus for �eld �������� ut
Now we can describe all extremals of system ������� satisfying the con�

ditions ������� and h��� �� �� Any such extremal belongs to the manifold
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fh� � h�� � �g� and through any point �� of this manifold with the bound�
ary restrictions on control satis�ed


u���� � �h�������

h�������
� �
� ���

passes a unique such extremal ! the trajectory �t of system ��������
In problems considered in Chaps� �� and �� �Dubins car� rotation around

� axes in SO����� all singular extremals appeared exactly in this way� Gener�
ically� h��� �� �� thus all extremals with ������� can be studied as above�
But in important examples the hamiltonian h��� can vanish� E�g�� consider a
mechanical system with a controlled force


$y � g�y�  ub� y� b � Rn� u � �
� �� � R�
or� in the standard form
 �

�y� � y��

�y� � g�y��  ub�

The vector �elds in the right�hand side are

f� � y�
�

� y�
 g�y��

�

� y�
�

f� � b
�

� y�
�

thus
h������ � h�� �f�� �f�� f���� 	z 


��

i � ��

More generally� h��� vanishes as well for systems of the form�
�x � f�x� y��

$y � g�x� y�  ub�
x � M� y� b � Rn� u � �
� �� � R� �������

An interesting example of such systems is Dubins car with control of angular
acceleration
��������


�x� � cos ��

�x� � sin ��
�� � y�

�y � u�

�x�� x�� � R�� � � S�� y � R� juj � ��

Having such a motivation in mind� we consider now the case where

h������ � �� �������
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Then equality ������� does not contain u�t�� and we continue di�erentiation
in order to �nd an equation determining the control


h
���
� ��t� � �h�����t� � h������t�  u�t�h������t� � ��

It turns out that the term near u�t� vanishes identically under condition
�������


h���� � fh�� fh�� fh�� h�ggg � ffh�� h�g� fh�� h�gg� 	z 

��

 fh�� fh�� fh�� h�ggg

� fh�� h���g � ��
So we obtain� in addition to �������� �������� and �������� one more identity
without u�t� for extremals


h������t� � ��
Thus we continue di�erentiation


h
���
� ��t� � �h������t� � h�������t�  u�t�h�������t� � �� �������

In Dubins car with angular acceleration control h�������t� �� �� and generically
�in the class of systems �������� this is also the case� Under the condition
h�������t� �� � we can express control as u � u��� from equation ������� and
�nd all extremals in the same way as in the case h�����t� �� ��
Exercise ������ Show that for Dubins car with angular acceleration control�
singular trajectories are straight lines in the plane �x�� x��


x� � x��  t cos ��� x� � x��  t sin ��� � � ��� y � ��

Although� now geometry of the system is new� There appears a new pattern
for optimal control� where control has an in�nite number of switchings on
compact time intervals�
For the standard Dubins car �with angular velocity control� singular tra�

jectories can join bang trajectories as follows


u�t� � ��� t � &t� u�t� � �� t 	 &t� �������

or

u�t� � �� t � &t� u�t� � ��� t 	 &t� �������

We show that such controls cannot be optimal for the Dubins car with angular
acceleration control�
The following argument shows how our methods can be applied to prob�

lems not covered directly by the formal theory� In this argument we prove
Proposition ����� stated below at p� ����
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Consider the time�optimal problem for our single�input system ��������
We prove that there do not exist time�optimal trajectories containing a sin�
gular piece followed by a bang piece� Suppose� by contradiction� that such a
trajectory q�t� exists� Consider restriction of this trajectory to the singular
and bang pieces


q�t�� t � ��� t���
u�t� � �
� ��� t � ��� &t ��
u�t� � � � f
� �g� t � �&t� t���

Let �t be an extremal corresponding to the extremal trajectory q�t�� We sup�
pose that such �t is unique up to a nonzero factor �generically� this is the
case�� Reparametrizing control �i�e�� taking u� u�&t� �� as a new control�� we
obtain

u�&t� �� � �� 
 � � � ��

without any change of the structure of Lie brackets� Notice that now we study
a time�optimal trajectory� not geometrically optimal one as before� Although�
the Hamiltonian of PMP hu � h�  uh� for the time�optimal problem is
the same as for the geometric problem� thus the above analysis of singular
extremals applies� In fact� we prove below that a singular piece and a bang
piece cannot follow one another not only for a time�minimal trajectory� but
also for a time�maximal trajectory or for a geometrically optimal one�
We suppose that the �elds f�� f� satisfy the identity

�f�� �f�� f��� � �
and the extremal �t satis�es the inequality

h��������t� �� ��
Since u�&t� �� � �� then equality ������� implies that h��������t� � ��
It follows from the maximality condition of PMP that

hu�t���t� � h���t�  u�t�h���t� � h���t��

i�e�� along the whole extremal

u�t�h���t� � �� t � ��� t���
But along the singular piece h���t� � �� thus

u�t�h���t� � �� t � ���&t ��
The �rst nonvanishing derivative of u��t�h���t� at t � &t � is positive� Keep�
ing in mind that u�t� � � at the singular piece t � �&t� t��� we compute this
derivative� Since h����t� � h�����t� � h������t� � h�������t� � h�������t� � ��
then the �rst three derivatives vanish
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dk

dtk

����
t��t��

u�t�h���t� � �� k � �� �� �� ��

Thus the fourth derivative is nonnegative


d�

dt�

����
t��t��

u�t�h���t� � ��h��������t�  �h��������t��

� ��h��������t� � ��
Since �� 	 �� then

h��������t� 	 �� �������

Now we apply this inequality in order to obtain a contradiction via the theory
of second variation�
Recall expression ������� for Hessian of the endpoint mapping


�tHessu Ft�v�

�

Z t

�
�� � �g

�
� � g

�
� �w

��
 � d
  

Z t

�

Z ��

�
��
(
�g��� � �g

�
��

)
w�
��w�
�� d
�d
�� �������

Here

w�
 � �

Z t

�

v��� d�� w��� � ��

g�� � P��
�� f��

�g�� � P��
�� �f�� f���

P� �
��
exp

Z �

�
fu��� d��

The �rst term in expression ������� for the Hessian vanishes


�� � �g
�
� � g

�
� � � �h������ � � ��

Integrating the second term by parts twice� we obtain


�tHessu Ft�v�

�

Z t

�

�� �$g
�
� � �g

�
� � �

��
 � d
  

Z t

�

Z ��

�

��
(
$g��� � $g

�
��

)
��
����
�� d
� d
� �������

where

$g�� � P��
�� �f�� �f�� f����

��
 � �

Z �

�

w�
�� d
�� ��t� � ��
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The �rst term in ������� dominates on needle�like variations v � v�t	�


��tHessu F�t�v�t	�� � ����� $g
�
�t� �g

�
�t �  O�����

we compute the leading term in the Hamiltonian form


��� $g
�
�t� �g

�
�t � � ��t��f�� �f�� f���� �f�� f��� � fh���� h��g���t� � ffh�� h�g� h���g���t�
� fh�� fh�� h���gg���t�� fh�� fh�� h���g� 	z 


�h������

g���t� � h��������t��

By virtue of inequality ��������

��tHessuF�t�v�� 	 ��

where
v� � v�t	�

for small enough � 	 �� This means that

d�

d s�

����
s��

a 	 F�t�u  sv�� � ��tHessuF�t�v�� 	 �

for any function a � C��M �� a�q�&t �� � �� dq��t �a � ��t� Then

a 	 F�t�u sv�� �
s�

�
��tHessu F�t�v��  O�s��� s� ��

i�e�� the curve F�t�u 
p
sv�� is smooth at s �  � and has the tangent vector

d

d s

����
s���

F�t�u  
p
sv�� � ���

h��t� ��i 	 �� �������

That is� variation of the optimal control u in direction of v� generates a tangent
vector �� to the attainable set Aq��&t � that belongs to the half�space h��t� 
 i 	 �
in Tq��t �M �
Since the extremal trajectory q�t� is a projection of a unique� up to a scalar

factor� extremal �t� then the control u is a corank one critical point of the
endpoint mapping


dimImDuF�t � dimM � � � n � ��
This means that there exist variations of control that generate a hyperplane
of tangent vectors to Aq��&t �


� v�� � � � � vn�� � TuU such that

d

d s

����
s��

F�t�u svi� � �i� i � �� � � � � n� ��

span���� � � � � �n��� � ImDuF�t�
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Summing up� the variations v�� v�� � � � � vn�� of the control u at the singular
piece generate a nonnegative half�space of the covector ��t


us � u 
p
s�v�  

n��X
i��

sivi� s � �s�� s�� � � � � sn��� � R��Rn���

�

� si

����
s��

F�t�us� � �i� i � �� �� � � � � n� ��

R���  span���� � � � � �n��� � fh��t� 
 i � �g�
Now we add a needle�like variation on the bang piece� Since the con�

trol u�t�� t � �&t� t��� is nonsingular� then the switching function h���t� �� ��
t � �&t� t��� Choose any instant

&t� � �&t� t�� such that h����t�� �� ��
Add a needle�like variation concentrated at small segments near &t�


us	��t� �

����

us�t�� t � ���&t ��
u�t� � �� t � �&t� &t�� � �&t�  �� t���

�� t � �&t�� &t�  ���

The needle�like variation generates the tangent vector

�

� �

����
��	s�����	��

Ft��us	�� � ��
h�

P t�
�t�

�
�
f�

i
�q�t����

P t
� �

��
exp

Z t

�

fu��� d
�

this derivative is computed as in the proof of PMP� see Lemma ����� We
determine disposition of the vector

�n � ��
h�

P t�
�t�

�
�
f�

i
�q�t���

w�r�t� the hyperplane ImDuFt�


h�t� � �ni � ��h��t� � f�i � ��h����t���
Since h����t�� �� �� then it follows fromPMP that �h����t� � � u�&t��h����t� � 	 ��
thus

h�t� � �ni � ��
Now we translate the tangent vectors �i� i � �� � � � � n��� from q�&t � to q�t��


�

� �

����
��	s����	��

Ft��us	�� �
�

� �

����
��	s����	��

P t�
�t �F�t�us��

�
�
P t�
�t

�
� �i � �i� i � �� � � � � n� ��
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Inequality ������� translates to

h�t� � ��i � h��t� ��i 	 �

and� of course�

h�t� � �ii � h��t� �ii � �� i � �� � � � � n� ��

The inequality h�t� � �ni � � means that the needle�like variation on the bang
piece generates a tangent vector in the half�space h�t� � 
 i � � complementary
to the half�space h�t� � 
 i � � generated by variations on the singular piece�
Summing up� the mapping

F 
 R��Rn���R��M� F �s� �� � Ft��us	���

satis�es the condition

D��	��F �R��Rn���R�� � R���  span���� � � � � �n���  R��n � Tq�t��M�

By Lemma ���� and remark after it� the mapping F is locally open at �s� �� �
��� ��� Thus the image of the mappingFt��us	�� contains a neighborhood of the
terminal point q�t��� By continuity� q�t�� remains in the image of Ft����us	��
for su�ciently small � 	 �� In other words� the point q�t�� is reachable from q�
at t��� instants of time� i�e�� the trajectory q�t�� t � ��� t��� is not time�optimal�
a contradiction�
We proved that a time�optimal trajectory q�t� cannot have a singular piece

followed by a bang piece� Similarly� a singular piece cannot follow a bang piece�
We obtain the following statement on the possible structure of optimal

control�

Proposition ������ Assume that vector �elds in the right�hand side of sys�
tem ������� satisfy the identity

�f�� �f�� f��� � �� �������

Let a time�optimal trajectory q�t� of this system be a projection of a unique� up
to a scalar factor� extremal �t� and let h�������t� �� �� Then the trajectory q�t�
cannot contain a singular piece and a bang piece adjacent one to another�

Remark ������ In this proposition� time�optimal �i�e�� time�minimal� control
can be replaced by a time�maximal control or by a geometrically optimal one�

What happens near singular trajectories under hypothesis �������	 As�
sume that a singular trajectory is optimal �as straight lines for Dubins car
with angular acceleration control�� Notice that optimal controls exist� thus the
cost function is everywhere de�ned� For boundary conditions su�ciently close
to the singular trajectory� there are two possible patterns of optimal control
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��� either it makes in�nite number of switchings on a compact time segment
adjacent to the singular part� so that the optimal trajectory �gets o�
 the
singular trajectory via in�nite number of switchings�

��� or optimal control is bang�bang� but the number of switchings grows in�
�nitely as the terminal point approaches the singular trajectory�

Pattern ��� of optimal control is called Fuller�s phenomenon� It turns out
that Fuller�s phenomenon takes place in Dubins car with angular acceleration
control� see Fig� ����� As our preceding arguments suggest� this phenomenon is
not a pathology� but is ubiquitous for certain classes of systems �in particular�
in applications�� One can observe this phenomenon trying to stop a ping�
pong ball jumping between the table and descending racket� The theory of
Fuller�s phenomenon is described in book ����� It follows from this theory that
possibility ��� is actually realized for Dubins car with angular acceleration
control�

Fig� ����� Singular arc adjacent to arc with Fuller phenomenon





��

Jacobi Equation

In Chap� �� we established that the sign of the quadratic form �tHess	u Ft is
related to optimality of the extremal control "u� Under natural assumptions�
the second variation is negative on short segments� Now we wish to catch
the instant of time where this quadratic form fails to be negative� We de�
rive an ODE �Jacobi equation� that allows to �nd such instants �conjugate
times�� Moreover� we give necessary and su�cient optimality conditions in
these terms�
Recall expression ������� for the quadratic form Q with

�tHess	u Ft � QjKerD	uFt

obtained in Sect� ����


Q�v� �

Z t

�

h��� �v�
 �� d
  
Z t

�

��

�Z ��

�

g���v�
�� d
�� g
�
��
v�
��

�
d
��

We extend the form Q from L� to L� by continuity�
We will consider a family of problems on segments ��� t�� t � ��� t��� so we

introduce the corresponding sets of admissible controls


Ut � fu � L����� t��� U � j u�
 � � � for 
 	 tg�

and spaces of variations of controls


Vt � T	u Ut � fv � Lm� ��� t�� j v�
 � � � for 
 	 tg �� Lm� ��� t��

We denote the second variation on the corresponding segment as

Qt � QjVt �
Notice that the family of spaces Vt is ordered by inclusion


t� � t�� 
 Vt� � Vt�� �
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and the family of forms Qt respects this order


Qt� � Qt�� jVt� �
In particular�

Qt�� � � 
 Qt� � ��

Denote the instant of time where the forms Qt lose their negative sign


t�
def
� sup

#
t � ��� t�� j QtjKt

� �
$
�

where

Kt �

�
v � Vt j q� 	

Z t

�

g��v�
 � d
 � �
�

is the closure of the space KerD	uFt in L�� If QtjKt
is negative for all t � ��� t���

then� by de�nition� t� �  ��

���� Regular Case� Derivation of Jacobi Equation

Proposition ����� Let �t be a regular extremal with t� � ��� t��� Then the
quadratic form Qt�jKt�

is degenerate�

Proof� By the strong Legendre condition� the norm

kvkh�� �
�Z t�

�

�h��� �v�
 �� d

����

is equivalent to the standard Lm� �norm� Then

Qt� �

Z t�

�

h��� �v�
 �� d
  
Z t�

�

��

�Z ��

�

g���v�
�� d
�� g
�
��v�
��

�
d
�

� �kvk�h��  hRv� vi�

where R is a compact operator in Lm� ��� t���
First we prove that the quadratic formQt� is nonpositive on the kernelKt� �

Assume� by contradiction� that there exists v � Vt� such that
Qt��v� 	 �� v � Kt� �

The linear mapping D	uFt� has a �nite�dimensional image� thus

Vt� � Kt� "E� dimE ���

The familyD	uFt is weakly continuous in t� hence D	uFt���jE is invertible and
Vt� � Kt��� " E
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for small � 	 �� Consider the corresponding decomposition

v � v�  x�� v� � Kt���� x� � E�

Then x� � � weakly as �� �� so x� � � strongly since E is �nite�dimensional�
Consequently� v� � v strongly as � � �� Further� Qt����v�� � Qt��v�� �
Qt��v� as � � � since the quadratic forms Qt are continuous� Summing up�
Qt����v�� 	 � for small � 	 �� a contradiction with de�nition of t�� We proved
that

Qt� jKt�
� �� ������

Now we show that

� v � Kt� � v �� �� such that Qt��v� � ��

By the argument similar to the proof of Proposition ���� �in the study of
conjugate points for the linear�quadratic problem�� we show that the function

��t� � sup fQt�v� j v � Kt� kvkh�� � �g ������

satis�es the following properties
 ��t� is monotone nondecreasing� the supre�
mum in ������ is attained� and ��t� is continuous from the right�
Inequality ������ means that ��t�� � �� If ��t�� � �� then ��t�  �� � �

for small � 	 �� which contradicts de�nition of the instant t�� Thus ��t�� � ��
moreover� there exists

v � Kt� � kvkh�� � ��
such that

Qt��v� � ��

Taking into account that the quadratic form Qt� is nonpositive� we con�
clude that the element v �� � is in the kernel of Qt�jKt�

� ut
Proposition ���� motivates the introduction of the following important

notion� An instant tc � ��� t�� is called a conjugate time �for the initial instant
t � �� along a regular extremal �t if the quadratic form Qtc jKtc

is degenerate�

Notice that by Proposition ������ the forms QtjKt
are negative for small t 	 ��

thus short arcs of regular extremals have no conjugate points
 for them t� 	 ��
Proposition ���� means that the instant t� where the quadratic forms QtjKt

lose their negative sign is the �rst conjugate time�
We start to derive a di�erential equation on conjugate time for a regular

extremal pair �"u�t�� �t�� The symplectic space

� � T���T
�M �

will be the state space of that ODE� Introduce the family of mappings
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Jt 
 R
m� ��

Jt v �
�

� u

����
	u�t�

��
hu	t v�

In these terms� the bilinear form Qt reads

Qt�v�� v�� �

Z t

�
h��� �v��
 �� v��
 �� dt 

ZZ
��������t

��J��v��
��� J��v��
��� d
�d
��

������

see �������� �������� We consider the form Qt on the subspace

Kt � KerD	uFt �

�
vi � Vt j

Z t

�

J�vi�
 � d
 � ��

�
� ������

where
�� � T���T

�
q�
M � � �

is the vertical subspace�
A variation of control v � Vt satis�es the inclusion

v � Ker �QtjKt

�
i� the linear formQt�v� 
 � annihilates the subspace Kt � Vt� Since the vertical
subspace �� � � is Lagrangian� equality ������ can be rewritten as follows


Kt �

�
vi � Vt j �

�Z t

�
J� vi�
 � d
�  

�
� � � � ��

�
�

That is� the annihilator of the subspace Kt � Vt coincides with the following
�nite�dimensional space of linear forms on Vt
�Z t

�

��J� 
 �  � d
 j  � ��

�
� ������

Summing up� we obtain that v � Ker
�
QtjKt

�
i� the form Qt�v� 
 � on Vt

belongs to subspace ������� That is� v � Ker �QtjKt

�
i� there exists  � ��

such that

Qt�v� 
 � �
Z t

�
��J� 
 �  � d
� ������

We transform equality of forms ������
Z t

�

��J� 
 �  � d
 �
Z t

�

h��� �v�
 �� 
 � d
  
ZZ

��������t

��J��v�
��� J�� 
 � d
�d
�

�

Z t

�

h��� �v�
 �� 
 � d
  
Z t

�

�

�Z �

�

J�v��� d�� J� 

�

d
�
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This equality of forms means that the integrands coincide one with another


��J� 
 �  � � h��� �v�
 �� 
 �  �

�Z �

�

J�v��� d�� J� 

�
� 
 � ��� t�� ������

In terms of the curve in the space �

�� �

Z �

�

J�v��� d�   � 
 � ��� t�� ������

equality of forms ������ can be rewritten as follows


h��� �v�
 �� 
 �  ���� � J� 
 � � �� 
 � ��� t�� ������

The strong Legendre condition implies that the linear mapping

h��� 
 R
m� Rm�

is nondegenerate �we denote here and below the linear mapping into the dual
space by the same symbol as the corresponding quadratic form�� thus the
inverse mapping is de�ned


�h��� �
��

 Rm�� Rm�

Then equality ������ reads

v�
 �  �h��� �
��

���� � J� 
 � � �� 
 � ��� t�� �������

We come to the following statement�

Theorem ����� Let �t� t � ��� t��� be a regular extremal� An instant t � ��� t��
is a conjugate time i
 there exists a nonconstant solution �� to Jacobi equation

��� � J� �h
��
� �
��

��J� 
 � ���� 
 � ��� t�� �������

that satis�es the boundary conditions

�� � ��� �t � ��� �������

Jacobi equation ������� is a linear nonautonomous Hamiltonian system on ��

��� � !b� ��� � �������

with the quadratic Hamiltonian function

b� ��� � ��
�
�h��� �

��
���J� 
 � ��� ��J� 
 � ��� � � � ��

where �h��� �
��

is a quadratic form on Rm��
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Proof� We already proved that existence of v � Ker QtjKt
is equivalent to

existence of a solution �� to Jacobi equation that satis�es the boundary con�
ditions ��������
If v � �� then �� � const by virtue of ������� Conversely� if �� � const�

then J� v�
 � � ��� � �� By ������� the second variation takes the form

Qt�v� �

Z t

�

h��� �v�
 �� d
 � �
kvk�L� for some 
 	 ��

But v � KerQt� so Qt�v� � �� consequently v � �� Thus nonzero v correspond
to nonconstant �� and vice versa�
It remains to prove that b� is the Hamiltonian function for Jacobi equa�

tion �������� Denote

A� ��� � �h
��
� �
��

��J� 
 � �� � Rm� � � ��

then Jacobi equation reads

��� � J�A� ��� ��

so we have to prove that

J�A� ��� � !b� ���� � � �� �������

Since

b� ��� � ��
�

D
��J� 
 � ��� �h��� ���

��J� 
 � ��
E
� ��

�
h��J� 
 � ��� A����i �

then
hd�b� � �i � �h��J� 
 � ��� A����i � ���� J�A� �����

Thus equality ������� follows and the proof is complete� ut

���� Singular Case� Derivation of Jacobi Equation

In this section we obtain Jacobi equation for a nice singular extremal pair
�"u�t�� �t��
In contrast to the regular case� the second variation in the singular case

can be nondegenerate at the instant t� where it loses its negative sign� In order
to develop the theory of conjugate points for the singular case� we introduce
a change of variables in the form Qt� We denote� as before� the integrals

wi�
 � �

Z t

�

vi�s� ds� i � �� ��

and denote the bilinear form that enters generalized Legendre condition
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lt�w�� w�� � �� �Jtw�� Jtw��� wi � Rm�

For a nice singular extremal� expression ������� for the second variation reads

Qt�v�� v�� �

Z t

�
l� �w��
 �� w��
 �� d
  

Z t

�
�

�
�J�w��
 ��

Z t

�

�J�w���� d�

�
d


 �

�
J�w�����

Z t

�

�J�w��
 � d


�
�

Admissibility condition ������� for variations of control vi� 
 � can be written
as follows
 Z t

�

�J�w�
 � d
  J�w��� � ��� �������

The mapping
v� 
 � �� �w� 
 �� w���� � Lm� �Rm

has a dense image in Lm� �Rm� and the Hessian Qt and admissibility condi�
tion ������� are extended to Lm� �Rm by continuity�
Denote

� � J�w��� � ��

and consider the extended form

Qt�w�� w�� �

Z t

�

l� �w��
 �� w��
 �� d
  

Z t

�

�

�
�J�w��
 ��

Z t

�

�J�w���� d�

�
d


 �

�
���

Z t

�

�J�w��
 � d


�
on the space Z t

�

�J�w�
 � d
  � � ��� �������

Then in the same way as in the regular case� it follows that the restriction
of the quadratic form Qt�w� to the space ������� is degenerate at the instant
t � t�� An instant t that satis�es such a property is called a conjugate time
for the nice singular extremal �t�
Similarly to the regular case� we derive now a Hamiltonian Jacobi equa�

tion on conjugate times for nice singular extremals� although the Hamiltonian
function and boundary conditions di�er from the ones for the regular case�
Let t � ��� t�� be a conjugate time� i�e�� let the form Qt�w�� w�� have a

nontrivial kernel on the space �������� That is� there exists a pair

�w� �� � Lm� ��� t�� ���

Z t

�

�J�w�
 � d
  � � ���
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such that the linear form on the space Lm� ��� t�� ��

Qt� 
 � w� �
Z t

�

l� � 
L� � w�
 �� d
  
Z t

�

�

�
�J� 
L� �

Z t

�

�J�w��� d�

�
d


 �

�

�� �

Z t

�

�J�w�
 � d


�
�������

annihilates the admissible space �������� In turn� the annihilator of the ad�
missible space ������� is the space of linear formsZ t

�

�
�
�J� 
L� �  

�
d
  � � 
�� �  � �  � ���

Thus� similarly to the regular case� there exists  � �� such that

Qt� 
 � w� �
Z t

�

�
�
�J� 
L� �  

�
d
  � � 
�� �  � �

By virtue of �������� the previous equality of forms splits


l� � 
Rm � w�
 ��  �

�
�J� 
Rm �

Z t

�

�J�w��� d�

�
� �

�
�J� 
Rm �  

�
� 
 � ��� t��

�

�

�� �

Z t

�

�J�w�
 � d


�
� � � 
�� �  � �

That is�

l�w�
 � � ��
�
�J� 
Rm �

Z t

�

�J�w��� d� �  

�
� �������

�

�

�� �

Z t

�

�J�w�
 � d
 �  

�
� �� �������

In terms of the curve in the space � � T���T
�M �

�� �

Z t

�

�J�w��� d� �  � 
 � ��� t�� �������

equalities �������� ������� take the form

l�w�
 � � ��
�
�J� 
Rm � ��

�
� 
 � ��� t�� �������

� ���� ��� � ��

The last equality means that �� belongs to the skew�orthogonal comple�
ment ��� � On the other hand� �� � ��  ��� compare de�nition �������
with �������� That is�
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�� � ���  ��� � ��� � ���
� �

Recall that���
� is a Lagrangian subspace in the symplectic space � containing

the isotropic subspace ��� see de�nition �������� Notice that Goh condition

��Jtv�� Jtv�� � �� v�� v� � Rm� t � ��� t��

means that the subspaces

�t � spanfJtv j v � Rmg � �

are isotropic� We obtain boundary conditions for the curve �� 


�� � ���
� � �t � ��� �������

Moreover� equality ������� yields an ODE for �� 


��� � � �J�w�
 � � �J� l
��
� ��� �J� 
 � ����� 
 � ��� t�� �������

Similarly to the regular case� it follows that this equation is Hamiltonian with
the Hamiltonian function

%b� ��� � ��
�
l��
� ��� �J� 
 � ��� �� �J� 
 � ���� � � ��

The linear nonautonomous equation ������� is Jacobi equation for the totally
singular case�
Now the next statement follows in the same way as in the regular case�

Theorem ����� Let �t be a nice singular extremal� An instant t � ��� t�� is a
conjugate time i
 there exists a nonconstant solution �� to Jacobi equation

��� � �J� l
��
�

�
�� �J� 
 � ���

�
� 
 � ��� t�� �������

with the boundary conditions

�� � ���
� � �t � ��� �������

Jacobi equation ������� is Hamiltonian�

��� �
!%b� ��� � �������

with the nonautonomous quadratic Hamiltonian function

%b� ��� � ��
�
l��
�

�
�� �J� 
 � ��� �� �J� 
 � ��

�
� � � ��

The following statement provides a �rst integral of equation �������� it can
be useful in the study of Jacobi equation in the singular case�
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Lemma ����� For any constant vector v � Rm� the function ���� J�v� is an
integral of Jacobi equation ��������

Proof� We have to show that

�� ��� � J�v�  ���� � �J�v� � � �������

for a solution �� to �������� The �rst term can be computed via Jacobi equa�
tion


�� ��� � J�v� � �hd��%b� � J�vi
� l��

�

�
�� �J� 
 � J�v�� �� �J� 
 � ���

�
where l��

� is a bilinear form

�
D
�� �J� 
 � ���� l��

� �� �J� 
 � J�v�
E

where l��
� is a linear mapping to the dual space

�
D
�� �J� 
 � ���� v

E
� ����� � �J�v��

and equality ������� follows� ut
In particular� this lemma means that

�� � ��� � �� � ��� �

i�e�� the �ow of Jacobi equation preserves the family of spaces ��� � Since this
equation is Hamiltonian� its �ow preserves also the family �� � Consequently�
boundary conditions ������� can equivalently be written in the form

�� � ��� �t � ��t
� �

���� Necessary Optimality Conditions

Proposition ����� Let �"u� �t� be a corank one extremal pair� Suppose that �t
is regular or nice singular� Let t� � ��� t��� Then�
��� Either for any nonconstant solution �t� t � ��� t��� to Jacobi equation
������� or ������� that satis�es the boundary conditions ������� or �������
the continuation

&�t �

�
�t� t � ��� t���
�t�� t � �t�� t���

�������

satis�es Jacobi equation on ��� t���
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���Or the control "u is not locally geometrically optimal on ��� t���

Proof� Assume that condition ��� does not hold� we prove that condition ���

is then satis�ed� Take any nonzero v � Ker
�
Qt� jKt�

�
and let �t� t � ��� t��� be

the corresponding nonconstant solution to Jacobi equation with the boundary
conditions� Consider the continuation of v by zero


&v�t� �

�
v�t�� t � ��� t���
�� t � �t�� t���

and the corresponding continuation by constant &�t as in �������� Since &�t
does not satisfy Jacobi equation on ��� t��� then &v �� Ker�Qt� jKt�

�� Notice that

Qt��&v� � Qt��v� � �� On the other hand� there exists w � Kt� such that
Qt��&v� w� �� �� Then the quadratic form Qt� takes values of both signs in the
plane span�&v� w��
In the singular case� since the extended form Qt is sign�inde�nite� then the

initial form is sign�inde�nite as well�
Summing up� the form Qt� is sign�inde�nite on Kt� � By Theorem ����� the

control "u�t� is not optimal on ��� t��� ut
Notice that case ��� of Proposition ���� imposes a strong restriction on an

extremal �t� If this case realizes� then the set of conjugate points coincides
with the segment �t�� t���
Assume that the reference control "u�t� is analytic� then solutions �t to

Jacobi equation are analytic as well� If �t is constant on some segment� then
it is constant on the whole domain� Thus in the analytic case alternative ���
of Proposition ���� is impossible� and the �rst conjugate time t� provides a
necessary optimality condition
 a trajectory cannot be locally geometrically
optimal after t��
Absence of conjugate points implies �nite�dimensional local optimality in

the corank one case� see Theorem ����� In the following two sections� we
prove a much stronger result for the regular case
 absence of conjugate points
is su�cient for strong optimality�

���� Regular Case� Transformation of Jacobi Equation

Let �t be a regular extremal� and assume that the maximized Hamilto�
nian H��� is smooth in a neighborhood of �t� The maximality condition of
PMP yields the equation

� hu
� u

��� � ��

which can be resolved in the neighborhood of �t


� hu
� u

��� � � � u � u����
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The mapping � �� u��� is smooth near �t and satis�es the equality

u��t� � "u�t��

The maximized Hamiltonian of PMP is expressed in the neighborhood of �t
as

H��� � hu�������

see Proposition ����� Consider the �ow on T �M 


et
�H	 
�

exp

Z t

�

�!h	u��� d
 � et
�H 	 P �t �

By the variations formula in the Hamiltonian form� see ������ and ��������
this �ow is Hamiltonian


et
�H 	 P �t � ��

exp

Z t

�

!�� d
 �������

with the Hamiltonian function

�t��� � �H � h	u�t���P
���
t �����

Notice that
�� 	 et �H 	 P �t � �t 	 P �t � ���

i�e�� �� is an equilibrium point of the �eld !�t� In other words� �� is a critical
point of the Hamiltonian function


�t��� � � � �t���� 
 d���t � ��

It is natural to expect that the corresponding Hessian is related to optimality
of the extremal �t�
The following statement relates two Hamiltonian systems
 Jacobi equa�

tion on � and the maximized Hamiltonian system on T �M � We will use this
relation in the proof of su�cient optimality conditions in Sect� �����

Proposition ����� The Hamiltonian bt of Jacobi equation coincides with one
half of Hessian of the Hamiltonian �t at ���

bt �
�

�
Hess�� �t�

Proof� Recall that Hamiltonian of Jacobi equation for the regular case is

bt��� � ��
�

�
��Jt 
 � ��� �h��t �����Jt 
 � ��

�
�

Transform the linear form
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��Jt 
 � �� � �

�
�

� u

��
hu	t 
 � �

�
where hu	t��� � hu�P

���
t ����

� �
�
d��

�

� u
hu	t 
 � �

�
� �

��
d�t

� hu
� u



��

P ���
t

�
��� � �

�
where

�
P ���
t

�
� is di�erential of the di�eomorphism

�
P ���
t

�

 T �M � T �M

� �
�
d�t

� hu
� u


 � �
�
�

� �
�
P ���
t

�
��� � � T�t�T

�M ��

Then the Hamiltonian bt can be rewritten as

bt��� � ��
�

��
d�t

� hu
� u


 � �
�
� �h��t �

��

�
d�t

� hu
� u


 � �
��

�

Now we compute Hessian of the Hamiltonian

�t��� � �hu��� � h	u�t���P
���
t �����

We have
Hess�� �t��� � Hess�t�hu��� � h	u�t������

Further�

d��hu��� � h	u�t�� �
� hu
� u

����
u���� 	z 


��

d�u �d�hu�ju��� � d�h	u�t��

D�
�t�hu��� � h	u�t�� �

�
d�t

� hu
� u

����
u��t�

�
d�tu�

The di�erential d�tu can be found by di�erentiation of the identity

� hu
� u

����
u���

� �

at � � �t� Indeed� we have

�� hu
� u�

d�u d�
� hu
� u

� ��

thus

d�tu � ��h��t ��� d�t
� hu
� u

�
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Consequently�

D�
�t
�hu��� � h	u�t�� � �d�t

� hu
� u

�h��t �
��d�t

� hu
� u

�

i�e��
Hess�� �t��� � Hess�t�hu��� � h	u�t����� � �bt����

and the statement follows� ut
Since the Hamiltonian �t attains minimum at ��� the quadratic form bt is

nonnegative

bt � ��

Denote by Ct the space of constant vertical solutions to Jacobi equation
at the segment ��� t�


Ct �
n
� � �� j !b� ��� � �� 
 � ��� t�

o
� �������

Now we can give the following simple characterization of this space


Ct � ��

* ������	t�Ker b� � �
Indeed� equilibrium points of a Hamiltonian vector �eld are critical points
of the Hamiltonian� and critical points of a nonnegative quadratic form are
elements of its kernel�

���� Su�cient Optimality Conditions

In this section we prove su�cient conditions for optimality in the problem
with integral cost


�q � fu�q�� q �M� u � U � intU � Rm�
q��� � q�� q�t�� � q��Z t�

�
��q�t�� u�t�� dt� min�

with �xed or free terminal time� Notice that now we study an optimal problem�
not a geometric one as before� Although� the theory of Jacobi equation can
be applied here since Jacobi equation depends only on a Hamiltonian hu���
and an extremal pair �"u�t�� �t��
For the normal Hamiltonian of PMP

hu��� � h�� fu�q�i � ��q� u�� � � T �M�

and a regular extremal pair �"u�t�� �t� of the optimal control problem� consider
Jacobi equation

�� � !bt���� � � � � T���T
�M ��

In Sect� ���� we showed that absence of conjugate points at the interval ��� t��
is necessary for geometric optimality �at least in the corank one analytic case��



���� Su�cient Optimality Conditions ��


Exercise ����� Show that absence of conjugate points on ��� t�� is necessary
also for optimality �in the analytic case� reducing the optimal control problem
to a geometric one�

Now we can show that absence of conjugate points is also su�cient for
optimality �in the regular case��
A trajectory q�t�� t � ��� t��� is called strongly optimal for an optimal

control problem if it realizes a local minimum of the cost functional w�r�t� all
trajectories of the system close to q�t� in the uniform topology C���� t���M �
and having the same endpoints as q�t�� If the minimum is strict� then the
trajectory q�t� is called strictly strongly optimal �

Theorem ���	� Let �t� t � ��� t��� be a regular normal extremal in the problem
with integral cost and �xed time� and let the maximized Hamiltonian H���
be smooth in a neighborhood of �t� If the segment ��� t�� does not contain
conjugate points� then the extremal trajectory q�t� � ���t�� t � ��� t��� is
strictly strongly optimal�

Proof� We apply the theory of �elds of extremals �see Sect� ����� and embed �t
into a family of extremals well projected to M �
The maximized Hamiltonian

H��� � max
u�U

hu���� � � T �M�

is de�ned and smooth� Then by Theorem ����� it is enough to construct a
function a � C��M � such that the family of manifolds

Lt � et
�H�L�� � T �M� t � ��� t���

L� � f� � dqag � T �M�

�� � L��

has a good projection to M 


� 
 Lt �M is a di�eomorphism near �t� t � ��� t���

In other words� we require that the tangent spaces T�tLt � et
�H
� �T��L�� have

zero intersection with the vertical subspaces �t � T�t�T
�
q�t�M �


et
�H
� �T��L�� ��t � f�g� t � ��� t���

This is possible due to the absence of conjugate points �a typical picture for
a conjugate point ! fold for projection onto M ! is shown at Fig� ������
Below we show that such a manifold L� exists by passing to its tangent

space L� ! a Lagrangian subspace in � �see de�nition in Subsect� �������� For
any Lagrangian subspace L� � � transversal to ��� one can �nd a function
a � C��M � such that the graph of its di�erential L� � f� � dqag � T �M
satis�es the conditions
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M

q�
q�t�

�

�t

�t

��

et
�H

L� � T �

q�
M

Fig� ����� Conjugate point as a fold

��� �� � L��
��� T��L� � L��

Indeed� in canonical coordinates �p� q� on T �M � take a function of the form

a�q� � hp�� qi �
�
qTSq� �� � �p�� ���

with a symmetric n� n matrix S� Then

L� � f� � �p� q� j p � p�  Sqg�
T��L� � f�dp� dq� j dp � Sdqg

and it remains to choose the linear mapping S with the graph L�� Notice
that the symmetry of the matrix S corresponds to the Lagrangian property
of the subspace L�� Below we use a similar construction for parametrization
of Lagrangian subspaces by quadratic forms�
To complete the proof� we have to �nd a Lagrangian subspace L� � �

such that �
et
�H
� L�

�
��t � f�g� t � ��� t���

By �������� the �ow of the maximized Hamiltonian decomposes


et
�H � �t 	 P ���

t � �t �
��
exp

Z t

�

!�� d
�
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Notice that the �ow P ���
t on T �M is induced by the �ow Pt on M � thus it

preserves the family of vertical subspaces
�
P ���
t

�
��� � �t�

So it remains to show that there exists a Lagrangian subspace L� � � for
which

��t�L�� ��� � f�g� t � ��� t��� �������

Proposition ���� relates the Hamiltonian bt of Jacobi equation to the
Hamiltonian �t


�

�
Hess�� �t � bt�

Thus the �eld !bt is the linearization of the �eld !�t at the equilibrium point ��

the Hamiltonian bt and the Hamiltonian �eld !bt are respectively the main
terms in Taylor expansion of �t and !�t at ��� Linearization of a �ow is the
�ow of the linearization� thus�

��
exp

Z t

�

!�� d


�
���

�
��
exp

Z t

�

!b� d
�

Introduce notation for the �ow of Jacobi equation


Bt �
��
exp

Z t

�

!b� d
�

then
�t��� � Bt�

and equality ������� reads

�BtL�� ��� � f�g� t � ��� t��� �������

It remains to prove existence of a Lagrangian subspace L� that satis�es this
equality�
Recall that the segment ��� t�� does not contain conjugate points


�Bt��� ��� � Ct� t � ��� t���
where Ct is the space of constant vertical solutions to Jacobi equation on ��� t��
see ��������
In order to make the main ideas of the proof more clear� we consider �rst

the simple case where

Ct � f�g� t � ��� t��� �������

i�e��
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�Bt��� ��� � f�g� t � ��� t���
Fix any � � ��� t��� By continuity of the �ow Bt� there exists a neighbor�

hood of the vertical subspace �� such that for any Lagrangian subspace L�

from this neighborhood

�BtL�� ��� � f�g� t � ��� t���
In order to complete the proof� it remains to �nd such a Lagrangian sub�
space L� satisfying the condition

�BtL�� ��� � f�g� t � ��� ���
We introduce a parametrization of the set of Lagrangian subspaces L� �

� su�ciently close to ��� Take any Lagrangian subspace H � � which is
horizontal� i�e�� transversal to the vertical subspace ��� Then the space �
splits


� � �� "H�

Introduce Darboux coordinates �p� q� on � such that

�� � f�p� ��g� H � f��� q�g�
Such coordinates can be chosen in many ways� Indeed� the symplectic form �
de�nes a nondegenerate pairing of the mutually transversal Lagrangian sub�
spaces �� and H


H � ��
� �

hf� ei � ��e� f�� e � ��� f � H�

Taking any basis e�� � � � � en in �� and the corresponding basis f�� � � � � fn
in H dual w�r�t� this pairing� we obtain a Darboux basis in �� In Darboux
coordinates the symplectic form reads

���p�� q��� �p�� q��� � hp�� q�i � hp�� q�i�
Any n�dimensional subspace L � � transversal to H is a graph of a linear
mapping

S 
 �� � H�

i�e��

L � f�p� Sp� j p � ��g�
A subspace L is Lagrangian i� the corresponding mapping S has a symmetric
matrix in a symplectic basis �exercise�


S � S��
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Introduce the quadratic form on �� with the matrix S


S�p� p� � hp� Spi�

So the set of Lagrangian subspaces L � � transversal to the horizon�
tal space H is parametrized by quadratic forms S on ��� We call such
parametrization of Lagrangian subspaces L � �� L � H � f�g� a ����H��
parametrization�
Consider the family of quadratic forms St that parametrize a family of

Lagrangian subspaces of the form

Lt � BtL��

i�e��

Lt � f�p� Stp� j p � ��g�

Lemma ���
�
�St�p� p� � �bt�p� Stp��

Proof� Take any trajectory �p� q� � �pt� qt� of the Hamiltonian �eld !bt� We
have

q � Stp�

thus
�q � �Stp St �p�

i�e��
!bt�p� q� �

�
�p� �Stp St �p

�
�

Since the Hamiltonian bt is quadratic� we have

�
�
�p� q��!bt�p� q�

�
� �bt�p� q��

But the left�hand side is easily computed


�
�
�p� q��!bt�p� q�

�
� � ��p� q�� � �p� �q��

� �
�
�p� Stp�� � �p� �Stp St �p�

�
�
D
p� �Stp St �p

E
� h �p� Stpi

�
D
p� �Stp

E
by symmetry of St� ut
Since the Hamiltonian �t attains minimum at ��� then bt � �� thus

�St � ��
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The partial order on the space of quadratic forms induced by positive forms
explains how one should choose the initial subspace L�� Taking any Lagrangian
subspace L� � � with the corresponding quadratic form

S� 	 �

su�ciently close to the zero form� we obtain

St 	 �� t � ��� ���

That is�
Lt ��� � f�g

on ��� ��� thus on the whole segment ��� t���
We proved equality ������� in the simple case �������� Now we consider

the general case� The intersection �Bt��� ��� � Ct is nonempty now� but
we can get rid of it by passing to Jacobi equation on the quotient C�t �Ct�
The family of constant vertical solutions Ct is monotone nonincreasing


Ct� � Ct�� for t
� � t���

We have C� � �� and set� by de�nition� Ct��� � f�g� The family Ct is
continuous from the left� denote its discontinuity points


� � s� � s� � 
 
 
 � sk � t�

�notice that in the simple case �������� we have k � �� s� � ��� The family Ct
is constant on the segments �si� si����
Construct subspaces Ei � ��� i � �� � � � � k� such that

Ct � Ei�� " Ei�� " 
 
 
 "Ek� t � �si� si����

Notice that for t � �� we obtain a splitting of the vertical subspace


�� � C� � E� " 
 
 
 "Ek�

For any horizontal Lagrangian subspace H � �� one can construct the corre�
sponding splitting of H


H � F� " 
 
 
 " Fk� ��Ei� Fj� � �� i �� j� �������

Fix any initial horizontal subspace H� � �� H���� � f�g� The following
statement completes the proof of Theorem ���� in the general case�

Lemma ������ For any i � �� � � � � k� there exist a number �i 	 � and a
Lagrangian subspace Hi � �� Hi � �� � f�g� such that any Lagrangian
subspace L� � �� L� �H� � f�g� with a ����H���parametrization S��p� p� �
�hp� pi� � � � � �i� satis�es the conditions�
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��� Lt ��� � f�g� t � ��� si��
��� Lt �Hi � f�g� t � ��� si�� and the Lagrangian subspace Lt has a ����Hi��

parametrization St 	 ��

Proof� We prove this lemma by induction on i�
Let i � �� For s� � �� the statement is trivial� so we assume that s� 	 ��

Take any �� 	 � and any Lagrangian subspace L� � � with a quadratic form
�hp� pi� � � � � ��� in the ����H���parametrization�
Notice that Ct � ��� i�e�� Btj��

� Id� for t � ��� s��� We have

Lt ��� � BtL� �Bt�� � Bt�L� ���� � f�g� t � ��� s���

By continuity of the �ow Bt� there exists a horizontal Lagrangian subspace H�

with a ����H���parametrization ��hp� pi� � 	 �� such that Lt�H� � f�g� t �
��� s��� One can easily check that the subspace L� in ����H���parametrization
is given by the quadratic form S��p� p� � ��hp� pi 	 �� �� � ����  ���� � ��
We already proved that �St � �� thus

St 	 �� t � ��� s���

in the ����H���parametrization�
The induction basis �i � �� is proved�
Now we prove the induction step� Fix i � �� assume that the statement of

Lemma ����� is proved for i� and prove it for i ��
Let t � �si� si���� then Ct � Ei�� " 
 
 
 " Ek� Introduce a splitting of the

horizontal subspace Hi as in �������


Hi � F� " 
 
 
 " Fk�

Denote

E�� � E� " 
 
 
 "Ei� E�� � Ct � Ei�� " 
 
 
 "Ek�

F �� � F� " 
 
 
 " Fi� F �� � Fi�� " 
 
 
 " Fk�

L�
� � L� � �E�� " F ���� L�

� � L� � �E�� " F ����

Since BtE
�
� � E��� then the skew�orthogonal complement �E���� � E�� "

E�� " F �� is also invariant for the �ow of Jacobi equation
 Bt�E
�
��
� � �E�����

In order to prove that Lt ��� � f�g� compute this intersection� We have
�� � �E����� thus

BtL� ��� � BtL� �Bt�E
�
��
� ��� � Bt�L� � �E����� ��� � BtL

�
� ����
�������

So we have to prove that BtL
�
� ��� � f�g� t � �si� si����

Since the subspaces E�� and �E���� are invariant w�r�t� the �ow Bt� the
quotient �ow is well�de�ned
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eBt 
 e� � e�� e� � �E���
��E���

In the quotient� the �ow eBt has no constant vertical solutions
eBt
e�� � e�� � f�g� t � �si� si����e�� � ���E

�
��

By the argument already used in the proof of the simple case �������� it follows
that eBt

eL�
� � e�� � f�g� t � �si� si����eL�

� � L�
��E

�
��

for L� su�ciently close to ��� i�e�� for � su�ciently small� That is�

BtL
�
� ��� � E��� t � �si� si����

Now it easily follows that this intersection is empty


BtL
�
���� � BtL

�
��E�� � BtL

�
��BtE

�
� � Bt�L

�
��E��� � f�g� t � �si� si����

In view of chain ��������

Lt ��� � f�g� t � �si� si����

that is� we proved condition ��� in the statement of Lemma ����� for i  ��
Now we pass to condition ���� In the same way as in the proof of the

induction basis� it follows that there exists a horizontal Lagrangian subspace
Hi�� � � such that the curve of Lagrangian subspaces Lt� t � ��� si���� is
transversal to Hi��� In the ����Hi����parametrization� the initial subspace
L� is given by a positive quadratic form S��p� p� � ��hp� pi� � � �� � �� Since
�St � �� then

St 	 �� t � ��� si����

Condition ��� is proved for i  ��
The induction step is proved� and the statement of this lemma follows� ut
By this lemma�

Lt ��� � f�g� t � ��� t���
for all initial subspaces L� given by quadratic forms S� � �hp� pi� � � � � �k�
for some �k 	 �� in a ����H���parametrization� This means that we con�
structed a family of extremals containing �t and having a good projection
to M � By Theorem ����� the extremal �t� t � ��� t��� is strongly optimal� The�
orem ���� is proved� ut
For the problem with integral cost and free terminal time t�� a similar

argument and Theorem ���� yield the following su�cient optimality condition�

Theorem ������ Let �t� t � ��� t��� be a regular normal extremal in the prob�
lem with integral cost and free time� and let H��� be smooth in a neighborhood
of �t� If there are no conjugate points at the segment ��� t��� then the extremal
trajectory q�t� � ���t�� t � ��� t��� is strictly strongly optimal�



��

Reduction

In this chapter we consider a method for reducing a control�a�ne system to
a nonlinear system on a manifold of a less dimension�

���� Reduction

Consider a control�a�ne system

�q � f�q�  
mX
i��

uigi�q�� ui � R� q �M� ������

with pairwise commuting vector �elds near controls


�gi� gj� � �� i� j � �� � � � �m�

The �ow of the system can be decomposed by the variations formula


��
exp

Z t

�

�
f  

mX
i��

ui�
 �gi

�
d
 �

��
exp

Z t

�

e
Pm

i�� wi��� ad gif d
 	 e
Pm

i�� wi�t�gi �

������

wi�t� �

Z t

�
ui�
 � d
�

Here we treat
Pm

i�� ui�
 �gi as a nonperturbed �ow and take into account that
the �elds gi mutually commute� Introduce the partial system corresponding
to the second term in composition ������


�q � e
P

m
i�� wi ad gif�q�� wi � R� q �M� ������

where wi are new controls� Attainable sets A��t� of the initial system ������
and A��t� of the partial system ������ for time t from a point q� � M are
closely related one to another
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A��t� � A��t� 	
n
e
P

m
i�� wigi j wi � R

o
� cl�A��t��� ������

Indeed� the �rst inclusion follows directly from decomposition ������� To prove
the second inclusion in ������� notice that the mapping

w� 
 � �� q� 	 ��
exp

Z t

�

e
Pm

i�� wi��� ad gif d


is continuous in L� topology� this follows from the asymptotic expansion of
the chronological exponential� Thus the mapping

�w� 
 �� v� �� q� 	 ��
exp

Z t

�

e
Pm

i�� wi��� ad gif d
 	 e
Pm

i�� vigi

is continuous in topology of L� �Rm� Finally� the mapping

u� 
 � �� �w� 
 �� v� �
�� 	Z

�

u�
 � d
�

tZ
�

u�
 � d


�A
has a dense image in L��Rm� Then decomposition ������ implies the second
inclusion in �������
The partial system ������ is invariant w�r�t� the �elds gi
�

e
P

m
i�� vigi

�
�
e
P

m
i�� wi ad gif � e

P
m
i���wi�vi� ad gif� ������

Thus chain ������ and equality ������ mean that the initial system ������ can
be considered as a composition of the partial system ������ with the �ow of
the �elds gi
 any time t attainable set of the initial system is �up to closure�
the time t attainable set of the partial system plus a jump along gi� moreover�
the jump along gi is possible at any instant�
Let �u�t�� �t� be an extremal pair of the initial control�a�ne system� The

extremal �t is necessarily totally singular� moreover the maximality condition
of PMP is equivalent to the identity

h�t� gii � ��
It is easy to see that

�t �
�
e
Pm

i�� wi�t�gi
��

�t

is an extremal of system ������ corresponding to the control

w�t� �

Z t

�

u�
 � d
�

moreover�

h�t� gii � �� ������
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�Here� we use the term extremal as a synonym of a critical point of the end�
point mapping� i�e�� we require that the extremal control be critical� not nec�
essarily minimizing� for the control�dependent Hamiltonian of PMP�� Con�
versely� if �t is an extremal of ������ with a Lipschitzian control w�t�� and if
identity ������ holds� then

�t �
�
e�
P

m
i�� wi�t�gi

��
�t

is an extremal of the initial system ������ with the control

u�t� � �w�t��

Moreover� the strong generalized Legendre condition for an extremal �t of
the initial system coincides with the strong Legendre condition for the cor�
responding extremal �t of the partial system� In other words� the passage
from system ������ to system ������ transforms nice singular extremals �t
into regular extremals �t�

Exercise ����� Check that the extremals �t and �t have the same conjugate
times�

Since system ������ is invariant w�r�t� the �elds gi� this system can be
considered on the quotient manifold of M modulo action of the �elds gi if the
quotient manifold is well�de�ned� Consider the following equivalence relation
on M 


q� � q � q� � Oq�g�� � � � � gm��
Suppose that all orbits Oq�g�� � � � � gm� have the same dimension and� more�
over� the following nonrecurrence condition is satis�ed
 for each point q �M
there exist a neighborhood Oq � q and a manifoldNq � M � q � Nq� transver�
sal to Oq�g�� � � � � gm�� such that any orbit Oq� �g�� � � � � gm�� q� � Oq� inter�
sects Nq at a unique point� In particular� these conditions hold if M � Rn

and gi are constant vector �elds� or if m � � and the �eld g� is nonsingu�
lar and nonrecurrent� If these conditions are satis�ed� then the space of orbits
M�� is a smooth manifold� Then system ������ is well�de�ned on the quotient
manifoldM��


�q � e
Pm

i�� wi ad gif�q�� wi � R� q �M��� ������

The passage from the initial system ������ a�ne in controls to the reduced
system ������ nonlinear in controls decreases dimension of the state space and
transforms singular extremals into regular ones�
Let � 
 M �M�� be the projection� For the attainable set A��t� of the

reduced system ������ from the point ��q��� inclusions ������ take the form

A��t� � ����A��t�� � cl�A��t��� ������
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It follows from the analysis of extremals above that q�t� is an extremal curve
of the initial system ������ i� its projection ��q�t�� is an extremal curve of
the reduced system ������� The �rst inclusion in ������ means that if ��q�
 ���

 � ��� t�� is geometrically optimal� then q�
 �� 
 � ��� t�� is also geometrically
optimal�
One can also de�ne a procedure of inverse reduction� Given a control sys�

tem

�q � f�q� w�� q �M� w � Rn� ������

we restrict it to Lipschitzian controls w� 
 � and add an integrator
�
�q � f�q� w��

�w � u�
�q� w� �M �Rn� u � Rn� �������

Exercise ����� Prove that system ������ is the reduction of system ��������

���� Rigid Body Control

Consider the time�optimal problem for the system that describes rotations of
a rigid body� see Sect� ����


�q � q�a ub�� q � SO���� u � R� �������

where
a� b � so���� ha� bi � �� jbj � �� a �� ��

Notice that in Sect� ���� we assumed jaj � �� not jbj � � as now� but one case
is obtained from another by dividing the right�hand side of the system by a
constant�
We construct the reduced system for system ��������
The state space SO��� factorizes modulo orbits qesb� s � R� of the �eld qb�

The corresponding equivalence relation is


q � qesb� s � R�

and the structure of the factor space is described in the following statement�

Proposition �����
SO����� � S��

the canonical projection is

q �� q�� q � SO���� � � S�� �������
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Here � � S� � R� is the unit vector corresponding to the matrix b � so���


� �

�� b�
b�
b�

�A � b �

�� � �b� b�
b� � �b�
�b� b� �

�A �

Proof� The group SO��� acts transitively on the sphere S�� The subgroup of
SO��� leaving a point � � S� �xed consists of rotations around the line ��
i�e�� it is

eRb � fesb j s � Rg�
Thus the quotient SO����eRb � SO����� is di�eomorphic to S�� projection
SO��� � S� is given by �������� and level sets of this mapping coincide with
orbits of the �eld qb� ut
The partial system ������ in this example takes the form

�q � qew ad ba� q � SO���� w � R�
and the reduced system ������ is

d

d t
�q�� � qew ad ba�� q� � S�� �������

The right�hand side of this symmetric control system de�nes a circle of ra�
dius jaj in the tangent plane �q��� � Tq�S

�� In other words� system �������
determines a Riemannian metric on S�� Since the vector �elds in the right�
hand side of system ������� are constant by absolute value� then the time�
optimal problem is equivalent to the Riemannian problem �time minimization
is equivalent to length minimization if velocity is constant by absolute value��
Extremal curves �geodesics� of a Riemannian metric on S� are arcs of

great circles� they are optimal up to semicircles� And the antipodal point is
conjugate to the initial point� Conjugate points for the initial and reduced
systems coincide� thus for both systems extremal curves are optimal up to the
antipodal point�

���� Angular Velocity Control

Consider the system that describes angular velocity control of a rotating rigid
body� see ������


�� � �� ��  ul� u � R� � � R�� �������

Here � is the vector of angular velocity of the rigid body in a coordinate
system connected with the body� and l � R� is a unit vector in general position
along which the torque is applied� Notice that in Sect� ��� we allowed only
torques u � ��� while now the torque is unbounded� In Sect� ��� we proved
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that the system with bounded control is completely controllable �even in the
six�dimensional space�� Now we show that with unbounded control we have
complete controllability in R� for an arbitrarily small time�
We apply the reduction procedure to the initial system �������� The partial

system reads now

�� � ew ad l�� � ���

� ��  wl� � ���  wl�� w � R� � � R��

The quotient of R� modulo orbits of the constant �eld l can be realized as
the plane R� passing through the origin and orthogonal to l� Then projection
R�� R� is the orthogonal projection along l� and the reduced system reads

�x � �x wl� � ��x  wl�� hx� ��x  wl�� li l� x � R�� w � R�
�������

Introduce Cartesian coordinates inR� corresponding to the orthonormal frame
with basis vectors collinear to the vectors l� l � �l� l � �l � �l�� In these
coordinates x � �x�� x�� and the reduced system ������� takes the form


�x� � b��x
�
�  ��b�� � b���x� � b��x��w � b��w

�� �������

�x� � �b��x�x�  ��b�� � b���x�  b��x��w� �������

where b � �bij� is the matrix of the operator � in the orthonormal frame�
Direct computation shows that b�� � � and b���b�� �� �� In polar coordinates
�r� �� in the plane �x�� x��� the reduced system �������� ������� reads

�r � rF �cos�� sin��w � b�� cos�w��

�� � �b��r sin�� ���r� sin�w�  G�cos�� sin��w�

where F and G are homogeneous polynomials of degree � with G���� �� �
b�� � b���
Choosing appropriate controls� one can construct trajectories of the system

in R� of the following two types


��� �spirals
� i�e�� trajectories starting and terminating at the positive semi�
axes x�� not passing through the origin �r �� ��� and rotating counterclock�
wise � �� 	 ���

��� �horizontal
 trajectories almost parallel to the axis x� � �x� $ �x���

Moreover� we can move fast along these trajectories� Indeed� system ��������
������� has an obvious self�similarity ! it is invariant with respect to the
changes of variables x� �� 
x�� x� �� 
x�� w �� 
w� t �� 
��t �
 	 ���
Consequently� one can �nd �spirals
 arbitrarily far from the origin and with
an arbitrarily small time of complete revolution� Further� it is easy to see
from equations �������� ������� that taking large in absolute value controls w
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one obtains arbitrarily fast motions along the �horizontal
 trajectories in the
positive direction of the axis x��
Combining motions of types ��� and ���� we can steer any point x � R� to

any point %x � R� for any time � 	 �� see Fig� ����� Details of this argument
are left to the reader as an exercise� see also �����

x

�x

x�

x�

Fig� ����� Complete controllability of system ������


That is� time t attainable sets A�
x�t� of the reduced system ������� from a

point x satisfy the property


A�
x��� � R

� � x � R�� � 	 ��

By virtue of chain ������� attainable sets A�
��t� of the initial system �������

satisfy the equality

cl�A�
����� � R

� � � � R�� � 	 ��

Since the vector l is in general position� the ��dimensional system ������� has a
full rank �see Proposition ����� thus it is completely controllable for arbitrarily
small time


A�
���� � R

� � � � R�� � 	 ��





��

Curvature

���� Curvature of �
Dimensional Systems

Consider a control system of the form

�q � fu�q�� q �M� u � U� ������

where
dimM � �� U � R or S��

We suppose that the right�hand side fu�q� is smooth in �u� q�� A well�known
example of such a system is given by a two�dimensional Riemannian problem

locally� such a problem determines a control system

�q � cosu f��q�  sinu f��q�� q �M� u � S��

where f�� f� is a local orthonormal frame of the Riemannian structure� For
control systems ������� we obtain a feedback�invariant form of Jacobi equation
and construct the main feedback invariant ! curvature �in the Riemannian
case this invariant coincides with Gaussian curvature�� We prove comparison
theorem for conjugate points similar to those in Riemannian geometry�
We assume that the curve of admissible velocities of control system ������

satis�es the following regularity conditions


fu�q� � � fu�q�

� u
�� ��

� fu�q�

� u
� �� fu�q�

� u�
�� �� q �M� u � U� ������

Condition ������ means that the curve ffu�q� j u � Ug � TqM is strongly
convex� it implies strong Legendre condition for extremals of system �������
Introduce the following control�dependent Hamiltonian linear on �bers of

the cotangent bundle

hu��� � h�� fu�q�i
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and the maximized Hamiltonian

H��� � max
u�U

hu���� ������

We suppose that H��� is de�ned in a domain in T �M under consideration�
Moreover� we assume that for any � in this domain maximum in ������ is
attained for a unique u � U � this means that any line of support touches the
curve of admissible velocities at a unique point� Then the convexity condi�
tion ������ implies that H��� is smooth in this domain and strongly convex
on �bers of T �M � Moreover� H is homogeneous of order one on �bers� thus
we restrict to the level surface

H � H����� � T �M�

Denote the intersection with a �ber

Hq � H � T �q M�

������ Moving Frame

We construct a feedback�invariant moving frame on the ��dimensional mani�
fold H in order to write Jacobi equation in this frame� Notice that the max�
imized Hamiltonian H is feedback�invariant since it depends on the whole
admissible velocity curve fU �q�� not on its parametrization by u� Thus the
level surface H and the �ber Hq are also feedback�invariant�
We start from a vertical �eld tangent to the curve Hq � Introduce polar

coordinates in a �ber


p � �r cos�� r sin�� � T �qM�

then Hq is parametrized by angle �


Hq � fp � p���g�
Since the curve Hq does not pass through the origin
 p��� �� �� it follows that

p��� � d p

d�
��� �� �� ������

Decompose the second derivative in the frame p�
d p

d�



d� p

d��
��� � a����p���  a����

d p

d�
����

The curve Hq is strongly convex� thus

a���� � ��
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A change of parameter � � ���� gives

d� p

d ��
� a����

�
d�

d �

��

p���  "a����
d p

d �
����

thus there exists a unique �up to translations and orientation� parameter �
on the curve Hq such that

d� p

d ��
� �p���  b���

d p

d �
����

We �x such a parameter � and de�ne the corresponding vertical vector �eld
on H


v �
�

� �
�

In invariant terms� v is a unique �up to multiplication by ��� vertical �eld
on H such that

L�
vs � �s  b Lvs� ������

where s � p dq is the tautological form on T �M restricted to H�
We de�ne the moving frame on H as follows


V� � v� V� � �v� !H�� V� � !H�

Notice that these vector �elds are linearly independent since v is vertical and
the other two �elds have linearly independent horizontal parts


�� !H � f�

���v� !H� �
� fu
� u

d u

d �
�

d u

d �
�� ��

Here we denote by u��� the maximizing control on Hq


hp���� fu���i � hp���� fui� u � U�

Di�erentiating the identity 
p����

� fu
� u

����
u���

!
� �

w�r�t� �� we obtain
d u

d �
�� ��

In order to write Jacobi equation along an extremal �t� we require Lie
brackets of the Hamiltonian �eld !H with the vector �elds of the frame


� !H� V�� � �V��
� !H� V�� � 	�

� !H� V�� � ��

The missing second bracket is given by the following proposition�
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Theorem �����

� !H� �!H� v�� � �#v� ������

The function # � #���� � � H� is called the curvature of the two�

dimensional control system ������� The Hamiltonian �eld !H is feedback�
invariant� and the �eld v is feedback�invariant up to multiplication by ���
Thus the curvature # is a feedback invariant of system �������
Now we prove Theorem �����

Proof� The parameter � provides an identi�cation

H �� f�g �M� ������

thus tangent spaces to H decompose into direct sum of the horizontal and
vertical subspaces� By duality� any di�erential form on H has a horizontal
and vertical part� Notice that trivialization ������ is not feedback invariant
since the choice of the section � � � is arbitrary� thus the form d� and the
property of a subspace to be horizontal are not feedback�invariant�
For brevity� we denote in this proof

s � sjH �

a horizontal form on H� Denote the Lie derivative

Lv � L �

� �
� �

and consider the following coframe on H

d�� s� s�� ������

It is easy to see that these forms are linearly independent
 d� is vertical� while
the horizontal forms s� s� are linearly independent by ������� Now we construct
a frame on H dual to coframe �������

Decompose !H into the horizontal and vertical parts


!H � Y�	z

horizontal

 

�

� �� 	z 

vertical

� 
 � 
��� q�� ������

We prove that the �elds

�

� �
� Y� Y � �

�
�

� �
� Y

�
give a frame dual to coframe ������� We have to show only that the pair of
horizontal �elds Y � Y � is dual to the pair of horizontal forms s� s�� First�

hs�� Y i � hs�� !Hi � h�� fui � H��� � ��
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Further�

hs�� Y �i � hs�� !H�i �
�
��

� fu
� �

�
�

�
��

� fu
� u

�
� 	z 


��

d u

d �
� ��

Consequently�
� � hs� Y i� � hs�� Y i hs� Y �i�

i�e��
hs�� Y i � ��

Finally�
� � hs�� Y i� � hs��� Y i hs�� Y �i�

Equality ������ can be written as s�� � �s  bs�� thus

hs�� Y �i � �hs��� Y i � hs � bs�� Y i � ��

So we proved that the frame

�

� �
� Y� Y � � VecH

is dual to the coframe
d�� s� s� � ���H��

We complete the proof of this theorem computing the bracket � !H� �!H� v�� using
these frames�
First consider the standard symplectic form


�jH � d �sjH� � ds � d� � s�  dqs�

where dqs is the di�erential of the form s w�r�t� horizontal coordinates� The
horizontal ��form dqs decomposes


dqs � c s � s�� c � c��� q��

thus
�jH � d� � s�  cs � s��

Since
i �H �jH � ��

then

�jH � !H� 
 � � �jH �Y  

�

� �
� 
 �

� 
s� � hs�� Y i d�  c hs� Y is� � c hs�� Y is
� 
s�  cs� � ��
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i�e�� 
 � �c� thus
!H � Y � c

�

� �
�

Now we can compute the required Lie bracket�

!H � �
�
�

� �
� !H

�
� Y � � c�

�

� �
�

consequently��
!H�

�
!H�

�

� �

��
�
h
!H�� !H �

i
�

�
Y � c

�

� �
��Y �  c�

�

� �

�
�
�
!Hc� � !H �c

� �

� �� 	z 

vertical part

 �Y �� Y �  cY �� � c�Y �� 	z 

horizontal part

�

In order to complete the proof� we have to show that the horizontal part of
the bracket � !H� � !H� 



 �
�� vanishes�

The equality s�� � �s bs� implies� by duality of the frames Y � Y � and s�
s�� that

Y �� � �Y � bY ��

Further�

ds � d� � s�  cs � s��
d�s�� � �ds�� � d� � s��  c�s � s�  cs � s��

� �d� � s� b d� � s�  �c�  cb�s � s��

and we can compute the bracket �Y �� Y � using duality of the frames and Propo�
sition ����


�Y �� Y � � cY  �c�  cb�Y ��

Summing up� the horizontal part of the �eld � !H� � !H� v�� is

�Y �� Y �  cY �� � c�Y � � cY  �c�  cb�Y � � cY � cbY � � c�Y � � ��

We proved that �
!H�

�
!H�

�

� �

��
� �# �

� �
�

where the curvature has the form

# � � !Hc�  !H�c�

ut
Remark �	��� Recall that the vertical vector �eld v that satis�es ������ is
unique up to a factor ��� On the other hand� the vertical �eld v that satis�
�es ������ is unique� up to a factor constant along trajectories of !H �so this
factor does not a�ect #�� Consequently� any vertical vector �eld v for which an
equality of the form ������ holds can be used for computation of curvature #�
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So now we know all brackets of the Hamiltonian vector �eld X � !H with
the vector �elds of the frame V�� V�� V�


� !H� V�� � �V�� �������

� !H� V�� � #V�� �������

� !H� V�� � �� �������

������ Jacobi Equation in Moving Frame

We apply the moving frame constructed to derive an ODE on conjugate time
of our two�dimensional system ! Jacobi equation in the moving frame�
As in Chap� ��� consider Jacobi equation along a regular extremal �t�

t � ��� t��� of the two�dimensional system ������


�� � !bt���� � � � � T���T
�M ��

and its �ow

Bt �
��
exp

Z t

�

!b� d
�

Recall that �� � T���T
�
q�M � is the vertical subspace in � and Ct � �� is the

subspace of constant vertical solutions to Jacobi equation at ��� t�� see ��������
The intersection Bt�� � �� always contains the subspace Ct� An instant
t � ��� t�� is a conjugate time for the extremal �t i� that intersection is greater
than Ct


Bt�� ��� �� Ct�

In order to complete the frame V�� V�� V� to a basis in T���T
�M �� consider

a vector �eld transversal to H ! the vertical Euler �eld E � Vec�T �M � with
the �ow

� 	 etE � et 
 �� � � T �M� t � R�
In coordinates �p� q� on T �M � this �eld reads

E � p
�

� p
�

The vector �elds V�� V�� V�� E form a basis in T��T
�M �� � � H� The �elds

V� �



 � and E are vertical


�� � span�V������ E������

To compute the constant vertical subspace Ct� evaluate the action of the
�ow Bt on these �elds� In the proof of Theorem ����� we decomposed the �ow
of Jacobi equation


Bt��� � �P
�
t �� e

t �H
� ����

Thus
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BtE���� � �P
�
t �� e

t �H
� E�����

The Hamiltonian H is homogeneous of order one on �bers� consequently the
�ow of !H is homogeneous as well


�k�� 	 et �H � k
�
� 	 et �H

�
� k 	 ��

and the �elds !H and E commute� That is� the Hamiltonian vector �eld !H
preserves the vertical Euler �eld E� Further� the �ow P �t is linear on �bers�
thus it also preserves the �eld E� Summing up� the vector E���� is invariant
under the action of the �ow of Jacobi equation� i�e��

RE���� � Ct�

It is easy to see that this inclusion is in fact an equality� Indeed� in view of
bracket ��������

et
�H
� V����� � �t 	 e�t ad �HV� � �t 	 �V�  tV�  o�t�� �� T�t�T

�
q�t�M ��

thus
BtV����� �� ��

for small t 	 �� This means that

Ct � RE����� t � ��� t���

Thus an instant t is a conjugate time i�

Bt�� ��� �� RE�����

i�e��

et
�H
� V����� � RV���t��

or� equivalently�

�� 	 et ad �HV� � R��� 	 V��� �������

Now we describe the action of the �ow of a vector �eld on a moving frame�

Lemma ����� Let N be a smooth manifold� dimN � m� and let vector �elds
V�� � � � � Vm � VecN form a moving frame on N � Take a vector �eld X �
VecN � Let the operator adX have a matrix A � �aij� in this frame�

�adX�Vj �
mX
i��

aijVi� aij � C��N ��

Then the matrix � �t� � ��ij�t�� of the operator et ad
�H in the moving frame�
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et adX Vj �
mX
i��

�ij�t�Vi� �ij�t� � C��N �� �������

is the solution to the following Cauchy problem�

�� �t� � � �t�A�t�� �������

� ��� � Id� �������

where A�t� � �etXaij��

Proof� Initial condition ������� is obvious� In order to derive the matrix equa�
tion �������� we di�erentiate identity ������� w�r�t� t


mX
i��

��ij�t�Vi � etadX �X�Vj� � et adX

�
mX
k��

akjVk

�
�

mX
k��

�
etXakj

�
et adXVk

�
mX

k	i��

�
etXakj

�
�ikVi�

and the ODE follows� ut
In view of inclusion �������� an instant t is a conjugate time i� the coe��

cients in the decomposition

�� 	 et ad �HVj �
�X
i��

�ij�t���� 	 Vi�

satisfy the equalities

����t� � ����t� � ��

By the previous lemma� the matrix � �t� � ��ij�t�� is the solution to Cauchy
problem �������� ������� with the matrix

A�t� �

�� � #t �
�� � �
� � �

�A � #t � #��t��

see Lie bracket relations ����������������
Summing up� an instant t � ��� t�� is a conjugate time i� the solutions to

the Cauchy problems�
���� � �����
���� � #t����

������ � �� ������ � �

and �
���� � �����
���� � #t����

������ � �� ������ � �
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satisfy the equalities
����t� � ����t� � ��

But Cauchy problem for ���� ��� has only trivial solution� Thus for a conjugate
time t� we obtain the linear nonautonomous system for �x�� x�� � ����� ����
�

�x� � �x��
�x� � #tx��

x���� � x��t� � �� �������

We call system �������� or� equivalently� the second order ODE

$x #tx � �� x��� � x�t� � �� �������

Jacobi equation for system ������ in the moving frame� We proved the follow�
ing statement�

Theorem ����� An instant t � ��� t�� is a conjugate time for the two�dimen�
sional system ������ i
 there exists a nontrivial solution to boundary prob�
lem ��������

Sturm�s comparison theorem for second order ODEs �see e�g� ������ implies
the following comparison theorem for conjugate points�

Theorem ����� ��� If # � C� for some C 	 � along an extremal �t� then
there are no conjugate points at the time segment ��� �C �� In particular� if # � �
along �t� then there are no conjugate points�
��� If # � C� along �t� then there is a conjugate point at the segment

��� �C ��

A typical behavior of extremal trajectories of the two�dimensional sys�
tem ������ in the cases of negative and positive curvature is shown at Figs� ����
and ���� respectively�

q

q

Fig� ����� � 	 	 Fig� ����� � 
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Example �	��� Consider the control system corresponding to a Riemannian
problem on a ��dimensional manifoldM 


�q � cosu f��q�  sinu f��q�� q �M� u � S��

where f�� f� is an orthonormal frame of the Riemannian structure h 
 � 
 i


hfi� fji � �ij � i� j � �� ��

In this case� # is the Gaussian curvature of the Riemannian manifoldM � and
it is evaluated as follows


# � �c�� � c��  f�c� � f�c��

where ci are structure constants of the frame f�� f�
 �f�� f�� � c�f� c�f�� We
prove this formula for # in Chap� ���
For the Riemannian problem� the curvature # � #�q� depends only on the

base point q �M � not on the coordinate � in the �ber� Generally� this is not
the case
 the curvature is a function of �q� �� � H�
Optimality conditions in terms of conjugate points obtained in Chap� ��

can easily be applied to the two�dimensional system ������ under considera�
tion�
Assume �rst that tc � ��� t�� is a conjugate time for an extremal �t�

t � ��� t��� of system ������� We verify hypotheses of Proposition ����� Condi�
tion ������ implies that the extremal is regular� The corresponding control "u
has corank one since the Lagrange multiplier �t is uniquely determined by
PMP �up to a scalar factor�� Further� Jacobi equation cannot have solutions
of form �������
 if this were the case� Jacobi equation in the moving frame
$x  #tx � � would have a nontrivial solution with the terminal conditions
x�tc� � �x�tc� � �� which is impossible� Summing up� the extremal �t satis�es
hypotheses of Proposition ����� and alternative ��� of this proposition is not
realized� Thus the corresponding extremal trajectory is not locally geometri�
cally optimal�
If the segment ��� t�� does not contain conjugate points� then by Theo�

rem ����� the corresponding extremal trajectory is time�optimal compared
with all other admissible trajectories su�ciently close in M �

���� Curvature of �
Dimensional Control
A�ne Systems

In this section we consider control�a�ne ��dimensional systems


�q � f��q�  uf��q�� u � R� q �M� �������

dimM � ��
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We reduce such a system to a ��dimensional one as in Chap� �� and compute
the curvature of the ��dimensional system obtained ! a feedback invariant of
system ��������
We assume that the following regularity conditions hold on M 


f� � f� � �f�� f�� �� �� �������

f� � �f�� f�� � �f�� �f�� f��� �� �� �������

Any extremal �t of the control�a�ne system ������� is totally singular� it
satis�es the equality

h���t� � h�t� f�i � �� �������

and the corresponding extremal control cannot be found immediately from
this equality� Di�erentiation of ������� w�r�t� t yields

h����t� � h�t� �f�� f��i � ��
and one more di�erentiation leads to an equality containing control


h�����t�  u�t�h�����t� � h�t� �f�� �f�� f���i u�t�h�t� �f�� �f�� f���i � ��
Then the singular control is uniquely determined


u � "u�q� � �h������

h������
� h���� � h����� � ��

We apply a feedback transformation to system �������


u �� u� "u�q��
This transformation a�ects the �eld f�� but preserves regularity conditions
�������� �������� After this transformation the singular control is

u � ��

In other words�

�f� � ��f�� f�� � � 
 ��f�� �f�� f��� � ��

So we assume below that

�f�� �f�� f��� � span�f�� �f�� f���� �������

In a tubular neighborhood of a trajectory of the �eld f�� consider the
reduction of the three�dimensional system �������


d "q

d t
� ew ad f�f��"q�� w � ���� ��� "q � fM �M�eRf�� �������
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for a small enough ��
This system has the same conjugate points as the initial one �������� If

system ������� has no conjugate points� then the corresponding singular tra�
jectory of system ������� is strongly geometrically optimal� i�e�� comes� locally�
to the boundary of attainable set�
Describe the cotangent bundle of the quotient fM � A tangent space to fM

consists of tangent vectors to M modulo f�


T	q
fM �� TqM�Rf��q�� �������

q �M� "q � q 	 eRf� � fM�

identi�cation ������� is given by the mapping

v �� "v� v � TqM� "v � T	q
fM�

v �
d

d t

����
t��

q�t�� "v �
d

d t

����
t��

"q�t��

Thus a cotangent space to fM consists of covectors on M orthogonal to f�


T �	q fM �� T �qM � fh� � �g�
� �� "�� � � T �qM � fh� � �g� "� � T �	q fM�

h"�� "vi � h�� vi� v � TqM� "v � T	q
fM�

Taking into account that the �eld f� is the projection of the Hamiltonian
�eld !h�� it is easy to see that

T �fM �� fh� � �g�eR�h��
where the mapping � �� "� is de�ned above �exercise
 show that "�� � "�� �
�� � �� 	 eR�h��� Summing up� cotangent bundle to the quotient fM is obtained

from T �M via Hamiltonian reduction by !h�
 restriction to the level surface
of h� with subsequent factorization by the �ow of !h��
Further� regularity condition ������� implies that the �eld !h� is transver�

sal to the level surface fh� � h�� � �g� so this level surface gives another
realization of the cotangent bundle to the quotient


T �fM �� fh� � h�� � �g�
In this realization� !h� is the Hamiltonian �eld corresponding to the maximized
Hamiltonian ! generator of extremals � !H in Sect� ������ The level surface of
the maximized Hamiltonian �H in Sect� ����� realizes as the submanifold

fh� � h�� � �� h� � �g � T �M�

Via the canonical projection � 
 T �M �M � this submanifold can be identi�
�ed with M � so the level surface H of Sect� ���� realizes now as M � We use
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this realization to compute curvature of the three�dimensional system �������
as the curvature # of its two�dimensional reduction ��������

The Hamiltonian �eld !H of Sect� ���� is now f�� and f� is a vertical �eld�
It remains to normalize f�� i�e�� to �nd a vertical �eld af�� a � C��M �� such
that

�f�� �f�� af��� � �#af�� �������

see ������� The triple
f�� f�� f� � �f�� f��

forms a moving frame on M � consider the structure constants of this frame


�fi� fj� �
�X

k��

ckjifk� i� j � �� �� ��

Notice that inclusion ������� obtained after preliminary feedback transforma�
tion reads now as c��� � �� That is why

�f�� �f�� f��� � �c���f� � c����f�� f���

Now we can �nd the normalizing factor a for f� such that ������� be satis�ed�
We have

�f�� �f�� af��� � �f�� �f�a�  a�f�� f��� � �f
�
� a�f�  ��f�a��f�� f��  a�f�� �f�� f���

� �f�� a� c���a�f�  ��f�a� c�����f�� f���

Then the required function a is found from the �rst order PDE

�f�a� c���a � ��

and the curvature is computed


# � �f�� a� c���a

a
�

Summing up� curvature of the control�a�ne 	�dimensional system ������� is
expressed through the structure constants as

# � c��� �
�

�
�c����

� � �
�
f�c

�
���

a function on the state space M �
Bounds on curvature # along a �necessarily singular� extremal of a ��

dimensional control�a�ne system allow one to obtain bounds on conjugate
time� thus on segments where the extremal is locally optimal� Indeed� by
construction� # is the curvature of the reduced ��dimensional system� As we
know from Chap� ��� reduction transforms singular extremals into regular
ones� and the initial and reduced systems have the same conjugate times�
Thus Theorem ���� can be applied� via reduction� to the study of optimality
of singular extremals of ��dimensional control�a�ne systems�



��

Rolling Bodies

We apply the Orbit Theorem and Pontryagin MaximumPrinciple to an intrin�
sic geometric model of a pair of rolling rigid bodies� We solve the controllability
problem
 in particular� we show that the system is completely controllable i�
the bodies are not isometric� We also state an optimal control problem and
study its extremals�

���� Geometric Model

Consider two solid bodies in the ��dimensional space that roll one on another
without slipping or twisting�

M

cM

Fig� ����� Rolling bodies

Rather than embedding the problem into R�� we construct an intrinsic
geometric model of the system�
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Let M and cM be two�dimensional connected manifolds ! surfaces of the
rolling bodies� In order to measure lengths of paths in M and cM � we suppose
that each of these manifolds is Riemannian� i�e�� endowed with a Riemannian
structure ! an inner product in the tangent space smoothly depending on
the point in the manifold


hv�� v�iM � vi � TxM�

hbv�� bv�icM � bvi � TbxcM�

Moreover� we suppose that M and cM are oriented �which is natural since
surfaces of solid bodies in R� are oriented by the exterior normal vector��

At contact points of the bodies x �M and bx � cM � their tangent spaces are
identi�ed by an isometry �i�e�� a linear mapping preserving the Riemannian
structures�

q 
 TxM � TbxcM�

see Fig� ����� We deal only with orientation�preserving isometries and omit

� �
x

M

bx

cM cM

M

TxM

T
bx

cM

Fig� ����� Identi�cation of tangent spaces at contact point

the words �orientation�preserving
 in order to simplify terminology� An isom�
etry q is a state of the system� and the state space is the connected ��
dimensional manifold

Q � f q 
 TxM � TbxcM j x �M� bx � cM� q an isometryg�

Denote the projections from Q to M and cM 

��q� � x� b��q� � bx� q 
 TxM � TbxcM�

q � Q� x �M� bx � cM�

Local coordinates on Q can be introduced as follows� Choose arbitrary local
orthonormal frames e�� e� on M and be�� be� on cM 


hei� ejiM � �ij � hbei� bejicM � �ij � i� j � �� ��
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For any contact con�guration of the bodies q � Q� denote by � the angle of
rotation from the frame be�� be� to the frame qe�� qe� at the contact point


qe� � cos � be�  sin � be��
qe� � � sin � be�  cos � be��

Then locally points q � Q are parametrized by triples �x� bx� ��� x � ��q� �M �bx � b��q� � cM � � � S�� Choosing local coordinates �x�� x�� on M and �bx�� bx��
on cM � we obtain local coordinates �x�� x�� bx�� bx�� �� on Q�
Let q�t� � Q be a curve corresponding to a motion of the rolling bodies�

then x�t� � ��q�t�� and bx�t� � b��q�t�� are trajectories of the contact points
in M and cM respectively� The condition of absence of slipping means that

q�t� �x�t� � �bx�t�� ������

and the condition of absence of twisting is geometrically formulated as follows


q�t� �vector �eld parallel along x�t�� � �vector �eld parallel along bx�t�� �
������

Our model ignores the state constraints that correspond to admissibility of
contact of the bodies embedded in R�� Notice although that if the surfaces M
and cM have respectively positive and nonnegative Gaussian curvatures at a
point� then their contact is locally admissible�
The admissibility conditions ������ and ������ imply that a curve x�t� �

M determines completely the whole motion q�t� � Q� That is� velocities of
admissible motions determine a rank � distribution � on the ��dimensional
space Q� We show this formally and compute the distribution � explicitly
below� Before this� we recall some basic facts of Riemannian geometry�

���� Two
Dimensional Riemannian Geometry

Let M be a ��dimensional Riemannian manifold� We describe Riemannian
geodesics� Levi�Civita connection and parallel translation on T �M �� TM �
Let h 
 � 
 i be the Riemannian structure and e�� e� a local orthonormal

frame on M �

������ Riemannian Geodesics

For any �xed points x�� x� � M � we seek for the shortest curve in M con�
necting x� and x�


�x � u�e��x�  u�e��x�� x �M� �u�� u�� � R��

x��� � x�� x�t�� � x��

l �

Z t�

�

h �x� �xi��� dt �
Z t�

�

�u��  u���
��� dt� min �
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In the same way as in Sect� ����� it easily follows from PMP that arc�length
parametrized extremal trajectories in this problem �Riemannian geodesics�
are projections of trajectories of the normal Hamiltonian �eld


x�t� � � 	 et �H���� � � H � fH � ���g � T �M�

H �
�

�
�h��  h����

hi��� � h�� eii� i � �� ��

The level surface H is a spherical bundle over M with a �ber

Hq � fh��  h�� � �g � T �qM �� S�

parametrized by angle �


h� � cos�� h� � sin��

Cotangent bundle of a Riemannian manifold can be identi�ed with the
tangent bundle via the Riemannian structure


TM �� T �M�

v �� � � hv� 
 i�
Then H � T �M is identi�ed with the spherical bundle

S � fv � TM j kvk � �g � TM

of unit tangent vectors to M � After this identi�cation� et
�H can be considered

as a geodesic �ow on S�

������ Levi�Civita Connection

A connection on the spherical bundle S � M is an arbitrary horizontal
distribution D


D � fDv � TvS j v � Sg�
Dv " Tv�Sx� � TvS� Sx � S � TxM�

Any connection D on M de�nes a parallel translation of unit tangent
vectors along curves in M � Let x�t�� t � ��� t��� be a curve in M � and let
v� � Tx���M be a unit tangent vector� The curve x�t� has a unique horizontal
lift on S starting at v�


v�t� � S� � 	 v�t� � x�t��

�v�t� � Dv�t��

v��� � v��
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Indeed� if the curve x�t� satis�es the nonautonomous ODE

�x � u��t� e��x�  u��t� e��x��

then its horizontal lift v�t� is a solution to the lifted ODE

�v � u��t� ���v�  u��t� ���v�� ������

where �i are horizontal lifts of the basis �elds ei


Dv � span����v�� ���v��� ���i � ei�

Notice that solutions of ODE ������ are continued to the whole time seg�
ment ��� t�� since the �bers Sx are compact� The vector v�t�� is the parallel
translation of the vector v� along the curve x�t��
A vector �eld v�t� along a curve x�t� is called parallel if it is preserved by

parallel translations along x�t��
Levi�Civita connection is the unique connection on the spherical bundle

S � M such that


��� velocity of a Riemannian geodesic is parallel along the geodesic �i�e�� the

geodesic �eld !H is horizontal��
��� parallel translation preserves angle� i�e�� horizontal lifts of vector �elds on
the baseM commute with the vector �eld 



 � that determines the element

of length �or� equivalently� the element of angle� in the �ber Sx�
Now we compute the Levi�Civita connection as a horizontal distribution

on H �� S� In Chap� �� we constructed a feedback�invariant frame on the
manifold H


T�H � span
�
!H�

�

� �
� !H �

�
� !H� �

�
�

� �
� !H

�
�

We have

!H � h�

�
e�  c�

�

� �

�
 h�

�
e�  c�

�

� �

�
� ������

!H � � �h�
�
e�  c�

�

� �

�
 h�

�
e�  c�

�

� �

�
� ������

where ci are structure constants of the orthonormal frame on M 


�e�� e�� � c�e�  c�e�� ci � C��M ��

Indeed� the component of the �eld !H � h�!h�  h�!h� in the tangent space of
the manifoldM is equal to h�e� h�e�� In order to �nd the component of the
�eld !H in the �ber� we compute the derivatives !Hhi in two di�erent ways
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!Hh� � �h�!h�  h�!h��h� � h��!h�h�� � h�fh�� h�g � h���c�h� � c�h���

!Hh� � !H cos� � � sin�� !H�� � �h�� !H���

similarly
!Hh� � h��c�h�  c�h�� � h�� !H���

thus
!H� � c�h�  c�h��

Consequently�

!H � h�e�  h�e�  �c�h�  c�h��
�

� �
�

and equality ������ follows� Then equality ������ is obtained by straightfor�
ward di�erentiation�
Notice that using decompositions ������� ������� we can easily compute

Gaussian curvature k of the Riemannian manifoldM via the formula of The�
orem ����
 �

!H�

�
!H�

�

� �

��
� �k �

� �
�

Since

� !H� !H �� � �c��  c�� � e�c�  e�c��
�

� �
�

then

k � �c�� � c��  e�c� � e�c�� ������

Properties ��� and ��� of the horizontal distribution D on H that deter�

mines the Levi�Civita connection mean that !H � D and e
s �
� 
� D � D� thus

D � span

�
e
s �
� 
� !H j s � R

�
�

Since

e
s �
� 
� !H � h���� s�

�
e�  c�

�

� �

�
 h��� � s�

�
e�  c�

�

� �

�
�

we obtain
D � span

�
!H� !H�

�
�

The ��form of the connection D


� � ���H�� D � Ker ��

reads
� � c���  c��� � d��

where ���� ��� is the dual coframe to �e�� e��


�i � ���M �� h�i� eji � �ij � i� j � �� ��
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���� Admissible Velocities

We return to the rolling bodies problem and write down admissibility con�
ditions ������� ������ for a curve q�t� � Q as restrictions on velocity �q�t��

Decompose velocities of the contact curves in M and cM in the orthonormal
frames


�x � a� e��x�  a� e��x�� ������

�bx � ba� be��bx�  ba� be��bx�� ������

Then the nonslipping condition ������ reads


ba� � a� cos � � a� sin �� ba� � a� sin �  a� cos �� ������

Now we consider the nontwisting condition ������� Denote the structure
constants of the frames


�e�� e�� � c�e�  c�e�� ci � C��M ��

�be�� be�� � bc�be�  bc�be�� bci � C��cM ��
Let "q 
 T �xM � T �bxcM be the mapping induced by the isometry q via identi��
cation of tangent and cotangent spaces


"q �� � cos � b��  sin � b���

"q �� � � sin � b��  cos � b���

In the cotangent bundle� the nontwisting condition means that if

��t� � �x�t�� ��t�� � H

is a parallel covector �eld along a curve x�t� �M � then

b��t� � "q�t���t� � �bx�t�� b��t�� � bH
is a parallel covector �eld along the curve bx�t� � cM �
Since the isometry q�t� rotates the tangent spaces at the angle ��t�� then

the mapping "q�t� rotates the cotangent spaces at the same angle
 b��t� �
��t�  ��t�� thus

���t� � �b��t� � ���t�� �������

A covector �eld ��t� is parallel along the curve in the base x�t� i� �� � Ker��
i�e��

�� � hc���  c���� �xi � c�a�  c�a��

Similarly� b��t� is parallel along bx�t� i�
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�b� � Dbc� b��  bc� b��� �bxE � bc� ba�  bc� ba�
� a��bc� cos �  bc� sin ��  a���bc� sin �  bc� cos ���

In view of �������� the nontwisting condition reads

�� � bc�ba�  bc�ba� � �c�a�  c�a��

� a���c�  bc� cos �  bc� sin ��  a���c� � bc� sin �  bc� cos ��� �������

Summing up� admissibility conditions ������ and ������ for rolling bodies
determine constraints ������ and ������� along contact curves ������� �������
i�e�� a rank two distribution � on Q spanned locally by the vector �elds

X� � e�  cos � be�  sin � be�  ��c�  bc� cos �  bc� sin �� �
� �

� �������

X� � e� � sin � be�  cos � be�  ��c� � bc� sin �  bc� cos �� �
� �

� �������

Admissible motions of the rolling bodies are trajectories of the control system

�q � u�X��q�  u�X��q�� q � Q� u�� u� � R� �������

���� Controllability

Denote the Gaussian curvatures of the Riemannian manifolds M and cM by
k and bk respectively� We lift these curvatures fromM and cM to Q


k�q� � k���q��� bk�q� � bk�b��q��� q � Q�

Theorem ����� ��� The reachable set O of system ������� from a point q � Q
is an immersed smooth connected submanifold of Q with dimension equal to �
or �� Speci�cally 


�k � bk�jO � � 
 dimO � ��

�k � bk�jO �� � 
 dimO � ��

��� There exists an injective correspondence between isometries i 
 M �cM and ��dimensional reachable sets O of system �������� In particular� if

the manifolds M and cM are isometric� then system ������� is not completely
controllable�
��� Suppose that both manifolds M and cM are complete and simply con�

nected� Then the correspondence between isometries i 
 M � cM and ��
dimensional reachable sets O of system ������� is bijective� In particular� sys�

tem ������� is completely controllable i
 the manifolds M and cM are not
isometric�
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Proof� ��� By the Orbit theorem� the reachable set of the symmetric sys�
tem �������� i�e�� the orbit of the distribution � through any point q � Q�
is an immersed smooth connected submanifold of Q� Now we show that any
orbit O of � has dimension either � or ��
Fix an orbit O and assume �rst that at some point q � O the manifoldsM

and cM have di�erent Gaussian curvatures
 k�q� �� bk�q�� In order to construct
a frame on Q� compute iterated Lie brackets of the �elds X�� X�


X� � �X�� X�� � c�X�  c�X�  �bk � k�
�

� �
� �������

X� � �X�� X��

� �X�c��X�  �X�c��X�  c�X�  �X��bk � k��
�

� �
 �bk � k�

�
X��

�

� �

�
�

�������

X� � �X�� X��

� �X�c��X�  �X�c��X� � c�X�  �X��bk � k��
�

� �
 �bk � k�

�
X��

�

� �

�
�

�������

�
X��

�

� �

�
� sin � be� � cos � be�  �
 
 
 � �

� �
� ��������

X��
�

� �

�
� cos � be�  cos � be�  �
 
 
 � �

� �
� �������

In the computation of bracket ������� we used expression ������ of Gaussian
curvature through structure constants� It is easy to see that

Lie�X�� X���q� � span �X�� X�� X�� X�� X�� �q� � span

�
e�� e�� be��be�� �

� �

�
�q�

� TqQ�

System ������� has the full rank at the point q � O where k �� bk� thus
dimO � ��
On the other hand� if k�q� � bk�q� at all points q � O� then equality �������

implies that the distribution � is integrable� thus dimO � ��
��� Let i 
 M � cM be an isometry� Its graph

� �
n
q � Q j q � i�x 
 TxM � TbxcM� x �M� bx � i�x� � cM o

is a smooth ��dimensional submanifold of Q� We prove that � is an orbit of��
Locally� choose an orthonormal frame e�� e� inM and take the corresponding
orthonormal frame be� � i�e�� be� � i�e� in cM � Then �j� � �� Since bc� � c��bc� � c�� and k�q� � bk�q�� restrictions of the �elds X�� X� read
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X�j� � e�  be�� X�j� � e�  be��
Then it follows that the �elds X�� X� are tangent to � � Lie bracket �������
yields

�X�� X��j� � c�X�  c�X��

thus � is an orbit of �� Distinct isometries i� �� i� have distinct graphs
�� �� ��� i�e�� the correspondence between isometries and ��dimensional orbits
is injective�
��� Now assume that the manifolds M and cM are complete and simply

connected� Let O be a ��dimensional orbit of �� We construct an isometry
i 
 M � cM with the graph O�
Notice �rst of all that for any Lipschitzian curve x�t� �M � t � ��� t��� and

any point q� � Q� there exists a trajectory q�t� of system ������� such that
��q�t�� � x�t� and q��� � q�� Indeed� a Lipschitzian curve x�t�� t � ��� t��� is
a trajectory of a nonautonomous ODE �x � u��t�e��x�  u��t�e��x� for some
ui � L���� t��� Consider the lift of this equation to Q


�q � u��t�X��q�  u��t�X��q�� q��� � q�� �������

We have to show that the solution to this Cauchy problem is de�ned on the
whole segment ��� t��� Denote by R the Riemannian length of the curve x�t�
and by B�x�� �R� � M the closed Riemannian ball of radius �R centered
at x�� The curve x�t� is contained in B�x�� �R� and does not intersect with its
boundary� Notice that the ballB�x�� �R� is a closed and bounded subset of the

complete spaceM � thus it is compact� The projection bx�t� � cM of the maximal
solution q�t� to Cauchy problem ������� has Riemannian length not greater

than R� thus it is contained in the compact B�bx�� �R� � cM � bx� � b��q��� and
does not intersect with its boundary� Summing up� the maximal solution q�t�
to ������� is contained in the compact K � B�x�� �R�� B�bx�� �R�� S� and
does not come to its boundary� Thus the maximal solution q�t� is de�ned at
the whole segment ��� t���
Now it easily follows that ��O� � M for the two�dimensional orbit O�

Indeed� let q� � O� then x� � ��q�� � ��O�� Take any point x� � M and
connect it with x� by a Lipschitzian curve x�t�� t � ��� t��� Let q�t� be the lift
of x�t� to the orbit O with the initial condition q��� � q�� Then q�t�� � O and

x� � ��q�t��� � ��O�� Thus ��O� �M � Similarly� b��O� � cM �
The projections

� 
 O�M and b� 
 O � cM �������

are local di�eomorphisms since

���X�� � e�� b���X�� � cos � be�  sin � be��
���X�� � e�� b���X�� � � sin � be�  cos � be��
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Moreover� it follows that projections ������� are global di�eomorphisms�
Indeed� let q � O� Any Lipschitzian curve x� 
 � on M starting from ��q� has
a unique lift to O starting from q and this lift continuously depends on x� 
 ��
Suppose that q� � O� q� �� q� ��q�� � ��q�� and q� 
 � is a path on O connecting
q with q�� Contracting the loop ��q� 
 �� and taking the lift of the contraction�
we come to a contradiction with the local invertibility of �jO� Hence �jO is
globally invertible� thus it is a global di�eomorphism�The same is true for b�jO�
Thus we can de�ne a di�eomorphism

i � b� 	 ��jO��� 
 M � cM�

Since

i�e� � cos � be�  sin � be��
i�e� � � sin � be�  cos � be��

the mapping i is an isometry�
If the manifolds M and cM are not isometric� then all reachable sets of

system ������� are ��dimensional� thus open subsets of Q� But Q is connected�
thus it is a single reachable set� ut

���� Length Minimization Problem

������ Problem Statement

Suppose that k�x� �� bk�bx� for any x �M � bx � cM � i�e�� k�bk �� � on Q� Then� by
item ��� of Theorem ����� system ������� is completely controllable� Consider
the following optimization problem
 given any two contact con�gurations of
the system of rolling bodies� �nd an admissible motion of the system that
steers the �rst con�guration into the second one and such that the path of
the contact point inM �or� equivalently� in cM � was the shortest possible� This
geometric problem is stated as the following optimal control one


�q � u�X�  u�X�� q � Q� u � �u�� u�� � R�� �������

q��� � q�� q�t�� � q�� t� �xed�

l �

Z t�

�

�u��  u���
��� dt� min �

Notice that projections of ODE ������� to M and cM read respectively as

�x � u�e�  u�e�� x �M�

and

�bx � u��cos � be�  sin � be��  u��� sin � be�  cos � be��� bx � cM�
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thus the sub�Riemannian length l of the curve q�t� is equal to the Riemannian
length of the both curves x�t� and bx�t��
As usual� we replace the length l by the action


J �
�

�

Z t�

�

�u��  u��� dt� min�

and restrict ourselves to constant velocity curves


u��  u�� � const �� ��

������ PMP

As we showed in the proof of Theorem ����� the vector �elds X�� � � � � X� form
a frame on Q� see ���������������� Denote the corresponding Hamiltonians
linear on �bers in T �Q


gi��� � h��Xii� � � T �Q� i � �� � � � � ��

Then the Hamiltonian of PMP reads

g�u��� � u�g����  u�g����  
 

�
�u��  u����

and the corresponding Hamiltonian system is

�� � u�!g����  u�!g����� � � T �Q� �������

������ Abnormal Extremals

Let  � �� The maximality condition of PMP implies that

g���t� � g���t� � � �������

along abnormal extremals� Di�erentiating these equalities by virtue of the
Hamiltonian system �������� we obtain one more identity


g���t� � �� �������

The next di�erentiation by virtue of ������� yields an identity containing
controls


u��t�g���t�  u��t�g���t� � �� �������

It is natural to expect that conditions ��������������� on abnormal ex�

tremals on Q should project to reasonable geometric conditions onM and cM �
This is indeed the case� and now we derive ODEs for projections of abnormal
extremals to M and cM �
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According to the splitting of the tangent spaces

TqQ � TxM " TbxcM " T�S
��

the cotangent space split as well


T �q Q � T �xM " T �bxcM " T �� S
��

� � � b� 
d�� � � T �q Q� � � T �xM� b� � T �bxcM� 
d� � T �� S
��

Then

g���� � h��X�i �
�
� b�  
d�� e�  cos � be�  sin � be�  b�

�

� �

�
� h����  cos � bh��b��  sin � bh��b��  
b�� �������

g���� � h��X�i �
�
� b�  
d�� e� � sin � be�  cos � be�  b�

�

� �

�
� h���� � sin � bh��b��  cos � bh��b��  
b�� �������

where b� � �c�  bc� cos �  bc� sin �� b� � �c� � bc� sin �  bc� cos ��
g���� � h��X�i �

�
� b�  
d�� c�X�  c�X�  �bk � k�

�

� �

�
� c�g����  c�g����  
�bk � k�� �������

Then identities ������� and ������� read as follows



 � ��

h�  cos � bh�  sin � bh� � ��
h� � sin � bh�  cos � bh� � ��

Under these conditions� taking into account equalities ���������������� we
have


g���� �

�
� b�� �X�c��X�  �X�c��X�  c�X�

 �X��bk � k��
�

� �
 �bk � k�

�
X��

�

� �

��
� �bk � k��sin � bh� � cos � bh�� � �bk � k�h��

g���� �

�
� b�� �X�c��X�  �X�c��X� � c�X�  

�X��bk � k��
�

� �
 �bk � k�

�
X��

�

� �

��
� �bk � k��cos � bh�  sin � bh�� � ��bk � k�h��
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Then identity ������� yields

u�h� � u�h� � ��

That is� up to reparametrizations of time� abnormal controls satisfy the iden�
tities


u� � h����� u� � h����� �������

In order to write down projections of the Hamiltonian system ������� to

T �M and T �cM � we decompose the Hamiltonian �elds !g�� !g�� In view of equal�
ities �������� �������� we have

!g� � !h�  cos �
!bh�  sin �!bh�  �� sin � bh�  cos � bh��!�  
!a�  a�!
�

!g� � !h� � sin �!bh�  cos �!bh�  �� cos � bh� � sin � bh��!�  
!a�  a�!
�

It follows easily that !� � � 


 �
� Since 
 � � along abnormal extremals� pro�

jection to T �M of system ������� with controls ������� reads

�� � h�!h�  h�!h� � !H� H �
�

�
�h��  h����

Consequently� projections x�t� � ��q�t�� are Riemannian geodesics in M �

Similarly� for projection to cM we obtain the equalities

u� � � cos � bh� � sin � bh�� u� � sin � bh� � cos � bh��
thus

�b� � �� cos � bh� � sin � bh���cos �!bh�  sin �!bh��
 
�
sin � bh� � cos � bh���� sin �!bh�  cos �!bh��

� �bh� !bh� � bh� !bh� � �!bH� bH �
�

�

�bh��  bh��� �
i�e�� projections bx�t� � b��q�t�� are geodesics in cM �
We proved the following statement�

Proposition ����� Projections of abnormal extremal curves x�t� � ��q�t��

and bx�t� � b��q�t�� are Riemannian geodesics respectively in M and cM �

Abnormal sub�Riemannian geodesics q�t� are optimal at segments ��� 
 � at
which at least one of Riemannian geodesics x�t�� bx�t� is a length minimizer�
In particular� short arcs of abnormal geodesics q�t� are optimal�
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������ Normal Extremals

Let  � ��� The normal extremal controls are determined from the maximal�
ity condition of PMP


u� � g�� u� � g��

and normal extremals are trajectories of the Hamiltonian system

�� � !G���� � � T �Q� �������

G �
�

�
�g��  g����

The maximized HamiltonianG is smooth� thus short arcs of normal extremal
trajectories are optimal�
Consider the case where one of the rolling surfaces is the plane
 cM � R��

In this case the normal Hamiltonian system ������� can be written in a simple
form� Choose the following frame on Q


Y� � X�� Y� � X�� Y� �
�

� �
� Y� � �Y�� Y��� Y� � �Y�� Y���

and introduce the corresponding linear on �bers Hamiltonians

mi��� � h�� Yii� i � �� � � � � ��

Taking into account that bc� � bc� � bk � �� we compute Lie brackets in this
frame


�Y�� Y�� � c�Y�  c�Y� � kY��

�Y�� Y�� � �c�Y�� �Y�� Y�� � �c�Y��
�Y�� Y�� � c�Y�� �Y�� Y�� � c�Y��

Then the normal Hamiltonian system ������� reads as follows


�m� � �m��c�m�  c�m� � km���

�m� � m��c�m�  c�m� � km���

�m� � m�m�  m�m��

�m� � ��c�m�  c�m��m��

�m� � �c�m�  c�m��m��

�q � m�X�  m�X��

Notice that� in addition to the Hamiltonian G �
�

�
�m�

�  m�
��� this system

has one more integral
 � � �m�
�  m�

��
���� Introduce coordinates on the level

surface G �
�

�
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m� � cos �� m� � sin �� m� � m�

m� � � cos��  ��� m� � � sin��  ���

Then the Hamiltonian system simpli�es even more


�� � c� cos �  c� sin � � km�

�m � � cos��

�� � km�

�q � cos � X�  sin� X��

The case k � const� i�e�� the sphere rolling on a plane� is completely inte�
grable� This problem was studied in detail in book �����

Fig� ����� Sphere on a plane
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Appendix

In this Appendix we prove several technical propositions from Chap� ��

A�� Homomorphisms and Operators in C��M	

Lemma A��� On any smooth manifold M � there exists a function a �
C��M � such that for any N 	 � exists a compact K b M for which

a�q� 	 N � q �M nK�

Proof� Let ek� k � N� be a partition of unity onM 
 the functions ek � C��M �
have compact supports supp ek bM � which form a locally �nite covering ofM �
and

P�
k�� ek � �� Then the function

P�
k�� kek can be taken as a� ut

Now we recall and prove Proposition ����

Proposition ���� Let � 
 C��M � � R be a nontrivial homomorphism of
algebras� Then there exists a point q �M such that � � bq�
Proof� For the homomorphism � 
 C��M �� R� the set

Ker� � ff � C��M � j �f � �g
is a maximal ideal in C��M �� Further� for any point q � M � the set of
functions

Iq � ff � C��M � j f�q� � �g
is an ideal in C��M �� To prove the proposition� we show that

Ker� � Iq �A���

for some q �M � Then it follows that Ker� � Iq and � � bq�
By contradiction� suppose that Ker� �� Iq for any q � M � This means

that
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� q �M � bq � Ker� s� t� bq�q� �� ��
Changing if necessary the sign of bq� we obtain that

� q �M � bq � Ker�� Oq �M s� t� bqjOq 	 �� �A���

Fix a function a given by LemmaA��� Denote ��a� � 
� then ��a�
� � ��
i�e��

�a � 
� � Ker��
Moreover�

� K bM s� t� a�q�� 
 	 � � q �M nK�

Take a �nite covering of the compact K by the neighborhoods Oq as in �A���


K �
n�
i��

Oqi �

and let e�� e�� � � � � en � C��M � be a partition of unity subordinated to the
covering of M 


M nK�Oq� � � � � � Oqn �

Then we have a globally de�ned function on M 


c � e��a � 
�  
nX
i��

eibqi 	 ��

Since

� � �

�
c 
 �

c

�
� ��c� 
 �

�
�

c

�
�

then
��c� �� ��

But c � Ker�� a contradiction� Inclusion �A��� is proved� and the proposition
follows� ut
Now we formulate and prove the theorem on regularity properties of com�

position of operators in C��M �� in particular� for nonautonomous vector
�elds or �ows on M �

Proposition A��� Let At and Bt be continuous w�r�t� t families of linear con�
tinuous operators in C��M �� Then the composition At	Bt is also continuous
w�r�t� t� If in addition the families At and Bt are di
erentiable at t � t�� then
the family At 	 Bt is also di
erentiable at t � t�� and its derivative is given
by the Leibniz rule�

d

d t

����
t�

�At 	Bt� �

�
d

d t

����
t�

At

�
	Bt�  At� 	

�
d

d t

����
t�

Bt

�
�
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Proof� To prove the continuity� we have to show that for any a � C��M ��
the following expression tends to zero as �� �


�At�� 	Bt�� �At 	Bt� a � At�� 	 �Bt�� � Bt� a �At�� �At� 	Bta�

By continuity of the family At� the second term �At�� �At� 	 Bta � � as
�� �� Since the familyBt is continuous� the set of functions �Bt�� � Bt� a lies
in any preassigned neighborhood of zero in C��M � for su�ciently small �� For
any �� 	 �� the family At��� j�j � ��� is locally bounded� thus equicontinuous
by the Banach�Steinhaus theorem� Consequently� At�� 	 �Bt�� � Bt� a� � as
�� �� Continuity of the family At 	Bt follows�
The di�erentiability and Leibniz rule follow similarly from the decompo�

sition

�

�
�At�� 	Bt�� �At 	Bt� a � At�� 	 �

�
�Bt�� � Bt� a 

�

�
�At�� � At� 	Bta�

ut

A�� Remainder Term of the Chronological Exponential

Here we prove estimate ������ of the remainder term for the chronological
exponential�

Lemma A��� For any t� 	 �� complete nonautonomous vector �eld Vt� com�
pactum K b M � and integer s � �� there exist C 	 � and a compactum
K � bM � K � K�� such that

kPtaks	K � C eC
R
t

� kV�ks�K� d� kaks	K�� a � C��M �� t � ��� t��� �A���

where

Pt �
��
exp

Z t

�

V� d
�

Proof� Denote the compact set

Kt � �fP� �K� j 
 � ��� t�g

and introduce the function


�t� � sup

� kPtaks	K
kaks��	Kt

j a � C��M �� kaks��	Kt
�� �
�

� sup fkPtaks	K j a � C��M �� kaks��	Kt
� �g � �A���

Notice that the function 
�t�� t � ��� t��� is measurable since the supremum in
the right�hand side of �A��� may be taken over only an arbitrary countable
dense subset of C��M �� Moreover� in view of inequalities ����� and
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kaks	Pt�K� � kaks��	Kt
�

the function 
�t� is bounded on the segment ��� t���
As in the de�nition of the seminorms k 
 ks	K in Sect� ���� we �x a proper

embeddingM � RN and vector �elds h�� � � � � hN � VecM that span tangent
spaces to M �
Let q� � K be a point at which

kPtaks	K
� sup fjhil 	 
 
 
 	 hi��Pta��q� j q � K� � � i�� � � � � il � N� � � l � sg

attains its upper bound� and let pa � pa�x�� � � � � xN� be the polynomial of
degree � s whose derivatives of order up to and including s at the point
qt � Pt�q�� coincide with the corresponding derivatives of a at qt� Then

kPtaks	K � jhil 	 
 
 
 	 hi��Ptpa��q��j � kPtpaks	K � �A���

kpaks	qt � kaks	Kt
�

In the �nite�dimensional space of all real polynomials of degree � s� all norms
are equivalent� so there exists a constant C 	 � which does not depend on the
choice of the polynomial p of degree � s such that

kpks	Kt

kpks	qt
� C� �A���

Inequalities �A��� and �A��� give the estimate

kPtaks	K
kaks	Kt

� kPtpaks	K
kpaks	qt

� C
kPtpaks	K
kpaks	Kt

� C
kPtpaks	K
kpaks��	Kt

� C
�t�� �A���

Since

Pta � a 

Z t

�

P� 	 V�a d
�

then

kPtaks	K � kaks	K  
Z t

�

kP� 	 V�aks	K d


by inequality �A��� and de�nition �����

� kaks	K  C kaks��	Kt

Z t

�


�
 � kV�ks	Kt
d
�

Dividing by kaks��	Kt
� we arrive at

kPtaks	K
kaks��	Kt

� �  C

Z t

�

�
 � kV�ks	Kt

d
�
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Thus we obtain the inequality


�t� � �  C

Z t

�


�
 � kV�ks	Kt
d
�

from which it follows by Gronwall�s lemma that


�t� � eC
R
t

�
kV�ks�Kt

d� �

Then estimate �A��� implies that

kPtaks	K � C eC
R
t

� kV�ks�Kt d� kaks	Kt
�

and the required inequality �A��� follows for any compactum K� � Kt� ut
Now we prove estimate �������

Proof� Decomposition ������ can be rewritten in the form

Pt � Sm�t�  

Z

 
 

Z

�m�t�

P�m 	 V�m 	 
 
 
 	 V�� d
m � � � d
��

where

Sm�t� � Id 
m��X
k��

Z

 
 

Z

�k�t�

V�k 	 
 
 
 	 V�� d
k � � � d
��

Then

k�Pt � Sm�t��aks	K �
Z

 
 

Z

�m�t�

kP�m 	 V�m 	 
 
 
 	 V��aks	K d
m � � � d
�

by Lemma A��

� CeC
R
t

� kV�ks�K� d�
Z

 
 

Z

�m�t�

kV�m 	 
 
 
 	 V��aks	K� d
m � � � d
��

Now we estimate the last integral� By de�nition ����� of seminorms�Z

 
 

Z

�m�t�

kV�m 	 
 
 
 	 V��aks	K� d
m � � � d
�

�
Z

 
 

Z

�m�t�

kV�mks	K�kV�m��ks��	K� 
 
 
 kV��ks�m��	K� kaks�m	K� d
m � � � d
�

� kaks�m	K�Z

 
 

Z

�m�t�

kV�mks�m��	K�kV�m��ks�m��	K� 
 
 
 kV��ks�m��	K� d
m � � � d
�

� kaks�m	K�

�

m�

�Z t

�

kV�ks�m��	K� d


�m
�
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and estimate ������ follows


k�Pt � Sm�t�� aks	K
� C

m�
eC
R
t

�
kV�ks�K� d�

�Z t

�

kV�ks�m��	K� d


�m
kaks�m	K� �

ut
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