# Differential invariants and exact solutions of the Einstein equation and the Einstein-Maxwell equation 

V. A. Yumaguzhin

Program Systems Institute of RAS, Pereslavl'-Zalesskiy, Russia yuma@diffiety.botik.ru

囯 Valentin Lychagin, Valeriy Yumaguzhin, Differential invariants and exact solutions of the Einstein-Maxwell equation,
Analysis and Mathematical Physics, 2016.
DOI: 10.1007/s13324-016-0127-7.
目 Valentin Lychagin, Valeriy Yumaguzhin, Differential invariants and exact solutions of the Einstein equation, Analysis and Mathematical Physics, 2016. DOI: 10.1007/s13324-016-0130-z.

## 1. The Einstein equation

Let $M$ be a 4-dimensional oriented manifold, $x^{0}, x^{1}, x^{2}, x^{3}$ its local coordinate system, and $g$ a Lorentzian metric on $M$. The Levi-Civita connection of $g$ :

$$
g=g_{i j} d x^{i} d x^{j}, \quad \Gamma_{i j}^{k}=\frac{1}{2} g^{k m}\left(\frac{\partial g_{m i}}{\partial x^{j}}+\frac{\partial g_{m j}}{\partial x^{i}}-\frac{\partial g_{i j}}{\partial x^{m}}\right) .
$$

The curvature tensor $\mathrm{C}_{g}=\left(\mathrm{C}_{i j k}^{l}\right)$ of $g$ :

$$
\mathrm{C}_{i j k}^{l}=\frac{\partial \Gamma_{i k}^{l}}{\partial x^{j}}-\frac{\partial \Gamma_{j k}^{l}}{\partial x^{i}}+\Gamma_{j m}^{l} \Gamma_{i k}^{m}-\Gamma_{i m}^{l} \Gamma_{j k}^{m} .
$$

The Ricci tensorRic ${ }_{g}=\left(\mathrm{R}_{i j}\right)$ and the scalar curvature R of $g$ :

$$
\mathrm{R}_{i j}=\mathrm{C}_{m i j}^{m}, \quad \mathrm{R}=g^{m n} \mathrm{R}_{m n}
$$

The vacuum Einstein equation:

$$
\begin{equation*}
\operatorname{Ric}_{g}-\Lambda g=0 \tag{1}
\end{equation*}
$$

where $\Lambda$ is a cosmological constant.

## 2. Weyl tensor

The covariant curvature tensor: $C_{i j k l}=g_{i m} C_{j k l}^{m}$
$C_{i j k l}=\frac{1}{2}\left(\mathrm{R}_{i k} g_{j l}+\mathrm{R}_{j l} g_{i k}-\mathrm{R}_{i l} g_{j k}-\mathrm{R}_{j k} g_{i l}\right)+\frac{\mathrm{R}}{6}\left(g_{i l} g_{j k}-g_{i k} g_{j l}\right)+\mathrm{W}_{i j k l}$
The Weyl tensor $\mathrm{W}_{g}=\left(\mathrm{W}_{i j k l}\right)$ has the following properties:

$$
\begin{gathered}
\mathrm{W}_{i j k l}=-\mathrm{W}_{j i k l}, \quad \mathrm{~W}_{i j k l}=-\mathrm{W}_{i j l k}, \quad \mathrm{~W}_{i j k l}=\mathrm{W}_{k l i j} \\
\mathrm{~W}_{i j k l}+\mathrm{W}_{i l j k}+\mathrm{W}_{i k l j}=0 \\
g^{i j} \mathrm{~W}_{i j k l}=0
\end{gathered}
$$

The Weyl operator:

$$
\widehat{\mathrm{W}}_{g}: \Lambda^{2} T^{*} M \longrightarrow \Lambda^{2} T^{*} M, \quad \widehat{\mathrm{~W}}^{i j}{ }_{k l}=g^{i m} g^{j n} \mathrm{~W}_{m n k l}
$$

3. Complex structure on $\Lambda^{2} T^{*} M$

The metric $g$ induces the metric on $\Lambda^{2} T^{*} M$ :

$$
g(\alpha, \beta)=g^{j_{1} k_{1}} g^{j_{2} k_{2}} \alpha_{j_{1} j_{2}} \beta_{k_{1}, k 2}, \quad \forall \alpha, \beta \in \Lambda^{2} T^{*} M
$$

The Hodge operator

$$
*: \Lambda^{2} T^{*} M \longrightarrow \Lambda^{4-2} T^{*} M
$$

satisfies to the condition $*^{2}=-1$ and defines the complex vector bundle structure on $\Lambda^{2} T^{*} M$ :

$$
i \cdot \omega \stackrel{\text { def }}{=} * \omega, \quad \forall \omega \in \Lambda^{2} T^{*} M
$$

The $\mathbb{C}$-valued and $\mathbb{C}$-bilinear non degenerate 2 -form $h$ is defined on $\Lambda^{2} T^{*} M$ :

$$
h(\alpha, \beta)=g(\alpha, \beta)-i \cdot g(* \alpha, \beta), \quad \forall \alpha, \beta \in \Lambda^{2} T^{*} M
$$

It can be proved that

$$
h(\alpha, \beta)=-*(* \alpha \wedge \beta)+i *(\alpha \wedge \beta), \quad \forall \alpha, \beta \in \Lambda^{2} T^{*} M
$$

4. Normed eigenvectors of the Weyl operator

Operators $\widehat{\mathrm{W}}$ and $*$ commute, i. e.,

$$
* \widehat{\mathrm{~W}}_{g}=\widehat{\mathrm{W}}_{g} *
$$

The $\mathbb{C}$-linear operator $\widehat{W}$ is symmetric w.r.t. the 2-form $h$, i. e.

$$
h\left(\widehat{\mathrm{~W}}_{g}(\alpha), \beta\right)=h\left(\alpha, \widehat{\mathrm{~W}}_{g}(\beta)\right), \quad \forall \alpha, \beta \in \Lambda^{2} T^{*} M
$$

A 2-dimensional subspace $V \subset T_{a} M$ is elliptic or hyperbolic if the restriction $\left.g\right|_{V}$ has signature $(-,-)$ or $(+,-)$ respectively.

Proposition. Let $\omega$ be a normed eigenvector of the Weyl operator, i. e. $h(\omega, \omega)=1$. Then:
(1) $\omega$ is decomposable 2 -form,
(2) the plane $E$ corresponding to $\omega$ is elliptic,
(3) the plane $H$ corresponding to $* \omega$ is hyperbolic and orthogonal to $E$.
5. Integrability conditions

Let $E$ and $H$ be elliptic and hyperbolic distributions on $M$ generated by a normed eigenvector $\omega$ of the Weyl operator $\widehat{\mathrm{W}}_{g}$.

$$
T(M)=E \oplus H, \quad E \perp H
$$

$E$ and $H$ are completely integrable iff their differential invariants, curvature tensors, $\mathcal{R}_{E}$ and $\mathcal{R}_{H}$ are trivial.

$$
\begin{aligned}
& \mathcal{R}_{E}(X, Y) \stackrel{\text { def }}{=} P_{H}\left(\left[P_{E}(X), P_{E}(Y)\right]\right), \\
& \mathcal{R}_{H}(X, Y) \stackrel{\text { def }}{=} P_{E}\left(\left[P_{H}(X), P_{H}(Y)\right]\right),
\end{aligned}
$$

where $X, Y$ are vector fields in $M$ and $P_{E}: T(M) \rightarrow E$ $P_{H}: T(M) \rightarrow H$ are projectors.
6. Completely integrability of $E$ and $H$ and form of $g$

Let $E$ and $H$ be completely integrable,
$x_{2}, x_{3} 1$ st integrals of $E$ and
$x_{0}, x_{1} 1$ st integrals of $H$.
Then $x_{0}, x_{1}, x_{2}, x_{3}$ are local coordinates in $M$ and
$g$ has the following form in these coordinates

$$
g=g^{H}+g^{E}
$$

where

$$
\begin{aligned}
g^{H} & =\sum_{i, j=0}^{1} g_{i j}^{H}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) d x_{i} d x_{j} \quad \text { with signature }(1,-1) \\
g^{E} & =\sum_{i, j=2}^{3} g_{i j}^{E}\left(x_{0}, x_{1}, x_{2}, x_{3}\right) d x_{i} d x_{j} \quad \text { with signature }(-1,-1)
\end{aligned}
$$

## 7. Total geodesic distributions

Recall that that a submanifold $S$ of the Lorentzian manifold $(M, g)$ is said to be totally geodesic if:
(1) tangent planes to $S$ are not tangent to the light cones and
(2) every geodesic $\gamma$ of $(M, g)$ such that $\gamma(0) \in S$ and $\dot{\gamma}(0) \in T_{\gamma(0)}(S)$ belongs $S$.
Condition (2) is equivalent to the following one: the covariant derivative $\nabla_{X} Y$ is tangent to $S$ for all vector fields $X, Y$ tangent to $S$.

We say that completely integrable distributions $E$ and $H$ are total geodesic if their integral manifolds are total geodesic.
$E$ and $H$ are total geodesic iff their differential invariants

$$
\begin{aligned}
& \mathcal{A}_{E}(X, Y) \stackrel{\text { def }}{=} P_{H}\left(\nabla_{P_{E}(X)} P_{E}(Y)\right), \\
& \mathcal{A}_{H}(X, Y) \stackrel{\text { def }}{=} P_{E}\left(\nabla_{P_{H}(X)} P_{H}(Y)\right),
\end{aligned}
$$

are trivial.

## 8. Totally geodesic solutions

We say that $g$ is totally geodesic solution of the Einstein equation if there is a normed eigenvector $\omega$ of the operator $\mathrm{W}_{g}$ such that the distributions $H$ and $E$ are totally geodesic.
Proposition Let $g$ be total geodesic. Then, in coordinates $x_{0}, x_{1}, x_{2}, x_{3}$, given by the above 1 -st integrals, the metric $g$ has the form $g=g^{H}+g^{E}$, where

$$
g^{H}=\sum_{i, j=0}^{1} g_{i j}^{H}\left(x_{0}, x_{1}\right) d x_{i} d x_{j} \quad \text { and } \quad g^{E}=\sum_{i, j=2}^{3} g_{i j}^{E}\left(x_{2}, x_{3}\right) d x_{i} d x_{j}
$$

The coordinates $x_{0}, x_{1}, x_{2}, x_{3}$ are defined up to gauge transformations

$$
\begin{aligned}
& \left(x_{0}, x_{1}\right) \rightarrow\left(X^{0}\left(x_{0}, x_{1}\right), X^{1}\left(x_{0}, x_{1}\right)\right), \\
& \left(x_{2}, x_{3}\right) \rightarrow\left(X^{2}\left(x_{2}, x_{3}\right), X^{3}\left(x_{2}, x_{3}\right)\right) .
\end{aligned}
$$

Therefore, these coordinates can be chosen to be isothermal for metrics $g^{H}$ and $g^{E}$, i. e.,

$$
g^{H}=e^{\alpha\left(x_{0}, x_{1}\right)}\left(d x_{0}^{2}-d x_{1}^{2}\right), \quad g^{E}=e^{\beta\left(x_{2}, x_{3}\right)}\left(-d x_{2}^{2}-d x_{3}^{2}\right)
$$

## 9. Reduction to Liouville equations

Substituting the last expression of $g$ in the Einstein equation, we get the system of hyperbolic and elliptic Liouville equations:

$$
\begin{align*}
& \frac{\partial^{2} \alpha}{\partial x_{0}^{2}}-\frac{\partial^{2} \alpha}{\partial x_{1}^{2}}+2 \Lambda e^{\alpha}=0,  \tag{2}\\
& \frac{\partial^{2} \beta}{\partial x_{2}^{2}}+\frac{\partial^{2} \beta}{\partial x_{3}^{2}}-2 \Lambda e^{\beta}=0 .
\end{align*}
$$

For the first time a solution of the hyperbolic equation was obtained by J. Liouville in 1853,

$$
\alpha\left(x_{0}, x_{1}\right)=\ln \left(\frac{v_{x_{0}}^{2}-v_{x_{1}}^{2}}{\Lambda v^{2}}\right)
$$

where function $v\left(x_{0}, x_{1}\right)$ satisfies the wave equation $v_{x_{0} x_{0}}-v_{x_{1} x_{1}}=0$. Then L. Bianchi in 1879 got the other solution of the same form

$$
\alpha\left(x_{0}, x_{1}\right)=\ln \left(\frac{v_{x_{0}}^{2}-v_{x_{1}}^{2}}{\Lambda \cos ^{2}(v)}\right)
$$

for this equation.

## 10. Solutions of the Liouville equations

We will find solutions of the Liouville equations in the forms:

$$
\begin{equation*}
\alpha\left(x_{0}, x_{1}\right)=\ln \left(h_{1}(v)\left(v_{x_{0}}^{2}-v_{x_{1}}^{2}\right)\right), \tag{3}
\end{equation*}
$$

where $v\left(x_{0}, x_{1}\right)$ satisfies the wave equation $v_{x_{0} x_{0}}-v_{x_{1} x_{1}}=0$ and $h_{1}$ is a smooth function,

$$
\begin{equation*}
\beta\left(x_{2}, x_{3}\right)=\ln \left(h_{2}(u)\left(u_{x_{2}}^{2}+u_{x_{3}}^{2}\right)\right), \tag{4}
\end{equation*}
$$

where $u\left(x_{2}, x_{3}\right)$ satisfies the Laplace equation $u_{x_{2} x_{2}}+u_{x_{3} x_{3}}=0$ and $h_{2}$ is a smooth function.

Functions (3) and (4) satisfy the corresponding Liouville equations iff $h_{1}$ and $h_{2}$ are solutions of the following ODEs respectively:

$$
y y^{\prime \prime}-\left(y^{\prime}\right)^{2}+2 \Lambda y^{3}=0, \quad \text { and } \quad y y^{\prime \prime}-\left(y^{\prime}\right)^{2}-2 \Lambda y^{3}=0
$$

## 10. Solutions of the ODEs

The ODE

$$
y y^{\prime \prime}-\left(y^{\prime}\right)^{2}+k y^{3}=0, \quad k \in \mathbb{R} \backslash\{0\}
$$

has two families of general solutions

$$
\begin{aligned}
& y_{1}(x)=2 / k a^{2} \cosh ^{2}((x+b) / a) \\
& y_{2}(x)=-2 / k a^{2} \cos ^{2}((x+b) / a)
\end{aligned}
$$

and the family of singular solutions

$$
y_{3}(x)=-2 / k(x+b)^{2},
$$

where $a, b \in \mathbb{R}, a \neq 0$.

## 11. List of totally geodesic solutions

Below, $a_{1}, a_{2}, b_{1}, b_{2} \in \mathbb{R}$, and $a_{1}, a_{2} \neq 0$ in all formulas.

1. Assume that $v_{x_{0}}^{2}-v_{x_{1}}^{2}>0$ in a domain. Then we have the following solutions:
1.1. $h_{1}=y_{1}, h_{2}=y_{2}$

$$
\begin{aligned}
g=\frac{v_{x_{0}}^{2}-v_{x_{1}}^{2}}{\Lambda a_{1}^{2} \cosh ^{2}\left(\left(v+b_{1}\right) / a_{1}\right)} & \left(d x_{0}^{2}-d x_{1}^{2}\right) \\
& -\frac{u_{x_{2}}^{2}+u_{x_{3}}^{2}}{\Lambda a_{2}^{2} \cos ^{2}\left(\left(u+b_{2}\right) / a_{2}\right)}\left(d x_{2}^{2}+d x_{3}^{2}\right) .
\end{aligned}
$$

1.2. $h_{1}=y_{1}, h_{2}=y_{3}$
$g=\frac{\left(v_{x_{0}}^{2}-v_{x_{1}}^{2}\right)}{\Lambda a_{1}^{2} \cosh ^{2}\left(\left(v+b_{1}\right) / a_{1}\right)}\left(d x_{0}^{2}-d x_{1}^{2}\right)-\frac{\left(u_{x_{2}}^{2}+u_{x_{3}}^{2}\right)}{\Lambda\left(u+b_{2}\right)^{2}}\left(d x_{2}^{2}+d x_{3}^{2}\right)$.
2. Assume that $v_{x_{0}}^{2}-v_{x_{1}}^{2}<0$ in a domain. Then we have the following solutions:
2.1. $h_{1}=y_{2}, h_{2}=y_{2}$

$$
\begin{aligned}
g=-\frac{2\left(v_{x_{0}}^{2}-v_{x_{1}}^{2}\right)}{\Lambda a_{1}^{2} \cos ^{2}\left(\left(v+b_{1}\right) / a_{1}\right)} & \left(d x_{0}^{2}-d x_{1}^{2}\right) \\
& -\frac{\left(u_{x_{2}}^{2}+u_{x_{3}}^{2}\right)}{\Lambda a_{2}^{2} \cos ^{2}\left(\left(u+b_{2}\right) / a_{2}\right)}\left(d x_{2}^{2}+d x_{3}^{2}\right)
\end{aligned}
$$

2.2. $h_{1}=y_{2}, h_{2}=y_{3}$
$g=-\frac{\left(v_{x_{0}}^{2}-v_{x_{1}}^{2}\right)}{\Lambda a_{1}^{2} \cos ^{2}\left(\left(v+b_{1}\right) / a_{1}\right)}\left(d x_{0}^{2}-d x_{1}^{2}\right)-\frac{u_{x_{2}}^{2}+u_{x_{3}}^{2}}{\Lambda\left(u+b_{2}\right)^{2}}\left(d x_{2}^{2}+d x_{3}^{2}\right)$.
2.3. $h_{1}=y_{3}, h_{2}=y_{2}$
$g=-\frac{\left(v_{x_{0}}^{2}-v_{x_{1}}^{2}\right)}{\Lambda\left(v+b_{1}\right)^{2}}\left(d x_{0}^{2}-d x_{1}^{2}\right)-\frac{\left(u_{x_{2}}^{2}+u_{x_{3}}^{2}\right)}{\Lambda a_{2}^{2} \cos ^{2}\left(\left(u+b_{2}\right) / a_{2}\right)}\left(d x_{2}^{2}+d x_{3}^{2}\right)$.
2.4. $h_{1}=y_{3}, h_{2}=y_{3}$

$$
g=-\frac{\left(v_{x_{0}}^{2}-v_{x_{1}}^{2}\right)}{\Lambda\left(u+b_{2}\right)^{2}}\left(d x_{0}^{2}-d x_{1}^{2}\right)-\frac{u_{x_{2}}^{2}+u_{x_{3}}^{2}}{\Lambda\left(u+b_{2}\right)^{2}}\left(d x_{2}^{2}+d x_{3}^{2}\right)
$$

囦 John K．Beem，Paul Ehrlich，Kevin Easley，Global Lorentzian Geometry，Second Edition，Marcel Dekker，Inc．， New York－Basel－Hong Kong，1996，pp． 650.

围 Arthur A．Besse，Einstein manifolds，Springer－Verlag，Berlin －Heidelberg－New York，1987，pp． 516.
围 L．Bianchi，Ricerche sulle superficie elicoidali e sulle superficie a curvatura costante／／Ann．Scuola Norm． Superiore Pisa，Ser．1，2， 26 （1879）p．285－341．
圊 J．Liouville，Sur l＇equation aux differences partielles $d^{2} \log \lambda / d u d v \pm \lambda /\left(2 a^{2}\right)=0 / /$ J．Math．Pure Apple．，18， （1853） 71.

