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1. The Einstein equation

Let M be a 4-dimensional oriented manifold, x0, x1, x2, x3 its
local coordinate system, and g a Lorentzian metric on M .
The Levi-Civita connection of g:

g = gijdx
idxj , Γkij =

1

2
gkm(

∂gmi
∂xj

+
∂gmj
∂xi

− ∂gij
∂xm

).

The curvature tensor Cg = (Cl
ijk) of g:

C
l
ijk =

∂Γlik
∂xj

−
∂Γljk
∂xi

+ ΓljmΓmik − ΓlimΓmjk.

The Ricci tensorRicg = (Rij) and the scalar curvature R of g:

Rij = C
m
mij , R = gmn Rmn .

The vacuum Einstein equation:

Ricg − Λ g = 0, (1)

where Λ is a cosmological constant.



2. Weyl tensor

The covariant curvature tensor: Cijkl = gimC
m
jkl

Cijkl =
1

2
(Rik gjl+Rjl gik−Ril gjk−Rjk gil)+

R

6
(gilgjk−gikgjl)+Wijkl

The Weyl tensor Wg = (Wijkl) has the following properties:

Wijkl = −Wjikl, Wijkl = −Wijlk, Wijkl = Wklij ,

Wijkl + Wiljk + Wiklj = 0,

gij Wijkl = 0.

The Weyl operator:

Ŵg : Λ2T ∗M −→ Λ2T ∗M, Ŵ
ij
kl = gimgjn Wmnkl



3. Complex structure on Λ2T ∗M

The metric g induces the metric on Λ2T ∗M :

g(α, β) = gj1k1gj2k2αj1j2βk1,k2, ∀α, β ∈ Λ2T ∗M.

The Hodge operator

∗ : Λ2T ∗M −→ Λ4−2T ∗M

satis�es to the condition ∗2 = −1 and de�nes the complex
vector bundle structure on Λ2T ∗M :

i · ω def
= ∗ω, ∀ω ∈ Λ2T ∗M.

The C-valued and C-bilinear non degenerate 2-form h is de�ned
on Λ2T ∗M :

h(α, β) = g(α, β)− i·g(∗α, β), ∀α, β ∈ Λ2T ∗M.

It can be proved that

h(α, β) = − ∗ (∗α ∧ β) + i ∗ (α ∧ β), ∀α, β ∈ Λ2T ∗M.



4. Normed eigenvectors of the Weyl operator

Operators Ŵ and ∗ commute, i. e.,

∗ Ŵg = Ŵg ∗ .

The C-linear operator Ŵ is symmetric w.r.t. the 2-form h, i. e.

h(Ŵg(α), β) = h(α, Ŵg(β)), ∀α, β ∈ Λ2T ∗M.

A 2-dimensional subspace V ⊂ TaM is elliptic or hyperbolic if
the restriction g|V has signature (−,−) or (+,−) respectively.

Proposition. Let ω be a normed eigenvector of the Weyl
operator, i. e. h(ω, ω) = 1. Then:
(1) ω is decomposable 2-form,
(2) the plane E corresponding to ω is elliptic,
(3) the plane H corresponding to ∗ω is hyperbolic and
orthogonal to E.



5. Integrability conditions

Let E and H be elliptic and hyperbolic distributions on M
generated by a normed eigenvector ω of the Weyl operator Ŵg.

T (M) = E ⊕H, E ⊥ H.

E and H are completely integrable i� their di�erential
invariants, curvature tensors, RE and RH are trivial.

RE(X,Y )
def
= PH([PE(X), PE(Y )]),

RH(X,Y )
def
= PE([PH(X), PH(Y )]),

where X, Y are vector �elds in M and PE : T (M)→ E
PH : T (M)→ H are projectors.



6. Completely integrability of E and H and form of g

Let E and H be completely integrable,
x2, x3 1st integrals of E and
x0, x1 1st integrals of H.
Then x0, x1, x2, x3 are local coordinates in M and
g has the following form in these coordinates

g = gH + gE ,

where

gH =

1∑
i,j=0

gHij (x0, x1, x2, x3)dxidxj with signature (1,−1),

gE =

3∑
i,j=2

gEij(x0, x1, x2, x3)dxidxj with signature (−1,−1).



7. Total geodesic distributions

Recall that that a submanifold S of the Lorentzian manifold
(M, g) is said to be totally geodesic if:
(1) tangent planes to S are not tangent to the light cones and
(2) every geodesic γ of (M, g) such that γ(0) ∈ S and
γ̇(0) ∈ Tγ(0)(S) belongs S.
Condition (2) is equivalent to the following one: the covariant
derivative ∇XY is tangent to S for all vector �elds X,Y tangent
to S.

We say that completely integrable distributions E and H are
total geodesic if their integral manifolds are total geodesic.

E and H are total geodesic i� their di�erential invariants

AE(X,Y )
def
= PH

(
∇PE(X)PE(Y )

)
,

AH(X,Y )
def
= PE(∇PH(X)PH(Y )),

are trivial.



8. Totally geodesic solutions

We say that g is totally geodesic solution of the Einstein
equation if there is a normed eigenvector ω of the operator Wg

such that the distributions H and E are totally geodesic.
Proposition Let g be total geodesic. Then, in coordinates
x0, x1, x2, x3, given by the above 1-st integrals, the metric g has
the form g = gH + gE , where

gH =

1∑
i,j=0

gHij (x0, x1)dxidxj and gE =

3∑
i,j=2

gEij(x2, x3)dxidxj .

The coordinates x0, x1, x2, x3 are de�ned up to gauge
transformations

(x0, x1)→
(
X0(x0, x1), X

1(x0, x1)
)
,

(x2, x3)→
(
X2(x2, x3), X

3(x2, x3)
)
.

Therefore, these coordinates can be chosen to be isothermal for
metrics gH and gE , i. e.,

gH = eα(x0,x1)
(
dx20 − dx21

)
, gE = eβ(x2,x3)

(
−dx22 − dx23

)
.



9. Reduction to Liouville equations

Substituting the last expression of g in the Einstein equation,
we get the system of hyperbolic and elliptic Liouville equations:

∂2α

∂x 2
0

− ∂2α

∂x 2
1

+ 2Λeα = 0,

∂2β

∂x 2
2

+
∂2β

∂x 2
3

− 2Λeβ = 0.

(2)

For the �rst time a solution of the hyperbolic equation was
obtained by J. Liouville in 1853,

α(x0, x1) = ln
(v2x0 − v2x1

Λv2

)
,

where function v(x0, x1) satis�es the wave equation
vx0x0 − vx1x1 = 0. Then L. Bianchi in 1879 got the other
solution of the same form

α(x0, x1) = ln
(v2x0 − v2x1

Λ cos2(v)

)
for this equation.



10. Solutions of the Liouville equations

We will �nd solutions of the Liouville equations in the forms:

α(x0, x1) = ln
(
h1(v)(v2x0 − v

2
x1)
)
, (3)

where v(x0, x1) satis�es the wave equation vx0x0 − vx1x1 = 0 and
h1 is a smooth function,

β(x2, x3) = ln
(
h2(u)(u2x2 + u2x3)

)
, (4)

where u(x2, x3) satis�es the Laplace equation ux2x2 + ux3x3 = 0
and h2 is a smooth function.

Functions (3) and (4) satisfy the corresponding Liouville
equations i� h1 and h2 are solutions of the following ODEs
respectively:

yy′′ − (y′)2 + 2Λy3 = 0, and yy′′ − (y′)2 − 2Λy3 = 0,



10. Solutions of the ODEs

The ODE

yy′′ − (y′)2 + ky3 = 0, k ∈ R\{0},

has two families of general solutions

y1(x) = 2/k a2 cosh2
(
(x+ b)/a

)
,

y2(x) = −2/k a2 cos2
(
(x+ b)/a

)
,

and the family of singular solutions

y3(x) = −2/k(x+ b)2,

where a, b ∈ R, a 6= 0.



11. List of totally geodesic solutions

Below, a1, a2, b1, b2 ∈ R, and a1, a2 6= 0 in all formulas.

1. Assume that v2x0 − v
2
x1 > 0 in a domain. Then we have the

following solutions:
1.1. h1 = y1, h2 = y2

g =
v2x0 − v

2
x1

Λa21 cosh2
(
(v + b1)/a1

)(dx20 − dx21)

−
u2x2 + u2x3

Λa22 cos2
(
(u+ b2)/a2

)(dx22 + dx23).

1.2. h1 = y1, h2 = y3

g =
(v2x0 − v

2
x1)

Λa21 cosh2
(
(v + b1)/a1

)(dx20−dx21)−
(u2x2 + u2x3)

Λ(u+ b2)2
(dx22 +dx23).



2. Assume that v2x0 − v
2
x1 < 0 in a domain. Then we have the

following solutions:
2.1. h1 = y2, h2 = y2

g = −
2(v2x0 − v

2
x1)

Λa21 cos2
(
(v + b1)/a1

)(dx20 − dx21)

−
(u2x2 + u2x3)

Λa22 cos2
(
(u+ b2)/a2

)(dx22 + dx23).

2.2. h1 = y2, h2 = y3

g = −
(v2x0 − v

2
x1)

Λa21 cos2
(
(v + b1)/a1

)(dx20−dx21)−
u2x2 + u2x3
Λ(u+ b2)2

(dx22 +dx23).

2.3. h1 = y3, h2 = y2

g = −
(v2x0 − v

2
x1)

Λ(v + b1)2
(dx20−dx21)−

(u2x2 + u2x3)

Λa22 cos2
(
(u+ b2)/a2

)(dx22+dx23).



2.4. h1 = y3, h2 = y3

g = −
(v2x0 − v

2
x1)

Λ(u+ b2)2
(dx20 − dx21)−

u2x2 + u2x3
Λ(u+ b2)2

(dx22 + dx23).
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