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Abstract In this paper (cf. Lychagin and Yumaguzhin, in Anal Math Phys, 2016) a
class of totally geodesics solutions for the vacuum Einstein equations is introduced. It
consists of Einstein metrics of signature (1,3) such that 2-dimensional distributions,
defined by the Weyl tensor, are completely integrable and totally geodesic. The com-
plete and explicit description of metrics from these class is given. It is shown that these
metrics depend on two functions in one variable and one harmonic function.
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1 Introduction

In this paper we follow to the scheme of paper [9] and try to get explicit solutions of
the Einstein vacuum equations by putting some extra conditions on their differential
invariants [10].
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Let (M, g) be a Lorentzian 4-dimensional oriented manifold and let Ricg be the
Ricci tensor of the metric g.

The vacuum Einstein equation is the following system of PDEs on metrics

Ricg − �g = 0, (1)

where � is a cosmological constant.
Denote byWg theWeyl tensor of metric g and by ̂Wg be the correspondingC-linear

endomorphism of the bundle of exterior 2-forms on M .
Then any normalized eigenvector of this operator generates elliptic and hyperbolic

2-dimensional distributions onM .We say that g is totally geodesic if these distributions
are completely integrable and totally geodesic.

We show that finding such metrics is reduced to solving of the Liouville equations
and therefore gives us the explicit formulae for solutions of the Einstein equation,
depending on two functions in one variable and one harmonic function.

2 Preliminaries

2.1 The Weyl tensor

In this section we collect the main properties of the curvature tensor (see, for example,
[2] for more details).

Let Cg ∈ S2(�2T ∗) be the curvature tensor of metric g and let

̂Cg : �2T ∗ → �2T ∗

be the corresponding curvature operator.
The curvature tensor has the decomposition Cg = sg + Rg + Wg in scalar, Ricci

and Weyl parts.
The corresponding decomposition of the curvature operator in terms of the complex

vector bundle structure

∗ : �2T ∗ → �2T ∗,

given by the Hodge operator, has very transparent meaning:
the Ricci term corresponds to C-anti linear part of operator ̂Cg, and
the Weyl part corresponds to traceless C- linear part of the operator.
In particular, the Weyl operator commutes with the Hodge one:

̂Wg ◦ ∗ = ∗ ◦ ̂Wg.

In addition to the metric on �2T ∗, induced by g, we consider the C- valued and
C-bilinear nondegenerate 2-form

h(α, β) = g(α, β) − i g(∗α, β),

where α, β ∈ �2T ∗.
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Then, the Weyl operator is symmetric with respect to this form:

h( ̂Wgα, β) = h(α, ̂Wgβ).

We say that 2-dimensional subspace V of a tangent space T is elliptic or hyperbolic
if the restriction g|V has signature (0, 2) or (1, 1) respectively.

The following statement holds (see, [9], for example).

Proposition 1 Let ω be a normed eigenvector of the Weyl operator, h(ω, ω) = 1.
Then:

1. ω is decomposable 2-form.
2. the plane E corresponding to ω is elliptic.
3. the plane H corresponding to ∗ω is hyperbolic and orthogonal to E.

2.2 Totally geodesic distributions

Recall (see for example, [1] or [4,5] ) that a submanifold S ⊂ M is said to be totally
geodesic if

1. tangent planes to S are not tangent to the light cones, and
2. every geodesic of the restriction of g on S is a geodesic of g in M, or the covariant

derivative ∇XY is tangent to S when vector fields X and Y are tangent to S. Here
∇ is the Levi-Civita connection on M.

Let now D be a completely integrable 2-dimensional distribution on M . We say
that D is totally geodesic if its integral submanifolds are totally geodesic.

Let D be a 2-dimensional distribution such that its planes do not tangent to the light
cones and Q : T → D⊥ is the projector on the orthogonal complement to D.

Then (see, [6]),

RD (X,Y ) = Q ([X,Y ]) ,

where X,Y are vector fields tangent to D, is a tensor (called a curvature of the distrib-
ution) and this tensor vanishes if and only if the distribution is completely integrable.

For the same reasons,

AD (X,Y ) = Q (∇XY ) ,

is a tensor too and this tensor vanishes if and only if D is totally geodesic.
Summarizing we get the following result.

Proposition 2 Let D be a 2-dimensional distribution on M such that its planes do
not tangent to the light cones. Then D is totally geodesic if and only if the tensorsAD

and RD are trivial.
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3 Totally geodesic solutions

Let g be a solution of the vacuum Einstein equation and ω be a differential 2-form
that represents a normed eigenvector of the Weyl operator ̂Wg at each point.

Let H, E be the 2-dimensional hyperbolic and elliptic distributions generated by
ω.

We say that metric g is totally geodesic if there exists an ω such that the distrib-
utions H of hyperbolic and E of elliptic planes are totally geodesic, i.e. due to the
Proposition 2:

RH = 0, AH = 0, RE = 0, AE = 0.

Assume now that a solution g is totally geodesic and let (x0, x1) be independent 1st
integrals for the hyperbolic distribution H and (x2, x3) be independent 1st integrals
for the elliptic distribution E .

Theorem 3 Let g be a totally geodesic solution of the Einstein equation. Then, in
coordinates (x0, x1, x2, x3), given by the above 1st integrals, the metric g has the
following form:

g = gH + gE ,

where

gH =
1

∑

i, j=0

gHi j (x0, x1) dxidx j and gE =
3

∑

i, j=2

gEi j (x2, x3) dxidx j .

Proof Let us show, for example, that

∂kg
H
i j = 0,

for k = 2, 3.
One has

∂kg
H
i j = ∂kg

(

∂i , ∂ j
) = g

(∇∂k∂i , ∂ j
) + g

(

∂i ,∇∂k ∂ j
)

.

But ∇∂k∂i = ∇∂i ∂k and ∇∂i ∂k ⊥〈∂0, ∂1〉. Hence g(∇∂k∂i , ∂ j ) = 0.

Remark, that the coordinates (x0, x1, x2, x3) are defined up to gauge transforma-
tions:

(x0, x1) → (X0 (x0, x1) , X1 (x0, x1)) ,

(x2, x3) → (X2 (x2, x3) , X3 (x2, x3)) .

Therefore, these coordinates can be chosen to be “isothermal” for metrics gH and gE ,

i.e.
gH = eα(x0,x1)

(

dx20 − dx21

)

(2)

and
gE = eβ(x2,x3)

(

−dx22 − dx23

)

. (3)



Differential invariants and exact solutions of the Einstein equations

4 Explicit solutions

Substituting now expressions (3), (2) in the Einstein equation we get the following
system differential equations on functions α and β:

∂2α

∂x 2
0

− ∂2α

∂x 2
1

+ 2�eα = 0,

∂2β

∂x 2
2

+ ∂2β

∂x 2
3

− 2�eβ = 0.

(4)

Thus system (4) consist of two well known Liouville equations.
First of all, remark that both equations have infinite-dimensional groups of sym-

metries.
Namely, the hyperbolic Liouville equation has conformal (with respect to metric

dx 2
0 − dx 2

1 ) group of symmetries generated by point transformations of the form

a(x0, x1)∂x0 + b(x0, x1)∂x1 − (ax0 + bx1)∂α,

where functions a, b satisfy the wave equations:

ax0 = bx1 , ax1 = bx0 .

The elliptic Liouville equation has also conformal (with respect to metric −dx 2
2 −

dx 2
3 ) group of symmetries generated by point transformations

a(x2, x3)∂x2 + b(x2, x3)∂x3 − (ax2 + bx3)∂β,

where coefficients a, b satisfy the Cauchy-Riemann equations:

ax2 = bx3 , ax3 = −bx2 .

Secondly, to find solutions of system (4) we represent them in the following forms:

• for hyperbolic case

α(x0, x1) = ln
(

h1(v)
(

v2x0 − v2x1

))

, (5)

where function v(x0, x1) satisfies the wave equation

vx0x0 − vx1x1 = 0

and h1 is a smooth function,
• for elliptic case

β(x2, x3) = ln
(

h2(u)
(

u2x2 + u2x3

))

, (6)
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where function u(x2, x3) satisfies the Laplace equation

ux2x2 + ux3x3 = 0

and h2 is a smooth function.

Note that the solution of form (5)

α(x0, x1) = ln

(

v2x0 − v2x1

�v2

)

for the hyperbolic equation first was obtained by J. Liouville in [8] and after L. Bianchi
[3] got the other solution of the same form

α(x0, x1) = ln

(

v2x0 − v2x1

� cos2(v)

)

for this equation.

Proposition 4 Functions (5) and (6) satisfy the corresponding Liouville equations:

αx0x0 − αx1x1 + 2�eα = 0,

and

βx2x3 + βx2x3 − 2�eβ = 0,

if and only if the functions h1 and h2 are solutions of the following ordinary differential
equations:

yy′′ − (y′)2 + 2�y3 = 0,

and

yy′′ − (y′)2 − 2�y3 = 0,

respectively.

Remark 5 The ordinary differential equation

yy′′ − (y′)2 + ky3 = 0, k ∈ R\{0}, (7)

has two families of general solutions

y1(x) = 2/k a2 cosh2
(

(x + b)/a
)

,

y2(x) = −2/k a2 cos2
(

(x + b)/a
)

,
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and the family of singular solutions

y3(x) = −2/k(x + b)2,

where a, b ∈ R, a �= 0.

Thus, we get the following result.

Theorem 6 Any totally geodesic solution of the Einstein equation locally has the
form

g = eα(x0,x1)(dx20 − dx21 ) − eβ(x2,x3)(dx22 + dx23 ),

where (α, β) is a solution of PDEs system (4), x0, x1 and x2, x3 are first integrals of
the hyperbolic and elliptic distributions respectively.

Appendix

Taking into account Proposition 4 and Remark 5, we represent in this section a list of
totally geodesic solutions

g = eα(x0,x1)(dx20 − dx21 ) − eβ(x2,x3)(dx22 + dx23 ),

of the vacuum Einstein equation such that the functions α and β have form (5) and
(6) respectively:

α(x0, x1) = ln
(

h1(v)
(

v2x0 − v2x1

))

, vx0x0 − vx1x1 = 0,

β(x2, x3) = ln
(

h2(u)
(

u2x2 + u2x3

))

, ux2x2 + ux3x3 = 0.

Below, a1, a2, b1, b2 ∈ R, and a1, a2 �= 0 in all formulae.

5.1. Assume that v2x0 − v2x1 > 0 in a domain. Then we have the following solutions:
5.1.1. h1 = y1, h2 = y2

g = v2x0 − v2x1

�a21 cosh
2
(

(v + b1)/a1
)

(

dx20 − dx21

)

− u2x2 + u2x3
�a22 cos

2
(

(u + b2)/a2
)

(

dx22 + dx23

)

.

5.1.2. h1 = y1, h2 = y3

g =
(

v2x0 − v2x1

)

�a21 cosh
2
(

(v + b1)/a1
)

(

dx20 − dx21

)

−
(

u2x2 + u2x3
)

�(u + b2)2

(

dx22 + dx23

)

.

5.2. Assume that v2x0 − v2x1 < 0 in a domain. Then we have the following solutions:
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5.2.1. h1 = y2, h2 = y2

g = − 2
(

v2x0 − v2x1

)

�a21 cos
2
(

(v + b1)/a1
)

(

dx20 − dx21

)

−
(

u2x2 + u2x3
)

�a22 cos
2
(

(u + b2)/a2
)

(

dx22 + dx23

)

.

5.2.2. h1 = y2, h2 = y3

g = − (v2x0 − v2x1)

�a21 cos
2
(

(v + b1)/a1
) (dx20 − dx21 ) − u2x2 + u2x3

�(u + b2)2
(dx22 + dx23 ).

5.2.3. h1 = y3, h2 = y2

g = −
(

v2x0 − v2x1

)

�(v + b1)2

(

dx20 − dx21

)

−
(

u2x2 + u2x3
)

�a22 cos
2
(

(u + b2)/a2
)

(

dx22 + dx23

)

.

5.2.4. h1 = y3, h2 = y3

g = −
(

v2x0 − v2x1

)

�(u + b2)2

(

dx20 − dx21

)

− u2x2 + u2x3
�(u + b2)2

(

dx22 + dx23

)

.

Remark 7

1. TheLiouville equations have singular solutionswith singularities located at points
for the elliptic case and on the characteristics for the hyperbolic case. They give
us singular solutions of the Einstein equations with singularities located on curves
tangent to light cones.

2. Applying symmetries of the hyperbolic and elliptic Liouville equations to the
obtained solutions α and β respectively of these equations, one can get new
solutions of system (4) and hence new totally geodesic solutions of the Einstein
equation.
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