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1 Introduction

Let M be an oriented 4-dimensional manifold.
The Einstein-Maxwell equation (see, for example, [6]) is the following system of

PDEs on Lorentzian metric g and differential 2-form F (Faraday tensor) on M :

Ric (g) − � g − 8πk

c4
T (F) = 0,

dF = 0, d ∗ F = 0.
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Here � and k are cosmological and gravitational constants respectively, c is the
velocity of light, and T (F) is the energy-momentum tensor of electromagnetic field
F.

In this paper we use relativistic differential invariants (see [8]) of solutions of the
Einstein–Maxwell equation to get explicit solutions of this equation.

The first invariants one gets from the linear operator ̂F : T M → T M, defining by
the Faraday tensor. This operator has characteristic polynomial of the form

λ4 + I1λ
2 + I2,

where I1 and I2 are invariants of solutions.
We say that a point of manifold M is Rainich singular if

I 21 + I 22 = 0

at this point.
Let Rs ⊂ M be the set of all Rainich singular points. Then on the submanifold

M\Rs of Rainich regular points tangent spaces T M split in the direct sum of two
planes which are ̂F—invariant : hyperbolic H and elliptic E . We show that finding
solutions of Einstein–Maxwell equation for which hyperbolic and elliptic distributions
are completely integrable and totally geodesic is reduced to solution of the Liouville
equations and gives us the explicit formulae for solutions of Einstein–Maxwell equa-
tion depending on two functions in one variable and one harmonic function.

Wewould like to thank Valeriya Yumaguzhina for valuable and helpful discussions.

2 Faraday tensor

In this section we briefly recall some facts on Faraday tensor (see, for example, [8,9]).
Let’s fix a point a ∈ M and let ̂F : T → T be the linear operator acting in the

tangent space T (= TaM) as follows

g
(

̂FX,Y
) = F (X,Y )

for all tangent vectors X,Y ∈ T .
Then ̂F is skew symmetric operator (with respect to metric g ) and therefore the

characteristic polynomial of ̂F contains only even degree terms:

λ4 + I1λ
2 + I2.

It was proved (see for example, [8,9]) that the condition I 21 + I 22 �= 0 is necessary
and sufficient for existence of invariant hyperbolic H ⊂ T (i.e. g on H is hyperbolic
or indefinite) and invariant elliptic E ⊂ T (i.e. g on E is negative) planes such that
H⊥E and T = H ⊕ E .
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Then the restriction of operator ̂F on the hyperbolic plane has eigenvalues ±l and
the restriction on the elliptic plane has eigenvalues ±i m, where l,m ∈ R, and

I1 = m2 − l2, I2 = −l2m2.

The projectors on invariant planes are

PH = 1

J

(

̂F2 + I1 + J

2

)

and PE = − 1

J

(

̂F2 + I1 − J

2

)

,

where

J 2 = I 21 − 4I2 = (l2 + m2)2 �= 0.

Moreover, there is an orthonormal basis (e0, e1, e2, e3), where g(e0, e0) = 1 and
g(e1, e1) = g(e2, e2) = g(e3, e3) = −1 such that

̂F =

⎡

⎢

⎢

⎣

0 l 0 0
l 0 0 0
0 0 0 m
0 0 −m 0

⎤

⎥

⎥

⎦

.

3 Totally geodesic distributions

Recall (see for example, [1] or [3] and [3]) that a submanifold S ⊂ M is said to be
totally geodesic (or auto parallel) if

• Tangent planes to S does not tangent to the light cones, and
• Every geodesic of the restriction of g on S is a geodesic of g in M, or the covariant
derivative ∇XY is tangent to S every time when vector fields X and Y are tangent
to S, here ∇ is the Levi-Civita connection on M.

Let now D be a completely integrable distribution on M and dim D = 2. We say
that D is totally geodesic if its integral submanifolds are totally geodesic.

If D is a completely integrable distribution such that its planes do not tangent to
the light cones and Q : T → D⊥ is the projector on the orthogonal complement to D,
then tensor

AD (X,Y ) = Q (∇XY ) ,

where X,Y are vector fields tangent to D, vanishes if and only if D is totally geodesic.
Remark also that the distribution D is completely integrable if and only if its

curvature form (see, [5])

RD (X,Y ) = Q ([X,Y ]) ,

where X,Y are vector fields tangent to D, is equal to zero.
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Summarizing we get the following result.

Proposition 1 Let D be a 2-dimensional distribution on M such that its planes do
not tangent to the light cones. Then D is totally geodesic if and only if the tensorsAD

and RD are trivial.

4 Totally geodesic solutions

Let s = (g, F) be a solution of the Einstein-Maxwell equation.We say that s is totally
geodesic in some domain O ⊂ M , if the distributions H of hyperbolic and E of
elliptic planes are totally geodesic, i.e. due to the above Proposition:

RH = 0, AH = 0, RE = 0, AE = 0.

Assume that a solution s is totally geodesic and let (x0, x1) be independent 1st integrals
for the hyperbolic distribution H and let (x2, x3) be independent 1st integrals for the
elliptic distribution E .

Theorem 2 Let s = (g, F) be a totally geodesic solution of the Einstein-Maxwell
equation. Then in coordinates (x0, x1, x2, x3) given by the 1st integrals metric g has
the form

g = gH + gE ,

where

gH =
1

∑

i, j=0

gHi j (x0, x1) dxidx j , gE =
3

∑

i, j=2

gEi j (x2, x3) dxidx j .

Proof Let us show, for example, that

∂kg
H
i j = 0,

for k = 2, 3.
One has

∂kg
H
i j = ∂kg

(

∂i , ∂ j
) = g

(∇∂k∂i , ∂ j
) + g

(

∂i ,∇∂k ∂ j
)

.

But ∇∂k∂i = ∇∂i ∂k and ∇∂i ∂k ⊥〈∂0, ∂1〉. Hence g(∇∂k∂i , ∂ j ) = 0.

Coordinates (x0, x1, x2, x3) defined up to gauge transformations

(x0, x1) → (X0 (x0, x1) , X1 (x0, x1)) ,

(x2, x3) → (X2 (x2, x3) , X3 (x2, x3)) .

Therefore, we can choose these coordinates to be “isothermal” for metrics gH and
gE , i.e.

Author's personal copy
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gH = eα(x0,x1)(dx20 − dx21 ) (1)

and
gE = eβ(x2,x3)(−dx22 − dx23 ). (2)

In these coordinates the Faraday tensor takes the form

F = −2l eα(x0,x1) dx0 ∧ dx1 + 2m eβ(x2,x3) dx2 ∧ dx3 (3)

where

l2 = J − I1
2

, m2 = J + I1
2

.

5 Explicit solutions

Take a totally geodesic solution of the Einstein–Maxwell equation and write down it
in form (1), (2), (3).

Substituting these expressions in the Maxwell equations we get the following sys-
tem of differential equations:

∂2(le
α) = 0, ∂3(le

α) = 0, ∂0(meβ) = 0, ∂1(meβ) = 0,

∂2(meα) = 0, ∂3(meα) = 0, ∂0(le
β) = 0, ∂1(le

β) = 0.

Taking in account that α and β are functions of (x0, x1) and (x2, x3) respectively
we get that functions l and m are constants.

Therefore, invariants I1, I2, J are constants also.
Substituting now (3,2,1) in the Einstein equation we get the following system dif-

ferential equations on functions α and β:

∂2α

∂x 2
0

− ∂2α

∂x 2
1

+ k1e
α = 0,

∂2β

∂x 2
2

+ ∂2β

∂x 2
3

+ k2e
β = 0,

(4)

where

k1 = 2
(k J

c4
+ �

)

and k2 = 2
(k J

c4
− �

)

.

System (4) consist of two well known Liouville equations.
First of all, let us note that both these equations have infinite dimensional group of

symmetries.
Namely, the hyperbolic Liouville equation has conformal (with respect to metric

dx 2
0 − dx 2

1 ) group of symmetries generated by point transformations of the form

Author's personal copy



V. Lychagin, V. Yumaguzhin

a(x0, x1)∂x0 + b(x0, x1)∂x1 − (ax0 + bx1)∂α,

where functions a, b satisfy the wave equations:

ax0 = bx1 , ax1 = bx0 .

The elliptic Liouville equation has also conformal (with respect to metric −dx 2
2 −

dx 2
3 ) group of symmetries generated by point transformations

a(x2, x3)∂x2 + b(x2, x3)∂x3 − (ax2 + bx3)∂β,

where coefficients a, b satisfy the Cauchy-Riemann equations:

ax2 = bx3 , ax3 = −bx2 .

Secondly, we will find solutions of system (4) in the following form:

• For hyperbolic case

α(x0, x1) = ln
(

h1(v)(v2x0 − v2x1)
)

, (5)

where function v(x0, x1) satisfies the wave equation

vx0x0 − vx1x1 = 0

and h1 is a smooth function in one variable;
• For elliptic case with k2 �= 0

β(x2, x3) = ln
(

h2(u)(u2x2 + u2x3)
)

, (6)

where function u(x2, x3) satisfies the Laplace equation

ux2x2 + ux3x3 = 0

and h2 is a smooth function in one variable;
For elliptic case with k2 = 0

β(x2, x3) is a harmonic function. (7)

Note that the solution of form (5)

α(x0, x1) = ln
(v2x0 − v2x1

�v2

)

for the hyperbolic equation first was obtained by Liouville in [7] and after Bianchi [2]
got the other solution of the same form
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α(x0, x1) = ln
( v2x0 − v2x1

� cos2(v)

)

for this equation.

Proposition 3 Functions (5) and (6) satisfy the corresponding Liouville equations:

αx0x0 − αx1x1 + k1e
α = 0 and βx2x3 + βx2x3 + k2e

β = 0, k2 �= 0,

if and only if the functions h1 and h2 are solutions of the ordinary differential equa-
tions:

yy′′ − (y′)2 + k1y
3 = 0 and yy′′ − (y′)2 + k2y

3 = 0

respectively.

Remark 4 The ordinary differential equation

yy′′ − (y′)2 + ky3 = 0, k ∈ R\{0}, (8)

has two families of general solutions

y1(x) = 2/k a2 cosh2
(

(x + b)/a
)

,

y2(x) = −2/k a2 cos2
(

(x + b)/a
)

,

and family of singular solutions

y3(x) = −2/k(x + b)2,

where a, b ∈ R and a �= 0.

Thus, we get the following result.

Theorem 5 Any totally geodesic solution of the Einstein-Maxwell equation has the
form

g = eα(x0,x1)(dx20 − dx21 ) − eβ(x2,x3)(dx22 + dx23 ),

F = −2l eα(x0,x1)dx0 ∧ dx1 + 2m eβ(x2,x3)dx2 ∧ dx3,

where (α, β) is a solution of PDEs system (4), x0, x1 and x2, x3 are first integrals of
the hyperbolic and elliptic distributions respectively, and eigenvalues±l and±i·m are
constants related with invariants I1, I2, J in the following way

l2 = (J − I1)/2, m2 = (J + I1)/2, J 2 = I 21 − 4I 22 .
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6 Appendix

Taking into accountProposition3 andRemark4,we represent in this section a complete
list of totally geodesic solutions

g = eα(x0,x1)(dx20 − dx21 ) − eβ(x2,x3)(dx22 + dx23 ),

F = −2l eα(x0,x1)dx0 ∧ dx1 + 2m eβ(x2,x3)dx2 ∧ dx3,

of the Einstein–Maxwell equation such that the functions α and β have form (5) and
(6) or (7) respectively:

α(x0, x1) = ln
(

h1(v)(v2x0 − v2x1)
)

, vx0x0 − vx1x1 = 0,

β(x2, x3) = ln
(

h2(u)(u2x2 + u2x3)
)

, ux2x2 + ux3x3 = 0, k2 �= 0,

β(x2, x3) is a harmonic function if k2 = 0.

Below, a1, a2, b1, b2 ∈ R, a1, a2 �= 0 for all formulas.

6.1. Let the point (x0, x1, x2, x3) be such that v2x0 − v2x1 < 0 and let k2 < 0. Then we
have the following solutions in a small neighborhood of this point:

6.1.1. h1 = y3, h2 = y3

g = −2
v2x0 − v2x1

k1(v + b1)2
(dx20 − dx21 ) + 2

u2x2 + u2x3
k2(u + b2)2

(dx22 + dx23 ),

F = 4l
v2x0 − v2x1

k1(v + b1)2
dx0 ∧ dx1 − 4m

u2x2 + u2x3
k2(u + b2)2

dx2 ∧ dx3,

6.1.2. h1 = y2, h2 = y2

g = − 2(v2x0 − v2x1)

k1a21 cos
2
(

(v + b1)/a1
) (dx20 − dx21 )

+ 2(u2x2 + u2x3)

k2a22 cos
2
(

(u + b2)/a2
) (dx22 + dx23 ),

F = 4l(v2x0 − v2x1)

k1a21 cos
2
(

(v + b1)/a1
) dx0 ∧ dx1

− 4m(u2x2 + u2x3)

k2a22 cos
2
(

(u + b2)/a2
) dx2 ∧ dx3,
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6.1.3. h1 = y3, h2 = y2

g = −2
v2x0 − v2x1

k1(v + b1)2
(dx20 − dx21 ) + 2(u2x2 + u2x3)

k2a22 cos
2
(

(u + b2)/a2
) (dx22 + dx23 ),

F = 4l
v2x0 − v2x1

k1(v + b1)2
dx0 ∧ dx1 − 4m(u2x2 + u2x3)

k2a22 cos
2
(

(u + b2)/a2
) dx2 ∧ dx3,

6.1.4. h1 = y2, h2 = y3

g = − 2(v2x0 − v2x1)

k1a21 cos
2
(

(v + b1)/a1
) (dx20 − dx21 ) + 2

u2x2 + u2x3
k2(u + b2)2

(dx22 + dx23 ),

F = 4l(v2x0 − v2x1)

k1a21 cos
2
(

(v + b1)/a1
) dx0 ∧ dx1 − 4m

u2x2 + u2x3
k2(u + b2)2

dx2 ∧ dx3.

6.2. Let v2x0 − v2x1 > 0 and k2 < 0. Then:

6.2.1. h1 = y1, h2 = y3

g = 2(v2x0 − v2x1)

k1a21 cosh
2
(

(v + b1)/a1
) (dx20 − dx21 ) + 2

u2x2 + u2x3
k2(u + b2)2

(dx22 + dx23 ),

F = − 4l(v2x0 − v2x1)

k1a21 cosh
2
(

(v + b1)/a1
) dx0 ∧ dx1 − 4m

u2x2 + u2x3
k2(u + b2)2

dx2 ∧ dx3,

6.2.2. h1 = y1, h2 = y2

g = 2(v2x0 − v2x1)

k1a21 cosh
2
(

(v + b1)/a1
) (dx20 − dx21 )

+ 2(u2x2 + u2x3)

k2a22 cos
2
(

(u + b2)/a2
) (dx22 + dx23 ),

F = − 4l(v2x0 − v2x1)

k1a21 cosh
2
(

(v + b1)/a1
) dx0 ∧ dx1

− 4m(u2x2 + u2x3)

k2a22 cos
2
(

(u + b2)/a2
) dx2 ∧ dx3.

6.3. Let v2x0 − v2x1 < 0 and k2 > 0. Then:

6.3.1. h1 = y3, h2 = y1

g = −2
v2x0 − v2x1

k1(v + b1)2
(dx20 − dx21 ) − 2(u2x2 + u2x3)

k2a22 cosh
2
(

(u + b2)/a2
) (dx22 + dx23 ),
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F = 4l
v2x0 − v2x1

k1(v + b1)2
dx0 ∧ dx1 − 4m(u2x2 + u2x3)

k2a22 cosh
2
(

(u + b2)/a2
) dx2 ∧ dx3,

6.3.2. h1 = y2, h2 = y1

g = − 2(v2x0 − v2x1)

k1a21 cos
2
(

(v + b1)/a1
) (dx20 − dx21 )

− 2(u2x2 + u2x3)

k2a22 cosh
2
(

(u + b2)/a2
) (dx22 + dx23 ),

F = 4l(v2x0 − v2x1)

k1a21 cos
2
(

(v + b1)/a1
) dx0 ∧ dx1

− 4m(u2x2 + u2x3)

k2a22 cosh
2
(

(u + b2)/a2
) dx2 ∧ dx3.

6.4. Let v2x0 − v2x1 > 0 and k2 > 0. Then

6.4.1. h1 = y1, h2 = y1

g = 2(v2x0 − v2x1)

k1a21 cosh
2
(

(v + b1)/a1
) (dx20 − dx21 )

− 2(u2x2 + u2x3)

k2a22 cosh
2
(

(u + b2)/a2
) (dx22 + dx23 ),

F = − 4l(v2x0 − v2x1)

k1a21 cosh
2
(

(v + b1)/a1
) dx0 ∧ dx1

+ 4m(u2x2 + u2x3)

k2a22 cosh
2
(

(u + b2)/a2
) dx2 ∧ dx3.

6.5. Let k2 = 0, then β(x2, x3) is a harmonic function and we have the following
solutions:

6.5.1. v2x0 − v2x1 < 0 and h1 = y3

g = −2
v2x0 − v2x1

k1(v + b1)2
(dx20 − dx21 ) − eβ(dx22 + dx23 ),

F = 4l
v2x0 − v2x1

k1(v + b1)2
dx0 ∧ dx1 + 2m eβdx2 ∧ dx3,

6.5.2. v2x0 − v2x1 < 0 and h1 = y2

g = − 2(v2x0 − v2x1)

k1a21 cos
2
(

(v + b1)/a1
) (dx20 − dx21 ) − eβ(dx22 + dx23 ),
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F = 4l(v2x0 − v2x1)

k1a21 cos
2
(

(v + b1)/a1
) dx0 ∧ dx1 + 2m eβdx2 ∧ dx3,

6.5.3. v2x0 − v2x1 > 0 and h1 = y1

g = 2(v2x0 − v2x1)

k1a21 cosh
2
(

(v + b1)/a1
) (dx20 − dx21 ) − eβ(dx22 + dx23 ),

F = − 4l(v2x0 − v2x1)

k1a21 cosh
2
(

(v + b1)/a1
) dx0 ∧ dx1 + 2m eβdx2 ∧ dx3,

Remark 6 Applying symmetries of the hyperbolic and elliptic Liouville equations
to the obtained solutions α and β respectively of these equations, one can get new
solutions of system (4) and hence new totally geodesic solutions of the Einstein-
Maxwell equation.
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