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A PDE Approach to Data-Driven Sub-Riemannian Geodesics in SE(2)∗
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Abstract. We present a new flexible wavefront propagation algorithm for the boundary value problem for sub-
Riemannian (SR) geodesics in the roto-translation group SE(2) = R

2
� S1 with a metric tensor

depending on a smooth external cost C : SE(2) → [δ, 1], δ > 0, computed from image data. The
method consists of a first step where an SR-distance map is computed as a viscosity solution of a
Hamilton–Jacobi–Bellman system derived via Pontryagin’s maximum principle (PMP). Subsequent
backward integration, again relying on PMP, gives the SR-geodesics. For C = 1 we show that
our method produces the global minimizers. Comparison with exact solutions shows a remarkable
accuracy of the SR-spheres and the SR-geodesics. We present numerical computations of Maxwell
points and cusp points, which we again verify for the uniform cost case C = 1. Regarding image
analysis applications, trackings of elongated structures in retinal and synthetic images show that our
line tracking generically deals with crossings. We show the benefits of including the SR-geometry.

Key words. roto-translation group, Hamilton–Jacobi equations, vessel tracking, sub-Riemannian geometry,
morphological scale spaces
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1. Introduction. In computer vision, it is common to extract salient curves in images via
minimal paths or geodesics minimizing a length functional [33]. The minimizing geodesic is
defined as the curve that minimizes the length functional, which is typically weighted by a
cost function with high values on image locations with high curve saliency. To compute such
data-driven geodesics many authors use a two-step approach: first, a geodesic distance map
to a source is computed; then steepest descent on the map gives the geodesics. In a PDE
framework, the geodesic map is obtained via wavefront propagation as the viscosity solution
of a Hamilton–Jacobi–Bellman (HJB) equation (the eikonal equation). For a review of this
approach and applications see [38, 29, 33].

Another set of geodesic methods, partially inspired by the psychology of vision, was de-
veloped in [32, 15]. In particular, in [15] the roto-translation group SE(2) = R

2
�S1 endowed

with a sub-Riemannian (SR) metric models the functional architecture of the primary visual
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A PDE APPROACH TO DATA-DRIVEN SUB-RIEMANNIAN GEODESICS IN SE(2) 2741

Figure 1. A: Every point in the planar curve γ2D(t) = (x(t), y(t)) is lifted to a point g = γ(t) =
(x(t), y(t), θ(t)) ∈ SE(2) on a horizontal curve (solid line) by considering the direction of the tangent vector
γ̇2D(t) of the planar curve as the third coordinate. Then tangent vectors γ̇(t) ∈ span{A1|γ(t) , A2|γ(t)} = Δ|γ(t),
(2.1). B: In the lifted domain, SE(2) crossing structures are disentangled. C: The SR-geodesic (green) better
follows the curvilinear structure along the gap than the Riemannian geodesic (red).

cortex, and geodesics (stratifying a minimal surface) are used for completion of occluded con-
tours. A stable wavelet-like approach to lift 2D images to functions on SE(2) was proposed
in [18]. Within the SE(2) framework, images and curves are lifted to the 3D space R

2
� S1

of coupled positions and orientations in which intersecting curves are disentangled. The SR-
structure applies a restriction to so-called horizontal curves which are the curves naturally
lifted from the plane (see Figure 1A). For a general introduction to SR-geometry see [28]. For
explicit formulas of SR-geodesics and optimal synthesis in SE(2) see [37]. SR-geodesics in
SE(2) were also studied in [8, 21, 10, 16, 25, 27].

Here, we propose a new wavefront propagation-based method for finding SR-geodesics
within SE(2) with a metric tensor depending on a smooth external cost C : SE(2) → [δ, 1],
δ > 0 fixed. Our solution is based on an HJB equation in SE(2) with an SR metric including
the cost. This method adapts a classical PDE approach for finding geodesics used in com-
puter vision [38, 29, 33] to the SR-geometry case. It is of interest to interpret the viscosity
solution of the corresponding HJB equation as an SR-distance map [39]. Using Pontryagin’s
maximum principle (PMP), we derive the HJB system with an eikonal equation providing
the propagation of geodesically equidistant surfaces departing from the origin. We prove this
in Theorem 3.1, and we show that SR-geodesics are computed by backtracking via PMP. In
Theorem 3.2, we consider the uniform cost case (i.e., C = 1) and show that the surfaces coin-
cide with the SR-spheres, i.e., the surfaces from which every tracked curve is globally optimal.
This uniform cost case has been deeply studied in [37] relying on explicit ODE-integration in
PMP. In this article, we will rely on a PDE approach, allowing us to extend the SR-geodesic
problem to the general case where C is a smooth cost uniformly bounded from below and
above. We will often use the results in [37] as a golden standard to verify optimality prop-
erties of the viscosity solutions and accuracy of the involved numerics of our PDE approach.
We find a remarkable accuracy and convergence toward exact solutions, 1st Maxwell sets (i.e.,
the location where for the first time two distinct geodesics of equal length meet), and the cusp
surface [16, 10].

Potential toward applications of the method with nonuniform cost is demonstrated by
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performing vessel tracking in retinal images. Here the cost function is computed by lifting the
images via oriented wavelets, as explained in section 5. Similar ideas of computing geodesics
via wavefront propagation in the extended image domain of positions and orientations, and/or
scales, have been proposed in [31, 22, 7]. In addition to these interesting works we propose to
rely on an SR geometry. Let us illustrate some key features of our method. In Figure 1B one
can see how disentanglement of intersecting structures, due to their difference in orientations,
allows us to automatically deal with crossings (a similar result can be obtained with the
algorithm in [31]). The additional benefit of using an SR geometry is shown in Figure 1C,
where the SR-geodesic better follows the curvilinear structure along the gap. Further benefits
follow in the experimental section where the inclusion of the SR constraint helps to resolve
complex configurations containing crossings, low contrast image regions, and/or near parallel
vessels. More supporting tracking experiments are provided in the supplementary material
(see M101846 01.pdf [local/web 30.7MB]).

1.1. Structure of the article. The article is structured as follows. First, in section 2, we
give the mathematical formulation of the curve optimization problem that we aim to solve
in this paper. In section 3 we describe our PDE approach that provides the SR-distance
map as the viscosity solution of a boundary value problem (BVP) involving an SR-eikonal
equation. Furthermore, in Theorem 3.1, we show that SR-geodesics are obtained from this
distance map by backtracking (imposed by the PMP computations presented in Appendix A).
In Theorem 3.2 we show that for the uniform cost case (i.e., C = 1) such backtracking will
never pass Maxwell points nor conjugate points, and thereby our approach provides only the
globally optimal solutions.

In section 4 we describe an iterative procedure on how to solve the BVP by solving a
sequence of initial value problems (IVPs) for the corresponding HJB equation. Before in-
volvement of numerics, we express the exact solutions in concatenated morphological convo-
lutions (erosions) and time-shifts in Appendix E. Here we rely on morphological scale space
PDEs [12, 2, 17], and we show that solutions of the iterative procedure converge toward the
SR-distance map. Then in section 5 we construct the external cost C, based on a lifting of
the original image to an orientation score [18]. In section 6, we describe a numerical PDE
implementation of our method by using left-invariant finite differences [20] in combination
with an upwind scheme [35].

In section 7 we present numerical experiments and results. In subsection 7.1 we verify
the proposed method with comparisons to exact solutions for the uniform cost case. We also
provide simple numerical approaches (extendable to the nonuniform cost case) to compute 1st
Maxwell points and cusp points [16], which we verify for the uniform cost case with results
in [37]. Finally, in subsection 7.2, we show application of the method to vessel tracking in
optical images of the retina. We discuss the two main parameters that are involved: the
balance between external and internal cost, and the balance between spatial and angular
motion. First feasibility studies are presented on patches, and we discuss how to proceed
toward automated retinal vessel tree segmentation.

This article is an extension of an SSVM conference article [6]. In addition to [6] we in-
clude the following theoretical results: the proofs of our main theorems (Theorems 3.1 and
3.2); the underlying differential geometrical tools in Appendices A, B, and C, and embedding
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into geometric control theory in Appendix F; proof of our limiting procedure expressing exact
solutions of the SR HJB system in terms of concatenated morphological convolutions (with
offsets) in Appendix E. Regarding experiments and applications, we now include new experi-
ments supporting the accuracy of our method, evaluation of the practical potential for vessel
tree tracking, simple practical computation of specific surfaces of geometric interest (cusp
surface and 1st Maxwell set), analysis of the cost function and evaluation of the parameters
involved, and the roadmap toward a fast marching implementation.

2. Problem formulation. The roto-translation group SE(2) carries group product:

gg′ = (x, Rθ)(x
′, Rθ′) = (Rθx

′ + x, Rθ+θ′),

where Rθ is a counterclockwise planar rotation over angle θ. This group can be naturally
identified with the coupled space of positions and orientations R2

�S1 by identifying Rθ ↔ θ
while imposing 2π-periodicity on θ. Then for each g ∈ SE(2) we have the left multiplication
Lgh = gh. Via the push-forward (Lg)∗ of the left-multiplication we get the left-invariant
vector fields {A1,A2,A3} from the Lie-algebra basis {A1, A2, A3} = {∂x|e , ∂θ|e , ∂y|e} at the
unity e = (0, 0, 0):

(2.1)

A1|g = cos θ ∂x|g + sin θ ∂y|g = (Lg)∗ ∂x|e ,
A2|g = ∂θ|g = (Lg)∗ ∂θ|e ,
A3|g = − sin θ ∂x|g + cos θ ∂y|g = (Lg)∗ ∂y|e .

Then all tangents γ̇(t) ∈ Tγ(t)(SE(2)) along smooth curves t �→ γ(t) = (x(t), y(t), θ(t)) ∈
SE(2) can be expressed as γ̇(t) =

∑3
k=1 u

k(t) Ak|γ(t), where the contravariant components

uk(t) of the tangents (velocities) can be considered as the control variables.
Not all curves t �→ γ(t) in SE(2) can be considered as a lift from a planar curve t �→

(x(t), y(t)) in the sense that θ(t) = arg(ẋ(t) + i ẏ(t)). This only holds for so-called horizontal
curves which have u3 = 0 and thus γ̇(t) =

∑2
k=1 u

k(t) Ak|γ(t). This means that a tangent
vector to a (lifted) horizontal curve must lay in a 2D subspace of the tangent space; see the
gray plane in Figure 1A. At each group element g = (x, y, θ) one has such a plane spanned by
A1|g and A2|g. When θ increases, such a plane rotates. The disjoint union of these planes
forms a so-called distribution. In our case this distribution is given by

Δ := span{A1,A2},
and vector fields that are inside the distribution are called horizontal. The commutator
[A1,A2] = A1A2 −A2A1 = −A3 �∈ Δ; thus the distribution Δ together with its commutators
fill the full tangent space and thereby every two points in SE(2) can be connected by a
horizontal curve; see [1]. We introduce the metric tensor GC : SE(2) ×Δ×Δ → R given by

(2.2) GC |γ(t)(γ̇(t), γ̇(t)) = C2 (γ(t))
(
β2|ẋ(t) cos θ(t)+ẏ(t) sin θ(t)|2 + |θ̇(t)|2

)
,

with γ : R → SE(2) a smooth curve on R
2
� S1, β > 0 constant, C : SE(2) → [δ, 1] the

given external smooth cost which is bounded from below by δ > 0. This brings us to the
SR-manifold (commonly denoted by a triplet; cf. [28]): (SE(2),Δ, GC ).

Remark 1. Intuitively, a horizontal curve (cf.Figure 1A) can be seen as a lifted trajectory
of a (Reeds–Shepp) car [28, 37]. The metric tensor is weighted by the external cost C, and the
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stiffness parameter β puts a relative costs on hitting the gas (i.e., moving in the A1-direction)
and turning the wheel (i.e., moving in the A2-direction). The connectivity property, i.e., any
two group elements can be connected by a horizontal curve, reflects the intuitive fact that in
an empty plane a car can be parked in any position and orientation.

Remark 2. Define Lgφ(h) = φ(g−1h); then we have

GC |γ(γ̇, γ̇) = GLgC∣∣
gγ

( (Lg)∗γ̇, (Lg)∗γ̇ ) .

Thus, GC is not left-invariant, but if shifting the cost as well, we can, for the computation of
SR-geodesics, restrict ourselves to γ(0) = e.

We study the problem of finding SR-minimizers; i.e., for given boundary conditions γ(0) =
e, γ(T ) = g, we aim to find the horizontal curve γ(t) that minimizes the total SR-length

(2.3) l =

∫ T

0

√
GC |γ(t) (γ̇(t), γ̇(t)) dt.

If t is the SR-arclength parameter, our default parameter, then
√
GC |γ(t) (γ̇(t), γ̇(t)) = 1 and

l = T . Then SR-minimizers γ are solutions to the optimal control problem (with free T > 0):

(2.4) PCmec(SE(2)) :

⎧⎪⎪⎨⎪⎪⎩
γ̇ = u1 A1|γ + u2 A2|γ ,
γ(0) = e, γ(T ) = g,

l(γ(·)) = ∫ T
0 C(γ(t))√β2|u1(t)|2 + |u2(t)|2 dt→ min,

γ(t) ∈ SE(2), (u1(t), u2(t)) ∈ R
2, β > 0.

In the naming of this geometric control problem we adhere to terminology in previous works
[10, 16]. Stationary curves of the problem (2.4) are found via PMP [1]. Existence of minimizers
follows from Chow–Rashevsky and Filippov’s theorem [1], and because of the absence of
abnormal trajectories (due to the two-bracket generating distribution Δ) they are smooth.

Remark 3. The Cauchy–Schwarz inequality implies that the minimization problem for the
SR-length functional l with free T is equivalent (see, e.g., [28]) to the minimization problem
for the action functional with fixed T :

(2.5) J(γ) =
1

2

∫ T

0
C2(γ(t))(β2|u1(t)|2 + |u2(t)|2) dt.

3. Solutions via data-driven wavefront propagation. The following theorem summarizes
our method for the computation of data-driven SR-geodesics in SE(2). It is an extension of
classical methods in the Euclidean setting [29, 38, 33] to the SR-manifold (SE(2),Δ, GC ). The
idea is illustrated in Figure 2.

Theorem 3.1. Let W (g) be a solution of the following BVP with eikonal equation:

(3.1)

{ √
(C(g))−2 (β−2|A1W (g)|2 + |A2W (g)|2)− 1 = 0 for g �= e,

W (e) = 0.

Then the isosurfaces

(3.2) St = {g ∈ SE(2) |W (g) = t}
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A B 
Figure 2. A, B: Our method provides both geodesically equidistant surfaces St (3.2) (depicted in A) and

SR-geodesics. As depicted in B, geodesic equidistance holds with unit speed for all SR-geodesics passing through
the surface; see Theorem 3.1. Via Theorem 3.2 we have that W (g) = d(g, e) and {St}t≥0 is the family of
SR-spheres with radius t depicted in this figure for the uniform cost case.

are geodesically equidistant with unit speed C(γ(t))√β2|u1(t)|2 + |u2(t)|2 = 1, and they provide
a specific part of the SR-wavefronts departing from e = (0, 0, 0). An SR-geodesic ending at
g ∈ SE(2) is found by backward integration:

(3.3) γ̇b(t) = −
A1W |γb(t)

(β C(γb(t)))2 A1|γb(t) −
A2W |γb(t)
(C(γb(t)))2 A2|γb(t) , γb(0) = g.

Proof. The definition of geodesically equidistant surfaces is given in Definition B.1 in
Appendix B. Furthermore, in Appendix B we provide two lemmas needed for the proof. In
Lemma B.2, we connect the Fenchel transform on Δ to the Fenchel transform on R

2 to obtain
the result on geodesically equidistant surfaces in (SE(2),Δ, GC). Then, in Lemma B.3 in
Appendix B, we derive the HJB equation for the homogeneous Lagrangian as a limit from the
HJB equation for the squared Lagrangian. The backtracking result follows from application
of PMP to the equivalent action functional formulation (2.5), as done in Appendix A. Akin
to the R

d case [11], characteristics are found by integrating the ODEs of the PMP, where
according to the proof of Lemma B.2 we must set p = dSRW ; see Remark 4 below.

The next theorem provides our main theoretical result. Recall that Maxwell points are
SE(2) points where two distinct geodesics with the same length meet. The 1st Maxwell set
corresponds to the set of Maxwell points where the distinct geodesics meet for the first time.
In the subsequent theorem we will consider a specific solution to (3.1), namely, the viscosity
solution as defined in Definition C.3 in Appendix C.

Theorem 3.2. Let C = 1. Let W (g) be the viscosity solution of the BVP (3.1). Then
St, (3.2), equals the SR-sphere of radius t. Backward integration via (3.3) provides globally
optimal geodesics reaching e at t =W (g) = d(g, e) :=

(3.4) min
γ ∈ C∞(R+, SE(2)), T ≥ 0,
γ̇ ∈ Δ, γ(0) = e, γ(T ) = g

∫ T

0

√
|θ̇(τ)|2 + β2|ẋ(τ) cos θ(τ)+ẏ(τ) sin θ(τ)|2 dτ,
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A B 

Figure 3. A: SR-sphere St for t = 4 obtained by the method in Theorem 3.1 using C = 1 and δMe as initial
condition via viscosity solutions of the HJB equation (4.1) implemented according to section 6. B: The full SR-
wavefront departing from e via the method of characteristics and formulas in [27] giving rise to interior folds
(corresponding to multiple valued nonviscosity solutions of the HJB equation). The Maxwell set M consists
precisely of the dashed line on x cos θ

2
+ y sin θ

2
= 0 and the red circles at |θ| = π. The dots are 2 (of the 4)

conjugate points on St which are limits of 1st Maxwell points (but not Maxwell points themselves). In B we see
the astroidal structure of the conjugate locus [36, 13]. In A we see that the unique viscosity solutions stop at
the 1st Maxwell set. Comparison of A and B shows the global optimality and accuracy of our method at A.

and γb(t) = γmin(d(g, e) − t). The SR-spheres St = {g ∈ SE(2) | d(g, e) = t} are nonsmooth
at the 1st Maxwell set M (cf. [37]), contained in

(3.5) M ⊂
{
(x, y, θ) ∈ SE(2) | x cos θ

2
+ y sin

θ

2
= 0 ∨ |θ| = π

}
,

and the backtracking (3.3) does not pass the 1st Maxwell set.
Proof of Theorem 3.2 can be found in Appendix D. The global optimality and nonpassing

of the 1st Maxwell set can be observed in Figure 3. For the geometrical idea of the proof see
Figure 4.

Remark 4. The Hamiltonian Hfixed for the equivalent fixed time problem (2.5) equals

(3.6) Hfixed(g, p) =
1

2

1

(C(g))2
(
β−2h21 + h22

)
=

1

2
,

with momentum covector p = h1ω
1 + h2ω

2 + h3ω
3 expressed in dual basis {ωi}3i=1 given by

(3.7) 〈ωi,Aj〉 = δij ⇔ ω1 = cos θdx+ sin θdy, ω2 = dθ, ω3 = − sin θdx+ cos θdy.
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Figure 4. Maxwell point g∗ = (−4, 4, π/2) (in white) on SR-sphere St (in orange) for C = 1. At g∗ two
SR-geodesics γ1 �≡ γ2 with equal SR-length t meet (γ1(t) = γ2(t)). From left to right: A: projection of γ1 and
γ2 on the plane (x, y), B: 2D slices (x = x∗, y = y∗) of level sets of W (g) with distinguished value W (g) = t
(again in orange). On top we plotted the Maxwell point, the intersection of surface x cos θ

2
+ y sin θ

2
= 0 (in

purple; this set contains a part of the 1st Maxwell set) with the 2D slices. C: The SR-sphere St in SE(2).
D: Section around g∗ revealing the upward kink due to the viscosity solution. From this kink we see that the
tracking (3.3) does not cross a 1st Maxwell point as indicated in red, yielding global optimality in Theorem 3.2.

The Hamiltonian H free for the free-time problem (2.4) minimizing l equals

(3.8) H free(g, p) =
√

2Hfixed(g, p) − 1 = 0.

For details see Appendices A and B. These two Hamiltonians play a central role in the
remainder of this article. For example, the SR-eikonal equation, (3.1), can be written as
H free(g, p) = 0 with momentum1

p = dSRW :=

2∑
i=1

(AiW ) ωi.

Remark 5. SR-geodesics lose their optimality either at a Maxwell point or at a conjugate
point (where the integrator of the canonical ODEs, mapping initial momentum p0 and time
t > 0 to end-point γ(t), is degenerate [1]). Some conjugate points are limits of Maxwell
points; see Figure 3, where the 1st astroidal conjugate locus coincides with the void regions
(cf. [3, Fig. 1]) after 1st Maxwell set M. When setting a Maxwell point as initial condition,
the initial derivative dSRW

∣∣
γb(0)

is not defined. Here there are 2 horizontal directions with

minimal slope; taking these directions, our algorithm produces the results in Figures 4A and
13.

1Note that the SR-gradient ∇SRW = (GC)−1dW = C−2 ∑2
i=1 β

−2
i AiWAi, with β1 = β, β2 = 1, by

definition is the Riesz representative (being a vector) of this SR-derivative (being a covector).
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4. An iterative IVP procedure to solve the SR-eikonal BVP. To obtain an iterative
implementation to obtain the viscosity solution of the SR-eikonal BVP given by (3.1), we rely
on viscosity solutions of the IVP. In this approach we put a connection between morphological
scale spaces [12, 2] and morphological convolutions with morphological kernels, on the SR-
manifold (SE(2),Δ, GC ) and the SR-eikonal BVP.

In order to solve the SR-eikonal BVP (3.1) we resort to subsequent auxiliary IVPs on
SE(2) for each r ∈ [rn, rn+1], with rn = nε at step n ∈ N ∪ {0}, ε > 0 fixed:

(4.1)

⎧⎪⎪⎨⎪⎪⎩
∂W ε

n+1

∂r (g, r) = 1−
√

(C(g))−2 (β−2|A1W ε
n+1(g, r)|2 + |A2W ε

n+1(g, r)|2
)
,

W ε
n+1(g, rn) =W ε

n(g, rn) for g �= e,

W ε
n+1(e, rn) = 0

for n = 1, 2, . . ., and

(4.2)

{
∂W ε

1
∂r (g, r) = 1−√

(C(g))−2 (β−2|A1W ε
1(g, r)|2 + |A2W ε

1 (g, r)|2),
W ε

1(g, 0) = δMe (g)

for n = 0, where δMe is the morphological delta (i.e., the analogue of the Dirac delta in
morphological scale space methods [12, 2]) given by

(4.3) δMe (g) =

{
0 if g = e,

+∞ else.

Let W ε
n+1 denote the viscosity solution of (4.1) carrying the following support:

supp(W ε
n+1) = SE(2) × [rn, rn+1], with rn = nε.

So in (4.1) at the nth iteration (n ≥ 1) we use, for g �= e, the end condition W ε
n(g, rn) of the

nth evolution as an initial condition W ε
n+1(g, rn) of the (n + 1)th evolution. Only for g = e

we set initial condition W ε
n+1(e, rn) = 0. Then we define the pointwise limit

(4.4) W∞(g) := lim
ε→0

(
lim
n→∞W

ε
n+1(g, (n + 1)ε)

)
.

Finally, regarding the application of our optimality results, it is important that each IVP
solution W ε

n+1(g, r) is the unique viscosity solution of (4.1), as then via (4.4) the viscosity
property for the viscosity solutions of the HJB-IVP problem naturally carries over to the
viscosity property of the viscosity solutions of system (3.1). Thus we obtain W =W∞ as the
unique viscosity solution of the SR-eikonal BVP.

Details on the limit (4.4), which takes place in the continuous setting before numeric
discretization is applied, can be found in Appendix E. In Appendix E we provide solutions
of (4.1) by a time-shift in combination with a morphological convolution2 with the corre-
sponding morphological kernel, and show why the double limit is necessary. A quick intuitive
explanation is given in Figure 5, where we see that for ε > 0 we obtain staircasing (due to
a discrete rounding of the distance/value function) and where in the limit ε ↓ 0 the solution
W∞(g) =W (g) = d(g, e) is obtained.

2In fact, an “erosion” according to the terminology in morphological scale space theory; see, e.g., [12].
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Figure 5. Illustration of the pointwise limits in (4.4). Top: plot of g �→ limn→∞W ε
n+1(g, rn+1) (from

left to right, for ε = 1, ε = 0.5, and ε ↓ 0) which is a piecewise step-function; see Corollary E.2 in Ap-
pendix E. Along the red axis {(x, 0, 0) | x ∈ R} we have x = d(g, e). Bottom: the corresponding graph of
x �→ W ε

n+1((x, 0, 0), rn+1). As n grows the staircase grows; as ε → 0 the size of the steps in the staircase
vanishes, and we see W∞(g) = d(g, e) in the rightmost column.

Remark 6. The choice of our initial condition in (4.2) comes from the relation between
linear and morphological scale spaces [2, 12]. Here, for linear SE(2)-convolutions over the
(·,+)-algebra one has δe ∗SE(2) U = U . For morphological SE(2)-convolutions (erosions) over
the (min,+)-algebra [16] one has a similar property:

(4.5) (δMe � U)(g) := inf
q∈SE(2)

{
δMe (q−1g) + U(q)

}
= U(g),

where we recall (4.3). This is important for representing viscosity solutions of left-invariant
HJB equations on SE(2) by Lax–Oleinik [19] type of formulas (akin to the SE(3) case [17]).
This is, for example, employed in Appendix E.

Remark 7. The staircasing limit depicted in Figure 5 is similar to the basic eikonal BVP
on R with solution d(x, 0) = |x|. On R the approach (4.1), (4.2), and (4.4) provides pointwise
limit:

|x| = lim
ε→0

∞∑
m=0

rm+1 1[rm,rm+ε](|x|) = lim
ε→0

� |x|
ε
	∑

m=0

rm+1 1[rm,rm+ε](|x|),

with rm = mε.

Remark 8. By general semigroup theory [2], one cannot impose both the initial condition
and a boundary condition W ε(e, r) = 0 at the same time, which forced us to update the initial
condition (at g = e) in our iteration scheme (4.1). The separate updating with value 0 for
g = e in (4.1) is crucial for the convergence in (4.4).
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5. Construction of the nonuniform cost. The cost should have low values on locations
with high curve saliency, and high values otherwise. Based on image f we define the cost
function δ ≤ C ≤ 1 via

(5.1) C(x, y, θ) = 1

1 + λ
∣∣∣ (A2

3Uf )+(x,y,θ)

‖(A2
3Uf )+‖∞

∣∣∣p ,
where λ ≥ 0, p ∈ N; Uf : SE(2) → R is a lift of the image, with ‖ · ‖∞ the sup-norm; and

(A2
3Uf )+(x, y, θ) = max{0, (− sin θ∂x + cos θ∂y)

2Uf (x, y, θ)}

is a ridge-detector [23] where we use spatially isotropic Gaussian derivatives [20]. The ridge-
detector, which is based on a second order derivative in the A3-direction, gives responses only
if there are convex variations orthogonal to the elongated structures of interest in Uf (x, y, θ).
Note that by (5.1) we have δ = 1

1+λ ≤ C ≤ 1.

The lifting is done using real-valued anisotropic wavelets ψ:

(5.2) Uf (x, θ) =

∫
R2

ψ(R−1θ (y − x)) f(y)dy.

See Figure 6. In this work we use the real part of so-called cake wavelets [18] to do the lifting.
These wavelets have the property that they allow stable reconstruction and do not tamper
with data evidence before processing takes place in the SE(2) domain. Other types of 2D
wavelets could be used as well. In related work by Péchaud, Peyré, and Keriven [31] the cost
C was obtained via normalized cross correlation with a set of templates.

In (5.1) two parameters, λ and p, are introduced. Parameter λ can be used to increase
the contrast in the cost function. For example, by choosing λ = 0 one creates a uniform cost
function, and by choosing λ > 0 data-adaptivity is included. Parameter p > 1 controls the
steepness of the cost function, and in our experiments it is always set to p = 3.

Figure 6. Illustration of the cost function C. Left: retinal image patch f . Middle: corresponding function
Uf (“invertible orientation score”) using the real part of a cake wavelet ψ [18]. Right: the cost function C
computed via (5.1) visualized via volume rendering. The orange corresponds to locations where C has a low
value.

D
ow

nl
oa

de
d 

12
/0

4/
15

 to
 1

31
.1

55
.2

45
.1

85
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A PDE APPROACH TO DATA-DRIVEN SUB-RIEMANNIAN GEODESICS IN SE(2) 2751

6. Implementation. To compute the SR-geodesics with given boundary conditions we
first construct the value function W in (3.1), implementing the iterations at (4.1), after which
we obtain our geodesic γ via a gradient descent onW from g back to e; recall Theorem 3.1 (and
Theorem 3.2). Throughout this section, we keep using the continuous notation g ∈ SE(2),
although within all numerical procedures g is sampled on the following (2N +1)× (2N +1)×
(2Nθ) equidistant grid:

(6.1) {(xi, yj, θk) |xi = sxyi, yj = sxyj, θk = sθk, with i, j = −N, . . . , N, k = −Nθ+1, . . . , Nθ},

with step-sizes sθ =
π
Nθ

, sxy = xmax
N , with N,Nθ ∈ N. As a default we set N = 70, xmax = 7,

Nθ = 64. The time-discretization grid is also chosen to be equidistant with time steps Δr = ε.
On this grid we compute an iterative upwind scheme to obtain the viscosity solution W ε

at iteration (4.1). Here we initialize W ε(·, 0) = δMD
e (·), with the discrete morphological delta,

given by δMD
e (g) = 0 if g = e and 1 if g �= e, and iterate

(6.2)

{
W ε(g, r +Δr) =W ε(g, r) −Δr H free

D (g, dW ε(g, r)) for g �= e,
W ε(e, r +Δr) = 0,

with free-time Hamiltonian (see Appendix A, (A.4)) given by

H free
D (g, dW ε(g, r)) =

(
1

C(g)
√
β−2(A1W ε(g, r))2 + (A2W ε(g, r))2 − 1

)
,

until convergence. We set Δr = ε in (4.1). In the numerical upwind scheme, the left-invariant
derivatives are calculated via

AiW
ε(g, r) = max

{A−i W ε(g, r),−A+
i W

ε(g, r), 0
}
,

where A+
i and A−i denote, respectively, the forward and backward finite difference approxi-

mations of Ai. Note that W ε in (6.2) is a first order finite difference approximation of W ε
n+1

in (4.1) at time interval r ∈ [nε, (n+1)ε], and we iterate until the subsequent L∞-norms differ
less than 10−6. This upwind scheme is a straightforward extension of the scheme proposed
in [35] for HJB systems on R

n. It produces sharp ridges at the 1st Maxwell set (cf. Figure 3)
as it is consistent at local maxima. For numerical accuracy and left-invariance we applied
finite differences in the moving frame of left-invariant vector fields, using B-spline interpola-
tion. This is favorable over finite differences in the fixed coordinate grid {x, y, θ}. For details
on these kinds of left-invariant finite differences, and comparisons to other finite difference
implementations (e.g., in fixed coordinate grid), see [20].

In our implementation the origin e is treated separately as our initial condition is not
differentiable. We apply the update W ε(e, r) = 0 for all r ≥ 0. We set step-size ε =
0.1 min(sxyβ, sθ) with sxy and sθ step-sizes in, respectively, the x-y-directions and the θ-
direction.

7. Experiments and results.

7.1. Verification for the uniform cost case. Throughout the paper we have illustrated
the theory with figures obtained via our new wavefront propagation technique. As problem
(2.4) for C = 1 was solved [37, 16], we use this as a golden standard for comparison. In this
subsection we present experiments that support the accuracy of our method.
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B A 

Figure 7. A: SR-geodesic example for the uniform cost case shows that our PDE discretizations (with 12
and 64 sampled orientations in red and green, respectively) are accurate in comparison to analytic solutions in
[37, 16] (in black). B: The blue surface represents the cusp surface numerically computed via the proposed HJB
system (with C = 1) and subsequent calculation of the zero-crossings of A1W (x, y, θ). Indeed if an SR-geodesic
(in green) passes this surface, it passes in the θ-direction (with infinite curvature [10, 16]), yielding a cusp on
the spatial ground plane. The same blue surface is computed in [16, Fig. 11]. We even see the additional fold
(top left, passing the gray plane), as some globally optimal SR-geodesics even exhibit 2 cusps.

7.1.1. Comparison of BVP solutions and the cusp surface. Let us consider Figure 7A.
Here an arbitrary SR-geodesic between the SE(2) points γ(0) = e and γ(T ) = (6, 3, π/3) is
found via the IVP in [37] with end-time T = 7.11 and initial momentum

p0 = h1(0)dx+ h2(0)dy + h3(0)dθ,

with h1(0) =
√

1− |h2(0)|2, h2(0) = 0.430, and h3(0) = −0.428. This geodesic is used
for reference (and is depicted in black in Figure 7A). Using the semianalytic approach for
solving the BVP in [16], an almost identical result is obtained. The curves computed with
our method with sxy = 0.1, and with angular step-sizes of sθ = 2π/12 and sθ = 2π/64, are
shown in Figure 7A in red and green, respectively. Already at low resolution, we observe
accurate results. In Figure 3 we compare one SR-sphere for T = 4 (Figure 3A) found via
our method with the SR-wavefront departing from e (Figure 3B) computed by the method
of characteristics [27]. We observe that our solution is nonsmooth at the 1st Maxwell set M
(3.5) and that the unique viscosity solution stops precisely there, confirming Theorem 3.2.
Finally, the blue surface in Figure 7B represents the cusp surface, i.e., the surface consisting
of all cusp points. Cusps are points that can occur on geodesics when they are projected into
the image plane (see Figure 7B). This happens at points g where the geodesic is tangent to
∂θ|g = A2|g. Then the cusp surface Scusp is easily computed as a zero-crossing:

(7.1) Scusp := {g ∈ SE(2) | A1W (g) = 0}.
It is in agreement with the exact cusp surface analytically computed in [16, Fig. 11].

The geometric idea behind (7.1) is that we have a cusp at time t if u1(t) = 1
C2(γ(t))h1(t) =

1
C2(γ(t))A1W (γ(t)) = 0, which directly follows from Appendix A. For further details on the set

of end-conditions reachable without cusps, see Appendix F.
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7.1.2. Comparison and computation of SR-spheres. In order to validate the solutions
obtained with our PDE method, we compare them with the exact SR-distance map. This
exact SR-distance map was computed by explicit formulas for SR-geodesics (given on p. 386
in [27]) in combination with explicit formulas for the cut time, which coincides with the 1st
Maxwell time, given by (5.18)–(5.19) in [27]. The experiments were done in the following way:

1. Compute a set of end-points,

EP (T ) = {(xi, yi, θi) = Exp(pi, T ) | pi ∈ C, T ≤ tMAX
1 (pi), i = 1, . . . , imax},

lying on the SR-sphere of fixed radius T using analytic formulas for the exponential
map (cf. Remark 9 below) and 1st Maxwell time tMAX

1 [27]. The number of end-points
was chosen as imax = 72 T 2, and C is the cylinder in momentum space given by

C =
{
p ∈ T ∗e (SE(2))

∣∣∣ Hfixed(e, p) = 1/2
}
,

where we recall (3.6). The sampling points pi are taken by a uniform grid on the
rectifying coordinates (ϕ, k) of the mathematical pendulum (the ODE that arises in
the PMP procedure; cf. [27, Chap. 3.2]), both for the rotating pendulum case (pi ∈ C2,
yielding S-curves) and the oscillating pendulum case (pi ∈ C1, yielding U -curves),
where we note that C = C1 ∪C2.

2. Evaluate the distance function W (gi) = W (xi, yi, θi) obtained by our numerical PDE
approach in section 6 for every point of the set EP (T ). We use third order Hermite
interpolation for W (xi, yi, θi) at g = gi ∈ EP (T ) in between the grid (6.1).

3. Compute the maximum absolute error maxgi∈EP (T ) |W (gi)− T | and the maximum
relative error maxgi∈EP (T )(|W (gi)− T |/T ).

Remark 9. The exponential map Exp : C×R
+ → SE(2) provides the end-point (x(t), y(t),

θ(t)) = γ(t) = Exp(p0, t) of the SR-geodesic γ, given SR-arclength t and initial momentum
p0 ∈ T ∗e (SE(2)). This exponential map integrates the PMP ODEs in Appendix A and should
not be confused with the exponential map from the Lie algebra to the Lie group.

In Figure 8 we have depicted a comparison of SR-spheres obtained by our numerical
PDE algorithm and the set of points EP (T ) lying on exact SR-spheres obtained by analytic
formulas.

The absolute and relative errors of the SR-distance computations for each of the end-
points located on SR-spheres of radii T are presented in Figure 9. The red graph corresponds
to a sampling of (N,Nθ) = (50, 64), recall (6.1), used in the SR-distance computation by our
numerical PDE approach, and the blue graph corresponds to the finer sampling (N,Nθ) =
(140, 128). We see that the maximum absolute error does not grow, and that the relative error
decreases when increasing the radius of the SR-sphere. An increase in sampling rate improves
the result. For the finer sampling case, neither absolute nor relative errors exceed 0.1.

7.1.3. Comparison and computation of 1st Maxwell set. We can compute the 1st
Maxwell set (recall (3.5); see also Appendix D) as the set of points where forward and back-
ward left-invariant derivatives acting on the SR-distance map have different signs:

(7.2) Mnum =
2⋃

i=1

{(x, y, θ) ∈ SE(2) | A+
i W (x, y, θ) > 0, A−i W (x, y, θ) < 0}.
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Figure 8. Comparison of SR-spheres obtained by our numerical PDE approach and the set of points
EP (T ) lying on exact SR-spheres obtained by analytic formulas. From left to right: the SR-sphere with radius
t = T = 3, T = 4, and T = 5. The color indicates the difference between the exact and the numerical values
of the SR-distance (blue for smallest, green for middle, and red for highest differences). Thus, we see our
algorithm is accurate, in particular along the fixed coordinate grid directions along the x- and θ-axes.

A: Maximum absolute error B: Maximum relative error

Figure 9. Maximum error in computing of SR-distance for end-points located on SR-spheres of different
radii t = T (from 1 to 7 with step 0.1), with number of end-points imax = 72 T 2. In red: errors are computed on
a courser grid (N,Nθ) = (50, 64); in blue: errors on a finer grid (N,Nθ) = (140, 128), with step-sizes sθ = 2π

Nθ

and sxy = 7
N
.

Here i = 1 corresponds to the local component of the 1st Maxwell set, and i = 2 corresponds to
the global component of the 1st Maxwell set. The local component consists of two connected
components lying on the surface given by x cos θ

2 + y sin θ
2 = 0 (i.e., the purple surface in

Figure 4), and the global component is the plane given by equation θ = π (for details, see [37]).
In Figure 10 we compare the local component of Mnum computed by our PDE approach with
its exact counterpart M, presented in [37, Thm. 3.5]. It shows that Mnum is close to the exact
M. Although not shown here, a similar picture was obtained for the global component, where
Mnum indeed covers the plane θ = π. Summarizing, this experiment verifies the correctness
of the proposed method, but it also shows that the method allows us to observe the behavior
of the 1st Maxwell set. Equation (7.2) allows us to numerically compute the Maxwell set for
the data-driven cases C �= 1 where exact solutions are out of reach.

7.2. Feasibility study for application in retinal imaging. As a feasibility study for the
application of our method in retinal images we tested the method on numerous image patches
exhibiting both crossings, bifurcations, and low contrast (see Figures 11 and 12). For each
seed point g0 the value function g �→W (g−10 g) was calculated according to the implementation
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Figure 10. Comparison of the 1st Maxwell set obtained by our numerical PDE approach with the exact
1st Maxwell set [37]. Note that the local components of the 1st Maxwell set are part of the purple surface in
Figure 4. Left: Local component of the exact Maxwell set M obtained by [37, Thm. 3.5] (where we recall that
the cut locus coincides with the closure M of the first Maxwell set [36, Thm. 3.3]). Middle: Local components
of the Maxwell set Mnum computed numerically by (7.2). Right: Single case of a Maxwell point on the local
part of the Maxwell set.

details in section 6, after which multiple end-points were traced back to the seed point. The
image dimensions of the patches is 180× 140.

For the construction of the cost function (see, e.g., Figure 6) we set p = 3, and the lifting
was done using cake wavelets with angular resolution π/16. More precisely we used a cake
wavelet with standard parameters (N = 8, Nθ = 32, sθ = π

8 , σs = 20px, γ = 0.8); for details
see [4, Chap. 2]. The precise choice of anisotropic wavelet is not decisive for the algorithm (so
other types of anisotropic wavelets and cost constructions could have been applied as well).

In all experiments we run with 4 settings for the two parameters (β, λ) determining the
SR-geodesics; we set βsmall = 0.05, βlarge = 0.1, λsmall = 10, λlarge = 100. The idea of these
settings is to see the effect of the parameters, where we recall that β controls global stiffness
of the curves, and λ controls the influence of the external cost. We also include compar-
isons to a Riemannian wavefront propagation method on R

2, and a Riemannian wavefront
propagation method on SE(2). These comparisons clearly show the advantage of including
the SR-geometry in the problem. For results on two representative patches, see Figure 11.
For results on 25 other patches, see the supplementary material (M101846 01.pdf [local/web
30.7MB]) of this article. Here, for fair and basic comparison of the geometries, we rely on the
same cost function C. That is, we compare

• Riemannian geodesics γ(t) = (x(t), y(t), θ(t)) in (SE(2), GCfull) with

GCfull
∣∣
γ(t)

(γ̇(t), γ̇(t)) = (C(γ(t)))2 (|θ̇(t)|2 + β2|ẋ(t)|2 + β2|ẏ(t)|2);

• Riemannian geodesics x(s) = (x(s), y(s)) in (R2, GC
R2) with metric tensor

GC
R2

∣∣
x(s)

(ẋ(s), ẋ(s)) = (c(x(s)))2 (|ẋ(s)|2 + |ẏ(s)|2),

with c(x(s), y(s)) = minθ∈[0,2π) C(x(s), y(s), θ).
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Figure 11. Data-adaptive SR-geodesics obtained via our proposed tracking method (Theorem 3.1), with
external cost (5.1), with p = 3, β equals βsmall = 0.01, βlarge = 0.1, and λ equals λsmall = 10, λlarge = 100.
We applied tracking from two seed points, each with several end-points (to test the crossings/bifurcations). To
distinguish between tracks from the two seed points we plotted tracts of different lighting intensity. We indicated
the valid cases only if all trajectories are correctly dealt with.

Typically, the wavefront propagation tracking methods on (R2, GR2) produce incorrect short-
cuts at crossings and very nonsmooth curves. The Riemannian wavefront propagation tracking
method (with spatial isotropy) (SE(2), GCfull) often deals correctly with crossings, but typically
suffers from incorrect jumps toward nearly parallel neighboring vessels. Also it yields non-
smooth curves. This can be corrected when including extreme anisotropy; see Remark 10
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Figure 12. Tractography (again for λ = λsmall = 10, λ = λlarge = 100, and β = 0.01, p = 3) in a patch of
a challenging low-contrast retinal image of a diabetic patient. In case of low contrast (and less reliable cost) it
is better to keep λ small, in contrast to high contrast cases depicted in Figure 11. To distinguish between tracks
from the two seed points, we plotted tracts of different lighting intensity. We indicated the valid cases only if
all trajectories are correctly dealt with.

below. The SR-wavefront propagation method produces smooth curves that appropriately
deal with crossings. For high-contrast images with reliable cost C, best results are obtained
with low β and large λ. However, in low-contrast images and/or patient data with severe
abnormalities, low λ is preferable, as in these cases the cost function is less reliable. This can
be observed in Figure 12.

Remark 10. It is possible to construct a family of anisotropic Riemannian metric tensors
(recall (3.7)): GCε = C2 (β2ω1⊗ω1+ω2⊗ω2+β2ε−2ω3⊗ω3), which bridges the SR-metric GC

of our method (obtained by ε → 0) to the full Riemannian metric tensor GCfull (obtained by
ε → 1). For the values of β considered here, Riemannian geodesics and smooth Riemannian
spheres for highly anisotropic cases ε ≤ 0.1 approximate SR-geodesics and nonsmooth SR-
spheres. In fact, with such extreme anisotropy in the Riemannian setting, the nonsmooth
ridges M in the SR-spheres (see, e.g., the 1st Maxwell sets in Figure 3) are only a little
smoothed, and also the cusp surface hardly changes. This observation allows us to use the
anisotropic fast-marching [26] as an alternative fast method for computing the solution of
(3.1), instead of the iterative upwind finite difference approach in section 4.

The experiments indicate that β = 0.01 (small) in combination with λ = 100 (large) are
preferable on our patches. This typically holds for good quality retinal images of healthy
volunteers. In lower quality retinal images of diabetic patients, however, the cost function is
less reliable and here λ = 10 (small) can be preferable; see Figure 12. However, it might not be
optimal to set the β parameter globally, as we did in these experiments, as smaller vessels are
often more tortuous and therefore require more flexibility; see, e.g., [6, Fig. 7]. Furthermore,
we do not include precise centerline extraction, which could, e.g., be achieved by considering
the vessel width as an extra feature (as in [7, 31, 22]).
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In future work we will pursue an SR fast-marching implementation of our method for fully
automated vascular tree extraction starting from an automatically detected optic nerve head
via a state-of-the art method [5] followed by SR-geodesics (comparable to [14] in a Riemannian
setting) in between boundary points detected by an SE(2)-morphological approach. First
experiments show that such an SR fast-marching method leads to considerable decrease in
CPU time, hardly reduces the accuracy of the method, and can be used to perform accurate
and fast automatic full retinal tree segmentation. The advantage of such an approach over our
previous work on automated vascular tree detection [4] is that each curve is a global minimizer
of a formal geometric control curve optimization problem. However, the SR fast-marching and
automatic detection of the complete vascular tree via SR-geodesics is beyond the scope of this
theoretically oriented paper.

8. Conclusion. In this paper we propose a novel, flexible, and accurate numerical method
for computing solutions to the optimal control problem (2.4), i.e., finding SR-geodesics in
SE(2) with nonuniform cost. The method generalizes classical approach [38, 29, 33] for
finding cost adaptive geodesics in Euclidean settings to the SR case. It consists of a wavefront
propagation of geodesically equidistant surfaces computed via the viscosity solution of an
HJB system in (SE(2),Δ, GC ), and subsequent backward integration, which gives the optimal
tracks. We used PMP to derive both the HJB equation and the backtracking. We have shown
global optimality for the uniform cost case (C=1) and that our method generates SR-spheres.
Compared to previous works regarding SR-geodesics in (SE(2),Δ, G1) [37, 16, 25], we solve
the boundary value problem without shooting techniques, using a computational method that
always provides the optimal solution. Compared with wavefront propagation methods on
the extended domain of positions and orientations in image analysis [31, 30], we consider an
SR-metric instead of a Riemannian metric. Results in retinal vessel tracking are promising,
and by our data-adaptive approach, it now follows that SR-geometry can make a considerable
difference in real medical imaging applications.

Fast, efficient implementation using ordered upwind schemes (such as the anisotropic fast-
marching method presented in [26]) is planned as future work, as is adaptation to other Lie
groups such as SE(3), SO(3). Of particular interest in neuroimaging is application to high
angular resolution diffusion imaging (HARDI) by considering the extension to SE(3) [17, 30].

Appendix A. Application of PMP for canonical equations for cost-adaptive SR-geode-
sics. We study optimal control problem (2.4). Recall Remark 3. Next we apply PMP to
the action functional J (2.5) with fixed total time T > 0. Since [Ai,Aj] =

∑3
k=1 c

k
ijAk, with

nonzero coefficients c312 = −c321 = −1, c123 = −c132 = −1, we have [Δ,Δ] = T (SE(2)) and
only need to consider normal trajectories. Then the control-dependent Hamiltonian of PMP
expressed via left-invariant Hamiltonians hi(p, g) = 〈p,Ai(g)〉, i = 1, 2, 3, with momentum
p ∈ T ∗g (SE(2)), and g = (x, y, θ) ∈ R

2 × S1 reads as

Hu(p, g) = u1h1(p, g) + u2h2(p, g) − 1

2
C2(g)

(
β2|u1|2 + |u2|2) .

Optimization over all controls produces the (maximized) Hamiltonian

Hfixed(g, p) =
1

2 C2(g)

(
h21
β2

+ h22

)
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and gives expression for extremal controls u1(t) = h1(t)
C2(γ(t))β2 , u

2(t) = h2(t)
C2(γ(t)) . Using SR-

arclength parametrization GC
∣∣
γ(t)

(γ̇(t), γ̇(t)) = 1 implies Hfixed = 1
2 along extremal trajecto-

ries. We have the Poisson brackets

(A.1) {H,h1} =
A1C
C +

h2h3
C2

, {H,h2} =
A2C
C − h1h3

β2C2
, {H,h3} =

A3C
C − h2h1

C2
,

where H = Hfixed and with {F,G} =
∑3

i=1
∂F
∂hi

AiG − ∂G
∂hi

AiF . By (A.1), by {hi, hj} =

Aihj −Ajhi =
∑3

k=1 c
k
ijhk, and by ḣi = {H,hi}, PMP gives us

p(·) =
3∑

i=1

hi(·) ωi
∣∣
γ(·) and

⎧⎪⎪⎨⎪⎪⎩
ḣ1 =

1
C(γ(·)) A1|γ(·) C + h2h3

C2(γ(·)) ,

ḣ2 =
1

C(γ(·)) A2|γ(·) C − h1h3
β2C2(γ(·)) ,

ḣ3 =
1

C(γ(·)) A3|γ(·) C − h2h1
C2(γ(·))

(A.2)

— vertical part (for adjoint variables),

γ̇(·) =
2∑

i=1

ui(·) Ai|γ(·) and

⎧⎪⎪⎨⎪⎪⎩
ẋ = h1

C2(γ(·))β2 cos θ,

ẏ = h1

C2(γ(·))β2 sin θ,

θ̇ = h2
C2(γ(·))

(A.3)

— horizontal part (for state variables),

with dual basis {ωi} for T ∗(SE(2)) defined by 〈ωi,Aj〉 = δij .
For a consistency check, we also apply the PMP technique directly to problem (2.4) with

free terminal time T , where typically [1] the Hamiltonian vanishes. Then, using SR-arclength
parameter t, the control-dependent Hamiltonian of PMP equals

Hu(g, p) = u1h1(p, g) + u2h2(p, g)− C(g)
√
β2|u1|2 + |u2|2.

Optimization over all controls under SR-arclength parametrization constraint C√β2|u1|2 + |u2|2
= 1 produces via Euler–Lagrange optimization with respect to (w.r.t.) (u1, u2) (via unit La-
grange multiplier) the (maximized) Hamiltonian:

H free(g, p) =
1

C(g)

√
|h1|2
β2

+ |h2|2 − 1 = 0 with p =

3∑
i=1

hiω
i.(A.4)

By straightforward computations one can verify that both the horizontal part and the vertical
part of PMP (but now applied to H free) is exactly the same as (A.3) and (A.2).

Remark 11. The two approaches produce the same curves and equations, but their Hamil-
tonians are different. Nevertheless, we have H free = 0 ⇔ Hfixed = 1

2 .

Appendix B. Lemmas applied in the proof of Theorem 3.1. In this section we consider
preliminaries and lemmas needed for Theorem 3.1. Before we can make statements on SR-
spheres we need to explain the notion of geodesically equidistant surfaces, and their connection
to HJB equations. In fact, propagation of geodesically equidistant surfaces in (SE(2),Δ, GC )
is described by an HJB system on this SR-manifold.
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Recall Remark 3. Also recall that in Appendix A we applied PMP to this problem, yielding
constant Hamiltonian Hfixed = 1

2C2 (β
−2h21+h22) =

1
2 relating to H free = 1

C
√
β−2h21 + h22−1 = 0

via H free =
√
2Hfixed − 1.

In our analysis of geodesically equidistant surface propagation we first resort to the non-
homogeneous viewpoint on the Lagrangian and Hamiltonian (with fixed time) and then obtain
the results on the actual homogeneous problem (with free time) via a limiting procedure.

Definition B.1. Given V : SE(2)×R
+ → R continuous. Given a Lagrangian L(γ(r), γ̇(r))

on the SR manifold (SE(2),Δ, GC), with L(γ, ·) : Δ → R
+ convex. Then the family of surfaces

(B.1) Sr := {g ∈ SE(2) | V (g, r) =W0(r)}, with

W0 : R → R monotonic, smooth, is geodesically equidistant if L(γ(r), γ̇(r)) = W ′0(r) for an
SR-geodesic γ in (SE(2),Δ, GC ).

Remark 12. The motivation for this definition is

d

dR

∫ R

0
L(γ(r), γ̇(r)) dr = L(γ(R), γ̇(R)) =

dW0

dr
(R).

Lemma B.2. Let L be nonhomogeneous and lim|v|→∞
L(·,v)
|v| = ∞. Then the family of sur-

faces {Sr}r∈R is geodesically equidistant if and only if V satisfies the following HJB equation
(where r may be monotonically reparameterized):
(B.2)

∂V

∂r
(g, r) = −H(g,dSRV (g, r)), with dSRV (g, r) = P

∗
ΔdV (g, r) =

2∑
i=1

AiV (g, r) ωi
∣∣
g
.

Here P
∗
Δ(p) =

∑2
i=1 hi ω

i for all p =
∑3

i=1 hi ω
i is a dual projection expressed in dual basis ωi

given by 〈ωi,Aj〉 = δij, and Hamiltonian H(g, p) = maxv∈Tg(SE(2)){〈p, v〉 − L(g, v)}.
Proof. Substitute an arbitrary transversal minimizer γ(r) into V (·, r) and take the total

derivative w.r.t. r:
d

dr
V (γ(r), r) =

∂

∂r
V (γ(r), r) + 〈dV |γ(r) , γ̇(r)〉.

Now point γ(r) lies on Sr, with tangent γ̇(r) =
∑2

i=1 u
i(r) Ai|γ(r), and thereby we have

d

dr
V (γ(r), r) = L(γ(r), γ̇(r)) =

∂

∂r
V (γ(r), r) +

2∑
i=1

ui(r) Ai|γ(r) V (γ(r), r).

As a result we have

(B.3)

−L(γ(r), γ̇(r)) +
2∑

i=1

ui(r) Ai|γ(r) V (γ(r), r) = −∂V
∂r

(γ(r), r)
(1)⇔

sup
(u1(r),u2(r))∈R2

2∑
i=1

ui(r)hi(r) − L(γ(r), γ̇(r)) = −∂V
∂r

(γ(r), r)
(2)⇔

H(γ(r),P∗
ΔdV (γ(r), r)) = −∂V

∂r
(γ(r), r),

D
ow

nl
oa

de
d 

12
/0

4/
15

 to
 1

31
.1

55
.2

45
.1

85
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A PDE APPROACH TO DATA-DRIVEN SUB-RIEMANNIAN GEODESICS IN SE(2) 2761

with components hi(r) = Ai|γ(r) V (γ(r), r) of projected momentum covector

P
∗
Δ p(r) =

2∑
i=1

hi(r) ω
i
∣∣
γ(r)

= P
∗
ΔdV (γ(r), r).

Now every point g ∈ Sr is part of a transversal minimizing curve γ(r) and the result follows.
So the “⇒” is proven. Conversely, if the HJB equation is satisfied, it follows by the same
computations (in reverse order) that L(γ(r), γ̇(r)) = d

drV (γ(r), r), which equals W ′0(r).
Remark 13. In PMP [1] (see also Appendix A) the controls are optimized to obtain the

Hamiltonian H from the control-dependent Hamiltonian Hu. The first equivalence in (B.3)
is due to the maximum condition of PMP. The second equivalence in (B.3) is by definition
of the Hamiltonian, where by the convexity assumption of the Lagrangian the supremum is
actually a maximum [19, Chap. 8].

Next we apply the limiting procedure to obtain HJB equations for geodesically equidistant
surfaces in the actual homogeneous case of interest. The actual homogeneous Lagrangian case
with T -free can be obtained as a limit (1 ≤ η → ∞) from nonhomogeneous Lagrangian cases:

(B.4) Lη(γ(t), γ̇(t)) =
2η − 1

2η

(
GC

∣∣
γ(t)

(γ̇(t), γ̇(t))
) η

2η−1
,

and the corresponding Hamiltonian (see Remark 15 below) equals

(B.5) Hη(γ(t), p(t)) =
1

2η

(
β−2h21 + h22

)η |C(γ(t))|−2η ,
and setting r = t = W0(t). Thus ∂V

∂r (γ(r), r) = ∂V
∂t (γ(t), t) = W ′0(t) = L(γ(t), γ̇(t)) =√

GC |γ(t) (γ̇(t), γ̇(t)) = 1 in (B.3). Next we replace V by W to distinguish between the

homogeneous and the nonhomogeneous cases.

Lemma B.3. The family of surfaces given by (B.1) is geodesically equidistant w.r.t. homo-

geneous Lagrangian L∞(γ, γ̇) =
√
GC |γ (γ̇, γ̇), with r = t = W0(t), if and only if W satisfies

the HJB equation

(B.6)
1

C
√
β−2|A1W |2 + |A2W |2 = 1 ⇔ H = 0,

where H = limη→∞Hη = H free the vanishing free-time Hamiltonian in Appendix A. Defining
Hamiltonian H̃ by

(B.7) H̃(g, p) := C−1(g)
√
β−2h21 + h22

puts (B.6) in eikonal form H̃(g,dSRW (g, t)) = 1.

Proof. The proof is tangential to the proof of Lemma B.2. For 1 ≤ η < ∞ we can apply
Lemma B.2 to Lagrangian Lη given by (B.4) whose associated Hamiltonian Hη is given by
(B.5) due to PMP (or just the Fenchel transform on R

2). In the limiting case η → ∞, where
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the Lagrangian is homogeneous and the Hamiltonian vanishes. Finally we note that now we
have

∂W

∂r
(γ(r), r) =

∂W

∂t
(γ(t), t) =W ′0(t) = L(γ(t), γ̇(t)) = 1,

from which the result follows.
Remark 14. The relation between the various Hamiltonians is

Hη→∞ = H free =
√
2Hfixed − 1 =

√
2Hη=1 − 1 = H̃ − 1 = 0.

Remark 15. The relation between the Lagrangian Lη given by (B.4) and the Hamiltonian
(B.5) is the (left-invariant, SR) Fenchel transform on SE(2). Due to left-invariance this
Fenchel transform actually boils down to an ordinary Fenchel transform on R

2 when expressing
velocity and momentum in the left-invariant frame. Indeed we have

(B.8) Hη(γ, p) = [FL(SE(2))∩Δ(Lη(γ, ·))](p)

:= sup
(u1,u2)∈R2

{
−2η − 1

2η
(C(γ)) 2η

2η−1 (β2|u1|2 + |u2|2) η
2η−1 + h1u

1 + h2u
2

}

with horizontal velocity v = u1A1 + u2A2 and momentum p =
∑3

i=1 hiω
i.

Appendix C. Viscosity solutions for HJB systems in SE(2).
Definition C.1. The (Cauchy problem) for an HJB equation (akin to [19, Chap. 10.1]) on

SE(2) is given by

(C.1)

{
∂W
∂t = −H(g,dSRW ) in SE(2)× (0, T ),

W (g, 0) =W0,

whereas a BVP for an HJB equation is given as

(C.2) H(g,dSRW ) = 0 on SE(2) \ {e}, W (e) = 0,

where T > 0 is prescribed, W0 is a given function (or a cost measure [2]), H(g, p) = H free(g, p)
is the free-time Hamiltonian given by (3.8), and dSRW =

∑2
i=1 AiW (g, t) ωi

∣∣
g
.

Remark 16. Combined Cauchy–Dirichlet problems exist [39], but they are defined on (an-
alytic) open and bounded domains. Thereby they cannot be applied to our set of interest
SE(2) \ {e} as this would violate semigroup theory [2, 19, 40, 12]. This is also clear in view
of the Cramer transform [2], putting an isomorphism between HJB and diffusion systems.

Remark 17. In (C.2) it is crucial that the free-time Hamiltonian is used. In the definition
of viscosity solutions of the Cauchy problem (C.1), one can set both H = H free (as done in
the body of the article) or H = Hfixed, as done in Appendix B.

HJB systems in general do not have unique solutions. To avoid multiple (nondesirable)
solutions, one must impose the viscosity condition [19, 24] commonly applied in wavefront
methods acting directly in the image domain R

2 [29, 38]. The viscosity solution is obtained
by the vanishing viscosity method [24]. The idea of this method is to add to the HJB equation
a term εΔ and to pass to the limit when ε goes to 0. Here Δ denotes the Laplacian, which
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in our case (for C = 1) equals ΔSR =
∑2

i=1Ai(βi)
−2 Ai, with β1 = β, β2 = 1. Here the name

“viscosity solutions” comes from fluid dynamics, where typically the term εΔ represents a
physical viscosity. For an intuitive illustration of the geometric property of such solutions see
[11, Fig. 30]. The viscosity solution of the IVP can be defined alternatively as follows.

Definition C.2. Let H(g, ·) be a convex Hamiltonian for all g ∈ SE(2) such that H(g, p) →
∞ if p→ ∞. The function W : SE(2)×R → R is a viscosity solution of ∂W

∂t = −H(g,dSRW )
if it is a weak solution3 such that for all functions V ∈ C1(SE(2) × R,R) one has that

• if W − V attains a local maximum at (g0, t0), then
(
∂V
∂t +H(g,dSRV )

)∣∣
(g0,t0)

≤ 0;

• if W − V attains a local minimum at (g0, t0), then
(
∂V
∂t +H(g,dSRV )

)∣∣
(g0,t0)

≥ 0.

Similarly, the viscosity solution of the BVP (that is equivalent to the eikonal equation,
when t is an SR-arclength) can be defined as follows.

Definition C.3. A solution W : SE(2) → R of (C.2) is called a viscosity solution if for all
functions V ∈ C1(SE(2),R) one has that

• if W − V attains a local maximum at g0, then H
free(g0,d

SRV )) ≤ 0;
• if W − V attains a local minimum at g0, then H

free(g0,d
SRV )) ≥ 0.

Appendix D. Proof of Theorem 3.2. The backtracking (3.3) is a direct result of Lemma B.3
in Appendix B and PMP in Appendix A. According to these results one must set

u1(t) =
h1(t)

(C(γ(t)))2β2
=

A1W |γ(t)
(C(γ(t)))2β2

and u2(t) =
h2(t)

(C(γ(t)))2
=

A2W |γ(t)
(C(γ(t)))2

,

from which the result follows. Then we recall from Theorem 3.1 that St given by (3.2) are
geodesically equidistant surfaces propagating with unit speed from the origin. So St are
candidates for SR-spheres, but it remains to be shown that the backtracking (3.3) will pass
neither a Maxwell point nor a conjugate point, i.e., t ≤ tcut. Here tcut denotes cut time, where
a geodesic loses its optimality.

At Maxwell points g∗ induced by the 8 reflectional symmetries [27], two distinct SR-
geodesics meet with the same SR-distance. As SR-geodesics in (SE(2),Δ, G1) are analytic
[27], these two SR-geodesics do not coincide on an open set around end condition g∗, and the
SR-spheres are nonsmooth at g∗. Regarding the set M, we note that the Maxwell sets related
to the ith reflectional symmetry εi are defined by

MAXi =

{
(p0, t) ∈ T ∗e (SE(2)) × R

+ | H(p0) =
1

2
and Exp(p0, t) = Exp(εip0, t)

}
,

maxi = Exp(MAXi), i = 1, . . . , 8,

where we may discard indices i = 3, 4, 6 as they are contained in {max1,max2,max5,max7}.
Now with m̃axi we denote the Maxwell set with minimal positive Maxwell times over all
symmetries (i.e., we include the constraint t ≤ min{timax}, where the minimum is taken over
all positive Maxwell times along each trajectory), then we find M to be contained within the

3By weak solution we mean a not necessarily differentiable Lipschitz function, satisfying the equation almost
everywhere (for further details see [19]).

D
ow

nl
oa

de
d 

12
/0

4/
15

 to
 1

31
.1

55
.2

45
.1

85
. R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

2764 E. J. BEKKERS, R. DUITS, A. MASHTAKOV, AND G. R. SANGUINETTI

union of the following sets:4

m̃ax2 ⊂ {(x, y, θ) ∈ SE(2) | y sin θ/2 + x cos θ/2 = 0}, m̃ax5 = {(x, y, θ) ∈ SE(2) | θ = π},
where [27, Thm. 5.2] shows we must discard the first reflectional symmetry ε1 as it does not
produce Maxwell points. Now for generic geodesics (not passing the special conjugate points
that are limit points of Maxwell points and not Maxwell points themselves) tcut = t1MAX, as
proven in [36, Thm. 3.3], where t1MAX > 0 denotes the first Maxwell time associated to the 8
discrete reflectional symmetries.

During the backtracking the set M is never reached at internal times (only when starting
at them; recall Remark 5), since they are “uphill” from all possible directions during dual
steepest descent tracking (3.3), as we will show next. As a result we have t ≤ tcut = t1MAX.
Consider Figure 4. At Maxwell points g∗ ∈ M, due to the reflectional symmetries, there exist
two distinct directions in the 2D horizontal part Δg∗ of the tangent space Tg∗(SE(2)) where
the directional derivative is positive. If there were a direction in the tangent space where the
directional derivative is negative, then there would be a direction in Δg∗ with zero directional
derivative of W (·) at g∗ toward the interior of the sphere, yielding a contradiction. Here we
note that due to the viscosity property of the HJB solution, kinks at the Maxwell points
are pointing upward (see Figures 4 and 13) in the backward minimization tracking process
[11, Fig. 30]. Furthermore, we note that SR-spheres St are continuous [37] and compact, as
they are the preimage St = d(·, e)←({t}) of compact set {t} under continuous mapping d(·, e).
Continuity of d(·, e) implies the spheres are equal to the 2D boundaries of the SR-balls (w.r.t.
the normal product topology on R

2 × S1).
The algorithm also cannot pass conjugate points that are limits of 1st Maxwell points, but

not Maxwell points themselves. See Figure 3. Such points exist on the surface R2 = 0 and are
by definition within M\M. Suppose the algorithm would pass such a point at a time t > 0
(e.g., there exist 4 such points on the sphere with radius 4; see Figure 4); then due to the
astroidal shape of the wavefront at such a point (cf. [36, Fig. 11]), there is a close neighboring
tract that would pass a 1st Maxwell point which was already shown to be impossible (due to
the upward kink property of viscosity solutions).

Remark 18. The SR-spheres are nonsmooth only at the 1st Maxwell set M. They are
smooth at the conjugate points in M\M (where the reflectional symmetry no longer produces
two curves/fronts). In the other points on St \M the SR-spheres are locally smooth (by the
Cauchy–Kovalevskaya theorem and the semigroup property of the HJB equations).

Appendix E. The limiting procedure (4.4) for the SR-eikonal equation. In this section
we study the limit procedure (4.4), illustrated in Figure 5. To this end we first provide a formal
representation of the viscosity solutions of system (4.1), where we rely on viscosity solutions of
morphological scale spaces obtained by superposition over the (min,+) algebra, i.e., obtained
by morphological convolution (erosions) with the morphological impulse response; cf. [12].
Now as the HJB equations of such morphological scale spaces do not involve a global offset

4In [37, eq. 3.13] it is shown that m̃ax2 = {(x, y, θ) ∈ SE(2) | y sin θ/2 + x cos θ/2 = 0 and | − x sin(θ/2) +
y cos(θ/2)| > |R1

1(θ)|} with R1
1 defined in [37, Lem. 2.5]. We also observed such a loss of the Maxwell point

property in our numerical algorithm, as kinks in W (g) = t can disappear when moving on the set y sin θ/2 +
x cos θ/2 = 0. See Figure 10.
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Figure 13. Overview of Maxwell points. Two Maxwell points on the purple surface x cos θ
2
+ y sin θ

2
= 0

and two red Maxwell points on the surface |θ| = π (recall Figure 4). In all cases we see that local kinks in the
viscosity solutions are upward, and the backtracking algorithm cannot pass these points.

by 1 on the right-hand side of the PDE, we need to combine such erosions with a time-shift
in order to take into account the global offset. It turns out that the combination of these
techniques provides staircases with steps of size ε, so that we obtain the appropriate limit by
taking the limit ε→ 0 afterward, as done in (4.4).

Morphological convolutions over the SE(2) group are obtained by replacing in linear left-
invariant convolutions (likewise the SE(3) case studied in [17]) the usual (+, ·)-algebra by the
(min,+)-algebra. Such erosions on SE(2) are given by

(E.1) (k � f)(g) := inf
h∈SE(2)

{k(h−1g) + f(h)}.

Furthermore, to include the updating of the initial condition in (4.1) we define

(E.2) W̃ (g) :=

{
W (g) if g �= e,
0 if g = e.

Lemma E.1. Let ε > 0, n ∈ N. The viscosity solution of (4.1) is given by

(E.3) W ε
n+1(g, r) = (kr−nε � W̃ ε

n)(g) + (r − nε)

for r ∈ [rn, rn+1] = [nε, (n+ 1)ε], and the morphological kernel kv(g), v ≥ 0, is given by

kv(g) =

{
0 if d(g, e) ≤ v,
∞ else,

where d(g, e) denotes the Carnot–Carathéodory distance (3.4) between g ∈ SE(2) and e =
(0, 0, 0). For n = 0 we have that the viscosity solution of (4.2) is given byW ε

1(g, r) = kr(g)+r.
Proof. In order to account for the constant offset in the HJB equations of (4.1) and (4.2),

we set r = rnew + rn and define for n = 0, 1, 2, . . . the functions V ε
n+1 : SE(2) × [0, ε] → R by

V ε
n+1(g, rnew) :=W ε

n+1(g, rnew + rn)− rnew,

with rnew ∈ [0, ε] and V ε
n+1 the viscosity solution of⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∂V ε
n+1

∂rnew
(g, rnew) = −1 + 1− H̃(g,dSRV ε

n+1(g, rnew)) = −H̃(g,dSRV ε
n+1(g, rnew)),

for g �= e we have V ε
n+1(g, 0) =

{ ∞ if n = 0,
W ε

n(g, rn) if n ∈ N,

for g = e we have V ε
n+1(g, 0) = V ε

n+1(e, 0) = 0,
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where we use short notation for the SR-derivative dSRV :=
∑2

i=1AiV ω
i (recall (3.7) in

Remark 4), and where Hamiltonian H̃ is given by (B.7).
Now let us first consider the case n = 0. By the results in Appendix B the Hamiltonian

system (4.2) provides geodesically equidistant wavefront propagation traveling with unit speed
and departing directly from the unity element. As a result, we find

V ε
1 (g, rnew) = krnew(g) =

{
0 if d(g, e) ≤ rnew,
∞ else,

and by left-invariant “superposition” over the (min,+)-algebra we find for n = 1, 2, . . . that
V ε
n+1(g, rnew) = (krnew � W̃ ε

n(·, rn))(g), where we recall (E.2). Finally, we have

W ε
n+1(g, r) = V ε

n+1(g, r − nε) + r − nε = (kr−nε � W̃ ε
n(·, rn))(g) + r − nε.

Corollary E.2. Let n ∈ N, and let ε > 0. The following identity holds:

(E.4)

W ε
n+1(g, rn+1) = (kε � W̃ ε

n(·, rn))(g) + ε

=

{ ∑n
m=0(m+ 1)ε 1[rm,rm+1](d(g, e)) if d(g, e) ≤ rn+1 = (n+ 1)ε,

∞ if d(g, e) > rn+1,

where 1[rm,rm+1] denotes the indicator function on set [rm, rm+1].
Proof. The first part follows by Lemma E.1 for r = rn+1 (i.e., rnew = ε). The second part

follows by induction. Recall from Lemma E.1 that W ε
1(g, r) = kr(g) + r. Now application of

(E.3) for n = 1 yields

(E.5)

W ε
2 (g, r2) = (kε � W̃ ε

1 (·, r1))(g) + ε = ε+ inf
h∈Bg,ε

{
kε(h) + ε if h �= e,
0 if h = e

= ε+

⎧⎨⎩
0 if d(g, e) ≤ ε,
ε if ε < d(g, e) ≤ 2ε,
∞ else

=

{ ∑1
m=0(m+ 1)ε 1[rm,rm+1](d(g, e)) if d(g, e) ≤ r2,

∞ else,

with Bg,ε = {h ∈ SE(2) | d(g, h) ≤ ε}. This can intuitively be seen from the geometric
meaning of an erosion W̃ ε

1 �→ kε � W̃ ε
1 where one drops cylinders from below on the graph of

W̃ ε
1(·, rn), and considering the new hull where cylinders get stuck. Equation (E.5) can also be

seen directly from the definition of kε. Let us verify each case separately:
• If d(g, e) > 2ε, we have that the value must be infinite; otherwise, supposing it were

finite, by the definition of the morphological kernel kε we would need to have that
d(g, e) ≤ d(g, h) + d(h, e) ≤ 2ε, yielding a contradiction.

• If d(g, e) ≤ ε, then in the erosion-minimization we can take h = e and obtain ε+ 0.
• If ε < d(g, e) ≤ 2ε, then in the erosion-minimization we cannot take h = e, but for

allowed choices we obtain kε(e) = 0 and ε+ ε as output.
Similarly we have, by inserting induction hypothesis for n and recursion (E.3),

W ε
n+2(g, rn+2) = (kε � W̃ ε

n+1(·, rn+1))(g) + ε = ε+

n+1∑
m=0

(m+ 1)ε 1[rm+1,rm+2](d(g, e))

= ε+

n+2∑
m′=1

m′ε 1[rm′ ,rm′+1]
(d(g, e)) =

n+1∑
m′=0

(m′ + 1)ε 1[rm′ ,rm′+1]
(d(g, e))
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for d(g, e) ≤ rn+2. Here we applied m′ = m+ 1 so that the result follows for n+ 1.

Theorem E.3. Let g ∈ SE(2) be given. We have the following limit:

lim
ε→0

lim
n→∞W

ε
n+1(g, (n + 1)ε) = d(g, e).

Proof. Application of Corollary E.2 gives

lim
n→∞W

ε
n+1(g, (n + 1)ε) =

∞∑
k=0

(k + 1)ε 1[rk,rk+1](d(g, e)) =

N∗(g,ε)∑
k=0

(k + 1)ε 1[rk,rk+1](d(g, e)),

with N∗(g, ε) = �d(g,e)ε �, i.e., the smallest integer ≥ d(g,e)
ε ∈ R

+. As a result we have

lim
ε↓0

lim
n→∞W

ε
n+1(g, rn+1) = lim

ε↓0
W ε

N∗(g,ε)+1(g, (n + 1)ε)

= lim
ε↓0

N∗(g,ε)∑
k=0

(k + 1)ε 1[rk,rk+1](d(g, e)) = d(g, e),

where the size of the steps in the staircase toward d(g, e) vanishes as ε → 0. Recall Fig-
ure 5.

Appendix F. Embedding into geometric control theory. As mentioned in Remark 1 the
problem PCmec(SE(2)) given by (2.4) actually comes from a mechanical problem in geometric
control, where a so-called Reeds–Shepp car [34] can proceed both forward and backward in the
path optimization. As pointed out in [9] such a problem, for certain end conditions, cannot
be considered as a curve optimization problem on the plane. The underlying difficulty is that
for certain boundary conditions, the smooth minimizers of problem PCmec(SE(2)) have the
property that their spatial projections exhibit a cusp and cannot be parameterized by spatial
arclength, since the control variable u1 switches sign at the cusp. See Figure 14.

In 2D image analysis applications, solutions without cusps may be required. In this
appendix, we propose problem PCcontour(SE(2)) as a modification of problem PCmec(SE(2)),
which considers only the end conditions such that cusps do not occur.

Let us denote x = (x, y) ∈ R
2; then for g = (x, θ) ∈ R ⊂ SE(2) and C = 1 the following

problem on the spatial plane is well-posed:

(F.1) PCcurve(R
2) :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
γ(0) = 0, γ(L) = x,

γ̇(0) = (1, 0)T , γ̇(L) = (cos θ, sin θ)T ,

l(γ(·)) = ∫ L
0 C(γ(s))√β2 + κ2(s) ds→ min,

γ : [0, L] → R
2, β > 0,

where L denotes spatial length and κ curvature of the curve γ ∈ C∞([0, L],R2), and where
R ⊂ SE(2) denotes the set of allowable end conditions. In [17] this set is explicitly determined
and partially depicted in Figure 14C. In this article we studied PCmec(SE(2)) (and not (F.1)),
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A B C 

Figure 14. Three SR-geodesics for uniform cost C = 1 to reveal the differences of the three geometric
control problems (2.4), (F.1), and (F.2) for β = 1. A: Plots of spatial projections of SR-geodesics in R

2. B:
SR-geodesics in SE(2). C: A part of R (the set of end conditions for which Pcurve(R

2) is well-defined [16])
depicted as reachable cones around the origin. End condition g1 = (x1, y1, θ1) ∈ R yields the minimizing curve
of Pcontour, Pmec, and Pcurve. End condition g2 = (−x1, y1,−θ1) yields the minimizing curve in Pcontour, Pmec,
and it is invalid for Pcurve. End condition g3 is invalid for both Pcurve and Pcontour, as it induces an internal
cusp. For C = 1 the set of allowable end conditions for Pcontour equals RC=1 = R ∪Q; recall (F.3). For C �= 1
this set RC differs and can be computed; cf. Remark 20.

and we look both forward and backward. Then, to avoid cusps, we must consider the problem

(F.2) PCcontour(SE(2)) :

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γ̇(t) = u1(t) A1|γ(t) + u2(t) A2|γ(t) for t ∈ [0, T ],

γ(0) = e, γ(T ) = g = (x, θ) ∈ RC ,

l(γ(·)) = ∫ T
0 C(γ(t))√β2|u1(t)|2 + |u2(t)|2 dt→ min,

with curve γ : [0, T ] → SE(2), with controls:

(u1(t), u2(t)) ∈ R
2, and u1(t) does not change sign,

whereRC is the set of all g ∈ SE(2) such that the minimizing SR-geodesic(s) γ(·) = (x(·), θ(·))
do not exhibit a cusp in their spatial projections x(·). We distinguish between three cases for
the end condition g (see Figure 14):

• If g is chosen such that the optimal control u1 ≥ 0, then the lift of problem PCcurve(R2)
coincides with PCmec(SE(2)) and also with PCcontour(SE(2)).

• If g is chosen such that the optimal control u1 ≤ 0, then problem PCmec(SE(2)) and
problem PCcontour(SE(2)) coincide.

• If g is chosen such that the optimal control u1(t) switches sign at some internal time
t ∈ (0, T ), then g ∈ SE(2) \ RC and the spatial projection of the corresponding
minimizing SR-geodesic(s) has an internal cusp, which we consider not desirable in
our applications of interest.

Remark 19. Geodesics in PCcontour(SE(2)) can depart forward or backward from the ori-
gin. Then, for C = 1, the set RC=1 of allowable end conditions can be obtained from the set
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R ⊂ {(x, y, θ) ∈ SE(2) | x ≥ 0} by a reflectional symmetry:

(F.3) RC=1 = R ∪Q with Q = {(x, y, θ) ∈ SE(2) | (−x, y,−θ) ∈ R}.

Remark 20. In section 7.1 we provided a very simple numerical tool to compute the surface
in SE(2) where cusps appear also for C �= 1; recall (7.2). This surface is a boundary of a volume
in SE(2) that contains the set RC .
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