

Общероссийский математический портал

М. Г. Дмитриев, Ни Минь Кань, Контрастные структуры в простейшей векторной вариационной задаче и их асимптотика, Aemomam.~u~menemex.,~1998, выпуск 5,~41–52

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 95.129.140.250

23 ноября 2015 г., 15:23:01

УДК 517.97

© 1998 г. М. Г. ДМИТРИЕВ, д-р физ.-мат. наук, НИ МИНЬ КАНЬ, канд. физ.-мат. наук (Институт программных систем РАН, Переславль-Залесский)

КОНТРАСТНЫЕ СТРУКТУРЫ В ПРОСТЕЙШЕЙ ВЕКТОРНОЙ ВАРИАЦИОННОЙ ЗАДАЧЕ И ИХ АСИМПТОТИКА 1

В работе изучаются контрастные структуры (траектории с внутренними и пограничными слоями) в простейшей векторной вариационной задаче. Необходимые условия оптимальности приводят к сингулярно возмущенным векторным нелинейным краевым задачам, в которых контрастные структуры практически не изучались. Взгляд на эти решения с помощью аппарата функций Кротова приводит к новым выводам о том, что структуры типа "всплеска" связаны с точками локального максимума, а структуры типа "ступеньки" – с точками глобального максимума некоторого функционала.

1. Введение. Постановка задач

В последнее время внимание многих исследователей привлекают так называемые контрастные структуры. Их решения имеют зоны резкого пространственновременного изменения (пограничные и внутренние слои). Обширная библиография по этому вопросу содержится в [1-4]. Рассмотрим следующую возмущенную задачу P_{ε}

$$J_{arepsilon}(u_{arepsilon}) = \int\limits_{0}^{T} \left(a\left(x_{arepsilon},t
ight) + b'(x_{arepsilon},t)u_{arepsilon} + rac{1}{2}arepsilon^{2}u_{arepsilon}'u_{arepsilon}
ight) \, dt \longrightarrow \inf_{u_{arepsilon}},$$

$$(1.1) \dot{x}_{\varepsilon}(t) = u_{\varepsilon}(t),$$

$$(1.2) x_{\varepsilon}(0,\varepsilon) = 0, x_{\varepsilon}(T,\varepsilon) = 0, 0 < \varepsilon \ll 1,$$

где $x_{\varepsilon}(t) \in R^n$, $u_{\varepsilon}(t) \in R^n$, $b(x_{\varepsilon},t) \in R^n$, $a(x_{\varepsilon},t) \in R$, T – данное положительное число, штрих означает транспонирование, $(x_{\varepsilon},u_{\varepsilon}) \in D = X \times U$, D – множество допустимых пар $(x_{\varepsilon},u_{\varepsilon})$, где $x_{\varepsilon}(t)$ – абсолютно непрерывные вектор-функции.

Сформулированная задача, с одной стороны, имеет типичные черты для теории оптимального управления, а с другой – необходимые условия оптимальности приводят нас к специальному классу сингулярно возмущенных краевых задач:

(1.3)
$$\varepsilon^2 \ddot{x}_{\varepsilon} = g(x_{\varepsilon}, t),$$

(1.4)
$$x(0,\varepsilon) = 0, \quad x(T,\varepsilon) = 0,$$

где
$$g(x_{arepsilon},t)=rac{\partial a}{\partial x}(x_{arepsilon},t)-rac{\partial b}{\partial t}(x_{arepsilon},t).$$

В работе [1] в скалярном случае (n=1) показано, что сингулярно возмущенная задача (1.3), (1.4) может иметь решения с внутренним слоем типа "всплеск" и решения с внутренним переходным слоем типа "ступеньки". Теория контрастных структур интенсивно развивается в последнее время. Однако векторный случай

¹ Работа выполнена при поддержке Российского фонда фундаментальных исследований, проект № 96-01-00804.

имеет свои особенности и в литературе по сингулярным возмущениям практически не изучался. Мы ограничимся здесь только алгоритмом построения асимптотики, которая аналогична решению типа "всплеска" и решению с переходом с корня на корень, и не затрагиваем вопросы существования решения задачи (1.1), (1.2) вблизи построенной асимптотики. Известно, что траектории, имеющие "всплеск", на фазовой плоскости образуют петлю сепаратрисы, а траектории с переходами с корня на корень – ячейку. В нашей работе вариационная природа краевой задачи (1.3), (1.4), с одной стороны, позволяет связать эти контрастные структуры с точками локального и глобального максимума некоторого характеристического функционала задачи, а с другой — высказать гипотезу, что определенный вариационный смысл имеют контрастные структуры и в других сингулярно возмущенных краевых задачах, тем более, что в частном скалярном случае для задачи типа (1.3), (1.4) в работе [5] был получен аналогичный результат для структуры с переходом с корня на корень.

2. Асимптотика типа "всплеска"

Наряду с задачей P_{ε} рассмотрим так называемую вырожденную задачу \overline{P} , получающуюся из (1.1), (1.2) при $\varepsilon=0$

$$\overline{J}(\overline{u}) = \int\limits_0^T \left(a(\overline{x},t) + b'(\overline{x},t)\overline{u}\right)\,dt \longrightarrow \inf_{\overline{u}},$$

$$(2.1) \qquad \dot{\overline{x}}(t) = \overline{u}(t),$$

$$(2.2) \overline{x}(0) = 0, \overline{x}(T) = 0.$$

A. Пусть
$$\overline{J}^* = \inf_{\overline{u}} \overline{J} > -\infty$$
.

С помощью функции Кротова $\varphi(x,t)$ [6] можно переписать функционал (2.1) в виде

$$\overline{J}(\overline{u}) = -\varphi(0,0) + \varphi(0,T) - \int_{0}^{T} P(\overline{x},t) dt,$$

где $P(x,t) = -a(x,t) + \varphi_t(x,t)$ и $\varphi(x,t)$ удовлетворяет уравнению $\varphi_x(x,t) = b\,(x,t)$. Для построения асимптотики воспользуемся методом прямой схемы [7].

Bс помога тельная лемма. Пусть функция f имеет следующее разложение для любого n

$$f(w_0,\ldots,w_n,\varepsilon)=f_0(w_0)+\sum_{i=1}^n \varepsilon^i f_i(w_i,\ldots,w_0)+O\left(\varepsilon^{n+1}\right),$$

где все функции $f,\ f_i,\ i=\overline{0,n}$ имеют минимум в некоторой открытой области. Тогда для достаточно малых $\varepsilon>0$

$$\min_{(w_0,\ldots,w_n)} f(w_0,\ldots,w_n,\varepsilon) = \min_{w_0} f_0(w_0) + \sum_{i=1}^n \varepsilon^i \min_{w_i} \widetilde{f}_i(w_i) + O(\varepsilon^{n+1}),$$

$$\operatorname{ede} \, \widetilde{f_i}(w_i) = f_i \, (w_i, \widetilde{w}_{i-1}, \ldots, \widetilde{w}_0), \, \, \widetilde{w}_k = \arg \min_{w} \widetilde{f_k}(w), \, \, k = \overline{0, i-1}.$$

Здесь ограничимся рассмотрением случая, когда на отрезке [0,T] имеется только одна точка $t=t_*$, в окрестности которой происходит "всплеск" решения. Случай нескольких таких точек можно исследовать тем же методом.

Точку скачка t_* будем искать в виде $t_*=t_0+\varepsilon t_1+\ldots+\varepsilon^n t_n+\ldots$, в которой $\dot{x}(t_*,\varepsilon)=0$.

Стандартным способом строим асимптотику в виде [8]

(2.3)
$$x(t,\varepsilon) = \overline{x}(t,\varepsilon) + \Pi x(\tau_0,\varepsilon) + Qx(\tau,\varepsilon) + Rx(\tau_1,\varepsilon),$$

$$u(t,\varepsilon) = \dot{x}(t,\varepsilon),$$

где $\overline{x}(t,\varepsilon)=\sum\limits_{j=0}^{\infty}\overline{x}_{j}(t)\varepsilon^{j}$ — регулярный ряд; $\Pi x(\tau_{0},\varepsilon)=\sum\limits_{j=0}^{\infty}\varepsilon^{j}\Pi_{j}x(\tau_{0})$ — пограничный ряд в окрестности точки t=0 $\left(\tau_{0}=\frac{t}{\varepsilon}\right)$; $Qx(\tau,\varepsilon)=\sum\limits_{j=0}^{\infty}\varepsilon^{j}Q_{j}x(\tau)$ — ряд, описывающий "всплеск" решения в окрестности точки $t=t_{*}$ $\left(\tau=\frac{t-t_{*}}{\varepsilon}\right)$; $Rx(\tau_{1},\varepsilon)=\sum\limits_{j=0}^{\infty}\varepsilon^{j}R_{j}x(\tau_{1})$ — пограничный ряд в окрестности точки $t=T\left(\tau_{1}=\frac{t-T}{\varepsilon}\right)$.

А1. Пусть функция P(x,t) имеет локальный максимум в точке $x=\alpha(t)$ (т.е. $P_x(\alpha(t),t)=0,\ P_{xx}(\alpha(t),t)<0,\ 0\leqslant t\leqslant T$), причем существует функция $x=\gamma(t)$ такая, что $P(\gamma(t),t)=P(\alpha(t),t)$ и $P_x(\gamma(t),t)\neq 0,\ 0\leqslant t\leqslant T$ (для определенности $\alpha_i(t)<\gamma_i(t),\ i=1,n$).

Из условия A1 следует, что $x = \alpha(t)$ является точкой покоя типа седла для уравнения присоединенного к (1.3) (t фиксировано).

А2. Пусть в фазовом пространстве сепаратриса, которая выходит из точки покоя типа седла, образует "петлю", т.е. сепаратриса состоит из гомоклинических точек [9].

Стандартным способом для регулярных членов в і-м приближении имеем

$$\dot{\overline{x}}_i(t) = \overline{u}_i(t), \quad \overline{x}_i(0) + \Pi_i x(0) = 0, \quad \overline{x}_i(T) + R_i x(0) = 0, \quad i = 0, 1, \dots$$

Для пограничных функций $Q_ix(au)$ получаем следующие уравнения и краевые условия

$$\begin{cases} \frac{dQ_ix(\tau)}{d\tau} = Q_iu(\tau), \\ \dot{Q}_ix(0) = 0, & \lim_{\tau \to +\infty} Q_ix(\tau) = 0. \end{cases}$$

Из разложения критерия $J_{arepsilon}(u_{arepsilon}) = \sum_{j=0}^{\infty} arepsilon^j J_j$ получаем следующее утверждение

Доказательство этой леммы дано в Приложении.

Заметим, что J_0 не зависит от пограничных функций $\Pi_0 x$, $Q_0 x$, $R_0 x$. Нетрудно показать, что после простых, но достаточно громоздких преобразований получаем следующее выражение для $Q_1 J$

$$Q_1 J = 2 \int\limits_0^{+\infty} \left(P(\alpha(t_0), t_0) - P(\alpha(t_0) + Q_0 x(\tau), t_0) + rac{1}{2} (Q_0 u(\tau))' Q_0 u(\tau) \right) d au.$$

В силу условия **A1** получаем начальное условие $Q_0x(0) = \gamma(t_0) - \alpha(t_0)$. Следовательно, мы можем переписать задачу Q_0P в виде

$$Q_0P: \left\{ \begin{array}{l} Q_1J = 2\int\limits_0^{+\infty} \biggl(P(\alpha(t_0),t_0) - P(\alpha(t_0) + Q_0x(\tau),t_0) + \\ \\ + \frac{1}{2}(Q_0u(\tau))'Q_0u(\tau)\biggr) d\tau \longrightarrow \min\limits_{Q_0u}, \\ \frac{dQ_0x(\tau)}{d\tau} = Q_0u(\tau), \\ Q_0x(0) = \gamma(t_0) - \alpha(t_0), \qquad \lim\limits_{\tau \to +\infty} Q_0x(\tau) = 0. \end{array} \right.$$

Лемма 2 [10]. Если выполнены условия **A**, **A1**, то для любых $Q_0x(0) \in S$ оптимальное решение $Q_0^*x(\tau)$, $Q_0^*u(\tau)$ задачи Q_0P существует, единственно и удовлетворяет оценкам

$$||Q_0^*x(\tau)|| \leqslant Ce^{-\beta\tau}, \quad ||Q_0^*u(\tau)|| \leqslant Ce^{-\beta\tau}, \quad \tau \geqslant 0,$$

где β и C — некоторые положительные числа, S — область влияния задачи Q_0P . Мы можем искать t_0 как параметр, минимизирующий Q_1^*J , т.е. $t_0=\arg\min_{0< t_0< T} \times$

 $\times Q_1 J^*(\gamma(t_0) - \alpha(t_0))$. Отсюда следует

$$(2.4) \qquad \frac{d}{dt}Q_1J^*(\gamma(t)-\alpha(t))\big|_{t=t_0}=0.$$

А3. Пусть уравнение (2.4) имеет единственное решение $t_0 \in (0,T)$, причем $\frac{d^2}{dt^2}Q_1J^*(\gamma(t)-\alpha(t))\big|_{t=t_0}>0.$

Аналогично определяются пограничные функции $\Pi_0^*x(au_0)$ и $R_0^*x(au_1)$ при следующем условии

А4. Пусть начальные значения $\Pi_0 x(0) = -\alpha(0)$, $R_0 x(0) = -\alpha(T)$ принадлежат областям влияния задач $\Pi_0 P$, $R_0 P$, соответственно.

Далее описанная процедура повторяется, и мы можем получить задачи приближенной декомпозиции для членов разложения более высокого порядка

$$\overline{P}_{n+1}: \begin{cases} \overline{J}_{2(n+1)} = -\int_{0}^{T} \left(\frac{1}{2} \left(\overline{x}_{n+1}^{0}(t)\right)' P_{xx}(\alpha(t), t) \overline{x}_{n+1}(t) + \right. \\ + \overline{H}_{n+1}^{1}(t) \overline{x}_{n+1}(t) + \overline{H}_{n+1}^{2}(t) \overline{u}_{n+1}(t) \right) dt \longrightarrow \inf_{\overline{u}_{n+1}}, \\ \dot{\overline{x}}_{n+1}(t) = \overline{u}_{n+1}(t), \end{cases}$$

где $\overline{H}_{n+1}^{\,1}(t),\,\overline{H}_{n+1}^{\,2}(t)$ зависят от известных членов $\overline{w}_{j}(t),\,0\leqslant j\leqslant n.$

$$Q_{n+1}P: \begin{cases} Q_{2(n+1)+1}J = -2\int\limits_0^{+\infty} \left(\frac{1}{2}(Q_{n+1}x)'P_{xx}(\alpha(t_0) + Q_{n+1}x(\tau), t_0)Q_{n+1}x(\tau) + \frac{1}{2}(Q_{n+1}u(\tau))'Q_{n+1}u(\tau) + Q_{n+1}u(\tau) + Q_{n+1}u(\tau)Q_{n+1}u(\tau) + Q_{n+1}u(\tau)Q_{n+1}u(\tau) + Q_{n+1}u(\tau)Q_{n+1}u(\tau) + Q_{n+1}u(\tau)Q_{n+1}u(\tau) + Q_{n+1}u(\tau)Q_{n+1}u(\tau) + Q_{n+1}u(\tau)Q_{n+1}u(\tau) + Q_{n+1}u(\tau)Q_{n+1}u(\tau)Q_{n+1}u(\tau) + Q_{n+1}u(\tau)Q_{n+1}u(\tau)Q_{n+1}u(\tau) + Q_{n+1}u(\tau)Q_{n+$$

а $\overline{H}_{n+1}^{1}(au)$, $\overline{H}_{n+1}^{2}(au)$ зависят от известных членов $\overline{Q}_{i}w(au)=(Q_{j}x(au),Q_{j}u(au))'$, $\overline{w}_{\ell}(t) = (\overline{x}_{\ell}(t), \overline{u}_{\ell}(t)), \ 0 \leqslant j \leqslant n, \ 0 \leqslant \ell \leqslant n+1.$

Из линейно-квадратичных задач $\overline{P}_{n+1},\,Q_{n+1}P$ и $\Pi_{n+1}P,\,R_{n+1}P$ для произволь-

ного n мы можем определить $\overline{x}_n^*(t), \ Q_n^*x(\tau), \ \Pi_n^*x(\tau_0), \ R_n^*x(\tau_1)$ [11]. Минимизируя коэффициенты J_j в разложении функционала J_ε , найдем $t_n, \ n\geqslant 1$. Обозначим частичные суммы асимптотики (2.3) и функционала через $\widetilde{x}_n(t, \varepsilon)$ и \widetilde{J}_n , соответственно, где

$$egin{aligned} \widetilde{x}_n(t,arepsilon) &= \sum_{j=0}^n arepsilon^j \left(\overline{x}_j(t) + \Pi_j x(au_0) + Q_j x(au) + R_j x(au_1)
ight), \ \widetilde{u}_n(t,arepsilon) &= \dot{\widetilde{x}}_n(t,arepsilon), \quad \widetilde{J}_n = \sum_{j=0}^{2n+1} arepsilon^j J_j. \end{aligned}$$

Отметим, что $(\widetilde{x}_n,\widetilde{u}_n)$ не является допустимой парой, так как краевые условия (2) не выполнены, т.е. $\widetilde{x}_n(0,\varepsilon)=P_1(\varepsilon,n),\ \widetilde{x}_n(T,\varepsilon)=P_2(\varepsilon,n),\$ где $P_i(\varepsilon,n)=O(\varepsilon^{n+1})$ (i=1,2).

Для получения допустимой пары (x,u) введем следующие функции

$$\theta_n(t,\varepsilon) = Ae^{-\frac{t}{\varepsilon}} + Be^{-\frac{T-t}{\varepsilon}}, \quad 0 \leqslant t \leqslant T,$$

где коэффициенты $A,\ B$ выбираем так, чтобы $\theta_n(0,\varepsilon) = -P_1(\varepsilon,n),\ \theta_n(T,\varepsilon) =$ $=-P_2(arepsilon,n)$. Для этого нужно взять $A=\left(-P_1(arepsilon,n)+e^{-rac{T}{arepsilon}}P_2(arepsilon,n)
ight)/\left(1-e^{-rac{2T}{arepsilon}}
ight),$ $B=\left(-P_2(arepsilon,n)+e^{-rac{T}{arepsilon}}P_1(arepsilon,n)
ight)/\left(1-e^{-rac{2T}{arepsilon}}
ight)$. Очевидно, $A,\,B$ – величины порядка ε^{n+1} , поэтому $\theta_n(t,\varepsilon) = O(\varepsilon^{n+1})$.

Положим $X_n(t,\varepsilon)=\widetilde{x}_n(t,\varepsilon)+\theta_n(t,\varepsilon),\ U_n(t,\varepsilon)=\dot{X}_n(t,\varepsilon),\$ тогда пара $(X_n(t,\varepsilon),$ $U_n(t,\varepsilon)$) является допустимой. Обозначая $J_n(U_n)=\widetilde{J}_n(U_n)$, имеем $\widetilde{J}_n(\widetilde{u}_n)=J_n(U_n)+$ $+O(\varepsilon^{2n+2}).$

Tеорема 1. Если существует точное решение $(x_{arepsilon}^*, u_{arepsilon}^*)$ задачи $(1.1), \ (1.2), \ u$ выполнены условия ${f A},\ {f A1}{f -A4},\ morдa\ для достаточно малых <math>arepsilon>0$ справедливы следующие оценки

$$||x_{\varepsilon}^* - X_n|| \le C\varepsilon^{n+1}, \quad ||u_{\varepsilon}^* - U_n|| \le C\varepsilon^{n+1}, |J_{\varepsilon}^* - J_n(U_n)| \le C\varepsilon^{2n+2}.$$

Доказательство этой теоремы дано в Приложении.

3. Асимптотика типа "ступеньки"

В1. Пусть существуют вектор-функции $\alpha(t) \in X$, $\gamma(t) \in X$ такие, что $P(\alpha(t),t) =$ $P(\gamma(t),t) = \max P(x(t),t)$, причем $P_{xx}(\alpha(t),t) < 0$, $P_{xx}(\gamma(t),t) < 0$, $0 \leqslant t \leqslant T$ (для простоты максимумы $\alpha(t)$, $\gamma(t)$ соседние).

В2. Пусть в фазовом пространстве существует сепаратриса, соединяющая седла $(\alpha,0)$ и $(\gamma,0)$.

Значение точки перехода t_* будем искать в виде

$$t_* = t_0 + \varepsilon t_1 + \ldots + \varepsilon^k t_k + \ldots$$

Значение функции $x(t_*,\varepsilon)$ в точке t_* равняется k, которое можно представить в виде $k=k_0+\varepsilon k_1+\ldots+\varepsilon^n k_n+\ldots$

Асимптотику решения задачи построим в виде

$$x(t,arepsilon) = \left\{egin{array}{ll} \overline{x}^{(1)}(t,arepsilon) + \Pi x(au_0,arepsilon) + Q^{(1)}x(au,arepsilon), & 0\leqslant t\leqslant t_*, \ \overline{x}^{(2)}(t,arepsilon) + Rx(au_1,arepsilon) + Q^{(2)}x(au,arepsilon), & t_*\leqslant t\leqslant T, \end{array}
ight.$$

где
$$au_0=rac{t}{arepsilon},\, au_1=rac{t-T}{arepsilon},\, au=rac{t-t_*}{arepsilon}.$$

 $oldsymbol{I}$ емма 3. Если выполнены условия A, B1, то $oldsymbol{\overline{J}}^*=J_0^*$.

Доказательство этой леммы аналогично лемме 1.

Для задач $Q_0^{(1)}P, Q_0^{(2)}P$ имеем $\begin{pmatrix} -\infty \\ f \end{pmatrix}$ (1)

$$Q_{0}^{(1)}P: \begin{cases} Q_{1}^{(1)}J = -\int_{0}^{-\infty} \left(P(\alpha(t_{0}), t_{0}) - P\left(\alpha(t_{0}) + Q_{0}^{(1)}x(\tau), t_{0}\right) + \\ + \frac{1}{2} \left(Q_{0}^{(1)}u(\tau)\right)' \left(Q_{0}^{(1)}u(\tau)\right)\right) d\tau \longrightarrow \inf_{Q_{0}^{(1)}u}, \\ \frac{dQ_{0}^{(1)}x(\tau)}{d\tau_{0}} = Q_{0}^{(1)}u(\tau), \\ Q_{0}^{(1)}x(0) = k_{0} - \alpha(t_{0}), \quad \lim_{\tau \to -\infty} Q_{0}^{(1)}x(\tau) = 0. \end{cases}$$

$$Q_{0}^{(2)}P: \begin{cases} Q_{1}^{(2)}J = -\int_{0}^{+\infty} \left(P(\gamma(t_{0}), t_{0}) - P\left(\gamma(t_{0}) + Q_{0}^{(2)}x(\tau), t_{0}\right) + \\ + \frac{1}{2} \left(Q_{0}^{(2)}u(\tau)\right)' \left(Q_{0}^{(2)}u(\tau)\right)\right) d\tau \longrightarrow \inf_{Q_{0}^{(2)}u}, \\ \frac{dQ_{0}^{(2)}x(\tau)}{d\tau} = Q_{0}^{(2)}u(\tau), \\ Q_{0}^{(2)}x(0) = k_{0} - \gamma(t_{0}), \quad \lim_{\tau \to +\infty} Q_{0}^{(2)}x(\tau) = 0. \end{cases}$$

 Π емма 4. Если выполнены условия **A**, **B1**, **B2**, то для любых $Q_0^{(j)}x(0) \in S^j$ (j=1,2) оптимальное решение $Q_0^{*(j)}x(\tau)$, $Q_0^{*(j)}u(\tau)$ задач $Q_0^{(j)}P$ (j=1,2) существует, единственно и удовлетворяет оценкам

$$\begin{aligned} \left\|Q_0^{*(1)}x(\tau)\right\| \leqslant Ce^{\beta\tau}, \quad \left\|Q_0^{*(1)}u(\tau)\right\| \leqslant Ce^{\beta\tau}, \quad \tau \leqslant 0, \\ \left\|Q_0^{*(2)}x(\tau)\right\| \leqslant Ce^{-\beta\tau}, \quad \left\|Q_0^{*(2)}u(\tau)\right\| \leqslant Ce^{-\beta\tau}, \quad \tau \geqslant 0, \end{aligned}$$

где C и β — некоторые положительные числа, S^j — области влияния задач $Q_0^{(j)}P$ (j=1,2).

 $k_0 = 1, 2$). Мы можем искать (k_0, t_0) , как вектор параметров, минимизирующий

$$M_0(t_0,k_0) = Q_1^{(1)}J^*\left(t_0,Q_0^{(1)}x(0)
ight) + Q_1^{(2)}J^*\left(t_0,Q_0^{(2)}x(0)
ight),$$

где $Q_1^{(j)}J^*$ — оптимальное значение $Q_1^{(j)}J$ для конкретного $Q_0^{(j)}x(0)$ (j=1,2), т.е. $(t_0,k_0)=\arg\min_{(t,k)}M_0(t,k)$ или пара (t_0,k_0) удовлетворяет уравнениям $\frac{\partial M_0}{\partial t}(t_0,k_0)=$

$$=0, \frac{\partial M_0}{\partial \mathbf{k}}(t_0, \mathbf{k}_0)=0.$$

ВЗ. Пусть последняя система уравнений имеет решение (t_0,k_0) , причем $\frac{\partial^2 M}{\partial (t_0,k_0)^2}(t_0,k_0)$ – положительно определенная матрица.

В4. Пусть начальные значения $\Pi_0 x(0) = -\alpha(0), \ R_0 x(0) = -\gamma(T)$ принадлежат

областям влияния задач $\Pi_0 P$, $R_0 P$, соответственно.

Для следующих членов асимптотики получаем, как обычно, линейно-квадратичные задачи.

После образования допустимых, на основе пар (X_n, U_n) – частичных сумм асимптотики порядка n, получим следующую теорему

Теорема 2. Если существует точное решение $(x_{\varepsilon}^*, u_{\varepsilon}^*)$ задачи (1.1), (1.2) и выполнены условия A, B1-B4, тогда для достаточно малых $\varepsilon > 0$ справедливы следующие оценки

$$||x_{\varepsilon}^* - X_n|| \leqslant C\varepsilon^{n+1}, \quad ||u_{\varepsilon}^* - U_n|| \leqslant C\varepsilon^{n+1}, |J_{\varepsilon}^* - J_n(U_n)| \leqslant C\varepsilon^{2n+2}.$$

Доказательство этой теоремы аналогично доказательству теоремы 1.

4. Пример

Пусть

(4.1)
$$J_{\varepsilon}(u) = \int_{0}^{1} \left(-\frac{1}{12} (x+y)^{3} + \frac{1}{4} (x-y)^{2} + (s(t)+t) u_{1} + (s(t)-t) u_{2} + \frac{1}{2} \varepsilon^{2} \left(u_{1}^{2} + u_{2}^{2} \right) \right) dt \longrightarrow \min_{(u_{1},u_{2})},$$

$$\dot{x} = u_{1}, \quad x(0,\varepsilon) = 0, \quad x(1,\varepsilon) = 0,$$

$$\dot{y} = u_{2}, \quad y(0,\varepsilon) = 0, \quad y(1,\varepsilon) = 0,$$

где $s(t)=-\int\limits_0^tq^2(t)\,dt,\;q(t)>0,\;\;\ddot{q}(t)>0$ и |q(t)| является достаточно малой величиной. $a(x,y,t)=-rac{1}{12}(x+y)^3+rac{1}{4}(x-y)^2,\;b\left(x,y,t
ight)=(s\left(t\right)+t,s\left(t\right)-t)'.$ Запишем уравнения Эйлера

$$\varepsilon^{2}\ddot{x} = q^{2}(t) - \frac{1}{4}(x+y)^{2} + \frac{1}{2}(x-y) - 1,$$

$$(4.3) \qquad \varepsilon^{2}\ddot{y} = q^{2}(t) - \frac{1}{4}(x+y)^{2} - \frac{1}{2}(x-y) + 1,$$

$$(4.4) \qquad x(0,\varepsilon) = 0, \quad x(1,\varepsilon) = 0, \quad y(0,\varepsilon) = 0, \quad y(1,\varepsilon) = 0.$$

Сделав замену $x=\varphi+\psi,\,y=\varphi-\psi,$ получаем распадающуюся систему

(4.5)
$$\varepsilon^2 \ddot{\varphi} = q^2(t) - \varphi^2, \quad \varphi(0, \varepsilon) = 0, \quad \varphi(1, \varepsilon) = 0,$$

(4.6)
$$\varepsilon^2 \ddot{\psi} = \psi - 1, \qquad \psi(0, \varepsilon) = 0, \quad \psi(1, \varepsilon) = 0.$$

Как показано в [1], в задаче (4.5) может существовать решение типа "всплеска" и формальное асимптотическое решение, а в задаче (4.6) существование решения и

формальное асимптотическое решение очевидно. В совокупности, в задачах (4.5), (4.6) существует решение типа "всплеска" и формальное асимптотическое решение и в фазовом пространстве существует траектория, которая выходит из (-q(t), 1, 0, 0), когда τ стремится к $-\infty$; и входит в (-q(t), 1, 0, 0), когда τ стремится к $+\infty$.

Вернемся к задаче (4.3), (4.4). Можно убедиться в том, что для соответствующей вспомогательной системы в фазовом пространстве существует траектория, которая выходит из (-q(t)+1,-q(t)-1,0,0), когда τ стремится к $-\infty$; и входит в (-q(t)+1,-q(t)-1,0,0), когда τ стремится к $+\infty$, причем существует решение типа "всплеска" и формальное асимптотическое решение.

Точка, в которой происходит "всплеск", вычисляется по формуле [1] $\dot{q}(t_0)=0$. Из (4.1), (4.2) получаем вырожденную задачу \overline{P} при $\varepsilon=0$

$$\overline{P}: \left\{ \begin{array}{l} \overline{J}(\overline{u}) = \displaystyle\int\limits_0^1 \left(-\frac{1}{12} \left(\overline{x} + \overline{y}\right)^3 + \frac{1}{4} \left(\overline{x} - \overline{y}\right)^2 + (s(t) + t)\overline{u}_1 + \right. \\ \left. + \left(s(t) - t\right)\overline{u}_2\right) dt \longrightarrow \min_{\left(\overline{u}_1, \overline{u}_2\right)}, \\ \left. \dot{\overline{x}} = \overline{u}_1, \quad \overline{x}(0) = 0, \quad \overline{x}(1) = 0, \\ \left. \dot{\overline{y}} = \overline{u}_2, \quad \overline{y}(0) = 0, \quad \overline{y}(1) = 0. \end{array} \right. \right.$$

С учетом
$$\frac{\partial b_1}{\partial x} = \frac{\partial b_2}{\partial y} = \frac{\partial b_1}{\partial y} = \frac{\partial b_2}{\partial x} = 0$$
 вводим функцию Кротова $\varphi(x,y,t) = s(t)(x+y) + t(x-y)$ и $P(x,y,t) = \frac{1}{12}(x+y)^3 - \frac{1}{4}(x-y)^2 - q^2(t)(x+y) + (x-y)$.

Легко проверить, что функция P(x,y,t) имеет один локальный максимум в точке

$$\begin{cases} \alpha_1(t) = -q(t) + 1, \\ \alpha_2(t) = -q(t) - 1, \end{cases}$$

так как
$$P_{xx}(lpha_1(t),\,lpha_2(t),t)=-\left(q(t)+rac{1}{2}
ight)<0,$$

$$P_{xx}(\alpha_1(t), \alpha_2(t), t) P_{yy}(\alpha_1(t), \alpha_2(t), t) - P_{xy}^2(\alpha_1(t), \alpha_2(t), t) = 2q(t) > 0.$$

Очевидно, что существует точка $\gamma_1(t)=2q(t)+1,\ \gamma_2(t)=2q(t)-1,$ где $P(\gamma_1(t),\gamma_2(t),t)=P(\alpha_1(t),\alpha_2(t),t)=\frac{4}{3}q^3(t)+1,\ P_x(\gamma_1(t),\gamma_2(t),t)=3q^2(t)\neq 0,\ P_y(\gamma_1(t),\gamma_2(t),t)=3q^2(t)\neq 0.$

Построим асимптотику в виде

$$\begin{split} & x(t,\varepsilon) = \alpha_1(t) + \Pi_0 x(\tau_0) + Q_0 x(\tau) + R_0 x(\tau_1) + O\left(\varepsilon\right), \\ & y(t,\varepsilon) = \alpha_2(t) + \Pi_0 y(\tau_0) + Q_0 y(\tau) + R_0 y(\tau_1) + O\left(\varepsilon\right), \\ & u_1(t,\varepsilon) = \dot{\alpha}_1(t) + \frac{1}{\varepsilon} \big(\Pi_0 u_1(\tau_0) + Q_0 u_1(\tau) + R_0 u_1(\tau_1)\big) + \Pi_1 u_1(\tau_0) + \\ & + Q_1 u_1(\tau) + R_1 u_1(\tau_1) + O\left(\varepsilon\right), \\ & u_2(t,\varepsilon) = \dot{\alpha}_2(t) + \frac{1}{\varepsilon} \big(\Pi_0 u_2(\tau_0) + Q_0 u_2(\tau) + R_0 u_2(\tau_1)\big) + \Pi_1 u_2(\tau_0) + \\ & + Q_1 u_2(\tau) + R_1 u_2(\tau_1) + O\left(\varepsilon\right). \end{split}$$

Для функционала в нулевом приближении получаем

$$J_0^* = -\int\limits_0^1 \left(rac{4}{3} q^3(t) + 1 \right) dt.$$

Для членов погранслойных рядов имеем

$$\begin{cases} Q_1 J = 2 \int\limits_0^{+\infty} \left(P(\alpha_1(t_0), \alpha_2(t_0), t_0) - P(\alpha_1(t_0) + Q_0 x(\tau), \alpha_2(t_0) + \right. \\ \\ \left. + Q_0 y(\tau), t_0) + \frac{1}{2} \left(Q_0 u_1^2(\tau) + Q_0 u_2^2(\tau) \right) \right) d\tau \longrightarrow \min_{(Q_0 u_1, Q_0 u_2)}, \\ Q_0 \dot{x}(\tau) = Q_0 u_1(\tau), \\ Q_0 \dot{y}(\tau) = Q_0 u_2(\tau), \\ Q_0 x(0) = 3q(t_0), \quad \lim_{\tau \to +\infty} Q_0 x(\tau) = 0, \\ Q_0 y(0) = 3q(t_0), \quad \lim_{\tau \to +\infty} Q_0 y(\tau) = 0. \end{cases}$$

Для последней задачи оптимальной стабилизации получаем уравнение Риккати

$$M'M = \begin{pmatrix} 2q(t_0)+1, & 2q(t_0)-1 \\ 2q(t_0)-1, & 2q(t_0)+1 \end{pmatrix}.$$

Отсюда имеем

$$M = \left(egin{array}{ccc} \sqrt{q(t_0)} + rac{\sqrt{2}}{2}, & \sqrt{q(t_0)} - rac{\sqrt{2}}{2} \\ \sqrt{q(t_0)} - rac{\sqrt{2}}{2}, & \sqrt{q(t_0)} + rac{\sqrt{2}}{2} \end{array}
ight)$$

и минимальное значение функционала принимает вид

$$Q_1J^*(h,t_0)=rac{1}{2}ig(3q(t_0),3q(t_0)ig)'Mig(3q(t_0),3q(t_0)ig)+
ho(h),$$

ho(h) есть функция, содержащая степени h^3 и выше, где $h=(3q(t_0),3q(t_0))'$ и t_0 удовлетворяет следующему уравнению $\frac{\partial Q_1 J^*}{\partial t_0}(h,t_0)=0$, т.е. $\left.\left(45q^{\frac{3}{2}}(t_0)+3\frac{\partial \rho}{\partial h}(h)\right|_{h=3q(t_0)}\right)\times \dot{q}(t_0)=0$ или $\dot{q}(t_0)=0$. Эта формула для точки всплеска, полученная нами из вариационных задач, совпадает с формулой из [1]. Далее нетрудно видеть, что

$$\frac{\partial^2}{\partial t_0^2} Q_1 J^*(u^*, t_0) = \left(45q^{\frac{2}{3}}(t_0) + 3\frac{\partial \rho}{\partial h}(h) \Big|_{h=3q(t_0)} \right) \ddot{q}(t_0) > 0$$

при условии $\ddot{q}(t_0) > 0$.

5. Заключение

Взгляд на сингулярно возмущенные задачи (1.3), (1.4) в скалярном и векторном случаях с помощью техники достаточных условий оптимальности Кротова В. Ф. оказывается весьма плодотворным и приводит к интересным выводам о том, что контрастная структура типа "всплеска" связана с точками локального максимума некоторого характеристического функционала P(x,t), порожденного интегралом от правых частей в уравнениях Эйлера, а структура типа "ступеньки" — с точками глобального максимума того же функционала.

Доказательство леммы $1. J_0$ имеет такой вид

$$J_0 = \int\limits_0^1 (a(\overline{x}_0(t),t) + b'(\overline{x}_0(t),t)\overline{u}_0(t))dt +$$

$$+ \int\limits_0^{+\infty} b'(\overline{x}_0(0) + \Pi_0 x(\tau_0), 0)\Pi_0 u(\tau_0)d\tau_0 +$$

$$+ \int\limits_{-\infty}^{+\infty} b'(\overline{x}_0(t_0) + Q_0 x(\tau), t_0)Q_0 u(\tau)d\tau +$$

$$+ \int\limits_{-\infty}^0 b'(\overline{x}_0(T) + R_0 x(\tau_1), T)R_0 u(\tau_1)d\tau_1.$$

$$C \text{ учетом } \frac{d\varphi}{dt}(\overline{x}_0,t) = \frac{\partial \varphi}{\partial t}(\overline{x}_0,t) + \frac{\partial \varphi}{\partial x}(\overline{x}_0,t)\overline{u}_0,$$

$$\frac{d\Pi_0 x(\tau_0)}{d\tau_0} = \Pi_0 u(\tau_0), \quad \frac{dQ_0 x(\tau)}{d\tau} = Q_0 u(\tau), \quad \frac{dRx_0(\tau_1)}{d\tau_1} = R_0 u(\tau_1)$$

имеем

$$J_{0} = \int_{0}^{T} (a(\overline{x}_{0}(t), t) - \varphi_{t}(x, t) + (b(\overline{x}_{0}(t), t) - \varphi_{x}(x, t))'\overline{u}_{0} + \frac{d\varphi}{dt}(x, t)(\overline{x}_{0}(t), t))dt + \int_{0}^{+\infty} \frac{d\varphi}{d\tau_{0}}(\overline{x}_{0}(0) + \Pi_{0}x(\tau_{0}), 0) d\tau_{0} + \int_{-\infty}^{0} \frac{d\varphi}{d\tau_{1}}(\overline{x}_{0}(T) + R_{0}x(\tau_{1}), T) d\tau_{1} =$$

$$= \varphi(\overline{x}_{0}(T) + R_{0}x(0), T) - \varphi(\overline{x}_{0}(0) + \Pi_{0}x(0), 0) + \int_{0}^{T} (a(\overline{x}_{0}(t), t) - \varphi_{t}(x, t)) dt =$$

$$= -\varphi(0, 0) + \varphi(0, T) - \int_{0}^{T} P(\overline{x}_{0}(t), t) dt.$$

Из последнего выражения получим равенство ${J_0}^*=\overline{J}^*.$ Таким образом лемма доказана.

Доказательство теоремы 1. Введем следующий расширенный функционал

$$I_{arepsilon}(x,u) = \int\limits_0^T \left(a(x,t) + b'(x,t) u + rac{1}{2} arepsilon^2 u' u
ight) \, dt + \int\limits_0^T \widetilde{arphi}_n' (\dot{x} - u) dt,$$

где $\widetilde{\varphi}_n = \sum_{i=1}^n \varepsilon^i \left(\overline{\varphi}_i(t) + \Pi_i \varphi(\tau_0) + R_i \varphi(\tau_1) \right)$. Интегрируя второе слагаемое I_ε по частям, можно переписать I_ε в виде

$$I_{m{arepsilon}}(x,u) = -\int\limits_{0}^{T} H(x,u,\widetilde{arphi}_{n},t) \, dt - \int\limits_{0}^{T} \dot{\widetilde{arphi}'}_{n}(x,t) x(t) \, dt + \widetilde{arphi}'_{n}(T) x(T) - \widetilde{arphi}'_{n}(0) x(0),$$

где $H\left(x,u,\widetilde{\varphi}_{n},t\right)=\widetilde{\varphi}_{n}'u-\left(a(x,t)+b'(x,t)u+\frac{1}{2}\varepsilon^{2}u'u\right)$, а члены $\overline{\varphi}_{i}(t)$, $\Pi_{i}\varphi(\tau_{0})$, $R_{i}\varphi(\tau_{1})$ — соответствующие сопряженные переменные в задачах P_{i} , $\Pi_{i}P$, $R_{i}P$, соответственно.

Подставляя $\widetilde{x}_n(t,\varepsilon)$, $\widetilde{u}_n(t,\varepsilon)$ в $I_{\varepsilon}(x,u)$, получаем

(II.1)
$$I_{\varepsilon}(\widetilde{x}_n,\widetilde{u}_n) = \widetilde{J}_n + O(\varepsilon^{2n+2}).$$

В то же время имеем

$$\begin{split} (\Pi.2) \qquad & \dot{\widetilde{\varphi}}_{n} = -H_{x}\left(\widetilde{x}_{n}, \widetilde{u}_{n}, \widetilde{\varphi}_{n}, t\right) + \\ & + O\left(\varepsilon^{n+1} + \varepsilon^{n} e^{\left(-\frac{Ct}{\varepsilon}\right)} + \varepsilon^{n} e^{\left(-\frac{|t-t_{\star}|}{\varepsilon}C\right)} + \varepsilon^{n} e^{\left(-\frac{T-t}{\varepsilon}C\right)}\right), \\ (\Pi.3) \qquad & 0 = -H_{u}\left(\widetilde{x}_{n}, \widetilde{u}_{n}, \widetilde{\varphi}_{n}, t\right) + O\left(\varepsilon^{n+1}\right). \end{split}$$

Поскольку функционал I_{ε} , в силу условия **А3**, является сильно выпуклым, тогда I_{ε} имеет минимум в точке $(\widetilde{x}^*, \widetilde{u}^*)$. Как известно [12], имеет место следующее неравенство при $\widetilde{w}^* = (\widetilde{x}^*, \widetilde{u}^*)$, $\widetilde{w}_n = (\widetilde{x}_n, \widetilde{u}_n) \in V$

$$(\Pi.4) I_{\varepsilon}^{*}(\widetilde{x}^{*}, \widetilde{u}^{*}) - I_{\varepsilon}(\widetilde{x}_{n}, \widetilde{u}_{n}) + \left\langle \frac{\partial I_{\varepsilon}}{\partial w}(\widetilde{w}_{n}), \widetilde{w}^{*} - \widetilde{w}_{n} \right\rangle \geqslant C ||\widetilde{w}^{*} - \widetilde{w}_{n}||^{2},$$

где C > 0.

Учитывая $I_{\varepsilon}^* \left(\widetilde{x}^*, \widetilde{u}^* \right) - I_{\varepsilon} \left(\widetilde{x}_n, \widetilde{u}_n \right) < 0$ и

$$\left\langle \frac{\partial I_{\varepsilon}}{\partial w} \left(\widetilde{w}_{n} \right), \ \widetilde{w}^{*} - \widetilde{w}_{n} \right\rangle \leqslant \left\| \frac{\partial I_{\varepsilon}}{\partial w} \left(\widetilde{w}_{n} \right) \right\| \left\| \widetilde{w}^{*} - \widetilde{w}_{n} \right\|,$$

имеем $\|\widetilde{w}^* - \widetilde{w}_n\| \leqslant \left\| \frac{\partial I_{\varepsilon}}{\partial w} (\widetilde{w}_n) \right\|$.

Так как

$$\frac{\partial I_{\varepsilon}}{\partial x}\left(\widetilde{x}_{n},\widetilde{u}_{n}\right) = -\int_{0}^{T} \left(H_{x}\left(\widetilde{x}_{n},\widetilde{u}_{n},\widetilde{\varphi}_{n},t\right) + \dot{\widetilde{\varphi}}_{n}\right) dt,$$

$$\frac{\partial I_{\varepsilon}}{\partial u}\left(\widetilde{x}_{n},\widetilde{u}_{n}\right) = -\int_{0}^{T} H_{u}\left(\widetilde{x}_{n},\widetilde{u}_{n},\widetilde{\varphi}_{n},t\right) dt,$$

получаем, в силу (П.2), (П.3),

$$(\Pi.5) \qquad \left\| \frac{\partial I_{\varepsilon}}{\partial w} \left(\widetilde{w}_{n} \right) \right\| \leqslant C \varepsilon^{n+1},$$

$$(\Pi.6) ||\widetilde{w}^* - \widetilde{w}_n|| \leqslant C\varepsilon^{n+1},$$

T.e. $\|\widetilde{x}^* - \widetilde{x}_n\| \leqslant C\varepsilon^{n+1}$, $\|\widetilde{u}^* - \widetilde{u}_n\| \leqslant C\varepsilon^{n+1}$.

С другой стороны из неравенства (П.4) получаем оценку

$$\left|I_{\varepsilon}\left(\widetilde{x}_{n},\widetilde{u}_{n}\right)-I_{\varepsilon}^{*}\right|\leqslant\left\|\frac{\partial I_{\varepsilon}}{\partial w}\left(\widetilde{w}_{n}\right)\right\|\left\|\widetilde{w}_{n}-\widetilde{w}^{*}\right\|,$$

и в силу $(\Pi.1)$, $(\Pi.5)$, $(\Pi.6)$ получаем

(II.7)
$$\left|\widetilde{J}_n - I_{\varepsilon}^*\right| \leqslant C\varepsilon^{2n+2}.$$

Если точное решение $(x_{\varepsilon}^*, u_{\varepsilon}^*)$ исходной задачи (1.1), (1.2) существует, то подставляя $(x_{\varepsilon}^*, u_{\varepsilon}^*)$ в функционал $I_{\varepsilon}(x, u)$, получаем $I_{\varepsilon}(x_{\varepsilon}^*, u_{\varepsilon}^*) = J_{\varepsilon}^*$. Аналогичные оценки $(\Pi.6)$, $(\Pi.7)$ имеют место для $(x_{\varepsilon}^*, u_{\varepsilon}^*)$ вместо $(\widetilde{x}_n, \widetilde{u}_n)$

$$||\widetilde{w}^* - w_{\varepsilon}^*|| \leqslant C\varepsilon^{n+1}, \quad |J_{\varepsilon}^* - I_{\varepsilon}^*| \leqslant C\varepsilon^{2n+2}.$$

Используя неравенство треугольника и отношения $(\Pi.6)$, $(\Pi.7)$, сразу получаем оценки теоремы. Итак теорема доказана.

Доказательство остальных утверждений проходит по схеме из [7].

СПИСОК ЛИТЕРАТУРЫ

- 1. Бутузов В. Ф., Васильева А. Б. Об асимптотике решения типа контрастной структуры // Матем. заметки. 1987. Т. 42. № 6. С. 831-841.
- 2. Васильева А. Б. К вопросу о близких к разрывным решениям в системе с малым параметром при производных условно устойчивого типа // Дифференц. уравнения. 1972. Т. 8. № 9. С. 1560–1568.
- 3. Васильева А. Б. К вопросу об устойчивости решений типа контрастных структур // Матем. моделирование. 1990. Т. 2. № 1. С. 119–125.
- 4. Васильева А. Б. Об устойчивости контрастных структур // Матем. моделирование. 1991. Т. 2. № 3. С. 120-129.
- Боглаев Ю. П. О двухточечной задаче для одного класса обыкновенных дифференциальных уравнений с малым параметром при производной // Журн. вычисл. математики и мат. физики. 1970. Т. 10. № 4. С. 958-968.
- Кротов В. Ф., Гурман В. И. Методы и задачи оптимального управления. М.: Наука, 1973.
- 7. Белокопытов С. В., Дмитриев М. Г. Решение классических задач оптимального управления с погранслоем // АиТ. 1989. № 7. С. 71–82.
- 8. Васильева А. Б., Бутузов В. Ф. Асимптотические методы в теории сингулярных возмущений. М.: Высшая школа, 1990.
- 9. Пилюгин С. Ю. Введение в грубые системы дифференциальных уравнений. Л.: Изд-во Ленингр. ун-та, 1988.
- Lukes D. L. Optimal regulation of nonlinear dynamical system // SIAM J. Control. 1969. V. 7. No. 1. P. 75-100.
- Квакернаак Х., Сиван Р. Линейные оптимальные системы управления. М.: Мир, 1977.
- 12. Васильев Ф. П. Методы решения экстремальных задач. М.: Наука, 1981.

Поступила в редакцию 14.01.97