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4.7.1 The Poincaré-Cartan one form . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.7.2 Normal trajectory are geodesics . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5 Integrable Systems 103

5.1 Completely integrable systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Arnold-Liouville theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.3 Integrable geodesic flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

5.3.1 Geodesic flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Geodesic flow on ellipsoids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6 Chronological calculus 115

6.1 Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Operator ODE and Taylor expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6.3 Variations Formulae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7 End-point and Exponential map 123

7.1 First order conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Lagrange points and Lagrange submanifolds . . . . . . . . . . . . . . . . . . . . . . . 126

7.3 Sub-Riemannian case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.4 Exponential map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

7.5 Conjugate points and minimality properties of geodesics . . . . . . . . . . . . . . . . 136

7.6 Application: Conjugate locus on perturbed S
2 . . . . . . . . . . . . . . . . . . . . . . 140

7.7 Global minimizers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4



8 Nonholonomic tangent space 145

8.1 Jet spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

8.2 Admissible variations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

8.3 Nilpotent approximation and privileged coordinates . . . . . . . . . . . . . . . . . . 151

8.4 Geometric meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

8.5 Algebraic meaning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

9 The volume in sub-Riemannian geometry 171

9.1 The Popp volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

9.2 Popp volume for equiregular sub-Riemannian manifolds . . . . . . . . . . . . . . . . 171

9.3 A formula for Popp volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

9.4 Popp volume and isometries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10 Regularity of the sub-Riemannian distance 179

10.1 General properties of the distance function . . . . . . . . . . . . . . . . . . . . . . . 179

10.2 Lipschitz functions and maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

10.2.1 A non-smooth version of Sard Lemma . . . . . . . . . . . . . . . . . . . . . . 190

11 Abnormal extremals and second variation 195

11.1 Second variation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

11.2 Abnormal extremals and regularity of the distance . . . . . . . . . . . . . . . . . . . 196

11.3 Rank 2 distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209

11.3.1 Optimality of nice abnormal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

11.4 Conjugate points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

11.5 Equivalence of local minimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

12 Curves in the Lagrange Grassmannian 223

12.1 The geometry of the Lagrange Grassmannian . . . . . . . . . . . . . . . . . . . . . . 223

12.1.1 The Lagrange Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

12.2 Regular curves in Lagrange Grassmannian . . . . . . . . . . . . . . . . . . . . . . . . 228

12.3 Curvature of a regular curve . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.4 Reduction of non-regular curves in Lagrange Grassmannian . . . . . . . . . . . . . . 234

12.5 Ample curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

12.6 From ample to regular . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

12.7 Conjugate points in L(Σ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

12.8 Comparison theorems for regular curves . . . . . . . . . . . . . . . . . . . . . . . . . 242

13 Jacobi curves 245

13.1 From Jacobi fields to Jacobi curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245

13.1.1 Jacobi curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

13.2 Conjugate points and optimality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248

13.3 Reduction of the Jacobi curves by homogeneity . . . . . . . . . . . . . . . . . . . . . 249

5



14 Riemannian curvature 253
14.1 Ehresmann connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253

14.1.1 Curvature of an Ehresmann connection . . . . . . . . . . . . . . . . . . . . . 254
14.1.2 Linear Ehresmann connections . . . . . . . . . . . . . . . . . . . . . . . . . . 255
14.1.3 Covariant derivative and torsion for linear connections . . . . . . . . . . . . . 256

14.2 Riemannian connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
14.3 Relation with Hamiltonian curvature . . . . . . . . . . . . . . . . . . . . . . . . . . . 262
14.4 Locally flat spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
14.5 Example: curvature of the 2D Riemannian case . . . . . . . . . . . . . . . . . . . . . 265

15 Curvature in 3D contact sub-Riemannian geometry 269
15.1 3D contact sub-Riemannian manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . 269

15.1.1 Curvature of a 3D contact structure . . . . . . . . . . . . . . . . . . . . . . . 271

16 Asymptotic expansion of the 3D contact exponential map 277
16.1 Nilpotent case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
16.2 General case: second order asymptotic expansion . . . . . . . . . . . . . . . . . . . . 279
16.3 General case: higher order asymptotic expansion . . . . . . . . . . . . . . . . . . . . 283

16.3.1 Proof of Theorem 16.6: asymptotics of the exponential map . . . . . . . . . . 285
16.3.2 Asymptotics of the conjugate locus . . . . . . . . . . . . . . . . . . . . . . . . 289
16.3.3 Asymptotics of the conjugate lenght . . . . . . . . . . . . . . . . . . . . . . . 291

17 The sub-Riemannian heat equation 293
17.1 The heat equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

17.1.1 The heat equation in the Riemannian context . . . . . . . . . . . . . . . . . . 293
17.1.2 The heat equation in the sub-Riemannian context . . . . . . . . . . . . . . . 296
17.1.3 Few properties of the sub-Riemannian Laplacian: the Hörmander theorem
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Introduction

This book concerns a fresh development of the eternal idea of the distance as the length of a shortest
path. In Euclidean geometry, shortest paths are segments of straight lines that satisfy all classical
axioms. In the Riemannian world, Euclidean geometry is just one of a huge amount of possibilities.
However, each of these possibilities is well approximated by Euclidean geometry at very small scale.
In other words, Euclidean geometry is treated as geometry of initial velocities of the paths starting
from a fixed point of the Riemannian space rather than the geometry of the space itself.

The Riemannian construction was based on the previous study of smooth surfaces in the Eu-
clidean space undertaken by Gauss. The distance between two points on the surface is the length
of a shortest path on the surface connecting the points. Initial velocities of smooth curves starting
from a fixed point on the surface form a tangent plane to the surface, that is an Euclidean plane.
Tangent planes at two different points are isometric, but neighborhoods of the points on the surface
are not locally isometric in general; certainly not if the Gaussian curvature of the surface is different
at the two points.

Riemann generalized Gauss’ construction to higher dimensions and realized that it can be
done in an intrinsic way; you do not need an ambient Euclidean space to measure the length of
curves. Indeed, to measure the length of a curve it is sufficient to know the Euclidean length
of its velocities. A Riemannian space is a smooth manifold whose tangent spaces are endowed
with Euclidean structures; each tangent space is equipped with its own Euclidean structure that
smoothly depends on the point where the tangent space is attached.

For a habitant sitting at a point of the Riemannian space, tangent vectors give directions where
to move or, more generally, to send and receive information. He measures lengths of vectors, and
angles between vectors attached at the same point, according to the Euclidean rules, and this is
essentially all what he can do. The point is that our habitant can, in principle, completely recover
the geometry of the space by performing these simple measurements along different curves.

In the sub-Riemannian space we cannot move, receive and send information in all directions.
There are restictions (imposed by the God, the moral imperative, the government, or simply a
physical law). A sub-Riemannian space is a smooth manifold with a fixed admissible subspace in
any tangent space where admissible subspaces are equipped with Euclidean structures. Admissible
paths are those curves whose velocities are admissible. The distance between two points is the
infimum of the length of admissible paths connecting the points. It is assumed that any pair of
points in the same connected component of the manifold can be connected by at least an admissible
path. The last assumption might look strange at a first glance, but it is not. The admissible
subspace depends on the point where it is attached, and our assumption is satisfied for a more or
less general smooth dependence on the point; better to say that it is not satisfied only for very
special families of admissible subspaces.

Let us describe a simple model. Let our manifold be R
3 with coordinates x, y, z. We consider
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the differential 1-form ω = dz + 1
2 (xdy − ydx). Then dω = dx ∧ dy is the pullback on R

3 of the
area form on the xy-plane. In this model the subspace of admissible velocities at the point (x, y, z)
is assumed to be the kernel of the form ω. In other words, a curve t 7→ (x(t), y(t), z(t)) is an
admissible path if and only if ż(t) = 1

2 (y(t)ẋ(t)− x(t)ẏ(t)).
The length of an admissible tangent vector (ẋ, ẏ, ż) is defined to be (ẋ2+ ẏ2)

1
2 , that is the length

of the projection of the vector to the xy-plane. We see that any smooth planar curve (x(t), y(t))
has a unique admissible lift (x(t), y(t), z(t)) in R

3, where:

z(t) =
1

2

∫ t

0
x(s)ẏ(s)− ẋ(s)y(s) ds.

If x(0) = y(0) = 0, then z(t) is the signed area of the domain bounded by the curve and the segment
connecting (0, 0) with (x(t), y(t)). By construction, the sub-Riemannian length of the admissible
curve in R

3 is equal to the Euclidean length of its projection to the plane.
We see that sub-Riemannian shortest paths are lifts to R

3 of the solutions to the classical Dido
isoperimetric problem: find a shortest planar curve among those connecting (0, 0) with (x1, y1) and
such that the signed area of the domain bounded by the curve and the segment joining (0, 0) and
(x1, y1) is equal to z1 (see Figure 1).

y

z (x(t), y(t), z(t))

(x(t), y(t))

x

Figure 1: The Dido problem

Solutions of the Dido problem are arcs of circles and their lifts to R
3 are spirals where z(t) is

the area of the piece of disc cut by the hord connecting (0, 0) with (x(t), y(t)).
A piece of such a spiral is a shortest admissible path between its endpoints while the planar

projection of this piece is an arc of the circle. The spiral ceases to be a shortest path when its
planar projection starts to run the circle for the second time, i. e. when the spiral starts its second
turn. Sub-Riemannian balls centered at the origin for this model look like apples with singularities
at the poles (see Figure 3).

Singularities are points on the sphere connected with the center by more than one shortest
path. The dilation (x, y, z) 7→ (rx, ry, r2z) transforms the ball of radius 1 into the ball of radius
r. In particular, arbitrary small balls have singularities. This is always the case when admissible
subspaces are proper subspaces.

Another important symmetry connects balls with different centers. Indeed, the product opera-
tion

(x, y, z) · (x′, y′, z′) .=
(
x+ x′, y + y′, z + z′ +

1

2
(xy′ − x′y)

)

8



z

x

y

Figure 2: Solutions to the Dido problem

Figure 3: The Heisenberg sub-Riemannian sphere

turns R3 into a group, the Heisenberg group. The origin in R
3 is the unit element of this group. It

is easy to see that left translations of the group transform admissible curves into admissible ones
and preserve the sub-Riemannian length. Hence left translations transform balls in balls of the
same radius. A detailed description of this example and other models of sub-Riemannian spaces is
done in Section 8.5 and Chapter ??.

Actually, even this simplest model tells us something about life in a sub-Riemannian space. Here
we deal with planar curves but, in fact, operate in the three-dimensional space. Sub-Riemannian
spaces always have a kind of hidden extra dimension. A good and not yet exploited source for mystic
speculations but also for theoretical physicists who are always searching new crazy formalizations.
In mechanics, this is a natural geometry for systems with nonholonomic constraints like skates,
wheels, rolling balls, bearings etc. This kind of geometry could also serve to model social behavior
that allows to increase the level of freedom without violation of a restrictive legal system.

Anyway, in this book we perform a purely mathematical study of sub-Riemannian spaces to
provide an appropriate formalization ready for all eventual applications. Riemannian spaces appear
as a very special case. Of course, we are not the first to study the sub-Riemannian stuff. There
is a broad literature even if it is hard to find an expert who could claim that sub-Riemannian
geometry is his main field of expertise. Important motivations come from CR geometry, hyperbolic
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geometry, analysis of hypoelliptic operators, and some other domains. Our first motivation was
control theory: length minimizing is a nice class of optimal control problems.

Indeed, one can find a control theory spirit in our treatment of the subject. First of all, we
include admissible paths in admissible flows that are flows generated by vector fields whose values
in all points belong to admissible subspaces. The passage from admissible subspaces attached at
different points of the manifold to a globally defined space of admissible vector fields makes the
structure more flexible and well-adapted to algebraic manipulations. We pick generators f1, . . . , fk
of the space of admissible fields, and this allows us to describe all admissible paths as solutions
to time-varying ordinary differential equations of the form: q̇(t) =

∑k
i=1 ui(t)fi(q(t)). Different

admissible paths correspond to the choice of different control functions ui(·) and initial points q(0)
while the vector fields fi are fixed at the very beginning.

We also use a Hamiltonian approach supported by the Pontryagin maximum principle to char-
acterize shortest paths. Few words about the Hamiltonian approach: sub-Riemannian geodesics
are admissible paths whose sufficiently small pieces are length-minimizers, i. e. the length of such
a piece is equal to the distance between its endpoints. In the Riemannian setting, any geodesic is
uniquely determined by its velocity at the initial point q. In the general sub-Riemannian situation
we have much more geodesics based at the the point q than admissible velocities at q. Indeed, every
point in a neighborhood of q can be connected with q by a length-minimizer, while the dimension
of the admissible velocities subspace at q is usually smaller than the dimension of the manifold.

What is a natural parametrization of the space of geodesics? To understand this question, we
adapt a classical “trajectory – wave front” duality. Given a length-parameterized geodesic t 7→ γ(t),
we expect that the values at a fixed time t of geodesics starting at γ(0) and close to γ fill a piece
of a smooth hypersurface (see Figure 4). For small t this hypersurface is a piece of the sphere of
radius t, while in general it is only a piece of the “wave front”.

γ(0)

p(t)

γ(t)

Figure 4: The “wave front” and the “impulse”

Moreover, we expect that γ̇(t) is transversal to this hypersurface. It is not always the case but
this is true for a generic geodesic.

The “impulse” p(t) ∈ T ∗
γ(t)M is the covector orthogonal to the “wave front” and normalized by

the condition 〈p(t), γ̇(t)〉 = 1. The curve t 7→ (p(t), γ(t)) in the cotangent bundle T ∗M satisfies a
Hamiltonian system. This is exactly what happens in rational mechanics or geometric optics.

The sub-Riemannian Hamiltonian H : T ∗M → R is defined by the formula H(p, q) = 1
2〈p, v〉2,

where p ∈ T ∗
qM , and v ∈ TqM is an admissible velocity of length 1 that maximizes the inner

product of p with admissible velocities of length 1 at q ∈M .
Any smooth function on the cotangent bundle defines a Hamiltonian vector field and such a
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field generates a Hamiltonian flow. The Hamiltonian flow on T ∗M associated to H is the sub-
Riemannian geodesic flow. The Riemannian geodesic flow is just a special case.

As we mentioned, in general, the construction described above cannot be applied to all geodesics:
the so-called abnormal geodesics are missed. An abnormal geodesic γ(t) also possesses its “impulse”
p(t) ∈ T ∗

γ(t)M but this impulse belongs to the orthogonal complement to the subspace of admissible
velocities and does not satisfy the above Hamiltonian system. Geodesics that are trajectories of the
geodesic flow are called normal. Actually, abnormal geodesics belong to the closure of the space of
the normal ones, and elementary symplectic geometry provides a uniform characterization of the
impulses for both classes of geodesics. Such a characterization is, in fact, a very special case of the
Pontryagin maximum principle.

Recall that all velocities are admissible in the Riemannian case, and the Euclidean structure on
the tangent bundle induces the identification of tangent vectors and covectors, i. e. of the velocities
and impulses. We should however remember that this identification depends on the metric. One
can think to a sub-Riemannian metric as the limit of a family of Riemannian metrics when the
length of forbidden velocities tends to infinity, while the length of admissible velocities remains
untouched.

It is easy to see that the Riemannian Hamiltonians defined by such a family converge with all
derivatives to the sub-Riemannian Hamiltonian. Hence the Riemannian geodesics with a prescribed
initial impulse converge to the sub-Riemannian geodesic with the same initial impulse. On the other
hand, we cannot expect any reasonable convergence for the family of Riemannian geodesics with
a prescribed initial velocity: those with forbidden initial velocities disappear at the limit while
geodesics with admissible initial velocities multiply.

Outline of the book

We start in Chapter 1 from surfaces in R
3 that is the beginning of everything in differential geometry

and also a starting point of the story told in this book. There are not yet Hamiltonians here, but a
control flavor is already present. The presentation is elementary and self-contained. A student in
applied mathematics or analysis who missed the geometry of surfaces at the university or simply
is not satisfied by his understanding of these classical ideas, might find it useful to read just this
chapter even if he does not plan to study the rest of the book.

In Chapter 2, we recall some basic properties of vector fields and vector bundles. Sub-Riemannian
structures are defined in Chapter 3 where we also prove three fundamental facts: the finiteness and
the continuity of the sub-Riemannian distance; the existence of length-minimizers; the infinitesimal
characterization of geodesics. The first is the classical Chow-Rashevski theorem, the second and the
third one are simplified versions of the Filippov existence theorem and the Pontryagin maximum
principle.

In Chapter 4, we introduce the symplectic language. We define the geodesic Hamiltonian flow,
we consider an interesting class of three-dimensional problems and we prove a general sufficient
condition for length-minimality of normal trajectories. Chapter 5 is devoted to applications to
integrable Hamiltonian systems. We explain the construction of the action-angle coordinates and
we describe classical examples of integrable geodesic flows, such as the geodesic flow on ellipsoids.

Chapters 1–5 form a first part of the book where we do not use any tool from functional
analysis. In fact, even the knowledge of the Lebesgue integration and elementary real analysis are
not essential with a unique exception of the existence theorem in Section 3.4. In all other places
the reader can substitute terms “Lipschitz” and “absolutely continuous” by “piecewise C1” and
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“measurable” by “piecewise continuous” without a loss for the understanding.

We start to use some basic functional analysis in Chapter 6. In this chapter, we give elements
of an operator calculus that simplifies and clarifies calculations with non-stationary flows, their
variations and compositions. In Chapter ??, we use this calculus for a fast introduction to the Lie
group theory.

In Chapter 7, we interpret the “impulses” as Lagrange multipliers for constrained optimization
problems and apply this point of view to the sub-Riemannian case. We also introduce the sub-
Riemannian exponential map and we study conjugate points.

In Chapter 8, we construct the nonholonomic tangent space at a point q of the manifold: a
first quasi-homogeneous approximation of the space if you observe and exploit it from q by means
of admissible paths. In general, such a tangent space is a homogeneous space of a nilpotent Lie
group equipped with an invariant vector distribution; its structure may depend on the point where
the tangent space is attached. At generic points, this is a nilpotent Lie group endowed with a
left-invariant vector distribution. The construction of the nonholonomic tangent space does not
need a metric; if we take into account the metric, we obtain the Gromov–Hausdorff tangent to the
sub-Riemannian metric space. Useful “ball-box” estimates of small balls follow automatically.

Chapter ?? is devoted to the explicit calculation of the sub-Riemannian distance for model
spaces. In Chapter 10, we study general analytic properties of the sub-Riemannian distance as a
function of points of the manifold. It is shown that the distance is smooth on an open dense subset
and is semi-concave out of the points connected by abnormal length-minimizers. Moreover, generic
sphere is a Lipschitz submanifold if we remove these bad points.

In Chapter 11, we turn to abnormal geodesics, which provide the deepest singularities of the
distance. Abnormal geodesics are critical points of the endpoint map defined on the space of
admissible paths, and the main tool for their study is the Hessian of the endpoint map.

This is the end of the second part of the book; next few chapters are devoted to the curvature
and its applications. Let Φt : T ∗M → T ∗M , for t ∈ R, be a sub-Riemannian geodesic flow.
Submanifolds Φt(T ∗

qM), q ∈ M, form a fibration of T ∗M . Given λ ∈ T ∗M , let Jλ(t) ⊂ Tλ(T
∗M)

be the tangent space to the leaf of this fibration.

Recall that Φt is a Hamiltonian flow and T ∗
qM are Lagrangian submanifolds; hence the leaves

of our fibrations are Lagrangian submanifolds and Jλ(t) is a Lagrangian subspace of the symplectic
space Tλ(T

∗M).

In other words, Jλ(t) belongs to the Lagrangian Grassmannian of Tλ(T
∗M), and t 7→ Jλ(t) is

a curve in the Lagrangian Grassmannian, a Jacobi curve of the sub-Riemannian structure. The
curvature of the sub-Riemannian space at λ is simply the “curvature” of this curve in the Lagrangian
Grassmannian.

Chapter 12 is devoted to the elementary differential geometry of curves in the Lagrangian
Grassmannian; in Chapter 13 we apply this geometry to Jacobi curves.

The language of Jacobi curves is translated to the traditional language in the Riemannian
case in Chapter 14. We recover the Levi Civita connection and the Riemannian curvature and
demonstrate their symplectic meaning. In Chapter 15, we explicitly compute the sub-Riemannian
curvature for contact three-dimensional spaces. In the next Chapter 16 we study the small distance
asymptotics of the expowhree-dimensional contact case and see how the structure of the conjugate
locus is encoded in the curvature.

In Chapter ??, we consider two-dimensional sub-Riemannian metrics; such a metric differs from
a Riemannian one only along a one-dimensional submanifold. In the last Chapter ?? we define the
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sub-Riemannian Laplace operator, the canonical volume form, and compute the density of the
sub-Riemannian Hausdorff measure. We conclude with a discussion of the sub-Riemannian heat
equation and an explicit formula for the heat kernel in the three-dimensional Heisenberg case.

We finish here this introduction into the Introduction. . .We hope that the reader won’t be
bored; comments to the chapters contain suggestions for further reading.
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Chapter 1

Geometry of surfaces in R
3

In this preliminary chapter we study the geometry of smooth two dimensional surfaces in R
3 as a

“heating problem” and we recover some classical results.
In this chapter we always assume R

3 to be the ambient space, endowed with the standard
Euclidean product, which we denote by 〈·, ·〉.

Definition 1.1. A surface of R3 is a subset M ⊂ R
3 such that for every q ∈ M there exists a

neighborhood U ⊂ R
3 of q and a smooth function a : U → R such that U ∩M = a−1(0) and ∇a 6= 0

on U ∩M .

1.1 Geodesics and optimality

Let M ⊂ R
3 be a surface and γ : [0, T ]→M be a smooth curve in M . The length of γ is defined as

ℓ(γ) :=

∫ T

0
‖γ̇(t)‖dt. (1.1)

where ‖v‖ =
√
〈v|v〉 denotes the norm of a vector in R

3.

Remark 1.2. Notice that the definition of length in (1.1) is invariant by reparametrizations of the
curve. Indeed let ϕ : [0, T ′] → [0, T ] be a monotone smooth function. Define γϕ : [0, T ′] → M by
γϕ := γ ◦ ϕ. Using the change of variables t = ϕ(s), one gets

ℓ(γϕ) =

∫ T ′

0
‖γ̇ϕ(s)‖ds =

∫ T ′

0
‖γ̇(ϕ(s))‖|ϕ̇(s)|ds =

∫ T

0
‖γ̇(t)‖dt = ℓ(γ).

The definition of length can be extended to piecewise smooth curves on M , by adding the length
of every smooth piece of γ.

When the curve γ is parametrized in such a way that ‖γ̇(t)‖ ≡ c for some c > 0 we say that γ
has constant speed. If moreover c = 1 we say that γ is parametrized by length.

The distance between two points p, q ∈M is the infimum of length of curves that join p to q

d(p, q) = inf{ℓ(γ), γ : [0, T ]→M piecewise smooth, γ(0) = p, γ(T ) = q}. (1.2)

Now we focus on minimizers, i.e. curves that minimize the distance between two points: ℓ(γ) =
d(γ(0), γ(T )).
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γ̇(t)
γ(t)

M

Tγ(t)M

γ̈(t)

Figure 1.1: A smooth minimizer

Remark 1.3. Notice that, if γ : [0, T ]→M is a minimizer, then the curve γ|[0,t] is also a minimizer,
for all 0 < t < T .

The following proposition characterizes smooth minimizers. We prove later that all minimizers
are smooth (cf. Corollary 1.15).

Proposition 1.4. Let γ : [0, T ] → M be a smooth minimizer parametrized by length. Then
γ̈(t) ⊥ Tγ(t)M for all t ∈ [0, T ].

Proof. Consider a smooth non-autonomous vector field (t, q) 7→ ft(q) ∈ TqM that extends the
tangent vector to γ in a neighborhood W of the graph of the curve {(t, γ(t)) ∈ R×M}, i.e.

ft(γ(t)) = γ̇(t) and ‖ft(q)‖ ≡ 1, ∀ (t, q) ∈W.

Let now (t, q) 7→ gt(q) ∈ TqM be a smooth non-autonomous vector field such that ft(q) and gt(q)
define a local orthonormal frame in the following sense

〈ft(q)|gt(q)〉 = 0, ‖gt(q)‖ ≡ 1, ∀ (t, q) ∈W.

Piecewise smooth curves parametrized by length on M are solutions of the following ordinary
differential equation

ẋ(t) = cos u(t)ft(x(t)) + sinu(t)gt(x(t)), (1.3)

for some initial condition x(0) = q and some piecewise continuous function u(t), which we call
control. The curve γ is the solution to (1.3) associated with the control u(t) ≡ 0 and initial
condition γ(0).

Let us consider the family of controls

uτ,s(t) =

{
0, t < τ

s, t ≥ τ
0 ≤ τ ≤ T, s ∈ R (1.4)

and denote by xτ,s(t) the solution of (1.3) with control uτ,s(t) and initial datum xτ,s(0) = γ(0).
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Lemma 1.5. For every τ1, τ2, t ∈ [0, T ] the following vectors are linearly dependent

∂

∂s

∣∣∣∣
s=0

xτ1,s(t)
∂

∂s

∣∣∣∣
s=0

xτ2,s(t) (1.5)

Proof. By Remark 1.3 is not restrictive to assume t = T . Fix 0 ≤ τ1 ≤ τ2 ≤ T and consider the
family of curves φ(t;h1, h2) solutions of (1.3) associated with controls

vh1,h2(t) =





0, t ∈ [0, τ1[,

h1, t ∈ [τ1, τ2[,

h1 + h2, t ∈ [τ2, T + ε[,

where h1, h2 belong to a neighborhood of 0 and ε is small enough (to guarantee the existence of
the trajectory). Notice that φ is smooth in a neighborhood of (t, h1, h2) = (T, 0, 0) and

∂φ

∂hi

∣∣∣∣
(h1,h2)=0

=
∂

∂s

∣∣∣∣
s=0

xτi,s(T ), i = 1, 2.

By contradiction assume that the vectors in (1.5) are linearly independent. Then ∂φ
∂h is invertible

and the classical implicit function theorem applied to the map (t, h1, h2) 7→ φ(t;h1, h2) at the point
(T, 0, 0) implies that there exists δ > 0 such that

∀ t ∈ ]T − δ, T + δ[, ∃h1, h2, s.t. φ(t;h1, h2) = γ(T ),

In particular there exists a curve joining γ(0) and γ(T ) in time t < T , which gives a contradiction,
since γ is a minimizer.

Lemma 1.6. For every τ, t ∈ [0, T ] the following identity holds
〈
∂

∂s

∣∣∣∣
s=0

xτ,s(t)

∣∣∣∣ γ̇(t)
〉

= 0. (1.6)

Proof. If t ≤ τ , then the conclusion follows from (1.4). Let us now assume that t > τ . Again, by
Remark 1.3, it is sufficient to prove the statement at t = T . Let us write the Taylor expansion of
ψ(t) = ∂

∂s

∣∣
s=0

xτ,s(t) in a right neighborhood of t = τ . Observe that, for t ≥ τ

ẋτ,s = cos(s)ft(xτ,s) + sin(s)gt(xτ,s).

Hence

ψ(τ) =
∂

∂s

∣∣∣∣
s=0

xτ,s(τ) = 0, ψ̇(τ) =
∂

∂s

∣∣∣∣
s=0

ẋτ,s(τ) = gτ (xτ,s(τ)).

Then, for t ≥ τ , we have
ψ(t) = (t− τ)gτ (xτ,s(τ)) +O((t− τ)2). (1.7)

For τ sufficiently close to T , one can take t = T in (1.7). Passing to the limit for τ → T one gets

1

T − τ
∂

∂s

∣∣∣∣
s=0

xτ,s(T ) −→
τ→T

gT (γ(T )).

Now, by Lemma 1.5 all vectors in left hand side are parallel among them, hence they are parallel
to gT (γ(T )). The lemma is proved since γ̇(T ) = fT (γ(T )) and fT and gT are orthogonal.

17



Now we end the proposition by showing that γ̈(t) ⊥ Tγ(t)M . Notice that this is equivalent to
show

〈γ̈(t)|ft(γ(t))〉 = 〈γ̈(t)|gt(γ(t))〉 = 0. (1.8)

Recall that 〈γ̇(t)|γ̇(t)〉 = 1. Differentiating this identity one gets

0 =
d

dt
〈γ̇(t)|γ̇(t)〉 = 2 〈γ̈(t)|γ̇(t)〉 ,

which shows that γ̈(t) is orthogonal to ft(γ(t)). Next, differentiating (1.6) with respect to t, we
have1 for t 6= τ 〈

∂

∂s

∣∣∣∣
s=0

ẋτ,s(t)

∣∣∣∣γ̇(t)
〉
+

〈
∂

∂s

∣∣∣∣
s=0

xτ,s(t)

∣∣∣∣γ̈(t)
〉

= 0, (1.9)

Now, from 〈ẋτ,s(t)|ẋτ,s(t)〉 = 1 one gets
〈
∂

∂s
ẋτ,s(t)

∣∣∣∣ẋτ,s(t)
〉

= 0, for t 6= τ.

Evaluating at s = 0, using that xτ,0(t) = γ(t), one has
〈
∂

∂s

∣∣∣∣
s=0

ẋτ,s(t)

∣∣∣∣γ̇(t)
〉

= 0, for t 6= τ.

Hence, by (1.9), it follows that 〈
∂

∂s

∣∣∣∣
s=0

xτ,s(t)

∣∣∣∣γ̈(t)
〉

= 0,

which, by continuity, holds for every t ∈ [0, T ]. Using that ∂
∂s

∣∣
s=0

xτ,s(t) is parallel to gt(γ(t)) (see
proof of Lemma 1.6), it follows that 〈gt(γ(t))|γ̈(t)〉 = 0.

Definition 1.7. A smooth curve γ : [0, T ]→M parametrized with constant speed is called geodesic
if it satisfies

γ̈(t) ⊥ Tγ(t)M, ∀ t ∈ [0, T ]. (1.10)

Proposition 1.4 says that a smooth curve that minimizes the length is a geodesic.

Now we get an explicit characterization of geodesics when the manifold M is globally defined
as the zero level of a smooth function. In other words there exists a smooth function a : R3 → R

such that
M = a−1(0), and ∇a 6= 0 on M. (1.11)

Remark 1.8. Recall that for all q ∈M it holds ∇qa ⊥ TqM . Indeed, for every q ∈M and v ∈ TqM ,
let γ : [0, T ] → M be a smooth curve on M such that γ(0) = q and γ̇(0) = v. By definition of M
one has a(γ(t)) = 0. Computing the derivative with respect to t at t = 0 one gets 〈∇qa|v〉 = 0.

Proposition 1.9. A smooth curve γ : [0, T ]→M is a geodesic if and only if it satisfies, in matrix
notation:

γ̈(t) = −
γ̇(t)T (∇2

γ(t)a)γ̇(t)

‖∇γ(t)a‖2
∇γ(t)a, ∀ t ∈ [0, T ]. (1.12)

where ∇2
γ(t)a is the Hessian matrix of a.

1notice that xτ,s is smooth on the set [0, T ] \ {τ}.
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Proof. Differentiating the equality
〈
∇γ(t)a

∣∣γ̇(t)
〉
= 0 we get, in matrix notation:

γ̇(t)T (∇2
γ(t)a)γ̇(t) + γ̈(t)T∇γ(t)a = 0.

By definition of geodesic there exists a function ν(t) such that

γ̈(t) = ν(t)∇γ(t)a.

Hence we get
γ̇(t)T (∇2

γ(t)a)γ̇(t) + ν(t)‖∇γ(t)a‖2 = 0,

from which (1.12) follows.

Remark 1.10. Notice that formula (1.12) is always true locally since, by definition of surface, the
assumptions (1.11) are always satisfied locally.

1.1.1 Existence and minimizing properties of geodesics

Recall that every surface can be locally characterized as a regular level set of a smooth function (cf.
Definition 1.1), hence equations (1.12) always characterize geodesics locally. As a direct consequence
of Proposition 1.9 one gets the following existence and uniqueness theorem for geodesics.

Corollary 1.11. Let q ∈M and v ∈ TqM . There exists a unique geodesic γ : [0, ε] →M , for ε > 0
small enough, such that γ(0) = q and γ̇(0) = v.

Proof. By Proposition 1.9, geodesics satisfy a second order ODE, hence they are smooth curves,
characterized by ther initial position and velocity.

To end this section we show that small pieces of geodesics are always global minimizers.

Theorem 1.12. Let γ : [0, T ]→M be a geodesic. For every τ ∈ [0, T [ there exists ε > 0 such that

(i) γ|[τ,τ+ε] is a minimizer, i.e. d(γ(τ), γ(τ + ε)) = ℓ(γ|[τ,τ+ε]),

(ii) γ|[τ,τ+ε] is the unique minimizers joining γ(τ) and γ(τ + ε) in the class of piecewise smooth
curves, up to reparametrization.

Proof. Without loss of generality let us assume that τ = 0 and that γ is length parametrized.
Consider a length-parametrized curve α on M such that α(0) = γ(0) and α̇(0) ⊥ γ̇(0) and denote
by (t, s) 7→ xs(t) the smooth variation of geodesics such that x0(t) = γ(t) and (see also Figure 1.2)

xs(0) = α(s), ẋs(0) ⊥ α̇(s). (1.13)

The map ψ : (t, s) 7→ xs(t) is a local diffeomorphism near (0, 0). Indeed the vectors

∂ψ

∂t

∣∣∣
t=s=0

=
∂

∂t

∣∣∣∣
t=0

x0(t) = γ̇(0),
∂ψ

∂s

∣∣∣
t=s=0

=
∂

∂s

∣∣∣∣
s=0

xs(0) = α̇(0),

are linearly independent. Thus ψ maps a neighborhood U of (0, 0) on a neighborhood W of γ(0).
We now consider the function φ and the vector field ξ defined on W

φ : xs(t) 7→ t,

ξ : xs(t) 7→ ẋs(t).
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γ

α(s)

xs(t)

Figure 1.2: Proof of Theorem 1.12

Lemma 1.13. ∇qφ = ξ(q) for every q ∈W .

Proof of Lemma 1.13. We first show that they are parallel and then that they actually coincide.
To show that they are parallel, first notice that ∇φ is orthogonal to its level set {t = const}, hence

〈
∇xs(t)φ

∣∣∣∣
∂

∂s
xs(t)

〉
= 0, ∀ (t, s) ∈ U. (1.14)

Now, let us show that 〈
∂

∂s
xs(t)

∣∣∣∣ẋs(t)
〉

= 0, ∀ (t, s) ∈ U. (1.15)

Computing the derivative with respect to t of the left hand side of (1.15) one gets

〈
∂

∂s
ẋs(t)

∣∣∣∣ẋs(t)
〉
+

〈
∂

∂s
xs(t)

∣∣∣∣ẍs(t)
〉
,

which is identically zero. Indeed the first term is zero because ẋs(t) has unit speed and the second
one vanishes because of (1.10). Hence, the left hand side of (1.15) is constant and coincides with
its value at t = 0, which is zero by the orthogonality assumption (1.13).

By (1.14) and (1.15) one gets that ∇φ is parallel to ξ. Actually they coincide since

〈∇φ|ξ〉 = d

dt
φ(xs(t)) = 1.

Now consider ε > 0 small enough such that γ|[0,ε] is contained inW and take a piecewise smooth
and length parametrized curve β : [0, ε′] → M contained in W and joining γ(0) to γ(ε). Let us
show that γ is shorter than β. First notice that

ℓ(γ|[0,ε]) = ε = φ(γ(ε)) = φ(β(ε′))
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Using that φ(β(0)) = φ(γ(0)) = 0 and that ℓ(β) = ε′ we have that

ℓ(γ|[0,ε]) = φ(β(ε′))− φ(β(0)) =
∫ ε′

0

d

dt
φ(β(t))dt (1.16)

=

∫ ε′

0

〈
∇φ(β(t))

∣∣∣β̇(t)
〉
dt

=

∫ ε′

0

〈
ξ(β(t))

∣∣∣β̇(t)
〉
dt ≤ ε′ = ℓ(β), (1.17)

The last inequality follows from the Cauchy-Schwartz inequality
〈
ξ(β(t))

∣∣∣β̇(t)
〉
≤ ‖ξ(β(t))‖‖β̇(t)‖ = 1 (1.18)

which holds at every smooth point of β(t). In addition, equality in (1.18) holds if and only if
β̇(t) = ξ(β(t)) (at the smooth points of β). Hence we get that ℓ(β) = ℓ(γ|[0,ε]) if and only if β
coincides with γ|[0,ε].

Now let us show that there exists ε̄ ≤ ε such that γ|[0,ε̄] is a global minimizer among all piecewise
smooth curves joining γ(0) to γ(ε̄). It is enough to take ε̄ < dist(γ(0), ∂W ). Every curve that escape
from W has length greater than ε̄.

From Theorem 1.12 it follows

Corollary 1.14. Any minimizer of the distance (in the class of piecewise smooth curves) is a
geodesic, and hence smooth.

1.1.2 Absolutely continuous curves

Notice that formula (1.1) defines the length of a curve even in the class of absolutely continuous
ones, if one interpret the integral in the Lebesgue sense.

In this setting, in the proof of Theorem 1.12, one can assume that the curve β is actually
absolutely continuous. This proves that small pieces of geodesics are minimizers also in the class
of absolutely continuous curves on M . Morever

Corollary 1.15. Any minimizer of the distance (in the class of absolutely continuous curves) is a
geodesic, and hence smooth.

1.2 Parallel transport

In this section we want to introduce the notion of parallel transport, which let us to define the
main geometric invariant of a surface: the Gaussian curvature.

Let us consider a curve γ : [0, T ] → M and a vector ξ ∈ Tγ(0)M . We want to define the
parallel transport of ξ along γ. Heuristically, it is a curve ξ(t) ∈ Tγ(t)M such that the vectors
{ξ(t), t ∈ [0, T ]} are all “parallel”.

Remark 1.16. If M = R
2 ⊂ R

3 we can canonically identify every tangent space Tγ(t)M with R
2 so

that every tangent vector ξ(t) belong to the same vector space.2 In this case, parallel simply means
ξ̇(t) = 0 as an element of R3. This is not the case if M is a manifold because tangent spaces at
different points are different.

2The canonical isomorphism R
2 ≃ TxR

2 is written explicitly as follows: y 7→ d
dt

∣
∣
t=0

x+ ty.
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Definition 1.17. Let γ : [0, T ] → M be a smooth curve. A smooth curve of tangent vectors
ξ(t) ∈ Tγ(t)M is said to be parallel if ξ̇(t) ⊥ Tγ(t)M .

Assume now that M is the zero level of a smooth function a : R3 → R as in (1.11). We have
the following description:

Proposition 1.18. A smooth curve of tangent vectors ξ(t) defined along γ : [0, T ]→M is parallel
if and only if it satisfies

ξ̇(t) = −
γ̇(t)T (∇2

γ(t)a)ξ(t)

‖∇γ(t)a‖2
∇γ(t)a, ∀ t ∈ [0, T ]. (1.19)

Proof. As in Remark 1.8, ξ(t) ∈ Tγ(t)M implies
〈
∇γ(t)a, ξ(t)

〉
= 0. Moreover, by assumption

ξ̇(t) = α(t)∇γ(t)a for some smooth function α. With analogous computations as in the proof of
Proposition 1.9 we get that

γ̇(t)T (∇2
γ(t)a)ξ(t) + α(t)‖∇γ(t)a‖2 = 0,

from which the statement follows.

Remark 1.19. Notice that, since (1.19) is a first order linear ODE with respect to ξ, for a given
curve γ : [0, T ] → M and initial datum v ∈ Tγ(0)M , there is a unique parallel curve of tangent
vectors ξ(t) ∈ Tγ(t)M along γ such that ξ(0) = v. Moreover the operator ξ(0) 7→ ξ(t) is a linear
operator, which is called parallel transport.

Next we state a key property of the parallel transport.

Proposition 1.20. The parallel transport preserves the scalar product. In other words, if ξ(t), η(t)
are two parallel curves of tangent vectors along γ, then we have

d

dt
〈ξ(t)|η(t)〉 = 0, ∀ t ∈ [0, T ]. (1.20)

Proof. From the fact that ξ(t), η(t) ∈ Tγ(t)M and ξ̇(t), η̇(t) ⊥ Tγ(t)M one immediately gets

d

dt
〈ξ(t)|η(t)〉 = 〈ξ̇(t)|η(t)〉 + 〈ξ(t)|η̇(t)〉 = 0.

The notion of parallel transport permits to give a new characterization of geodesics. Indeed, by
definition

Corollary 1.21. A smooth curve γ : [0, T ]→M is a geodesic if and only if γ̇ is parallel along γ.

In the following we assume that M is oriented.

Definition 1.22. The spherical bundle SM on M is the disjoint union of all unit tangent vectors
to M :

SM =
⊔

q∈M
SqM, SqM = {v ∈ TqM, ‖v‖ = 1}. (1.21)
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SM is a smooth manifold of dimension 3. Moreover it has the structure of fiber bundle with
base manifold M , typical fiber S1, and canonical projection

π : SM →M, π(v) = q if v ∈ TqM.

Remark 1.23. Since every vector in the fiber SqM has norm one, we can parametrize every v ∈
SqM by an angular coordinate θ ∈ S1 through an orthonormal frame {e1(q), e2(q)} for SqM , i.e.
v = cos(θ)e1(q) + sin(θ)e2(q).

The choice of a positively oriented orthonormal frame {e1(q), e2(q)} corresponds to fix the
element in the fiber corresponding to θ = 0. Hence, the choice of such an orthonormal frame at
every point q induces coordinates on SM of the form (q, θ + ϕ(q)), where ϕ ∈ C∞(M).

Given an element ξ ∈ SqM we can complete it to an orthonormal frame (ξ, η, ν) of R3 in the
following unique way:

(i) η ∈ TqM is orthogonal to ξ and (ξ, η) is positively oriented (w.r.t. the orientation of M),

(ii) ν ⊥ TqM and (ξ, η, ν) is positively oriented (w.r.t. the orientation of R3).

Let t 7→ ξ(t) ∈ Sγ(t)M be a smooth curve of unit tangent vectors along γ : [0, T ] → M . Define

η(t), ν(t) ∈ Tγ(t)M as above. Since t 7→ ξ(t) has constant speed, one has ξ(t) ⊥ ξ̇(t) and we can
write

ξ̇(t) = uξ(t)η(t) + vξ(t)ν(t).

In particular this shows that every element of TξSM , written in the basis (ξ, η, ν), has zero com-
ponent along ξ.

Definition 1.24. The Levi-Civita connection on M is the 1-form ω ∈ Λ1(SM) defined by

ωξ : TξSM → R, ωξ(z) = uz, (1.22)

where z = uzη + vzν and (ξ, η, ν) is the orthonormal frame defined above.

Notice that ω change sign if we change the orientation of M .

Lemma 1.25. A curve of unit tangent vectors ξ(t) is parallel if and only if ωξ(t)(ξ̇(t)) = 0.

Proof. By definition ξ(t) is parallel if and only if ξ̇(t) is orthogonal to Tγ(t)M , i.e. collinear to
ν(t).

In particular, a curve parametrized by length γ : [0, T ]→M is a geodesic if and only if

ωγ̇(t)(γ̈(t)) = 0, ∀ t ∈ [0, T ]. (1.23)

Proposition 1.26. The Levi Civita connection ω ∈ Λ1(SM) satisfies:

(i) there exist two smooth functions a1, a2 :M → R such that

ω = dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2, (1.24)

where (x1, x2, θ) is a system of coordinates on SM .
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(ii) dω = π∗Ω, where Ω is a 2-form defined on M and π : SM →M is the canonical projection.

Proof. (i) By Remark 1.23 the coordinate θ is defined up to a constant. However the vector field
on SM defined by ∂/∂θ is well-defined. Let us show that

ω

(
∂

∂θ

)
= 1.

Indeed consider a curve t 7→ ξ(t) on SM which corresponds to a rotation of on a single fibre. Then
we have that velocity of this curve is exactly its orthogonal vector, i.e. ξ̇(t) = η(t) and equality
above is proved. It remains to show that coefficients a1, a2 do not depend on θ, but this is due to
the rotational invariance of ω.

(ii) Follows directly from expression (1.24) noticing that dω depends only on x1, x2.

Remark 1.27. Notice that the functions a1, a2 in (1.24) are not invariant by change of coordinates
on the fiber. Indeed the transformation θ → θ+ϕ(x1, x2) induces dθ → dθ+(∂x1ϕ)dx1+(∂x2ϕ)dx2
which gives ai → ai + ∂xiϕ for i = 1, 2.

By definition ω is an intrinsic 1-form on SM . Its differential, by property (ii) of Proposition
1.26, is the pull-back of an intrinsic 2-form on M , that in general is not exact. Since any 2-form
on M is proportional to the area form dV , it makes sense to give the following definition:

Definition 1.28. The Gaussian curvature of M is the function κ :M → R defined by the equality

Ω = −κdV. (1.25)

Note that κ does not depend on the orientation ofM , since both Ω and dV change sign if we reverse
the orientation.

1.3 Gauss-Bonnet Theorems

In this section we will prove both the local and the global version of the Gauss-Bonnet theorem. A
strong consequence of these results is the celebrated Gauss’ Theorema Egregium which says that
the Gaussian curvature of a surface is independent on its embedding in R

3.

Definition 1.29. Let γ : [0, T ] → M be a smooth curve parametrized by length. The geodesic
curvature of γ is defined as

ργ(t) = ωγ̇(t)(γ̈(t)). (1.26)

Notice that if γ is a geodesic, then ργ(t) = 0 for every t ∈ [0, T ]. The geodesic curvature
measures how much a curve is far from being a geodesic.

Remark 1.30. The geodesic curvature changes sign if we move along the curve in the opposite
direction. Moreover, if M = R

2, it coincides with the usual notion of curvature of a planar curve.

1.3.1 Gauss-Bonnet theorem: local version

Definition 1.31. A curvilinear polygon Γ on an oriented surfaceM is the image of a closed polygon
in R

2 under a diffeomorphism. We assume that ∂Γ is oriented consistently with the orientation of
M . In the following we represent ∂Γ = ∪iγi(Ii) where γi : Ii → M , for i = 1, . . . ,m, are smooth
curves parametrized by length, with orientation consistent with ∂Γ. We denote by αi the external
angles at the points where ∂Γ is not C1 (see Figure 1.3).
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Figure 1.3: A curvilinear polygon

Notice that a curvilinear polygon is homeomorphic to a disk.

Theorem 1.32. (Gauss-Bonnet, local version)
Let Γ be a curvilinear polygon on an oriented surface M . Then we have

∫

Γ
κdV +

m∑

i=1

∫

Ii

ργi(t)dt+

m∑

i=1

αi = 2π. (1.27)

Proof. (i) Case ∂Γ is smooth.

In this case Γ is the image of the unit (closed) ball B1, centered in the origin of R2, under a
diffeomorphism

F : B1 →M, Γ = F (B1).

In what follows we denote by γ : I → M the curve such that γ(I) = ∂Γ. We consider on B1 the
vector field V which has an isolated zero at the origin and whose flow is a rotation around zero.
Denote by X := F∗V the induced vector field on M with critical point q0 = F (0).

We refer to Figure 1.4. For ε small enough, consider

Γε := Γ \ F (Bε), and Aε := ∂F (Bε),

where Bε is the ball of radius ε centered in zero in R
2. We have ∂Γε = Aε ∪ ∂Γ.

Define the map

φ : Γε → SM, φ(q) =
X(q)

|X(q)| ,

and compute the integral of the curvature κ on Γε. First notice that

∫

φ(Γε)
dω =

∫

φ(Γε)
π∗Ω =

∫

π(φ(Γε))
Ω =

∫

Γε

Ω, (1.28)
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Figure 1.4: The map F

where we used the fact that π(φ(Γε)) = Γε. Thus

∫

Γε

κdV = −
∫

Γε

Ω = −
∫

φ(Γε)
dω, (by (1.28))

= −
∫

∂φ(Γε)
ω, (by Stokes Theorem)

=

∫

φ(Aε)
ω −

∫

φ(∂Γ)
ω, (since ∂φ(Γε) = φ(Aε) ∪ φ(∂Γ)) (1.29)

Notice that in the third equality we used the fact that the induced orientation on ∂φ(Γε) gives
opposite orientation on the two terms. Let us treat separately these two terms. The first one, by
Proposition 1.26, can be written as

∫

φ(Aε)
ω =

∫

φ(Aε)
dθ +

∫

φ(Aε)
a1(x1, x2)dx1 + a2(x1, x2)dx2 (1.30)

The first element of (1.30) is equal to 2π since we integrate the 1-form dθ on a closed curve. The
second element of (1.30), for ε→ 0, satisfies

∣∣∣∣∣

∫

φ(Aε)
a1(x1, x2)dx1 + a2(x1, x2)dx2

∣∣∣∣∣ ≤ Cℓ(φ(Aε))→ 0, (1.31)

Indeed the functions ai are smooth (hence bounded on compact sets) and the length of φ(Aε) goes
to zero for ε→ 0.

Let us now consider the second term of (1.29). Since φ(∂Γ) is parametrized by the curve
t 7→ γ̇(t) (as a curve on SM), we have

∫

φ(∂Γ)
ω =

∫

I
ωγ̇(t)(γ̈(t))dt =

∫

I
ργ(t)dt.
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Concluding we have from (1.29)

∫

Γ
κdV = lim

ε→0

∫

Γε

κdV = 2π −
∫

I
ργ(t)dt,

that is (1.27) in the smooth case (i.e. when αi = 0 for all i).
(ii) Case ∂Γ non smooth.

We reduce to the previous case with a sequence of polygons Γn such that ∂Γn is smooth and Γn
approximates Γ in a “smooth” way. In particular, we assume that ∂Γn coincides with ∂Γ excepts
in neighborhoods Ui, for i = 1, . . . ,m, of each point qi where ∂Γ is not smooth, in such a way that

the curve σ
(n)
i that parametrize (∂Γn \ ∂Γ) ∩ Ui satisfies ℓ(σni ) ≤ 1/n.

If we apply the statement of the Theorem for the smooth case to Γn we have

∫

Γn

κdV +

∫
ργ(n)(t)dt = 2π,

where γ(n) is the curve that parametrizes ∂Γn. Since Γn tends to Γ as n→∞, then

lim
n→∞

∫

Γn

κdV =

∫

Γ
κdV.

We are left to prove that

lim
n→∞

∫
ργ(n)(t)dt =

m∑

i=1

∫

Ii

ργi(t)dt+

m∑

i=1

αi. (1.32)

For every n, let us split the curve γ(n) as the union of the smooth curves σ
(n)
i and γ

(n)
i as in Figure

??. Then ∫
ργ(n)(t)dt =

m∑

i=1

∫
ρ
γ
(n)
i

(t)dt+

m∑

i=1

∫
ρ
σ
(n)
i

(t)dt.

Since the curve γ
(n)
i tends to γi for n→∞ one has

lim
n→∞

∫
ρ
γ
(n)
i

(t)dt =

∫
ργi(t)dt.

Moreover, with analogous computations of part (i) of the proof

∫
ρ
σ
(n)
i

(t)dt =

∫

φ(σ
(n)
i )

ω =

∫

φ(σ
(n)
i )

dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2

and one has, using that ℓ(φ(σ
(n)
i ))→ 0

∫

φ(σ
(n)
i )

dθ −→
n→∞

αi,

∫

φ(σ
(n)
i )

a1(x1, x2)dx1 + a2(x1, x2)dx2 −→
n→∞

0.

Then (1.32) follows.
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Remark 1.33. Let us consider a geodesic triangle Γ, i.e. a curvilinear polygon with m = 3 and such
that every γi is a geodesic. Denote with Ai := π − αi the internal angles of the geodesic triangle.
Using that the geodesic curvature of γi vanishes, the local version of Gauss-Bonnet Theorem (1.27)
can be rewritten as

3∑

i=1

Ai = π +

∫

Γ
κdV. (1.33)

This formula shows that the Gaussian curvature measures how much the manifold M is far from
being an Euclidean plane (that corresponds to the case κ = 0).

1.3.2 Gauss-Bonnet theorem: global version

Now we state the global version of the Gauss-Bonnet theorem. In other words we want to generalize
(1.27) to the case when Γ is a region ofM not necessarily homeomorphic to the disk, see for instance
Figure 1.5. As we will see that the result depends on the Euler characteristic χ(Γ) of this region.

In what follows, by a triangulation ofM we mean a decomposition ofM into curvilinear polygons
(see Definition 1.31). Notice that every compact surface admits a triangulation.3

Definition 1.34. Let M ⊂ R
3 be a compact oriented surface with boundary ∂M (possibly with

angles). Consider a triangulation of M . We define the Euler characteristic of M as

χ(M) := n2 − n1 + n0, (1.34)

where ni is the number of i-dimensional faces in the triangulation.

The Euler characteristic can be defined for every region Γ of M in the same way. Here, by a
region Γ on a surfaceM , we mean a closed domain of the manifold with piecewise smooth boundary.

Remark 1.35. The Euler characteristic is well-defined. Indeed one can show that the quantity
(1.34) is invariant for refinement of a triangulation, since every at every step of the refinement the
alternating sum does not change. Moreover, given two different triangulations of the same region,
there always exists a triangulation that is a refinement of both of them, with show that the quantity
(1.34) is independent on the triangulation.

Example 1.36. For a compact connected orientable surface Mg of genus g (i.e. a surface that
topologically is a sphere with g handles) one has χ(Mg) = 2− 2g. For instance one has χ(S2) = 2,
χ(T2) = 0, where T

2 is the torus. Notice also that χ(B1) = 1, where B1 is the closed unit disk in
R
2.

Following the notation introduced in the previous section, for a given region Γ, we assume that
∂Γ is oriented consistently with the orientation of M and ∂Γ = ∪iγi(Ii) where γi : Ii → M , for
i = 1, . . . ,m, are smooth curves parametrized by length (with orientation consistent with ∂Γ). We
denote by αi the external angles at the points where ∂Γ is not C1 (see Figure 1.5).

Theorem 1.37. (Gauss-Bonnet, global version)
Let Γ be a region of a surface on a compact oriented surface M . Then

∫

Γ
κdV +

m∑

i=1

∫

Ii

ργi(t)dt+

m∑

i=1

αi = 2πχ(Γ). (1.35)

3Formally, a triangulation of a topological space M is a simplicial complex K, homeomorphic to M , together with
a homeomorphism h : K → M .
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Figure 1.5: Gauss B

Proof. As in the proof of the local version of the Gauss-Bonnet theorem we consider two cases:
(i) Case ∂Γ smooth (in particular αi = 0 for all i).
Consider a triangulation of Γ and let {Γj , j = 1, . . . , n2} be the corresponding subdivision of Γ in

curvilinear polygons. We denote by {γ(j)k } the smooth curves parametrized by length whose image

are the edges of Γj and by and θ
(j)
k the external angles of Γj. We assume that all orientations

are chosen accordingly to the orientation of M . Applying Theorem 1.32 to every Γj and summing
w.r.t. j we get

n2∑

j=1

(∫

Γj

κdV +
∑

k

∫
ρ
γ
(j)
k

(t)dt+
∑

k

θ
(j)
k

)
= 2πn2. (1.36)

We have that
n2∑

j=1

∫

Γj

κdV =

∫

Γ
κdV,

∑

j,k

∫
ρ
γ
(j)
k

(t)dt =
m∑

i=1

∫
ργi(t)dt. (1.37)

The second equality is a consequence of the fact that every edge of the decomposition that does
not belong to ∂Γ appears twice in the sum, with opposite sign. It remains to check that

∑

j,k

θ
(j)
k = 2π(n1 − n0), (1.38)

Let us denote by N the total number of elements of the left hand side of (1.38). After reindexing
we have to check that

N∑

ν=1

θν = 2π(n1 − n0). (1.39)

Denote by n∂0 the number of vertexes that belong to ∂Γ and with nI0 := n0 − n∂0 . Similarly we
define n∂1 and nI1. We have the following relations:
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(i) N = 2nI1 + n∂1 ,

(ii) n∂0 = n∂1 ,

Claim (i) follows from the fact that every curvilinear polygon with n edges has n angles, but
the internal edges are counted twice since each of them appears in two polygons. Claim (ii) is a
consequence of the fact that ∂Γ is the union of closed curves.

If we denote by Ak := π − θk the internal angles, we have

N∑

ν=1

θν = Nπ −
N∑

ν=1

Aν . (1.40)

Note that the sum of the internal angles is equal to π for a boundary vertex, and to 2π for an
internal one. Hence one gets

N∑

ν=1

Aν = 2πnI0 + πn∂0 , (1.41)

Combining (1.40), (1.41) and (i) one has

ν∑

i=1

θν = (2nI1 + n∂1)π − (2nI0 + n∂0)π

Using (ii) one finally gets (1.39).
(ii) Case ∂Γ non-smooth.

We consider a decomposition of Γ into curvilinear polygons whose edges intersect the boundary in
the smooth part (this is always possible). The proof is identical to the smooth case up to formula
(1.37). Now, instead of (1.39), we have to check that

N∑

ν=1

θν =
m∑

i=1

αi + 2π(n1 − n0), (1.42)

Now (1.42) can be rewritten as ∑

ν /∈A
θν = 2π(n1 − n0),

where A is the set of indices whose corresponding angles are non smooth points of ∂Γ.
Consider now a new region Γ̃, obtained by smoothing the edges of Γ, together with the decom-

position induced by Γ (see Figure 1.5). Denote by ñ1 and ñ0 the number of edges and vertexes of
the decomposition of Γ̃. Notice that {θν , ν /∈ A} is exactly the set of all angles of the decomposition
of Γ̃. Moreover ñ1 − ñ0 = n1 − n0, since n0 = ñ0 +m and n1 = ñ1 +m, where m is the number of
non-smooth points. Hence, by part (i) of the proof:

∑

ν /∈A
θν = 2π(ñ1 − ñ0) = 2π(n1 − n0).

Corollary 1.38. Let M be a compact oriented surface without boundary. Then
∫

M
κdV = 2πχ(M). (1.43)
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1.3.3 Consequences of the Gauss-Bonnet Theorems

Definition 1.39. Let M,M ′ be two surfaces in R
3. A map φ : M → M ′ is called an isometry if

for every q ∈M it satisfies

〈v|w〉M = 〈Dqφ(v)|Dqφ(w)〉M ′ , ∀ v,w ∈ TqM (1.44)

If the property (1.44) is satisfied by a map φ : U ⊂ M → M ′ defined in a neighborhood U of q,
then it is called a local isometry.

Two surfaces M and M ′ are said to be isometric (resp. locally isometric) if there exists an
isometry (resp. local isometry) between M and M ′.

From (1.44) it follows that an isometry preserves the angles between vectors and, a fortiori, the
length of a curve and the distance between two points.

From the local version of the Gauss-Bonnet Theorem (in particular from formula (1.33) and the
fact that the angles are preserved by isometries) we obtain that the Gaussian curvature is intrinsic,
in the following sense

Corollary 1.40. (Gauss’s Theorema Egregium)
The Gaussian curvature is invariant by local isometries.

More precisely if φ : U ⊂ M → M ′ is a local isometry, then for every q ∈ U one has κ(q) =
κ′(φ(q)), where κ (resp. κ′) is the Gaussian curvature of M (resp. M ′).

Corollary 1.41. Let M be surface and q ∈ M . If κ(q) 6= 0 then M is not locally isometric to R
2

in a neighborhood of q.

Exercise 1.42. Prove that a surface M is locally isometric to the Euclidean plane R
2 around a

point q ∈M if and only if there exists a coordinate system (x1, x2) in a neighborhood U of q ∈M
such that the vectors ∂x1 and ∂x2 have unit length and are everywhere orthonormal.

As a converse of Corollary 1.41 we have

Theorem 1.43. Assume that κ ≡ 0 in a neighborhood of a point q ∈ M . Then M is locally
Euclidean (i.e. locally isometric to R

2) around q.

Proof. From our assumptions we have, in a neighborhood U of q:

Ω = κdV = 0.

Hence dω = π∗Ω = 0. From its explicit expression

ω = dθ + a1(x1, x2)dx1 + a2(x1, x2)dx2,

it follows that the 1-form a1dx1 + a2dx2 is locally exact, i.e. there exists a neighborhood W of q,
W ⊂ U , and a function φ : W → R such that a1(x1, x2)dx1 + a2(x1, x2)dx2 = dφ. Hence

ω = d(θ + φ(x1, x2)).

Thus we can define a new angular coordinate on SM , which we still denote by θ, in such a way
that (see also Remark 1.27)

ω = dθ. (1.45)
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Now, let γ be a length parametrized geodesic, i.e. ωγ̇(t)(γ̈(t)) = 0. Using the the angular coordinate
θ just defined on the fibers of SM , the curve t 7→ γ̇(t) ∈ Sγ(t)M is written as t 7→ θ(t). Using
(1.45), we have then

0 = ωγ̇(t)(γ̈(t)) = dθ(γ̈(t)) = θ̇(t).

In other words the angular coordinate of a geodesic γ is constant.
We want to construct Cartesian coordinates in a neighborhood U of q. Consider the two length

parametrized geodesics γ1 and γ2 starting from q and such that θ1(0) = 0, θ2(0) = π/2. Define
them to be the x1-axes and x2-axes of our coordinate system, respectively.

Then, for each point q′ ∈ U consider the two geodesics starting from q′ and satisfying θ1(0) = 0
and θ2(0) = π/2. We assign coordinates (x1, x2) to each point q′ in U by considering the length
parameter of the geodesic projection of q′ on γ1 and γ2 (See Figure 1.6). Notice that the family of
geodesics constructed in this way, and parametrized by q′ ∈ U , are mutually orthogonal at every
point.

By construction, in this coordinate system the vectors ∂x1 and ∂x2 have length one (being the
tangent vectors to length parametrized geodesics) and are everywhere mutually orthogonal. Hence
the theorem follows from Exercise 1.42.

q

q′

γ2

γ1

x1

x2

Figure 1.6: Proof of Theorem 1.43

1.3.4 The Gauss map

We end this section with a geometric characterization of the Gaussian curvature of a manifold M ,
using the Gauss map.

Definition 1.44. Let M be an oriented surface. We define the Gauss map

N :M → S2, q 7→ νq, (1.46)

where νq ∈ S2 ⊂ R
3 denotes the external unit normal vector to M at q.

Let us consider the differential of the Gauss map at the point q:

DqN : TqM → TN (q)S
2 ≃ TqM

where an element tangent to the sphere S2 at N (q), being orthogonal to N (q), is identified with a
tangent vector to M at q.
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Theorem 1.45. We have that κ(q) = det(DqN ).

Before proving this theorem we prove an important property of the Gauss map.

Lemma 1.46. The differential of the Gauss map DqN is a symmetric map, i.e.

〈DqN (ξ)|η〉 = 〈ξ|DqN (η)〉 , ∀ ξ, η ∈ TqM. (1.47)

Proof. We prove the statement locally, i.e. for a manifold M parametrized by a function φ : R2 →
M . In this case TqM = ImDuφ where φ(u) = q. Let v,w ∈ R

2 such that ξ = Duφ(v) and
η = Duφ(w). Since N (q) ∈ TqM⊥ we have 〈N (q)|η〉 = 〈N (q)|Duφ(w)〉 = 0. Taking the derivative
in the direction of ξ one gets

〈DqN (ξ)|η〉+
〈
N (q)

∣∣D2
uφ(v,w)

〉
= 0,

where D2
uφ is a bilinear symmetric map. Now (1.47) follows exchanging the role of v and w.

Proof of Theorem 1.45. We will use Cartan’s moving frame method. Let ξ ∈ SM and denote with

(e1(ξ), e2(ξ), e3(ξ)), ei : SM → R
3,

the orthonormal basis relative to ξ constructed in Section 1.2.
Let us compute the differentials of these vectors in the ambient space R3 and write them as a linear
combination (with 1-form as coefficients) of the vectors ei

dξei(η) =

3∑

j=1

(ωξ)ij(η) ej(ξ), ωij ∈ Λ1SM, η ∈ TξSM.

Dropping ξ and η from the notation one gets the relation

dei =

3∑

j=1

ωij ej , ωij ∈ Λ1SM.

Since for each ξ the basis (e1(ξ), e2(ξ), e3(ξ)) is orthonormal (hence can be seen as an element of
SO(3)) its derivative is expressed through a skew-symmentric matrix Ω = (ωij) (i.e., ωij = −ωji)
and one gets the equations

de1 = ω12e2 + ω13e3,

de2 = −ω12e1 + ω23e3, (1.48)

de3 = −ω13e1 − ω23e2.

Let us now prove the following identity

ω13 ∧ ω23 = dω12. (1.49)

Indeed, differentiating the first equation in (1.48) one gets, using that d2 = 0,

0 = d2e1 = dω12e2 + ω12 ∧ de2 + dω13e3 + ω13 ∧ de3
= (dω12 − ω13 ∧ ω23)e2 + (dω13 − ω12 ∧ ω23)e3,
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which implies in particular (1.49).
The statement of the theorem can be rewritten as an identity between 2-forms as follows

det(DqN )dV = κdV.

Applying π∗ to both sides one gets

π∗(det(DqN )dV ) = π∗κdV = dω (1.50)

where ω is the Levi-Civita connection. Let us show that (1.50) is equivalent to (1.49).
Indeed by construction ω12 computes the coefficient of the derivative of the first vector of the

orthonormal basis along the second one, hence ω12 = ω (see also Definition 1.24). Moreover, since
e3 = N ◦ π, where π : SM →M is the canonical projection, one has

ω13 ∧ ω23 = π∗(det(DqN )dV )

The proof is completed by the following

Exercise 1.47. Let V be a 2-dimensional Euclidean vector space and e1, e2 an orthonormal basis.
Let F : V 7→ V a linear map and write F = F1e1 + F2e2, where Fi : V → R are linear functionals.
Prove that F1 ∧ F2 = (detF )dV , where dV is the area form induced by the inner product.

Remark 1.48. Lemma 1.46 allows us to define the principal curvatures of M at the point q as the
two real eigenvalues k1(q), k2(q) of the map DqN . In particular

κ(q) = k1(q)k2(q), q ∈M.

The principal curvatures can be geometrically interpreted as the maximum and the minimum of
curvature of sections of M with orthogonal planes.

Notice moreover that, using the Gauss-Bonnet theorem, one can relate then degree of the map
N with the Euler characteristic of M as follows

degN =
1

Area(S2)

∫

M
(detDqN )dV =

1

4π

∫

M
κdV =

1

2
χ(M).
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Chapter 2

Vector fields and vector bundles

In this chapter we collect some basic definitions of differential geometry, in order to recall some
useful results and to fix the notation. We assume the reader to be familiar with the definitions of
smooth manifold and smooth map between manifolds.

2.1 Differential equations on smooth manifolds

2.1.1 Tangent vectors and vector fields

Definition 2.1. LetM be a smooth n-dimensional manifold. Two smooth curves γ1, γ2 : (−ε, ε)→
M such that γ1(0) = γ2(0) = q ∈ M are said to be equivalent if, in some coordinate chart, they
have the same 1-st order Taylor polynomial. If γ : (−ε, ε) → M is a smooth curve its tangent
vector at the point q = γ(0), denoted by

d

dt

∣∣∣∣
t=0

γ(t), or γ̇(0), (2.1)

is the equivalence class in the space of all smooth curves in M such that γ(0) = q.

It is easy to see, by the chain rule, that this is a well-defined object (i.e. it does not depend on
the representative).

Definition 2.2. Let M be a smooth n-dimensional manifold. The tangent space at a point q ∈M
is the set

TqM :=

{
d

dt

∣∣∣∣
t=0

γ(t), γ : (−ε, ε)→M smooth, γ(0) = q

}
.

It is a standard fact that TqM has a natural structure of n-dimensional vector space.

Definition 2.3. A vector field on a smooth manifold M is a smooth map

X : q 7→ X(q) ∈ TqM,

that associates to every point q inM a tangent vector at q. We denote by Vec(M) the set of smooth
vector fields on M .

In coordinates we can write X =
∑n

i=1X
i(x) ∂

∂xi
, and the vector field is smooth if and only if

its components Xi(x) are smooth functions.
The value of a vector field X at a point q is denoted both with X(q) and X

∣∣
q
.
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Definition 2.4. Let M be a smooth manifold and X ∈ Vec(M). The equation

q̇ = X(q), q ∈M, X ∈ Vec(M). (2.2)

is called an ordinary differential equation (or ODE ) on M . A smooth curve γ : I → M is said to
be a solution of (2.2), where I ⊂ R is an interval, if

γ̇(t) = X(γ(t)), ∀ t ∈ I ⊂ R. (2.3)

We also say that γ is an integral curve of the vector field X.

A standard theorem on ODE ensures that, for every point, there exists a unique integral curve
of a vector field, defined on some interval and passing through this point.

Theorem 2.5. Let X ∈ Vec(M) and consider the Cauchy problem

{
q̇(t) = X(q(t))

q(0) = q0
(2.4)

For any point q0 ∈M there exists a unique solution of (2.4), denoted by

γ(t; q0), t ∈ (t0, t1), t0 < 0 < t1 (2.5)

defined on a sufficiently small interval (t0, t1). Moreover the solution γ(t; q0) smoothly depends on
(t, q0) ∈ R×M .

A vector field X ∈ Vec(M) is called complete if, for every q0 ∈ M , the solution γ(t; q0) of the
equation (2.2) can be extended for all t ∈ R.

Remark 2.6. Standard results from ODE ensure completeness of the vector field X ∈ Vec(M) in
the following cases

(i) M is a compact manifold,

(ii) M = R
n and X is sub-linear, i.e. there exists C1, C2 > 0 such that

|X(x)| ≤ C1|x|+C2, ∀x ∈ R
n.

where | · | denotes the Euclidean norm in R
n.

In what follows we will always assume that the the vector field X is complete. Indeed if the
vector field X is not complete, but we are interested in the properties of its integral curves on
a compact set K ⊂ M , it is sufficient to multiply X by a cut-off function a : M → R that is
identically 1 inside K, and that vanishes out of a suitably bigger compact K ′ such that K ⊂ K ′.
In this way we get a vector field that is complete and has the same integral curve of f inside K.
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2.1.2 Flow of a vector field

Given a complete vector field X ∈ Vec(M) we can consider the family of maps {φt, t ∈ R} defined
by

Pt : M →M, q 7→ γ(t; q). (2.6)

In other words Pt(q) is the shift for time t along the integral curve of X that starts from q. By
Theorem 2.5 it follows that the map

(t, q) 7→ φt(q),

is smooth in both variables and the family {φt, t ∈ R} is a one parametric subgroup of Diff(M),
i.e., it satisfies the following identities:

φ0 = Id,

φt ◦ φs = φs ◦ φt = φt+s, ∀ t, s ∈ R, (2.7)

(φt)
−1 = φ−t, ∀ t ∈ R,

Moreover it satisfies
∂φt(q)

∂t
= X(φt(q)), φ0(q) = q, ∀ q ∈M. (2.8)

The family of maps φt defined by (2.6) is called the flow generated by X. For the flow φt of a
vector field X it is convenient to use the exponential notation φt := etX , for every t ∈ R.

Remark 2.7. When X is a linear vector field on R
n, then X(x) = Ax and it can be identified

with the n× n matrix A. It is easy to show that the corresponding flow φt is precisely the matrix
exponential, namely φt(x) = etA(x).

Following the exponential notation, the group properties (2.7) takes the form:

e0X = Id, etX ◦ esX = esX ◦ etX = e(t+s)X , (etX )−1 = e−tX , (2.9)

d

dt
etX = XetX . (2.10)

2.1.3 Nonautonomous vector fields

Definition 2.8. A nonautonomous vector field is a family of smooth vector fields {Xt}t∈R, where
Xt ∈ Vec(M) for every t ∈ R and the map t 7→ Xt is measurable and locally bounded.1

Now we consider a nonautonomous ODE, i.e. an equation of the form

q̇ = Xt(q), q ∈M, (2.11)

where Xt is a nonautonomous vector field. If we consider local coordinates x = (x1, . . . , xn) in an
open set O on the manifold M , the equation (2.11) is written in coordinates as

ẋ = f(t, x), x ∈ R
n,

where the map (t, x) 7→ f(t, x) is defined on a subset of R× R
n and satisfies

1i.e. for every smooth function a ∈ C∞(M) the function t 7→ Xta is L∞.
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(i) f is measurable and locally bounded with respect to t, for any fixed x ∈ O,

(ii) f is smooth in x for every fixed t ∈ R,

(iii) f has locally bounded derivatives, i.e.,

∣∣∣∣
∂fi
∂x

(t, x)

∣∣∣∣ ≤ CI,K , I ⊂ R, K ⊂ O compact, i = 1, . . . , n.

where we denote with f = (f1, . . . , fn) the components of the vector function f .

The existence and uniqueness of the solution in the nonautonomous case is guaranteed by the
following theorem (see [9]).

Theorem 2.9 (Carathéodory theorem). Assume that f : R × R
n → R

n satisfies (i)-(iii). Then
the Cauchy problem

ẋ(t) = f(t, x(t)), x(t0) = x0, (2.12)

has locally a unique solution x(t; t0, x0) such that (2.12) is satisfied for almost every t and x(t0; t0, x0) =
x0. Moreover the map (t, x0) 7→ x(t; t0, x0) is Lipschitz with respect to t and smooth with respect to
x0.

Let us assume now that the equation (2.9) is complete, i.e. for all t0 ∈ R and x0 ∈ R
n the

solution x(t; t0, x0) is defined for all t ∈ R. Let us denote by Pt0,t(x0) = x(t; t0, x0). The family of
maps Pt0,t is the nonautonomous flow generated by Xt. It satisfies

∂

∂t

∂Pt0,t
∂x

(x) =
∂f

∂x
(t, Pt0,t(x0))Pt0,t(x)

Moreover the following algebraic identities are satisfied

Pt,t = Id,

Pt2,t3 ◦ Pt1,t2 = Pt1,t3 , ∀ t1, t2, t3 ∈ R, (2.13)

(Pt1,t2)
−1 = Pt2,t1 , ∀ t1, t2 ∈ R,

Conversely, to every family of smooth diffeomorphism Pt,s : M → M satisfying the relations
(2.13) one can define its infinitesimal generator Xt as follows:

Xt(q) =
d

ds

∣∣∣∣
s=0

Pt,t+s(q), ∀ q ∈M. (2.14)

The following lemma characterizes the flows whose generator is autonomous.

Lemma 2.10. Let {Pt,s}t,s∈R be a family of smooth diffeomorphisms satisfying (2.13). Its infinites-
imal generator is an autonomous vector field if and only if

P0,t ◦ P0,s = P0,t+s, ∀ t, s ∈ R.
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2.1.4 Vector fields as operators on functions

A vector field X ∈ Vec(M) induces an action on the algebra C∞(M) of the smooth functions on
M , defined as follows

X : C∞(M)→ C∞(M), a 7→ Xa, a ∈ C∞(M), (2.15)

where

(Xa)(q) =
d

dt

∣∣∣∣
t=0

a(etX(q)), q ∈M. (2.16)

In other words it computes the derivative of the function a restricted on integral curves of the
vector field X.

Remark 2.11. Let us denote at := a ◦ etX . Clearly the map t 7→ at is smooth and from (2.16) it
immediately follows that Xa represents the first order term in the expansion of at:

at = a+ tXa+O(t2).

Exercise 2.12. Let a ∈ C∞(M) and X ∈ Vec(M), and denote at = a ◦ etX . Prove the following
formulas

d

dt
at = Xat, (2.17)

at = a+ tXa+
t2

2!
X2a+

t3

3!
X3a+ . . .+

tk

k!
Xka+O(tk+1). (2.18)

It is easy to see also that the following Leibnitz rule is satisfied

X(ab) = (Xa)b+ a(Xb), ∀ a, b ∈ C∞(M), (2.19)

that means that X, as an operator on functions, is a derivation of the algebra C∞(M).

Remark 2.13. Notice that, in coordinates, if a ∈ C∞(M) and X =
∑

iXi(x)
∂
∂xi

then Xa =∑
iXi(x)

∂a
∂xi

. In particular, when X is applied to the coordinate functions ai(x) = xi then
Xai = Xi, which shows that a vector field is completely charactherized by its action on func-
tions.

Exercise 2.14. Let f1, . . . , fk ∈ C∞(M) and assume that N = {f1 = . . . = fk = 0} ⊂ M where
df1 ∧ . . . ∧ dfk 6= 0 on N . Show that X ∈ Vec(M) is tangent to the smooth submanifold N if and
only if Xfi = 0 for every i = 1, . . . , k.

2.2 Differential of a map

A smooth map between manifolds induces a map between their tangent spaces, simply by trans-
forming the smooth curves.

Definition 2.15. Let ϕ : M → N a smooth map between smooth manifolds and q ∈ M . The
differential of ϕ at the point q is the linear map

ϕ∗,q : TqM → Tϕ(q)N, (2.20)
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defined as follows:

ϕ∗,q(v) =
d

dt

∣∣∣∣
t=0

ϕ(γ(t)), if v =
d

dt

∣∣∣∣
t=0

γ(t), q = γ(0).

It is easily checked that this definition depends only on the equivalence class of γ.

Remark 2.16. Applying the definition, one immediately verifies that, if ϕ : M → N , ψ : N → Q
are two smooth maps between manifolds, then the differential of the composition ψ ◦ ϕ : M → Q
satisfies (ψ ◦ ϕ)∗ = ψ∗ ◦ ϕ∗.

Notation. The differential ϕ∗,q of a smooth map ϕ :M → N , sometimes called its pushforward,
is also denoted by the following symbols

Dqϕ, dqϕ, (2.21)

and we will prefer the first one for smooth maps between manifolds while we use the second for
smooth functions, i.e. when N = R. In order to simplify the notation, we will sometimes omit
the point q in writing ϕ∗,q(v) (writing simply ϕ∗v) when there is no confusion at which point the
tangent vector v is attached.

Sometimes it will also be useful to distinguish between intrinsic notation explained above and
its coordinate representation, when we identify the linear map with the Jacobian matrix. In this
case we will replace the notation (2.21) with

dϕ

dq
.

As we said, a smooth map induces a transformation of tangent vectors. If we deal with diffeo-
morphisms, we can also pushforward a vector field.

Definition 2.17. Let X ∈ Vec(M) and ϕ : M → N be a diffeomorphism. The pushforward
ϕ∗X ∈ Vec(N) is the vector field on N defined by

(ϕ∗X)(ϕ(q)) := ϕ∗(X(q)), ∀ q ∈M. (2.22)

If P ∈ Diff(M) is a diffeomorphism of M , we can rewrite the previous identity as

(P∗X)(q) = P∗(X(P−1(q))), ∀ q ∈M. (2.23)

Notice that, in general, if ϕ is a smooth map, the pushforward of a vector field is not defined.

Remark 2.18. From this definition it follows the useful formula for X,Y ∈ Vec(M)

(etX∗ Y )
∣∣
q
= etX∗

(
Y
∣∣
e−tX(q)

)
=

d

ds

∣∣∣∣
s=0

etX ◦ esY ◦ e−tX(q).

The following lemma shows that P∗X is the vector field whose integral curves are the image
under P of integral curves of X. Moreover it shows how the pushforward of a vector field acts on
functions:

Lemma 2.19. Let P ∈ Diff(M), X ∈ Vec(M) and a ∈ C∞(M) then

etP∗X = P ◦ etX ◦ P−1, (2.24)

(P∗X)a = (X(a ◦ P )) ◦ P−1. (2.25)
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Proof. From the formula

d

dt

∣∣∣∣
t=0

P ◦ etX ◦ P−1(q) = P∗(X(P−1(q))) = (P∗X)(q),

it follows that t 7→ P ◦ etX ◦ P−1(q) is an integral curve of P∗X, from which (2.24) follows.

To prove (2.25) let us compute

(P∗X)a
∣∣
q
=

d

dt

∣∣∣∣
t=0

a(etP∗X(q)).

Using (2.24) this is equal to

d

dt

∣∣∣∣
t=0

a(P (etX (P−1(q))) =
d

dt

∣∣∣∣
t=0

(a ◦ P )(etX (P−1(q))) = (X(a ◦ P )) ◦ P−1.

Remark 2.20. From this lemma it follows the following formula: for every X,Y ∈ Vec(M)

(etX∗ Y )a = Y (a ◦ etX ) ◦ e−tX . (2.26)

2.3 Lie brackets

Now we introduce a fundamental notion of all our theory, the Lie bracket of two vector fields X
and Y . Geometrically it is defined as the infinitesimal version of the pushforward of the second
vector field along the flow of the first one. As expalined below, it measures how much Y is modified
by the flow of X.

Definition 2.21. Let X,Y ∈ Vec(M). We define their Lie bracket as the vector field2

[X,Y ] :=
∂

∂t

∣∣∣∣
t=0

e−tX∗ Y. (2.27)

Remark 2.22. The geometric meaning of the Lie bracket can be understood by writing explicitly

[X,Y ]
∣∣
q
=

∂

∂t

∣∣∣∣
t=0

e−tX∗ Y
∣∣
q
=

∂

∂t

∣∣∣∣
t=0

e−tX∗ (Y
∣∣
etX(q)

) =
∂

∂s∂t

∣∣∣∣
t=s=0

e−tX ◦ esY ◦ etX(q). (2.28)

We recover its algebraic properties in the following

Proposition 2.23. As a derivation on functions we have

[X,Y ] = XY − Y X. (2.29)

2Notice the conventional minus sign.
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Proof. By definition of Lie bracket we have [X,Y ]a = ∂
∂t

∣∣
t=0

(e−tX∗ Y )a. Hence we have to compute
the first order term in the expansion, with respect to t, of the map

t 7→ (e−tX∗ Y )a.

Using formula (2.26) we have

(e−tX∗ Y )a = Y (a ◦ e−tX) ◦ etX .
By Remark 2.11 we have a ◦ e−tX = a−t = a− tXa+O(t2), hence

(e−tX∗ Y )a = Y (a− tXa+O(t2)) ◦ etX

= (Y a− t Y Xa+O(t2)) ◦ etX .
Denoting b = Y a− t Y Xa+O(t2), bt = b ◦ etX , and using again the expansion above we get

(e−tX∗ Y )a = (Y a− t Y Xa+O(t2)) + tX(Y a− t Y Xa+O(t2)) +O(t2)

= Y a+ t(XY − Y X)a+O(t2).

Hence the first order term is (XY − Y X)a.

From this proposition it easily follows also the coordinate expression of the Lie bracket. Indeed
if

X =
n∑

i=1

Xi
∂

∂xi
, Y =

n∑

j=1

Yj
∂

∂xj
,

we have

[X,Y ] =
n∑

i,j=1

(
Xi
∂Yj
∂xi
− Yi

∂Xj

∂xi

)
∂

∂xj
.

Proposition 2.23 shows that Vec(M), being an associative algebra with commutator as multiplica-
tion, is a Lie algebra with the Lie bracket.

Now we prove that every diffeomorphism induces a Lie algebra homomorphism on Vec(M).

Proposition 2.24. Let P ∈ Diff(M). Then P∗ is a Lie algebra homomorphism of Vec(M), i.e.

P∗[X,Y ] = [P∗X,P∗Y ], ∀X,Y ∈ Vec(M).

Proof. We show that the two terms are equal as derivations on functions. Let a ∈ C∞(M), prelim-
inarly we see, using (2.25), that

P∗X(P∗Y a) = P∗X(Y (a ◦ P ) ◦ P−1)

= X(Y (a ◦ P ) ◦ P−1 ◦ P ) ◦ P−1

= X(Y (a ◦ P )) ◦ P−1,

and using twice this property and (2.29)

[P∗X,P∗Y ]a = P∗X(P∗Y a)− P∗Y (P∗Xa)

= XY (a ◦ P ) ◦ P−1 − Y X(a ◦ P ) ◦ P−1

= (XY − Y X)(a ◦ P ) ◦ P−1

= P∗[X,Y ]a.
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To end this section, we want to show that the Lie bracket of two vector fields is zero, that means
that they commute as operators, if and only if the same holds for their flows.

Proposition 2.25. Let X,Y ∈ Vec(M). The following properties are equivalent:

(i) [X,Y ] = 0,

(ii) etX ◦ esY = esY ◦ etX , ∀ t, s ∈ R.

Proof. We start the proof with the following

Claim. [X,Y ] = 0 =⇒ e−tX∗ Y = Y .

Proof of the Claim. Let us show that [X,Y ] = d
dt

∣∣∣∣
t=0

e−tX∗ Y = 0 implies that d
dte

−tX
∗ Y = 0 for

all t ∈ R. Indeed we have

d

dt
e−tX∗ Y =

d

dε

∣∣∣∣
ε=0

e
−(t+ε)X
∗ Y =

d

dε

∣∣∣∣
ε=0

e−tX∗ e−εX∗ Y

= e−tX∗
d

dε

∣∣∣∣
ε=0

e−εX∗ Y = e−tX∗ [X,Y ] = 0,

and the Claim is proved.
(i)⇒ (ii). Let us show that Ps := e−tX ◦ esY ◦ etX is the flow generated by Y . Indeed we have

∂

∂s
Ps =

∂

∂ε

∣∣∣∣
ε=0

e−tX ◦ e(s+ε)Y ◦ etX

=
∂

∂ε

∣∣∣∣
ε=0

e−tX ◦ eεY ◦ etX ◦ e−tX ◦ esY ◦ etX︸ ︷︷ ︸
Ps

= e−tX∗ Y ◦ Ps = Y ◦ Ps.

where in the last equality we used the Claim. Using uniqueness of the flow generated by a vector
field we get

e−tX ◦ esY ◦ etX = esY , ∀ t, s ∈ R,

which is equivalent to (ii).
(ii)⇒ (i). For every function a ∈ C∞ we have

XY a =
d2

dtds

∣∣∣
t=s=0

a ◦ esY ◦ etX =
d2

dsdt

∣∣∣
t=s=0

a ◦ etX ◦ esY = Y Xa.

Then (i) follows from (2.29).

Exercise 2.26. Let X,Y ∈ Vec(M) and q ∈M . Consider the curve on M

γ(t) = e−tY ◦ e−tX ◦ etY ◦ etX(q).

Prove that tangent vector to the curve γ(
√
t) is exactly [X,Y ](q).

Exercise 2.27. Let X,Y ∈ Vec(M). Using the semigroup property of the flow, prove the following
expansion

e−tX∗ Y = Y + t[X,Y ] +
t2

2
[X, [X,Y ]] +

t3

6
[X, [X, [X,Y ]]] + . . . (2.30)
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Exercise 2.28. Let X,Y ∈ Vec(M) and a ∈ C∞(M). Prove the following Leibnitz rule for the Lie
bracket:

[X, aY ] = a[X,Y ] + (Xa)Y.

Exercise 2.29. Let X,Y,Z ∈ Vec(M). Prove that the Lie bracket satisfies the Jacobi identity :

[X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]] = 0. (2.31)

Hint: Differentiate the identity etX∗ [Y,Z] = [etX∗ Y, etX∗ Z].

2.4 Cotangent space

In this section we introduce tangent covectors, that are linear functionals on the tangent space.
The space of all covectors at a point q ∈ M , called cotangent space is, in algebraic terms, simply
the dual space to the tangent space.

Definition 2.30. Let M be a n-dimensional smooth manifold. The cotangent space at a point
q ∈M is the set

T ∗
qM := (TqM)∗ = {λ : TqM → R, λ linear}.

If λ ∈ T ∗
qM and v ∈ TqM , we will denote by 〈λ, v〉 := λ(v) the action of the covector λ on the

vector v.

As we have seen, a smooth map yields a linear map between tangent spaces. Dualizing this
map, we get a linear map on cotangent spaces going in the opposite direction.

Definition 2.31. Let ϕ :M → N be a smooth map and q ∈M . The pullback of ϕ at point ϕ(q),
where q ∈M , is the map

ϕ∗ : T ∗
ϕ(q)N → T ∗

qM, λ 7→ ϕ∗λ,

defined by duality in the following way

〈ϕ∗λ, v〉 := 〈λ, ϕ∗v〉 , ∀ v ∈ TqM, ∀λ ∈ T ∗
ϕ(q)M.

Example 2.32. Let a : M → R be a smooth function and q ∈ M . The differential dqa of the
function a at the point q ∈M is an element of T ∗

qM since we have a well defined linear action

〈dqa, v〉 :=
d

dt

∣∣∣∣
t=0

a(γ(t)), v ∈ TqM.

where γ(t) is any smooth curve such that γ(0) = q and γ̇(0) = v.

Definition 2.33. A differential 1-form on a smooth manifold M is a smooth map

ω : q 7→ ω(q) ∈ T ∗
qM,

that associates to every point q in M a cotangent vector at q. We denote by Λ1(M) the set of
differential forms on M .

Since differential forms are dual objects to vector fields, it is well defined the action of ω ∈ Λ1M
on X ∈ Vec(M) pointwise, defining a function on M .

〈ω,X〉 : q 7→ 〈ω(q),X(q)〉 . (2.32)

The differential form ω is smooth if and only if, for every smooth vector field X ∈ Vec(M), the
function 〈ω,X〉 ∈ C∞(M)
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Definition 2.34. Let ϕ : M → N be a smooth map and a : N → R be a smooth function. The
pullback ϕ∗a is the smooth function on M defined by

ϕ∗a(q) = a(ϕ(q)), q ∈M.

In particular, if π : T ∗M →M is the canonical projection and a ∈ C∞(M), then

π∗a(λ) = a(π(λ)), λ ∈ T ∗M,

which is constant on fibers.

2.5 Vector bundles

Heuristically, a smooth vector bundle on a manifold M , is a smooth family of vector spaces
parametrized by points in M .

Definition 2.35. Let M be a n-dimensional manifold. A smooth vector bundle of rank k over M
is a smooth manifold E with a surjective smooth map π : E →M such that

(i) the set Eq := π−1(q), the fiber of E at q, is a k-dimensional vector space

(ii) for every q ∈M there exist a neighborhood Oq of q and a linear-on-fiber diffeomorphism (also
called local trivialization) ψ : π−1(Oq)→ Oq ×R

k such that the following diagram commutes

π−1(Oq)

π
%%▲

▲▲
▲▲

▲▲
▲▲

▲▲

ψ
// Oq × R

k

π1

��
Oq

(2.33)

The space E is called total space and M is the base of the vector bundle. We will refer at π as the
canonical projection and rank E will denote the rank of the bundle.

Remark 2.36. The existence of local trivialization maps ψ says that E, as smooth manifold, has
dimension

dimE = dimM + rank E = n+ k.

In the case when there exists a global trivialization map, i.e. a local trivialization with Oq = M ,
then E ≃M × R

k and we say that E is trivializable.

Example 2.37. For any smooth n-dimensional manifold M , the tangent bundle TM , defined as
the disjoint union of the tangent spaces at all points of M ,

TM =
⋃

q∈M
TqM,

has a natural structure of 2n-dimensional smooth manifold, equipped with the vector bundle struc-
ture (of rank n) induced by the canonical projection map

π : TM →M, π(v) = q if v ∈ TqM.
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In the same way one can consider the cotangent bundle T ∗M , defined as

T ∗M =
⋃

q∈M
T ∗
qM.

Again, it is a 2n-dimensional manifold, and the canonical projection map

π : T ∗M →M, π(λ) = q if λ ∈ T ∗
qM,

endows T ∗M with a structure of rank n vector bundle.
Let O ⊂M be a coordinate neighborhood where

ψ : O → R
n, ψ(q) = (x1, . . . , xn),

define a local coordinate system. The differentials of the coordinate functions

dxi
∣∣
q
, i = 1, . . . , n, q ∈ O,

form a basis of the cotangent space T ∗
qM . The dual basis in the tangent space TqM is defined by

the vectors

∂

∂xi

∣∣∣∣
q

∈ TqM, i = 1, . . . , n, q ∈ O, (2.34)

〈
dxi,

∂

∂xj

〉
= δij , i, j = 1, . . . , n. (2.35)

Thus any tangent vector v ∈ TqM and any covector λ ∈ T ∗
qM can be decomposed in these basis

v =
n∑

i=1

vi
∂

∂xi

∣∣∣∣
q

, λ =
n∑

i=1

pidxi
∣∣
q
,

and the maps

ψv : v 7→ (x1, . . . , xn, v1, . . . , vn), ψλ : λ 7→ (x1, . . . , xn, p1, . . . , pn), (2.36)

define local coordinates on TM and T ∗M respectively, which we call canonical coordinates induced
by the coordinates ψ on M .

Definition 2.38. A morphism f : E → E′ between two vector bundles E,E′ on the base M (also
called a bundle map) is a smooth map such that the following diagram is commutative

E

π
  ❆

❆❆
❆❆

❆❆
❆

f
// E′

π′

��
M

(2.37)

where f is linear on fibers. Here π and π′ denote the canonical projections.

Definition 2.39. Let π : E →M be a smooth vector bundle over M . A section of E is a smooth
map3 σ : A ⊂ M → E satisfying π ◦ σ = IdA. In other words σ(q) belongs to Eq for each q ∈ A,
smoothly with respect to q. If σ is defined on all M it is said to be a global section.

3as a map between manifolds.
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Example 2.40. Let π : E →M be a smooth vector bundle over M . The zero section of E is the
global section

ζ :M → E, ζ(q) = 0 ∈ Eq, ∀ q ∈M.

We will denote by M0 := ζ(M) ⊂ E.

Remark 2.41. Notice that vector fields and differential forms are, by definition, sections of the
vector bundles TM and T ∗M respectively.

Definition 2.42. Let ϕ :M → N be a smooth map between smooth manifolds and E be a vector
bundle on N , with fibers {Eq′ , q′ ∈ N}. The induced bundle ϕ∗E is a vector bundle on the base M
defined by

ϕ∗E := {(q, v) | q ∈M,v ∈ Eϕ(q)} ⊂M × E.
Notice that rankϕ∗E = rankE, hence dimϕ∗E = dimM + rankE.

Example 2.43. (i). Let M be a smooth manifold and TM its tangent bundle, endowed with an
Euclidean structure. The spherical bundle SM is the vector subbundle of TM defined as follows

SM =
⋃

q∈M
SqM, SqM = {v ∈ TqM | |v| = 1}.

(ii). Let E,E′ be two vector bundles over a smooth manifold M . The direct sum E ⊕ E′ is the
vector bundle over M defined by

(E ⊕ E′)q := Eq ⊕ E′
q.

Remark 2.44. Let M be a smooth manifold and a :M → R a smooth function. Assume that c ∈ R

is a regular value of a4, then

(i) Nc = a−1(c) = {q ∈M | a(q) = c} ⊂M is a smooth submanifold,

(ii) if q ∈ Nc then TqNc = ker dqa = {v ∈ TqM | 〈dqa, v〉 = 0}.

4that means dqa 6= 0 for every q ∈ a−1(c).
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Chapter 3

Sub-Riemannian structures

3.1 Basic definitions

In this section we introduce a definition of sub-Riemannian structure which is quite general. In-
deed, this definition includes all the classical notions of Riemannian structure, constant-rank sub-
Riemannian structure, rank-varying sub-Riemannian structure, almost-Riemannian structure etc.

Definition 3.1. Let M be a smooth manifold and let F ⊂ Vec(M) be a family of smooth vector
fields. The Lie algebra generated by F is the smallest sub-algebra of Vec(M) containing F , namely

LieF := span{[X1, . . . , [Xj−1,Xj ]],Xi ∈ F , j ∈ N}. (3.1)

We will say that F is bracket-generating1 if

LieqF := {X(q),X ∈ LieF} = TqM, ∀ q ∈M,

Definition 3.2. (sub-Riemannian manifold) Let M be a connected smooth manifold. A sub-
Riemannian structure on M is a pair (U, f) where:

(i) U is an Euclidean bundle with base M and Euclidean fiber Uq, i.e. for every q ∈ M , Uq is
a vector space equipped with a scalar product gq, smooth with respect to q. For u ∈ Uq we
denote the norm of u as |u| =

√
(u|u)q.

(ii) f : U → TM is a smooth map that is a morphism of vector bundles, i.e. the following
diagram is commutative (here πU : U→M and π : TM →M are the canonical projections)

U

πU ""❉
❉❉

❉❉
❉❉

❉

f
// TM

π
��
M

(3.2)

and f is linear on fibers.

(iii) The set of horizontal vector fields D := {f(σ), σ smooth section of U}, is a bracket-generating
family of vector fields.

1or that satisfies the Hörmander condition
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When the vector bundle U admits a global trivialization we say that (M,U, f) is a free sub-
Riemannian structure.

A smooth manifold endowed with a sub-Riemannian structure (i.e. the triple (M,U, f)) is
called a sub-Riemannian manifold. When the map f : U→ TM is fiberwise surjective, (M,U, f))
is called a Riemannian manifold (cf. Exercise 3.23).

Definition 3.3. Let (M,U, f) be a sub-Riemannian manifold. The distribution is the family of
subspaces

{Dq}q∈M , where Dq := f(Uq) ⊂ TqM.

We call k(q) := dimDq the rank of the sub-Riemannian structure at q ∈ M . We say that the
sub-Riemannian structure (U, f) on M has constant rank if k(q) is constant.

The set of horizontal vector fields D ⊂ Vec(M) has the structure of a finitely generated C∞(M)-
module, whose elements are vector fields tangent to the distribution at each point, i.e.

Dq = {X(q)|X ∈ D}.
The rank of a sub-Riemannian structure (M,U, f) satisfies

k(q) ≤ m, where m = rankU, (3.3)

k(q) ≤ n, where n = dimM. (3.4)

In what follows we denote points in U as pairs (q, u), where q ∈ M is an element of the base
and u ∈ Uq is an element of the fiber. Following this notation we can write the value of f at this
point as

f(q, u) or fu(q).

We use the second one when we want to emphasize that, for each q ∈M , fu(q) is a vector in TqM .

Definition 3.4. (Admissible Curves) A Lipschitz curve γ : [0, T ]→M is said to be admissible
(or horizontal) for a sub-Riemannian structure if there exists a measurable essentially bounded
function

u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t), (3.5)

called the control function, such that

γ̇(t) = f(γ(t), u(t)), for a.e. t ∈ [0, T ]. (3.6)

In this case we say that u(·) is a control corresponding to γ. Notice that different controls could
correspond to the same trajectory.

Remark 3.5. Once we have chosen a local trivialization Oq × R
m for the vector bundle U, where

Oq is a neighborhood of a point q ∈ M , we can choose a basis in the fibers and the map f is
written f(q, u) =

∑m
i=1 uifi(q), where m is the rank of U. In this trivialization, a Lipschitz curve

γ : [0, T ]→M is admissible if there exists u = (u1, . . . , um) ∈ L∞([0, T ],Rm) such that

γ̇(t) =
m∑

i=1

ui(t)fi(γ(t)), for a.e. t ∈ [0, T ]. (3.7)

Thanks to this local characterization and Theorem 2.9, for each initial condition q ∈ M and
u ∈ L∞([0, T ],Rm) there exists an admissible curve γ, defined on a sufficiently small interval, such
that u is the control associated with γ and γ(0) = q.
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Dq

Figure 3.1: An horizontal curve

Remark 3.6. Notice that, for a curve to be admissible, it is not sufficient that it satisfies γ̇(t) ∈ Dγ(t)
for almost every t ∈ [0, T ]. Take for instance the two free sub-Riemannian structures on R

2 having
rank two and defined by

f(x, y, u1, u2) = (x, y, u1, u2x), f ′(x, y, u1, u2) = (x, y, u1, u2x
2). (3.8)

and let D and D′ the corresponding moduli of horizontal vector fields. On one hand, it is easily
seen that the curve γ : [−1, 1] → R

2, γ(t) = (t, t2) satisfies γ̇(t) ∈ Dγ(t) and γ̇(t) ∈ D′
γ(t) for every

t ∈ [−1, 1].
On the other hand, γ is admissible for f , since its corresponding control is (u1, u2) = (1, 2) for

a.e. t ∈ [−1, 1], but is not admissible for f ′, since its corresponding control is uniquely determined
as (u1(t), u2(t)) = (1, 2/t) for a.e. t ∈ [−1, 1], which is not essentially bounded.

This example shows that, for two different sub-Riemannian structures (U, f) and (U′, f ′) on
the same manifold M , one can have Dq = D′

q for every q ∈ M , but D 6= D′. Notice however that,
in the case of constant rank distribution, we have that Dq = D′

q for every q ∈ M if and only if
D = D′.

3.1.1 The minimal control and the length of an admissible curve

We start by defining a norm for vectors that belong to the distribution.

Definition 3.7. Let v ∈ Dq. We define the sub-Riemannian norm of v as follows

‖v‖ := min{|u|, u ∈ Uq s.t. v = f(q, u)}. (3.9)

Notice that since f is linear with respect to u, the minimum in (3.9) is always attained at a unique
point. Indeed the condition f(q, ·) = v defines an affine subspace of Uq (which is nonempty since
v ∈ Dq) and the minimum (3.9) is uniquely attained at the orthogonal projection of the origin onto
this subspace (see Figure 3.2).

Exercise 3.8. Show that ‖ · ‖ is a norm in Dq. Moreover prove that it satisfies the parallelogram
law, i.e. it induce a scalar product on Dq by the polarization identity. We will denote this scalar
product by 〈·|·〉.
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u1 + u2 = v

u1

u2

‖v‖

Figure 3.2: The norm of a vector v for f(x, u1, u2) = u1 + u2

Exercise 3.9. Let u1, . . . , um ∈ Uq be an orthonormal basis for Uq. Define vi = f(q, ui). Show
that if f(q, ·) is injective then v1, . . . , vm is an orthonormal basis for Dq.

An admissible curve γ : [0, T ] → M is Lipschitz, hence differentiable at almost every point
where γ̇(t) exists. Hence it is well defined the unique control t 7→ u∗(t) associated with γ and
realizing the minimum.

Definition 3.10. Given an admissible curve γ : [0, T ] → M , we say that the control t 7→ u∗(t) is
the minimal control associated with γ.

We stress that u∗(t) is pointwise defined for a.e. t ∈ [0, T ]. In particular, if the admissible curve
γ : [0, T ]→M is C1, the minimal control is defined everywhere on [0, T ].

Remark 3.11. Notice that, even if an admissible curve is smooth, its minimal control could be not
continuous. Consider, as in Remark 3.6 the free sub-Riemannian structure on R

2

f(x, y, u1, u2) = (x, y, u1, u2x), (3.10)

and let γ : [−1, 1] → R
2, γ(t) = (t, t2). Its minimal control u∗(t) satisfies (u∗1(t), u

∗
2(t)) = (1, 2)

when t 6= 0, while (u∗1(0), u
∗
2(0)) = (1, 0), hence is not continuous.

The proof of the following crucial Lemma is postponed to the Section 3.A.

Lemma 3.12. Let γ : [0, T ] → M be an admissible curve. Then its minimal control u∗(·) is
measurable and essentially bounded.

Hence we are allowed to introduce the following definition.

Definition 3.13. Let γ : [0, T ]→M be an admissible curve, we define its sub-Riemannian length

ℓ(γ) :=

∫ T

0
‖γ̇(t)‖dt. (3.11)

We say that γ is length-parametrized if ‖γ̇(t)‖ = 1 for a.e. t ∈ [0, T ]. For a length-parametrized
curve we have that ℓ(γ) = T .
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Notice that (3.11) says that the length of an admissible curve is the integral of the norm of its
minimal control.

ℓ(γ) =

∫ T

0
|u∗(t)|dt. (3.12)

In particular any admissible curve has finite length.

Lemma 3.14. The length of an admissible curve is invariant by Lipschitz reparametrization.

Proof. Let γ : [0, T ]→M be an admissible curve and ϕ : [0, T ′]→ [0, T ] a Lipschitz reparametriza-
tion, i.e. a Lipschitz and monotone surjective map. Consider the reparametrized curve

γϕ : [0, T ′]→M, γϕ := γ ◦ ϕ.

First remark that γϕ is a composition of Lipschitz functions, hence Lipschitz. Moreover it is
admissible since, using the linearity of f , it has minimal control (u∗ ◦ ϕ)ϕ̇ ∈ L∞, where u∗ is the
minimal control of γ. Using the change of variables t = ϕ(s), one gets

ℓ(γϕ) =

∫ T ′

0
‖γ̇ϕ(s)‖ds =

∫ T ′

0
|u∗(ϕ(s))||ϕ̇(s)|ds =

∫ T

0
|u∗(t)|dt =

∫ T

0
‖γ̇(t)‖dt = ℓ(γ). (3.13)

Lemma 3.15. Every admissible curve of positive length is a Lipschitz reparametrization of a length-
parametrized admissible one.

Proof. Let ψ : [0, T ] → M be an admissible curve with minimal control u. Consider the Lipschitz
monotone function ϕ : [0, T ]→ [0, ℓ(ψ)] defined by

ϕ(t) :=

∫ t

0
|u∗(τ)|dτ.

Notice that if ϕ(t1) = ϕ(t2), the monotonicity of ϕ ensures ψ(t1) = ψ(t2). Hence we are allowed to
define γ : [0, ℓ(ψ)] →M by

γ(s) := ψ(t), if s = ϕ(t) for some t ∈ [0, T ].

In other words, it holds ψ = γ ◦ ϕ. To show that γ is Lipschitz let us first show that there exists
a constant C > 0 such that, for every t0, t1 ∈ [0, T ] one has, in some local coordinates (where | · |
denotes the Euclidean norm in coordinates)

|ψ(t1)− ψ(t0)| ≤ C
∫ t1

t0

|u∗(τ)|dτ

Indeed

|ψ(t1)− ψ(t0)| ≤
∫ t1

t0

m∑

i=1

|u∗i (t)fi(ψ(t))| dt

≤
∫ t1

t0

√√√√
m∑

i=1

|u∗i (t)|2
√√√√

m∑

i=1

|fi(ψ(t))|2dt

≤ C
∫ t1

t0

|u∗(t)|dt
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where K is a compact set such that ψ([0, T ]) ⊂ K and C = max
x∈K

(
m∑

i=1

|fi(x)|2
)1/2

. Then if

s1 = ϕ(t1) and s0 = ϕ(t0) one has

|γ(s1)− γ(s0)| = |ψ(t1)− ψ(t0)| ≤ C
∫ t1

t0

|u∗(τ)|dτ = C|s1 − s0|,

hence γ is Lipschitz. It follows that γ̇(s) exists for a.e. s ∈ [0, ℓ(ψ)].

We are going to prove that γ is admissible and its minimal control has norm one. Define for
every s such that s = ϕ(t), ϕ̇(t) exists and ϕ̇(t) 6= 0, the control

v(s) :=
u∗(t)
ϕ̇(t)

=
u∗(t)
|u∗(t)| .

By Exercise 3.16 the control v is defined for a.e. s. Moreover, by construction, |v(s)| = 1 for a.e. s
and v is the minimal control associated with γ.

Exercise 3.16. Show that for a Lipschitz and monotone function ϕ : [0, T ] → R, the Lebesgue
measure of the set {s ∈ R | s = ϕ(t), ϕ̇(t) exists, and ϕ̇(t) = 0} is zero.

By the previuos discussion, in what follows, it will be often convenient to assume that admissible
curves are length-parametrized (or parametrized such that ‖γ̇(t)‖ = const).

3.1.2 Equivalence of sub-Riemannian structures

In this section we discuss the notion of equivalence for sub-Riemannian structures on the same base
manifold M and the notion of isometry between sub-Riemannian manifolds.

Definition 3.17. Let (U, f), (U′, f ′) be two sub-Riemannian structures on a smooth manifold M .
They are said to be equivalent if the following conditions are satisfied

(i) there exist an Euclidean bundle V and two surjective vector bundle morphisms p : V → U
and p′ : V→ U′ such that the following diagram is commutative

U
f

""❊
❊❊

❊❊
❊❊

❊

V

p′   ❆
❆❆

❆❆
❆❆

❆

p
>>⑤⑤⑤⑤⑤⑤⑤⑤

TM

U′
f ′

<<②②②②②②②②

(3.14)

(ii) the projections p, p′ are compatible with the scalar product, i.e. it holds

|u| = min{|v|, p(v) = u}, ∀u ∈ U,

|u′| = min{|v|, p′(v) = u′}, ∀u′ ∈ U′,

Remark 3.18. Notice that if (U, f), (U′, f ′) are equivalent sub-Riemannian structures on M , then:
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(a) the distributions Dq and D′
q defined by f and f ′ coincide, since f(Uq) = f ′(U ′

q) for all q ∈M .

(b) for each w ∈ Dq we have ‖w‖ = ‖w‖′, where the norms are induced by (U, f) and (U′, f ′)
respectively.

In particular the length of an admissible curve for two equivalent sub-Riemannian structures is the
same.

Remark 3.19. Notice that (i) is satisfied, with the vector bundle V possibly non Euclidean, if and
only if the two moduli of horizontal vector fields D and D′ defined by U and U′ (cf. Definition 3.2)
are equal.

Definition 3.20. Let M be a sub-Riemannian manifold. We define the minimal bundle rank of
M as the infimum of rank of bundles that induce equivalent structures on M . Given q ∈ M the
local minimal bundle rank of M at q is the minimal bundle rank of the structure restricted on a
sufficiently small neighborhood Oq of q.

Exercise 3.21. Prove that the free sub-Riemannian structure on R
2 defined by f : R2×R

3 → TR2

defined by

f(x, y, u1, u2, u3) = (x, y, u1, u2x+ u3y)

has non constant local minimal bundle rank.

For equivalence classes of sub-Riemannian structures we introduce the following definition.

Definition 3.22. Two equivalent classes of sub-Riemannian manifolds are said to be isometric
if there exist two representatives (M,U, f), (M ′,U′, f ′), a diffeomorphism φ : M → M ′ and an
isomorphism2 of Euclidean bundles ψ : U→ U′ such that the following diagram is commutative

U

ψ
��

f
// TM

φ∗
��

U′
f ′

// TM ′

(3.15)

3.2 Examples

Our definition of sub-Riemannian manifold is quite general. In the following we list some classical
geometric structures which are included in our setting.

1. Riemannian structures.
Classically a Riemannian manifold is defined as a pair (M, 〈·|·〉), whereM is a smooth manifold
and 〈·|·〉q is a family of scalar product on TqM , smoothly depending on q ∈M . This definition
is included in Definition 3.2 by takingU = TM endowed with the Euclidean structure induced
by 〈·|·〉 and f : TM → TM the identity map.

Exercise 3.23. Show that every Riemannian manifold in the sense of Definition 3.2 is indeed
equivalent to a Riemannian structure in the classical sense above (cf. Exercise 3.8).

2isomorphism of bundles in the broad sense, it is fiberwise but is not obliged to send fiber in the same fiber.
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2. Constant rank sub-Riemannian structures.
Classically a constant rank sub-Riemannian manifold is a triple (M,D, 〈·|·〉), where D is a
vector subbundle of TM and 〈·|·〉q is a family of scalar product on Dq, smoothly depending
on q ∈ M . This definition is included in Definition 3.2 by taking U = D, endowed with its
Euclidean structure, and f : D →֒ TM the canonical inclusion.

3. Almost-Riemannian structures.
An almost-Riemannian structure on M is a sub-Riemannian structure (U, f) on M such that
its local minimal bundle rank is equal to the dimension of the manifold, at every point.

4. Free sub-Riemannian structures.
Let U = M × R

m be the trivial Euclidean bundle of rank m on M . A point in U can be
written as (q, u), where q ∈M and u = (u1, . . . , um) ∈ R

m.

Then, if we denote with {e1, . . . , em} an orthonormal basis of Rm, then we can define globally
m smooth vector fields on M by fi(q) := f(q, ei) for i = 1, . . . ,m. Then we have

f(q, u) = f

(
q,

m∑

i=1

uiei

)
=

m∑

i=1

uifi(q), q ∈M. (3.16)

In this case, the problem of finding an admissible curve joining two fixed points q0, q1 ∈ M
and with minimal length is rewritten as the optimal control problem





γ̇(t) =
m∑

i=1

ui(t)fi(γ(t))

∫ T

0
|u(t)|dt→ min

γ(0) = q0, γ(T ) = q1

(3.17)

For a free sub-Riemannian structure, the set of vector fields f1, . . . , fm build as above is called
a generating frame. Notice that, in general, a generating frame is not orthonormal when f is
not injective.

5. Surfaces in R
3 as free sub-Riemannian structures

Due to topological constraints, in general it not possible to regard a surface as a free sub-
Riemannian structure of rank 2, i.e. defined by a pair of globally defined orthonormal vector
fields. However, it is always possible to regard it as a free sub-Riemannian structure of rank
3.

Indeed, for an embedded surfaceM in R
3, consider the trivial Euclidean bundle U =M×R

3,
where points are denoted as usual (q, u), with u ∈ R

3, q ∈M , and the map

f : U→ TM, f(q, u) = π⊥q (u) ∈ TqM. (3.18)

where π⊥q : R3 → TqM ⊂ R
3 is the orthogonal projection.

Notice that f is a surjective bundle map and the set of vector fields {π⊥q (∂x), π⊥q (∂y), π⊥q (∂z)}
is a generating frame for this structure.

Exercise 3.24. Show that (U, f) defined in (3.18) is equivalent to the Riemannian structure
on M induced by the embedding in R

3.
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3.2.1 Every sub-Riemannian structure is equivalent to a free one

The purpose of this section is to show that every sub-Riemannian structure (U, f) on M is equiva-
lent to a sub-Riemannian structure (U′, f ′) where U′ is a trivial bundle with sufficiently big rank.

Lemma 3.25. Let M be a n-dimensional smooth manifold and π : E →M a smooth vector bundle
of rank m. Then, there exists a vector bundle π0 : E0 → M with rankE0 ≤ 2n + m such that
E ⊕E0 is a trivial vector bundle.

Proof. Remember that E, as a smooth manifold, has dimension

dim E = dim M + rank E = n+m.

Consider the map i : M →֒ E which embeds M into the vector bundle E as the zero section M0.
If we denote with TME the vector bundle i∗(TE), i.e. the restriction of TE to the section M0, we
have the isomorphism (as vector bundles on M)

TME ≃ E ⊕ TM. (3.19)

Eq. (3.19) is a consequence of the fact that the tangent to every fibre Eq, being a vector space, is
canonically isomorphic to its tangent space TqEq so that

TqE = TqEq ⊕ TqM ≃ Eq ⊕ TqM, ∀ q ∈M.

By Whitney theorem we have a (nonlinear on fibers, in general) immersion

Ψ : E → R
N , Ψ∗ : TME ⊂ TE →֒ TRN ,

for N = 2(n+m), and Ψ∗ is injective as bundle map, i.e. TME is a sub-bundle of TRN ≃ R
N×R

N .
Thus we can choose as a complement E′, the orthogonal bundle (on the base M) with respect to
the Euclidean metric in R

N , i.e.3

E′ =
⋃

q∈M
E′
q, E′

q = (TqEq ⊕ TqM)⊥,

and considering E0 := TME ⊕ E′ we have that E0 is trivial since its fibers are sum of orthogonal
complements and by (3.19) we are done.

Corollary 3.26. Every sub-Riemannian structure (U, f) on M is equivalent to a sub-Riemannian
structure (U′, f ′) where U′ is a trivial bundle.

Proof. By Lemma 3.25 there exists a vector bundle U′ such that the direct sum Ũ := U ⊕U′ is
trivial. Endow U′ with any metric structure. Define a metric on Ũ in such a way that g̃(u+u′, v+
v′) = g(u, v) + g′(u′, v′) on each fiber Ũq = Uq ⊕ U ′

q. Notice that Uq and U
′
q are orthogonal.

Let us define the sub-Riemannian structure (Ũ, f̃) on M by

f̃ : Ũ→ TM, f̃ := f ◦ p1,
3we simplify notation, writing TqE

⊥
q for Ψ∗(TqEq)

⊥

57



where p1 : U⊕U′ → U denotes the projection on the first factor. By construction, the diagram

Ũ
f̃

!!❇
❇❇

❇❇
❇❇

❇❇

U⊕U′

p1
##❍

❍❍
❍❍

❍❍
❍❍

Id

;;✇✇✇✇✇✇✇✇✇
TM

U
f

==④④④④④④④④④

(3.20)

is commutative. Moreover condition (ii) of Definition 3.17 is satisfied since for every ũ = u + u′,
with u ∈ Uq and u′ ∈ U ′

q, we have |ũ|2 = |u|2 + |u′|2, hence |u| = min{|ũ|, p1(ũ) = u}.

This fact allow us to write every admissible curve of a sub-Riemannian structure in the form

γ̇(t) =

m∑

i=1

ui(t)fi(γ(t)), (3.21)

where its length is given by

ℓ(γ) =

∫ T

0
|u∗(t)|dt =

∫ T

0

√√√√
m∑

i=1

u∗i (t)
2dt.

Here f1, . . . , fm are vector fields onM that are globally defined, with m big enough. As in Example
4 of Section 3.2 the set of vector fields f1, . . . , fm is called a generating frame.

We stress that this is equivalent to say that the modulus of horizontal vector fields D is globally
generated by f1, . . . , fm.

Remark 3.27. Notice that the integral curve γ(t) = etfi , defined on [0, T ], of an element fi of a
generating frame F = {f1, . . . , fm} is admissible and ℓ(γ) ≤ T . If F = {f1, . . . , fm} are linearly
independent then they are an orthonormal frame and ℓ(γ) = T .

3.2.2 Proto sub-Riemannian structures

Sometimes can be useful to consider structures that satisfy only property (i) and (ii) of Definition
3.2, but that are not bracket generating. In what follows we call these structures proto sub-
Riemannian structures.

The typical example is the one of a Riemannian foliation, that is obtained when the family of
horizontal vector fields D satisfies

(i) [D,D] ⊂ D,

(ii) dimDq does not depend on q ∈M .

In this case the manifold M is foliated by integral manifolds of the distribution, and each of them
is endowed with a Riemannian structure.
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3.3 Sub-Riemannian distance and Chow-Rashevskii Theorem

In this section we introduce the sub-Riemannian distance between two points as the infimum of
the length of admissible curves joining them.

Recall that, in the definition of sub-Riemannian manifold, M is assumed to be connected.
Moreover, thanks to the construction of Section 3.2.1, in what follows we can assume that the sub-
Riemannian structure is free, with generating frame F = {f1, . . . , fm}. Notice that, by definition,
F is assumed to be bracket generating.

Definition 3.28. Let M be a sub-Riemannian manifold and q0, q1 ∈ M . The sub-Riemannian
distance (or Carnot-Caratheodory distance) between q0 and q1 is

d(q0, q1) = inf{ℓ(γ), γ admissible, γ(0) = q0, γ(T ) = q1}, (3.22)

One of the purpose of this section is to show that, thanks to the bracket generating condition,
(3.22) is well-defined since, for every q0, q1 ∈ M , there exists an admissible curve that joins q0 to
q1 and d(q0, q1) < +∞.

Theorem 3.29 (Chow-Raschevskii). Let M be a n-dimensional sub-Riemannian manifold. Then

(i) (M,d) is a metric space,

(ii) the topology induced by (M,d) is equivalent to the manifold topology.

In particular, d :M ×M → R is continuous.

In what follows B(q, r) denotes the sub-Riemannian ball of radius r and center q

B(q, r) := {q′ ∈M | d(q, q′) < r}.

The rest of this section is devoted to the proof of Theorem 3.29. To prove Theorem 3.29 we have
to show that d is actually a distance, i.e.,

(a) 0 ≤ d(q0, q1) < +∞ for all q0, q1 ∈M ,

(b) d(q0, q1) = 0 if and only if q0 = q1,

(c) d(q0, q1) = d(q1, q0) and d(q0, q2) ≤ d(q0, q1) + d(q1, q2) for all q0, q1, q2 ∈M ,

and the equivalence between the metric and the manifold topology: for every q0 ∈M we have

(d) for every ε > 0 there exists a neighborhood Oq0 of q0 such that Oq0 ⊂ B(q0, ε),

(e) for every neighborhood Oq0 of q0 there exists δ > 0 such that B(q0, δ) ⊂ Oq0 .

3.3.1 Proof of Chow-Raschevskii Theorem

The symmetry of d is a direct consequence of the fact that if γ : [0, T ]→M is admissible, then the
curve γ̃ : [0, T ]→M defined by γ̃(t) = γ(T − t) is admissible and ℓ(γ̃) = ℓ(γ).

The triangular inequality follows from the fact that the concatenation of two admissible curves
is still admissible. This proves (c).

We divide the rest of the proof of the Theorem in the following steps.
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Step 1. We prove that, for every q0 ∈M , there exists a neighborhood Oq0 of q0 such that d(q0, ·)
is finite and continuous in Oq0 . This proves (d).

Step 2. We prove that d is finite on M ×M . This proves (a).

Step 3. We prove (b) and (e).

To prove Step 1 we first need the following lemmas:

Lemma 3.30. Let N ⊂M be a submanifold and F ⊂ Vec(M) be a family of vector fields tangent
to N , i.e. X(q) ∈ TqN, ∀ q ∈ N,X ∈ F . Then for all q ∈ N we have LieqF ⊂ TqN . In particular
dimLieqF ≤ dimN .

Proof. Let X ∈ F . As a consequence of the local existence and uniqueness of the two Cauchy
problems {

q̇ = X(q), q ∈M,

q(0) = q0, q0 ∈ N.
and

{
q̇ = X

∣∣
N
(q), q ∈ N,

q(0) = q0, q0 ∈ N.

it follows that etX (q) ∈ N for every q ∈ N and t small enough.

This property, together with the definition of Lie bracket (see formula (2.28)) implies that, if
X,Y are tangent to N , the vector field [X,Y ] is tangent to N as well.

Iterating this argument we get that LieqF ⊂ TqN for every q ∈ N , from which the conclusion
follows.

Lemma 3.31. Let M be an n-dimensional sub-Riemannian manifold with generating frame F =
{f1, . . . , fm}. Then, for every q0 ∈ M and every neighborhood V of the origin in R

n there exist
ŝ = (ŝ1, . . . , ŝn) ∈ V , and a choice of n vector fields fi1 , . . . , fin ∈ F , such that ŝ is a regular point
of the map

ψ : Rn →M, ψ(s1, . . . , sn) = esnfin ◦ · · · ◦ es1fi1 (q0).

Remark 3.32. Notice that, if Dq0 6= Tq0M , then ŝ = 0 cannot be a regular point of the map ψ.
Indeed in this case, for each choice of the vector fields fi1 , . . . , fin ∈ F , the image of the differential
of ψ at s = 0 is spanq0{fij , j = 1, . . . , n} ⊂ Dq0 and the differential of ψ is not surjective.

We stress that, in the choice of fi1 , . . . , fin ∈ F , a vector field can appear more than once, as
for instance in the case m < n.

Proof of Lemma 3.31. 1. There exists a vector field fi1 ∈ F such that fi1(q0) 6= 0, otherwise all
vector fields in F vanish at q0 and dimLieq0F = 0, which contradicts the bracket generating
condition. Then, for |s| small enough, the map

φ1 : s1 7→ es1fi1 (q0),

is a local diffeomorphism onto its image Σ1. If dimM = 1 the Lemma is proved.

2. Assume dimM ≥ 2. Then there exist t11 ∈ R, with |t11| small enough, and fi2 ∈ F such that,

if we denote by q1 = et
1
1fi1 (q0), the vector fi2(q1) is not tangent to Σ1. Otherwise, by Lemma

3.30, dim LieqF = 1, which contradicts the bracket generating condition. Then the map

φ2 : (s1, s2) 7→ es2fi2 ◦ es1fi1 (q0),
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is a local diffeomorphism near (t11, 0) onto its image Σ2. Indeed the vectors

∂φ2
∂s1

∣∣∣∣
(t11,0)

∈ Tq1Σ1,
∂φ2
∂s2

∣∣∣∣
(t11,0)

= fi2(q1),

are linearly independent by construction. If dimM = 2 the Lemma is proved.

3. Assume dimM ≥ 3. Then there exist t12, t
2
2, with |t12 − t11| and |t22| small enough, and fi3 ∈ F

such that, if q2 = et
2
2fi2 ◦ et12fi1 (q0) we have that fi3(q2) is not tangent to Σ2. Otherwise, by

Lemma 3.30, dim Lieq1D = 2, which contradicts the bracket generating condition. Then the
map

φ3 : (s1, s2, s3) 7→ es3fi3 ◦ es2fi2 ◦ es1fi1 (q0),
is a local diffeomorphism near (t12, t

2
2, 0). Indeed the vectors

∂φ3
∂s1

∣∣∣∣
(t12,t

2
2,0)

,
∂φ3
∂s2

∣∣∣∣
(t12,t

2
2,0)

∈ Tq2Σ2,
∂φ3
∂s3

∣∣∣∣
(t12,t

2
2,0)

= fi3(q2),

are linearly independent since the last one is transversal to Tq2Σ2 by construction, while the
first two are linearly independent since φ3(s1, s2, 0) = φ2(s1, s2) and φ2 is a local diffeomor-
phisms at (t12, t

2
2) which is close to (t11, 0).

Repeating the same argument n times (with n = dimM), the lemma is proved.

Proof of Step 1. Thanks to Lemma 3.31 there exists a neighborhood V̂ ⊂ V of ŝ such that ψ
is a diffeomorphism from V̂ to ψ(V̂ ), see Figure 3.3. We stress that in general q0 = ψ(0) is not
contained ψ(V̂ ), cf. Remark 3.32.

ψ(V̂ )

V

V̂

ŝ

ψ

q0

Figure 3.3: Proof of Lemma 3.31

To build a local diffeomorphism whose image contains q0, we consider the map

ψ̂ : Rn →M, ψ̂(s1, . . . , sn) = e−ŝ1fi1 ◦ · · · ◦ e−ŝnfin ◦ ψ(s1, . . . , sn),

which has the following property: ψ̂ is a diffeomorphism from a neighborhood of ŝ ∈ V , that we
still denote V̂ , to a neighborhood of ψ̂(ŝ) = q0.

61



Fix now ε > 0 and apply the construction above where V is the neighborhood of the origin
in R

n defined by V = {s ∈ R
n,
∑n

i=1 |si| < ε}. Let us show that the claim of Step 1 holds with

Oq0 = ψ̂(V̂ ). Indeed, for every q ∈ ψ̂(V̂ ), let s = (s1, . . . , sn) such that q = ψ̂(s), and denote by γ
the admissible curve joining q0 to q, built by 2n-pieces, as in Figure 3.4.

s

V

V̂

ψ̂

ψ(s)

q0

ψ̂(s)

ψ̂(V̂ )

Figure 3.4: The map ψ̂

In other words γ is the concatenation of integral curves of the vector fields fij , i.e. admissible

curves of the form t 7→ etfij (q) defined on some interval [0, T ], whose length is less or equal than T
(cf. Remark 3.27). Since s, ŝ ∈ V̂ ⊂ V , it follows that:

d(q0, q) ≤ ℓ(γ) ≤ |s1|+ . . .+ |sn|+ |ŝ1|+ . . .+ |ŝn| < 2ε,

which ends the proof of Step 1.

Proof of Step 2. To prove that d is finite on M ×M let us consider the equivalence classes of
points in M with respect to the relation

q1 ∼ q2 if d(q1, q2) < +∞. (3.23)

From the triangular inequality and the proof of Step 1, it follows that each equivalence class is open.
Moreover, by definition, the equivalence classes are disjoint. Since M is connected, it cannot be
the union of open disjoint and nonempty subsets. It follows that there exists only one equivalence
class.

Proof of Step 3. We start by proving the following lemma.

Lemma 3.33. Fix q0 ∈ M . For every compact set K ⊂ M with q0 ∈ intK, there exists δK > 0
such that every admissible curve γ : [0, T ]→M satisfying γ(0) = q0 and ℓ(γ) ≤ δK is contained in
K.

Proof. Without loss of generality we can assume that K is contained in a coordinate chart of M ,
where we denote by | · | the Euclidean norm in the coordinate chart.

Let us define

CK := max
x∈K

(
m∑

i=1

|fi(x)|2
)1/2

(3.24)
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and fix δK > 0 such that dist(q0, ∂K) > CKδK (here dist is the Euclidean distance in coordinates).
Then let us show that for any admissible curve γ : [0, T ]→M such that γ(0) = q0 and ℓ(γ) ≤ δK

we have γ([0, T ]) ⊂ K. Indeed, if this is not true, there exists an admissible curve γ : [0, T ] → M
with ℓ(γ) ≤ δK and t∗ := sup{t ∈ [0, T ], γ([0, t]) ⊂ K}, with t∗ < T . Then

|γ(t∗)− γ(0)| ≤
∫ t∗

0
|γ̇(t)|dt =

∫ t∗

0

m∑

i=1

|u∗i (t)fi(γ(t))| dt (3.25)

≤
∫ t∗

0

√√√√
m∑

i=0

|fi(γ(t))|2
√√√√

m∑

i=0

u∗i (t)
2 dt (3.26)

≤ CK
∫ t∗

0

√√√√
m∑

i=0

u∗i (t)
2 dt ≤ CKℓ(γ) (3.27)

≤ CKδK < dist(q0, ∂K). (3.28)

which contradicts the fact that, at t∗, the curve γ leaves the compact K. Thus t∗ = T .

Lemma 3.33 implies property (b). Indeed the only nontrivial implication is that d(q0, q1) > 0
whenever q0 6= q1. To prove this, fix a compact neighborhood K of q0 such that q1 /∈ K. By Lemma
3.33, each admissible curve joining q0 and q1 has length greater than δK , hence d(q0, q1) ≥ δK > 0.

Let us now prove property (e). Fix ε > 0 and a a compact neighborhood K of q0. Define CK
and δK as in Lemma 3.33, and set δ := min{δK , ε/CK}. Let us show that |q − q0| < ε whenever
d(q0, q) < δ.

Consider a minimizing sequence γn : [0, T ]→M of admissible trajectories joining q0 and q such
that ℓ(γn) → d(q0, q) for n →∞. Without loss of generality, we can assume that ℓ(γn) ≤ δ for all
n. By Lemma 3.33, γn([0, T ]) ⊂ K for all n.

In particular we can repeat estimates (3.25)-(3.27) proving that |q − q0| = |γn(T ) − γn(0)| ≤
CKℓ(γn) for all n. Passing to the limit for n→∞, one gets

|q − q0| ≤ CKd(q0, q) ≤ CKδ < ε. (3.29)

Corollary 3.34. The metric space (M,d) is locally compact, i.e., for any q ∈M there exists ε > 0
such that the closed sub-Riemannian ball B(q, r) is compact for all 0 ≤ r ≤ ε.
Proof. By the continuity of d, the set B(q, r) = {d(q, ·) ≤ r} is closed for all q ∈ M and r ≥ 0.
Moreover the sub-Riemannian metric d induces the manifold topology onM . Hence, for radius small
enough, the sub-Riemannian ball is bounded. Thus small sub-Riemannian balls are compact.

3.4 Existence of minimizers

In this section we want to discuss the existence of minimizers of the distance.

Definition 3.35. Let γ : [0, T ]→M be an admissible curve. We say that γ is a length-minimizer
if it minimizes the length among admissible curves with same endpoints, i.e., ℓ(γ) = d(γ(0), γ(T )).

Remark 3.36. The example M = R
2 \ {0} endowed with the Euclidean distance shows that in

general there may be no minimizers between two points. However there may be several minimizers
between two fixed points, as it happens for two antipodal points on the sphere S2.
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Before proving the existence of length minimizers we show a general property of the length
functional.

Theorem 3.37. Let γn be a sequence of admissible curves on M such that γn → γ uniformly.
Then

ℓ(γ) ≤ lim inf
n→∞

ℓ(γn). (3.30)

If moreover lim infn→∞ ℓ(γn) < +∞, then γ is also admissible.

Proof. Without loss of generality we assume that γn and γ are parametrized with constant speed
on the interval [0, 1]. Moreover, denote L := lim inf ℓ(γn) and choose a subsequence, which we still
denote by the same symbol, such that ℓ(γn)→ L. If L = +∞ the inequality (3.30) is clearly true,
thus assume L < +∞.

Fix δ > 0. By uniform convergence, it is not restrictive to assume that, for n large enough,
ℓ(γn) ≤ L+ δ and that the image of γn are all contained in a common compact set K. Since γn is
parametrized by constant speed on [0, 1] we have that γ̇n(t) ∈ Vγn(t) where

Vq = {fu(q), |u| ≤ L+ δ} ⊂ TqM, fu(q) =
m∑

i=1

uifi(q).

Notice that Vq is convex for every q ∈M , thanks to the linearity of f in u. Let us prove that γ is
admissible and satisfies ℓ(γ) ≤ L+ δ. Since δ is arbitrary, this implies ℓ(γ) ≤ L, that is (3.30).

In local coordinates, we have for every ε > 0

1

ε
(γn(t+ ε)− γn(t)) =

1

ε

∫ t+ε

t
fun(τ)(γn(τ))dτ ∈ conv{Vγn(τ), τ ∈ [t, t+ ε]}. (3.31)

Moreover, for n sufficiently large, we have for τ ∈ [t, t+ ε]

|γn(τ)− γ(t)| ≤ |γn(t)− γn(τ)|+ |γn(t)− γ(t)| ≤ C ′ε, (3.32)

where C ′ is independent on n, ε. Indeed |γn(t)−γ(t)| < ε (by uniform convergence) and an estimate
similar to (3.27) gives for τ ∈ [t, t+ ε]

|γn(t)− γn(τ)| ≤
∫ τ

t
|γ̇n(s)|ds ≤ CK(L+ δ)ε. (3.33)

where CK is the constant (3.24) defined by the compact K. From the estimate (3.32) and the
equivalence of the manifold and metric topology we have that, for all τ ∈ [t, t + ε] and n big
enough, γn(τ) ∈ Bγ(t)(r(ε)), where r(ε)→ 0 for ε→ 0. In particular

conv{Vγn(τ), τ ∈ [t, t+ ε]} ⊂ conv{Vq, q ∈ Bγ(t)(r(ε))}, (3.34)

Plugging (3.34) in (3.31) and passing to the limit for n→∞ we get:

1

ε
(γ(t+ ε)− γ(t)) ∈ conv{Vq, q ∈ Bγ(t)(r(ε))}. (3.35)

Assume now that t ∈ [0, 1] is a differentiability point of γ. Then the limit for ε→ 0 in (3.35) gives
γ̇(t) ∈ conv Vγ(t) = Vγ(t). For every such t we can define the unique solution u∗(t) to the problem
γ̇(t) = f(γ(t), u∗(t)) and |u∗(t)| = ‖γ̇(t)‖. Using the argument contained in Appendix 3.A it follows
that u∗(t) is measurable in t. Moreover it is bounded since, by construction, |u∗(t)| ≤ L+ δ. Hence
γ is admissible. Moreover ℓ(γ) ≤ L+ δ since γ is parametrized on [0, 1].
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Corollary 3.38 (Existence of minimizers). Let M be a sub-Riemannian manifold and q0 ∈ M .
Assume that the ball Bq0(r) is compact, for some r > 0. Then for all q1 ∈ Bq0(r) there exists a
length minimizer joining q0 and q1, i.e., we have

d(q0, q1) = min{ℓ(γ), γ admissible , γ(0) = q0, γ(T ) = q1}.

Proof. Fix q1 ∈ Bq0(r) and consider a sequence of admissible trajectories γn : [0, 1] → M ,
parametrized with constant speed, joining q0 and q and minimizing the lenght, i.e., ℓ(γn)→ d(q0, q).

Since d(q0, q) < r, we have ℓ(γn) ≤ r for all n large enough, hence we can assume without loss
of generality that the image of γn is contained in the common compact K = Bq0(r) for all n. In
particular, the same argument leading to (3.33) shows that for all n

|γn(t)− γn(τ)| ≤
∫ t

τ
|γ̇n(s)|ds ≤ CKr|t− τ |, ∀ t, τ ∈ [0, 1]. (3.36)

In other words all trajectories in the sequence {γn}n∈N are Lipschitz with the same Lipschitz
constant. Thus the sequence is equicontinuous and uniformly bounded.

By the classical Ascoli-Arzelà Theorem there exist a subsequence of γn, which we still denote by
the same symbol, and a Lipschitz curve γ : [0, T ]→M such that we have uniform convergence γn →
γ. By Theorem 3.37 the curve γ is admissible and has length ℓ(γ) ≤ lim inf ℓ(γn) = d(q0, q1).

Corollary 3.39. Let q0 ∈M . Under the hypothesis of Corollary 3.38 there exists ε > 0 such that
for all r ≤ ε and q1 ∈ Bq0(r) there exists a minimizing curve joining q0 and q1.

Proof. It is a direct consequence of Corollary 3.38 and Corollary 3.34.

Remark 3.40. It is well known that a metric space is complete if and only if all closed balls are com-
pact, see for instance [12]. In particular, if (M,d) is complete with respect to the sub-Riemannian
distance, then for every q0, q1 ∈M there exists a length minimizer joining q0 and q1.

3.5 Pontryagin extremals

In this section we want to give necessary conditions to characterize the length minimizers. To begin
with, we would like to motivate our Hamiltonian approach that we develop in the sequel.

In classical Riemannian geometry geodesics are local (in time) length-minimizers, appropriately
parametrized. They satisfy a second order differential equation in M , which can be reduced to a
first-order differential equation in TM . Hence the set of all geodesics can be parametrized by initial
position and velocity.

In our setting (which includes Riemannian and sub-Riemannian geometry) we cannot use the
initial velocity to parametrize geodesics. This can be easily understood by a dimensional argument.
If the rank of the sub-Riemannian structure is smaller than the dimension of the manifold, the initial
velocity γ̇(0) of an admissible curve γ(t) starting from q0, belongs to the proper subspace Dq0 of the
tangent space Tq0M . Hence the set of admissible velocities form a set whose dimension is smaller
than the dimension of M , even if, by the Chow and Filippov theorems, geodesics starting from a
point q0 cover a full neighborhood of q0.

The right approach is to parametrize the geodesics by their initial point and an initial cov-
ector λ0 ∈ T ∗

q0M , which can be thought as the linear form annihilating the “front”, i.e. the set
{γq0(ε), where γq0 is a geodesic starting from q0} on the corresponding geodesic for ε→ 0.
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Next theorem is the first version of Pontryagin maximum principle, whose proof is given in the
next section.

Theorem 3.41 (Characterization of Pontryagin extremals). Let γ : [0, T ] → M be an admissible
curve which is a length-minimizer, parametrized by constant speed. Let ũ(·) be the corresponding
minimal control, i.e.,

γ̇(t) =

m∑

i=1

ũi(t)fi(γ(t)), ℓ(γ) =

∫ T

0
|ũ(t)|dt = d(γ(0), γ(T )), |ũ(t)| = const. a.e.

Denote with P0,t the flow4 of the nonautonomous vector field fũ(t) =
∑k

i=1 ũi(t)fi. Then there exists
λ0 ∈ T ∗

γ(0)M such that defining

λ(t) := (P−1
0,t )

∗λ0, λ(t) ∈ T ∗
γ(t)M, (3.37)

we have that one of the following conditions is satisfied:

(N) ũi(t) ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m,

(A) 0 ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m.

Moreover in case (A) one has λ0 6= 0.

Notice that, by definition, the curve λ(t) is Lipschitz continuous. Moreover the conditions (N)
and (A) are mutually exclusive, unless ũ(t) ≡ 0 a.e., i.e., γ is the trivial trajectory.

Definition 3.42. Let γ : [0, T ]→M be an admissible curve with minimal control ũ ∈ L∞([0, T ],Rm).
Fix λ0 ∈ T ∗

γ(0)M \ {0}, and define λ(t) by (3.37).

- If λ(t) satisfies (N) then it is called normal extremal (and γ(t) a normal extremal trajectory).

- If λ(t) satisfies (A) then it is called abnormal extremal (and γ(t) a abnormal extremal trajec-
tory).

Remark 3.43. In the Riemannian case there are no abnormal extremals. Indeed, since the map f
is fiberwise surjective, we can always find m vector fields f1, . . . , fm on M such that

spanq0{f1, . . . , fm} = Tq0M,

and (A) would imply that 〈λ0, v〉 = 0, for all v ∈ Tq0M , that gives the contradiction λ0 = 0.

Remark 3.44. If the sub-Riemannian structure is not surjective at q0, i.e., spanq0{f1, . . . , fm} 6=
Tq0M , then the trivial trajectory, corresponding to ũ(t) ≡ 0, is always normal and abnormal.

Notice that even a nontrivial admissible trajectory γ can be both normal and abnormal, since
there may exist two different lifts λ(t), λ′(t) ∈ T ∗

γ(t)M , such that λ(t) satisfies (N) and λ′(t) satisfies
(A).

Exercise 3.45. Prove that condition (N) of Theorem 3.37 implies that the minimal control ũ(t)
is smooth. In particular normal extremals are smooth.

At this level it seems not obvious how to use Theorem 3.41 to find the explicit expression of
extremals for a given problem. In the next chapter we provide another formulation of Theorem
3.41 which gives Pontryagin extremals as solutions of a Hamiltonian system.

The rest of this section is devoted to the proof of Theorem 3.41.

4defined for t ∈ [0, T ] and in a neighborhood of γ(0)
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3.5.1 The action functional

Let γ : [0, T ]→M be an admissible curve. We define the action functional J as follows

J(γ) =
1

2

∫ T

0
‖γ̇(t)‖2dt.

Remark 3.46. Notice that, while ℓ is invariant by reparametrization (see Remark 3.14), J is not.
Indeed consider, for every α > 0, the reparametrized curve

γα : [0, T/α]→M, γα(t) = γ(αt).

Using that γ̇α(t) = α γ̇(αt), we have

J(γα) =
1

2

∫ T/α

0
‖γ̇α(t)‖2dt =

1

2

∫ T/α

0
α2‖γ̇(αt)‖2dt = αJ(γ).

Thus, if the final time is not fixed, the infimum of J , among admissible curves joining two fixed
points, is always zero. The following lemma relates minimizers of J with fixed final time with
minimizers of ℓ.

Lemma 3.47. Fix T > 0 and let Ωq0,q1 be the set of admissible curves joining q0, q1 ∈ M . An
admissible curve γ : [0, T ] → M is a minimizer of J on Ωq0,q1 if and only if it is a minimizer of ℓ
on Ωq0,q1 and has constant speed.

Proof. Applying the Cauchy-Schwarz inequality

(∫ T

0
f(t)g(t)dt

)2

≤
∫ T

0
f(t)2dt

∫ T

0
g(t)2dt, (3.38)

with f(t) = ‖γ̇(t)‖ and g(t) = 1 we get

ℓ(γ)2 ≤ 2J(γ)T. (3.39)

Moreover in (3.38) equality holds if and only if f is proportional to g, i.e. ‖γ̇(t)‖ = const. in (3.39).
Since, by Lemma 3.15, every curve is a Lipschitz reparametrization of a length-parametrized one,
the minima of J are attained at admissible curves with constant speed, and the statement follows.

3.5.2 Proof of Theorem 3.41

By Lemma 3.47 we can assume that γ is a minimizer of the functional J among admissible curves
joining q0 = γ(0) and q1 = γ(T ) in fixed time T > 0. In particular, if we define the functional

J̄(u(·)) := 1

2

∫ T

0
|u(t)|2dt, (3.40)

on the space of controls u(·) ∈ L∞([0, T ],Rm), the minimal control ũ(·) of γ is a minimizer for the
action functional J̄

J̄(ũ(·)) ≤ J̄(u(·)), ∀u ∈ L∞([0, T ],Rm),
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where trajectories corresponding to u(·) join q0, q1 ∈M . In the following we denote the functional
J̄ by J .

Consider now a variation u(·) = ũ(·)+v(·) of the control ũ(·), and its associated trajectory q(t),
solution of the equation

q̇(t) = fu(t)(q(t)), q(0) = q0, (3.41)

Recall that P0,t denotes the local flow associated with the optimal control ũ(·) and that γ(t) =
P0,t(q0) is the optimal admissible curve. We stress that in general, for q different from q0, the curve
t 7→ P0,t(q) is not optimal.

Let us introduce the curve x(t) defined by

q(t) := P0,t(x(t)). (3.42)

In other words x(t) = P−1
0,t (q(t)) is obtained by applying the inverse of the flow of ũ(·) to the solution

associated with the new control u(·) (see Figure 3.5). Notice that if v(·) = 0, then x(t) ≡ q0.

x(t)

q(t) P0,t

q0

Figure 3.5: The trajectories q(t), associated with u(·) = ũ(·) + v(·), and the corresponding x(t).

The next step is to write an ODE satisfied by x(t). Differentiating (3.42) we get

q̇(t) = fũ(t)(q(t)) + (P0,t)∗(ẋ(t)) (3.43)

= fũ(t)(P0,t(x(t)) + (P0,t)∗(ẋ(t)) (3.44)

and using that q̇(t) = fu(t)(q(t)) = fu(t)(P0,t(x(t)) we can invert (3.44) with respect to ẋ(t) and
rewrite it as follows

ẋ(t) = (P−1
0,t )∗

[
(fu(t) − fũ(t))(P0,t(x(t)))

]

=
[
(P−1

0,t )∗(fu(t) − fũ(t))
]
(x(t))

=
[
(P−1

0,t )∗(fu(t)−ũ(t))
]
(x(t))

=
[
(P−1

0,t )∗fv(t)
]
(x(t)) (3.45)

If we define the nonautonomous vector field gtv(t) = (P−1
0,t )∗fv(t) we finally obtain by (3.45) the

following Cauchy problem for x(t)

ẋ(t) = gtv(t)(x(t)), x(0) = q0. (3.46)
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Notice that the vector field gtv is linear with respect to v, since fu is linear with respect to u.
Now we fix the control v(t) and consider the map

s ∈ R 7→
(
J(ũ+ sv)
x(T ; ũ+ sv)

)
∈ R×M

where x(T ; ũ + sv) denote the solution at time T of (3.46), starting from q0, corresponding to
control ũ(·) + sv(·), and J(ũ+ sv) is the associated cost.

Lemma 3.48. There exists λ̄ ∈ (R⊕ Tq0M)∗, with λ̄ 6= 0, such that for all v ∈ L∞([0, T ],Rm)

λ̄ ⊥
(
∂J(ũ+ sv)

∂s

∣∣∣
s=0

,
∂x(T ; ũ+ sv)

∂s

∣∣∣
s=0

)
. (3.47)

Proof of Lemma 3.48 . We argue by contradiction: if (3.47) is not true then there exist v0, . . . , vn ∈
L∞([0, T ],Rm) such that the vectors




∂J(ũ+ sv0)

∂s

∣∣∣
s=0

∂x(T ; ũ+ sv0)

∂s

∣∣∣
s=0


 , . . . ,




∂J(ũ+ svn)

∂s

∣∣∣
s=0

∂x(T ; ũ+ svn)

∂s

∣∣∣
s=0


 (3.48)

are linearly independent. Let us now consider the map

Φ : (s0, . . . , sn) ∈ R
n+1 7→

(
J(ũ+

∑n
i=0 sivi)

x(T ; ũ+
∑n

i=0 sivi)

)
∈ R×M. (3.49)

By differentiability properties of solution of smooth ODEs with respect to parameters, the map
(3.49) is smooth. Moreover, since the vectors (3.48) are the components of the differential of Φ and
they are independent, then the inverse function theorem implies that Φ is a local diffeomorphism
sending a neighborhood of 0 in R

n+1 in a neighborhood of (J(ũ), q0) in R×M . As a result we can
find v(·) =∑i sivi(·) such that (see also Figure 3.5.2)

x(T ; ũ+ v) = q0, J(ũ+ v) < J(ũ).

x(T, ū)

J(ū)

J

x

In other words the curve t 7→ q(t; ũ+ v) join q(0, ũ+ v) = q0 to

q(T ; ũ+ v) = P0,T (x(T ; ũ+ v)) = P0,T (q0) = q1,

with a cost smaller that the cost of γ(t) = q(t, ũ), which is a contradiction
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Notice that if λ̄ satisfies (3.47), then for every α ∈ R, with α 6= 0, αλ̄ satisfies (3.47) too. Thus
we can normalize λ̄ to be (−1, λ0) or (0, λ0), with λ0 ∈ T ∗

q0M , and λ0 6= 0 in the second case (since
λ̄ is non zero).

Hence condition (3.47) implies that there exists λ0 ∈ T ∗
q0M such that one of the following

identities is satisfied for all v ∈ L∞([0, T ],Rm):

∂J(ũ+ sv)

∂s

∣∣∣
s=0

=

〈
λ0,

∂x(T ; ũ+ sv)

∂s

∣∣∣
s=0

〉
, (3.50)

0 =

〈
λ0,

∂x(T ; ũ+ sv)

∂s

∣∣∣
s=0

〉
. (3.51)

with λ0 6= 0 in the second case. To end the proof we have to show that identities (3.50) and (3.51)
are equivalent to conditions (N) and (A) of Theorem 3.41. Let us show that

∂J(ũ+ sv)

∂s

∣∣∣
s=0

=

∫ T

0

m∑

i=1

ũi(t)vi(t)dt, (3.52)

∂x(T ; ũ+ sv)

∂s

∣∣∣
s=0

=

∫ T

0
gtv(t)(q0)dt =

∫ T

0

m∑

i=1

((P−1
0,t )∗fi)(q0)vi(t)dt. (3.53)

Identity (3.52) follows from the definition of J

J(ũ+ sv) =
1

2

∫ T

0
|ũ+ sv|2dt, (3.54)

while (3.53) can be proved in coordinates. Indeed by (3.46) and the linearity of gv with respect to
v we have

x(T ; ũ+ sv) = q0 + s

∫ T

0
gtv(t)(x(t; ũ+ sv))dt,

and differentiating with respect to s at s = 0 one gets (3.53).

Let us show that (3.50) is equivalent to (N) of Theorem 3.41. Similarly, one gets that (3.51) is
equivalent to (A). Using (3.52) and (3.53), equation (3.50) is rewritten as

∫ T

0

m∑

i=1

ũi(t)vi(t)dt =

∫ T

0

m∑

i=1

〈
λ0, ((P

−1
0,t )∗fi)(q0)

〉
vi(t)dt

=

∫ T

0

m∑

i=1

〈λ(t), fi(γ(t))〉 vi(t)dt, (3.55)

where we used, for every i = 1, . . . ,m, the identities

〈
λ0, ((P

−1
0,t )∗fi)(q0)

〉
=
〈
λ0, (P

−1
0,t )∗fi(γ(t))

〉
=
〈
(P−1

0,t )
∗λ0, fi(γ(t))

〉
= 〈λ(t), fi(γ(t))〉 .

Since vi(·) ∈ L∞([0, T ],Rm) are arbitrary, we get ũi(t) = 〈λ(t), fi(γ(t))〉 for a.e. t ∈ [0, T ].
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3.A Measurability of the minimal control

In this section we prove a general lemma that implies, for the specific case of sub-Riemannian
geometry, that the minimal control associated with an admissible curve is measurable.

Let us fix an interval I = [a, b] ⊂ R and a compact set U ⊂ R
m. Consider two functions

g : I × U → R
n, v : I → R

n such that

(M1) g(t, u) is measurable with respect to t and continuous with respect to u.

(M2) v(t) is measurable in t.

Moreover we assume that

(M3) for every fixed t ∈ I, the problem min{|u| : g(t, u) = v(t), u ∈ U} has a unique solution.

Let us denote by u∗(t) the solution of (M3) and consider the function t 7→ u∗(t).

Lemma 3.49. The function t 7→ |u∗(t)| is measurable.

Proof. Denote ϕ(t) := |u∗(t)|. To prove the lemma we show that for every fixed r > 0 the set

A = {t ∈ I : ϕ(t) ≤ r}

is measurable. By our assumptions

A = {t ∈ I : ∃u ∈ U s.t. |u| ≤ r, g(t, u) = v(t)}

Let us fix r > 0 and a countable dense set {ui}i∈N in the ball of radius r in U . Let show that

A =
⋂

n∈N
An =

⋂

n∈N

⋃

i∈N
Ai,n

︸ ︷︷ ︸
:=An

(3.56)

where
Ai,n := {t ∈ I : |g(t, ui)− v(t)| < 1/n}

Notice that the set Ai,n is measurable by construction and if (3.56) is true, A is also measurable.

⊂ inclusion. Let t ∈ A. This means that there exists ū ∈ U such that |ū| ≤ r and f(t, ū) = v(t).
Since f is continuous with respect to u and {ui}i∈N is a dense, for each n we can find uin such that
|g(t, uin)− v(t)| < 1/n, that is t ∈ An for all n.

⊃ inclusion. Assume t ∈ ⋂n∈N An. Then for every n there exists i(n) = in such that the
corresponding uin satisfies |g(t, uin) − v(t)| < 1/n. From the sequence uin , by compactness, it is
possible to extract a convergent susequence uin → ū. By continuity of f in u one easily gets that
f(t, ū) = v(t). That is t ∈ A.

Next we exploit the fact that the function ϕ(t) := |u∗(t)| is measurable to show that the vector
function u∗(t) is measurable.

Lemma 3.50. The vector function t 7→ u∗(t) is measurable.
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Proof. We have to prove that, for every closed ball O in R
n (for instance a closed ball) the set

B := {t ∈ I : u∗(t) ∈ O}
is measurable. Since the minimum is uniquely determined this is equivalent to

B = {t ∈ I : ∃u ∈ O s.t. |u| = ϕ(t), g(t, u) = v(t)}
Let us fix the ball O and a countable dense set {ui}i∈N in O. Let show that

B =
⋂

n∈N
Bn =

⋂

n∈N

⋃

i∈N
Bi,n

︸ ︷︷ ︸
:=Bn

(3.57)

where
Bi,n := {t ∈ I : |ui| < ϕ(t) + 1/n, |g(t, ui)− v(t)| < 1/n; }

Notice that the set Bi,n is measurable by construction and if (3.57) is true, B is also measurable.

⊂ inclusion. Let t ∈ B. This means that there exists ū ∈ O such that |ū| = ϕ(t) and
f(t, ū) = v(t). Since f is continuous with respect to u and {ui}i∈N is a dense in O, for each n we
can find uin such that |g(t, uin)− v(t)| < 1/n and |uin | < ϕ(t) + 1/n, that is t ∈ Bn for all n.

⊃ inclusion. Assume t ∈ ⋂n∈N Bn. Then for every n it is possible to find in such that the
corresponding uin satisfies |g(t, uin )− v(t)| < 1/n and |uin | < ϕ(t) + 1/n. From the sequence uin ,
by compactness of the closed ball O, it is possible to extract a convergent susequence uin → ū. By
continuity of f in u one easily gets that f(t, ū) = v(t). Moreover |ū| ≤ ϕ(t). Hence |ū| = ϕ(t).
That is t ∈ B.

3.A.1 Proof of Lemma 3.12

Consider an admissible curve γ : [0, T ]→M and set g(t, u) = f(γ(t), u), v(t) = γ̇(t).
Notice that assumptions (M1)-(M3) are satisfied. Indeed (M1) and (M2) follows from the fact

that g(t, u) is linear with respect to u and measurable in t. Moreover (M3) is also satisfied. .

3.B Lipschitz vs Absolutely continuous admissible curves

In this book sub-Riemannian geometry is developed in the framework of Lipschitz admissible curves
(that correspond to the choice of L∞ controls). However, the theory can be equivalently developed
in the framework of H1 admissible curves (corresponding to L2 controls) or in the framework of
absolutely continuous admissible curves (corresponding to L1 controls).

Definition 3.51. An absolutely continuous curve γ : [0, T ] → M is said to be AC-admissible if
there exists an L1 function u : t ∈ [0, T ] 7→ u(t) ∈ Uγ(t) such that γ̇(t) = f(γ(t), u(t)), for a.e.
t ∈ [0, T ]. We define H1-admissible curves similarly.

Being the set of absolutely continuous curve bigger than the set of Lipschitz ones, one could
expect that the sub-Riemannian distance between two points is smaller when computed among all
absolutely continuous admissible curves. However this is not the case thanks to the invariance by
reparametrization. Indeed Lemmas 3.14 and 3.15 can be rewritten in the absolutely continuous
framework in the following form.
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Lemma 3.52. The length of an AC-admissible curve is invariant by AC reparametrization.

Lemma 3.53. Any AC-admissible curve of positive length is a AC reparametrization of a length-
parametrized admissible one.

The proof of Lemma 3.52 differs from the one of Lemma 3.14 only by the fact that, if u∗ ∈ L1

is the minimal control of γ then (u∗ ◦ ϕ)ϕ̇ is the minimal control associated with γ ◦ ϕ. Moreover
(u∗ ◦ ϕ)ϕ̇ ∈ L1, using the monotonicity of ϕ. Under these assumptions the change of variables
formula (3.13) still holds.

The proof of Lemma 3.53 is unchanged. Notice that the statement of Exercise 3.16 remains true
if we replace Lipschitz with absolutely continuous. We stress that the curve γ built in the proof is
Lipschitz (since it is length-parametrized).

As a consequence of these results, if we define

dAC(q0, q1) = inf{ℓ(γ), γ AC -admissible, γ(0) = q0, γ(T ) = q1}, (3.58)

we have the following proposition.

Proposition 3.54. dAC(q0, q1) = d(q0, q1)

Since L2([0, T ]) ⊂ L1([0, T ]), Lemmas 3.52, 3.53 and Proposition 3.54 are valid also in the
framework of admissible curves associated with L2 controls.

Bibliographical notes
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Chapter 4

Hamiltonian setting

This chapter is devoted to the study of geometric properties of Pontryagin extremals. To this
purpose we first rewrite Theorem 3.41 in a more geometric setting, which permits to write a
differential equation in T ∗M satisfied by Pontryagin extremals and to show that they do not
depend on the choice of a generating frame. Finally we prove that small pieces of normal extremal
trajectories minimize the length.

To this aim, all along this chapter we develop the language of symplectic geometry, starting by
the key concept of Poisson bracket.

4.1 Geometric characterization of Pontryagin extremals

In the previuos chapter we proved that if γ : [0, T ]→M is a length minimizer on a sub-Riemannian
manifold, associated with a control u(·), then there exists λ0 ∈ T ∗

γ(0)M such that defining

λ(t) = (P−1
0,t )

∗λ0, λ(t) ∈ T ∗
γ(t)M, (4.1)

we have that one of the following conditions is satisfied:

(N) ui(t) ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m,

(A) 0 ≡ 〈λ(t), fi(γ(t))〉 , ∀ i = 1, . . . ,m, λ0 6= 0.

Here P0,t denotes the flow associated with the nonautonomous vector field fu(t) =
∑m

i=1 ui(t)fi and

(P−1
0,t )

∗ : T ∗
qM → T ∗

P0,t(q)
M. (4.2)

is the induced flow on the cotangent space.

The goal of is section is to characterize the curve (4.1) as the integral curve of a suitable (non-
autonomous) vector field on T ∗M . To this purpose, we first show that a vector field on T ∗M is
completely characterized by its action on function that are affine on fibers. To fix the ideas, we
first focus on the case in which P0,t : M → M is the flow associated with an autonomous vector
field X ∈ Vec(M), namely P0,t = etX .
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4.1.1 Lifting a vector field from M to T ∗M

We start by some preliminary considerations on the algebraic structure of smooth functions on
T ∗M . As usual π : T ∗M →M denotes the canonical projection.

Functions in C∞(M) are in a one-to-one correspondence with functions in C∞(T ∗M) that are
constant on fibers via the map α 7→ π∗α = α ◦ π. In other words we have the isomorphism of
algebras

C∞(M) ≃ C∞cst(T ∗M) := {π∗α |α ∈ C∞(M)} ⊂ C∞(T ∗M). (4.3)

In what follows, with abuse of notation, we often identify the function π∗α ∈ C∞(T ∗M) with the
function α ∈ C∞(M).

In a similar way smooth vector fields onM are in a one-to-one correspondence with functions in
C∞(T ∗M) that are linear on fibers via the map Y 7→ aY , where aY (λ) := 〈λ, Y (q)〉 and q = π(λ).

Vec(M) ≃ C∞lin(T ∗M) := {aY |Y ∈ Vec(M)} ⊂ C∞(T ∗M). (4.4)

Notice that this is an isomorphism as modules over C∞(M). Indeed, as Vec(M) is a module over
C∞(M), we have that C∞lin(T ∗M) is a module over C∞(M) as well. For any α ∈ C∞(M) and
aX ∈ C∞lin(T ∗M) their product is defined as αaX := (π∗α)aX = aαX ∈ C∞lin(T ∗M).

Definition 4.1. We say that a function a ∈ C∞(T ∗M) is affine on fibers if there exists two functions
α ∈ C∞cst(T ∗M) and aX ∈ C∞lin(T ∗M) such that a = α+ aX . In other words

a(λ) = α(q) + 〈λ,X(q)〉 , q = π(λ).

We denote by C∞aff(T ∗M) the set of affine function on fibers.

Remark 4.2. Linear and affine functions on T ∗M are particularly important since they reflects the
linear structure of the cotangent bundle. In particular every vector field on T ∗M , as a derivation
of C∞(T ∗M), is completely characterized by its action on affine functions,

Indeed for a vector field V ∈ Vec(T ∗M) and f ∈ C∞(T ∗M), one has that

(V f)(λ) =
d

dt

∣∣∣∣
t=0

f(etV (λ)) = 〈dλf, V (λ)〉 , λ ∈ T ∗M. (4.5)

which depends only on the differential of f at the point λ. Hence, for each fixed λ ∈ T ∗M ,
to compute (4.5) one can replace the function f with any affine function whose differential at λ
coincide with dλf . Notice that such a function is not unique.

Let us now consider the generator of the flow (P−1
0,t )

∗ = (e−tX)∗. Since it satisfies the group law

(e−tX)∗ ◦ (e−sX)∗ = (e−(t+s)X )∗ ∀ t, s ∈ R,

by Lemma 2.10 its generator is an autonomous vector field VX on T ∗M . In other words we have
(e−tX)∗ = etVX for all t.

Let us then compute the right hand side of (4.5) when V = VX and f is either a function
constant on fibers or a function linear on fibers.

The action of VX on functions that are constant on fibers, of the form β ◦ π with β ∈ C∞(M),
coincides with the action of X. Indeed we have for all λ ∈ T ∗M

d

dt

∣∣∣∣
t=0

β ◦ π((e−tX)∗λ)) = d

dt

∣∣∣∣
t=0

β(etX (q)) = (Xα)(q), q = π(λ). (4.6)
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For what concerns the action of VX on functions that are linear on fibers, of the form aY (λ) =
〈λ, Y (q)〉, we have for all λ ∈ T ∗M

d

dt

∣∣∣∣
t=0

aY ((e
−tX )∗λ) =

d

dt

∣∣∣∣
t=0

〈
(e−tX )∗λ, Y (etX(q))

〉

=
d

dt

∣∣∣∣
t=0

〈
λ, (e−tX∗ Y )(q)

〉
= 〈λ, [X,Y ](q)〉 (4.7)

= a[X,Y ](λ).

Hence, by linearity, one gets that the action of VX on functions of C∞aff(T ∗M) is

VX(β + aY ) = Xβ + a[X,Y ]. (4.8)

As explained in Remark 4.2, formula (4.8) characterizes completely the generator VX of (P−1
0,t )

∗.
To find its explicit form we introduce the notion of Poisson bracket.

4.1.2 The Poisson bracket

The purpose of this section is to introduce an operation {·, ·} on C∞(T ∗M), called Poisson bracket.
First we introduce it in C∞lin(T ∗M), where it can be seen as the Lie bracket of vector fields in
Vec(M), seen as elements of C∞lin(T ∗M). Then it is uniquely extended to C∞aff(T ∗M) and C∞(T ∗M)
by requiring that it is a derivation of the algebra C∞(T ∗M) in each argument.

More precisely we start by the following definition.

Definition 4.3. Let aX , aY ∈ C∞lin(T ∗M) be associated with vector fields X,Y ∈ Vec(M). Their
Poisson bracket is defined by

{aX , aY } := a[X,Y ], (4.9)

where a[X,Y ] is the function in C∞lin(T ∗M) associated with the vector field [X,Y ].

Remark 4.4. Recall that the Lie bracket is a bilinear, skew-symmetric map defined on Vec(M),
that satisfies the Leibnitz rule for X,Y ∈ Vec(M):

[X,αY ] = α[X,Y ] + (Xα)Y, ∀α ∈ C∞(M). (4.10)

As a consequence, the Poisson bracket is bilinear, skew-symmetric and satisfies the following relation

{aX , α aY } = {aX , aαY } = a[X,αY ] = αa[X,Y ] + (Xα) aY , ∀α ∈ C∞(M). (4.11)

Notice that this relation makes sense since the product between α ∈ C∞cst(T ∗M) and aX ∈ C∞lin(T ∗M)
belong to C∞lin(T ∗M), i.e. αaX = aαX .

Now we extend this definition on the whole C∞(T ∗M).

Proposition 4.5. There exists a unique bilinear and skew-simmetric map

{·, ·} : C∞(T ∗M)× C∞(T ∗M)→ C∞(T ∗M)

that extends (4.9) on C∞(T ∗M), and that is a derivation in each argument, i.e. it satisfies

{a, bc} = {a, b}c + {a, c}b, ∀ a, b, c ∈ C∞(T ∗M). (4.12)

We call this operation the Poisson bracket on C∞(T ∗M).
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Proof. We start by proving that, as a consequence of the requirement that {·, ·} is a derivation in
each argument, it is uniquely extended to C∞aff(T ∗M).

By linearity and skew-symmetry we are reduced to compute Poisson brackets of kind {aX , α}
and {α, β}, where aX ∈ C∞lin(T ∗M) and α, β ∈ C∞cst(T ∗M). Using that aαY = αaY and (4.12) one
gets

{aX , aαY } = {aX , α aY }
= α{aX , aY }+ {aX , α}aY . (4.13)

Comparing (4.11) and (4.13) one gets

{aX , α} = Xα (4.14)

Next, using (4.12) and (4.14), one has

{aαY , β} = {α aY , β} = α{aY , β} + {α, β}aY (4.15)

= αY β + {α, β}aY . (4.16)

Using again (4.14) one also has {aαY , β} = αY β, hence {α, β} = 0.

Combining the previous formulas one obtains the following expression for the Poisson bracket
between two affine functions on T ∗M

{aX + α, aY + β} := a[X,Y ] +Xβ − Y α. (4.17)

From the explicit formula (4.17) it is easy to see that the Poisson bracket computed at a fixed
λ ∈ T ∗M depends only on the differential of the two functions aX + α and aY + β at λ.

Next we extend this definition to C∞(T ∗M) in such a way that it is still a derivation. For
f, g ∈ C∞(T ∗M) we define

{f, g}|λ := {af,λ, ag,λ}|λ (4.18)

where af,λ and ag,λ are two functions in C∞aff(T ∗M) such that dλf = dλ(af,λ) and dλg = dλ(ag,λ).

The definition (4.18) is well posed, since if we take two different affine functions af,λ and a′f,λ
their difference satisfy dλ(af,λ− a′f,λ) = dλ(af,λ)− dλ(a′f,λ) = 0, hence by bilinearity of the Poisson
bracket

{af,λ, ag,λ}|λ = {a′f,λ, ag,λ}|λ.

Let us now compute the coordinate expression of the Poisson bracket. In canonical coordinates
(p, x) in T ∗M , if

X =

n∑

i=1

Xi(x)
∂

∂xi
, Y =

n∑

i=1

Yi(x)
∂

∂xi
,

we have

aX(p, x) =

n∑

i=1

piXi(x), aY (p, x) =

n∑

i=1

piYi(x).
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and, denoting f = aX + α, g = aY + β we have

{f, g} = a[X,Y ] +Xβ − Y α

=
n∑

i,j=1

pj

(
Xi
∂Yj
∂xi
− Yi

∂Xj

∂xi

)
+Xi

∂β

∂pi
− Yi

∂α

∂pi

=

n∑

i,j=1

Xi

(
pj
∂Yj
∂xi

+
∂β

∂pi

)
− Yi

(
pj
∂Xj

∂xi
+
∂α

∂pi

)

=
n∑

i=1

∂f

∂pi

∂g

∂xi
− ∂f

∂xi

∂g

∂pi
.

From these computations we get the formula for Poisson brackets of two functions a, b ∈ C∞(T ∗M)

{a, b} =
n∑

i=1

∂a

∂pi

∂b

∂xi
− ∂a

∂xi

∂b

∂pi
, a, b ∈ C∞(T ∗M). (4.19)

The explicit formula (4.19) shows that the extension of the Poisson bracket to C∞(T ∗M) is still a
derivation.

Remark 4.6. We stress that the value {a, b}|λ at a point λ ∈ T ∗M depends only on dλa and dλb.
Hence the Poisson bracket computed at the point λ ∈ T ∗M can be seen as a skew-symmetric and
nondegenerate bilinear form

{·, ·}λ : T ∗
λ (T

∗M)× T ∗
λ (T

∗M)→ R.

4.1.3 Hamiltonian vector fields

By construction, the linear operator defined by

~a : C∞(T ∗M)→ C∞(T ∗M) ~a(b) := {a, b} (4.20)

is a derivation of the algebra C∞(T ∗M), therefore can be identified with an element of Vec(T ∗M).

Definition 4.7. The vector field ~a on T ∗M defined by (4.20) is called the Hamiltonian vector field
associated with the smooth function a ∈ C∞(T ∗M).

From (4.19) we can easily write the coordinate expression of ~a for any arbitrary function a ∈
C∞(T ∗M)

~a =

n∑

i=1

∂a

∂pi

∂

∂xi
− ∂a

∂xi

∂

∂pi
. (4.21)

The following proposition gives the explicit form of the vector field V on T ∗M generating the flow
(P−1

0,t )
∗.

Proposition 4.8. Let X ∈ Vec(M) be complete and let P0,t = etX . The flow on T ∗M defined by
(P−1

0,t )
∗ = (e−tX)∗ is generated by the Hamiltonian vector field ~aX , where aX(λ) = 〈λ,X(q)〉 and

q = π(λ).
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Proof. To prove that the generator V of (P−1
0,t )

∗ coincides with the vector field ~aX it is sufficient to
show that their action is the same. Indeed, by definition of Hamiltonian vector field, we have

~aX(α) = {aX , α} = Xα

~aX(aY ) = {aX , aY } = a[X,Y ].

Hence this action coincides with the action of V as in (4.6) and (4.7).

Remark 4.9. In coordinates (p, x) if the vector field X is written X =
∑n

i=1Xi
∂
∂xi

then aX(p, x) =∑n
i=1 piXi and the Hamitonian vector field ~aX is written as follows

~aX =

n∑

i=1

Xi
∂

∂xi
−

n∑

i,j=1

pi
∂Xi

∂xj

∂

∂pj
. (4.22)

Notice that the projection of ~aX onto M coincides with X itself, i.e., π∗(~aX) = X.

This construction can be extended to the case of nonautonomous vector fields.

Proposition 4.10. Let Xt be a nonautonomous vector field and denote by P0,t the flow of Xt on
M . Then the nonautonomous vector field on T ∗M

Vt :=
−→aXt , aXt(λ) = 〈λ,Xt(q)〉 ,

is the generator of the flow (P−1
0,t )

∗.

4.2 The symplectic structure

In this section we introduce the symplectic structure of T ∗M following the classical construction. In
subsection 4.2.1 we show that the symplectic form can be interpreted as the “dual” of the Poisson
bracket, in a suitable sense.

Definition 4.11. The tautological (or Liouville) 1-form s ∈ Λ1(T ∗M) is defined as follows:

s : λ 7→ sλ ∈ T ∗
λ (T

∗M), 〈sλ, w〉 := 〈λ, π∗w〉 , ∀λ ∈ T ∗M, w ∈ Tλ(T ∗M),

where π : T ∗M →M denotes the canonical projection.

The name “tautological” comes from its expression in coordinates. Recall that, given a system
of coordinates x = (x1, . . . , xn) on M , canonical coordinates (p, x) on T ∗M are coordinates for
which every element λ ∈ T ∗M is written as follows

λ =
n∑

i=1

pidxi.

For every w ∈ Tλ(T ∗M) we have the following

w =

n∑

i=1

αi
∂

∂pi
+ βi

∂

∂xi
=⇒ π∗w =

n∑

i=1

βi
∂

∂xi
,
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hence we get

〈sλ, w〉 = 〈λ, π∗w〉 =
n∑

i=1

piβi =

n∑

i=1

pi 〈dxi, w〉 =
〈

n∑

i=1

pidxi, w

〉
.

In other words the coordinate expression of the Liouville form s at the point λ coincides with the
one of λ itself, namely

sλ =
n∑

i=1

pidxi. (4.23)

Exercise 4.12. Let s ∈ Λ1(T ∗M) be the tautological form. Prove that

ω∗s = ω, ∀ω ∈ Λ1(M).

(Recall that a 1-form ω is a section of T ∗M , i.e. a map ω :M → T ∗M such that π ◦ ω = id).

Definition 4.13. The differential of the tautological 1-form σ := ds ∈ Λ2(T ∗M) is called the
canonical symplectic structure on T ∗M .

By construction σ is a closed 2-form on T ∗M . Moreover σ is non degenerate and its expression
in canonical coordinates (p, x) is written as follows

σ =
n∑

i=1

dpi ∧ dxi. (4.24)

Remark 4.14 (The symplectic form in non-canonical coordinates). Given a basis of 1-forms ω1, . . . , ωn
in Λ1(M), one can build coordinates on the fibers of T ∗M as follows.

Every λ ∈ T ∗M can be written uniquely as λ =
∑n

i=1 hiωi. Thus hi become coordinates on the
fibers. Notice that these coordinates are not related to any choice of coordinates on the manifold,
as the p were. By definition, in these coordinates, we have

s =

n∑

i=1

hiωi, σ = ds =

n∑

i=1

dhi ∧ ωi + hidωi. (4.25)

Notice that, with respect to (4.24) in the expression of σ an extra term appears since, in general,
the 1-forms ωi are not closed.

4.2.1 The symplectic form vs the Poisson bracket

Let V be a finite dimensional vector space and V ∗ denotes its dual (i.e. the space of linear forms
on V ). By classical linear algebra arguments one has the following identifications

{
non degenerate

bilinear forms on V

}
≃
{
linear invertible maps

V → V ∗

}
≃
{

non degenerate
bilinear forms on V ∗

}
. (4.26)

Indeed to every bilinear form B : V × V → R we can associate a linear map L : V → V ∗ defined
by L(v) = B(v, ·). On the other hand, given a linear map L : V → V ∗, we can associate with it
a bilinear map B : V × V → R defined by B(v,w) = 〈L(v), w〉, where 〈·, ·〉 denotes as usual the
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pairing between a vector space and its dual. Moreover B is non-degenerate if and only if the map
B(v·) is an isomorphism for every v ∈ V , that is if and only if L is invertible.

The previous argument shows how to identify a bilinear form on B on V with an invertible
linear map L from V to V ∗. Applying the same reasoning to the linear map L−1 one obtain a
bilinear map on V ∗.

Exercise 4.15. 1. Let h ∈ C∞(T ∗M). Prove that the Hamiltonian vector field ~h ∈ Vec(T ∗M)
satisfies the following identity

σ(·,~h(λ)) = dλh, ∀λ ∈ T ∗M.

2. Prove that, for every λ ∈ T ∗M the bilinear forms σλ on Tλ(T
∗M) and {·, ·}λ on T ∗

λ (T
∗M)

(cf. Remark 4.6) are dual under the identification (4.26). In particular show that

{a, b} = ~a(b) = 〈db,~a〉 = σ(~a,~b), ∀ a, b ∈ C∞(T ∗M). (4.27)

Remark 4.16. Notice that σ is nondegenerate, which means that the map w 7→ σλ(·, w) defines a
linear isomorphism between the vector spaces Tλ(T

∗M) and T ∗
λ (T

∗M). Hence ~h is the vector field

canonically associated by the symplectic structure with the differential dh. For this reason ~h is also
called symplectic gradient of h.

From formula (4.24) we have that in canonical coordinates (p, x) the Hamiltonian vector filed
associated with h is expressed as follows

~h =
n∑

i=1

∂h

∂pi

∂

∂xi
− ∂h

∂xi

∂

∂pi
,

and the Hamiltonian system λ̇ = ~h(λ) is rewritten as




ẋi =
∂h

∂pi

ṗi = −
∂h

∂xi

, i = 1, . . . , n.

We conclude this section with two classical but rather important results:

Proposition 4.17. A function a ∈ C∞(T ∗M) is a constant of the motion of the Hamiltonian
system associated with h ∈ C∞(T ∗M if and only if {h, a} = 0.

Proof. Let us consider a solution λ(t) = et
~h(λ0) of the Hamiltonian system associated with ~h, with

λ0 ∈ T ∗M . Let us prove the following formula for the derivative of the function a along the solution

d

dt
a(λ(t)) = {h, a}(λ(t)). (4.28)

By (4.28) it is easy to see that, if {h, a} = 0, then the derivative of the function a along the
flow vanishes for all t and then a is constant. Conversely, if a is constant along the flow then its
derivative vanishes and the Poisson bracket is zero.

The skew-simmetry of the Poisson brackets immediately implies the following corollary.

Corollary 4.18. A function h ∈ C∞(T ∗M) is a constant of the motion of the Hamiltonian system
defined by ~h.
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4.3 Characterization of normal and abnormal extremals

Now we can rewrite the Pontryagin Maximum Principle (see Theorem 3.41) using the symplectic
language developed in the last section.

Given a sub-Riemannian structure on M with generating frame {f1, . . . , fm}, and define the
fiberwise linear functions on T ∗M associated with these vector fields

hi : T
∗M → R, hi(λ) := 〈λ, fi(q)〉 , i = 1, . . . ,m.

Theorem 4.19 (PMP). Let γ : [0, T ] → M be an admissible curve which is a length-minimizer,
parametrized by constant speed. Let ũ(·) be the corresponding minimal control. Then there exists a
Lipschitz curve λ(t) ∈ T ∗

γ(t)M such that

λ̇(t) =
m∑

i=1

ũi(t)~hi(λ(t)), a.e. t ∈ [0, T ], (4.29)

and one of the following conditions is satisfied:

(N) hi(λ(t)) ≡ ũi(t), i = 1, . . . ,m, ∀ t,

(A) hi(λ(t)) ≡ 0, i = 1, . . . ,m, ∀ t.

Moreover in case (A) one has λ(t) 6= 0 for all t ∈ [0, T ].

Proof. The statement is a rephrasing of Theorem 3.41, combining Proposition 4.8 and Exercise
4.10.

Notice that Theorem 4.19 says that normal and abnormal extremals appear as solution of an
Hamiltonian system. Nevertheless, this Hamiltonian system is non autonomous and depends on
the trajectory itself by the presence of the controls ũi(t) associated with the extremal trajectory.

Moreover, the actual formulation of Theorem 4.29 for the necessary condition for optimality
still does not clarify if the extremals depend on the generating frame {f1, . . . , fm} for the sub-
Riemannian structure.

The rest of the section is devoted to the geometric intrinsic description of normal and abnormal
extremals.

4.3.1 Normal extremals

In this section we show that normal extremals are characterized as solutions of an smooth au-
tonomous Hamiltonian system on T ∗M , where the Hamiltonian H is a function that encodes all
the informations on the sub-Riemannian structure.

Definition 4.20. Let M be a sub-Riemannian manifold. The sub-Riemannian Hamiltonian is the
smooth function on T ∗M defined as follows

H : T ∗M → R, H(λ) = max
u∈Uq

(
〈λ, fu(q)〉 −

1

2
|u|2
)
, q = π(λ). (4.30)
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Proposition 4.21. The sub-Riemannian Hamiltonian H is quadratic on fibers. Moreover, for every
generating frame {f1, . . . , fm} of the sub-Riemannian structure, the sub-Riemannian Hamiltonian
H is written as follows

H(λ) =
1

2

k∑

i=1

〈λ, fi(q)〉2 , λ ∈ T ∗
qM, q = π(λ). (4.31)

Proof. In terms of a generating frame {f1, . . . , fm}, the sub-Riemannian Hamiltonian (3.55) is
written as follows

H(λ) = max
u∈Rm

(
m∑

i=1

ui 〈λ, fi(q)〉 −
1

2

m∑

i=1

u2i

)
. (4.32)

Differentiating (4.32) with respect to ui, one gets that the maximum is attained at ui = 〈λ, fi(q)〉,
from which formula (4.31) follows. The fact that H is quadratic on fibers then easily follows from
(4.31).

Exercise 4.22. Prove that two equivalent sub-Riemannian structures (U, f) and (U′, f ′) on a
manifold M define the same Hamiltonian.

Theorem 4.23. Every normal extremal is a solution of the Hamiltonian system λ̇(t) = ~H(λ(t)).
In particular, every normal extremal trajectory is smooth.

Proof. Denoting, as usual, hi(λ) = 〈λ, fi(q)〉 for i = 1, . . . ,m, the functions linear on fibers associ-

ated with a generating frame and using the identity
−→
h2i = 2hi~hi (see (4.12)), it follows that

~H =
1

2

−−−→
m∑

i=1

h2i =

m∑

i=1

hi~hi.

In particular, since along a normal extremal hi(λ(t)) = ũi(t) by condition (N) of Theorem 4.19,
one gets

~H(λ(t)) =

m∑

i=1

hi(λ(t))~hi(λ(t)) =

m∑

i=1

ũi(t)~hi(λ(t)).

Remark 4.24. In canonical coordinates λ = (p, x), H is quadratic with respect to p and

H(p, x) =
1

2

m∑

i=1

〈p, fi(x)〉2

The Hamiltonian system associated with H, in these coordinates, is written as follows





ẋ =
∂H

∂p
=
∑m

i=1 〈p, fi(x)〉 fi(x)

ṗ = −∂H
∂x

= −∑m
i=1 〈p, fi(x)〉 〈p,Dxfi(x)〉

(4.33)

From here it is easy to see that if λ(t) = (p(t), x(t)) is a solution of (4.33) then also the rescaled
extremal αλ(αt) = (α p(αt), x(αt)) is a solution of the same Hamiltonian system, for every α > 0.
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Proposition 4.25. A normal extremal trajectory is parametrized by constant speed. In particular
it is length parametrized if and only if its extremal lift is contained in the level set H−1(1/2).

Proof. Thanks to Proposition 4.17 the sub-Riemannian Hamiltonian H is constant along the flow
of ~H, i.e. on normal extremals. Hence for every normal extremal λ(t) associated with a control u(·)
we have

1

2

∫ T

0
‖γ(t)‖2dt = 1

2

∫ T

0
|u(t)|2dt = 1

2

∫ T

0

k∑

i=1

ui(t)
2dt

=

∫ T

0
H(λ(t))dt = H(λ0)T,

(4.34)

where we used the fact that, along a normal extremal, we have the relations for all t ∈ [0, T ]

H(λ(t)) = H(λ0) ui(t) = 〈λ(t), fi(γ(t))〉 . (4.35)

The fact that H is constant along λ(t), easily implies by (4.34) that ‖γ̇(t)‖2 is constant. Moreover
one easily gets that ‖γ̇(t)‖ = 1 if and only if H(λ(t)) ≡ 1/2.

Moreover, by Remark 4.24, all normal extremal trajectories are reparametrization of length
parametrized ones.

Remark 4.26. Let λ(t) be a normal extremal such that λ(0) = λ0 ∈ T ∗
q0M . The corresponding

normal extremal path γ(t) = π(λ(t)) can be written in the exponential notation

γ(t) = π ◦ et ~H(λ0).

By the previous discussion length parametrized normal extremal trajectories corresponds to the
choice of λ0 ∈ H−1(1/2).

We end this section by characterizing normal extremal trajectory as characteristic curves of the
canonical symplectic form contained in the level sets of H.

Definition 4.27. Let M be a smooth manifold and Ω ∈ ΛkM a 2-form. A Lipschitz curve
γ : [0, T ]→M is said characteristic for Ω if for almost every t ∈ [0, T ] it holds

γ̇(t) ∈ KerΩγ(t), (i.e. Ωγ(t)(γ̇(t), ·) = 0) (4.36)

Notice that this notion is independent on the parametrization of the curve.

Proposition 4.28. Let H be the sub-Riemannian Hamiltonian and assume that c > 0 is a reg-
ular value of H. Then a curve γ is a characteristic curve of σ|H−1(c) if and only if it is the
reparametrization of a normal extremal on H−1(c).

Proof. Recall that if c is a regular value of H, then the set H−1(c) is a smooth 2n− 1-dimensional
manifold in T ∗M .1 For every λ ∈ H−1(c) let us denote by Eλ = TλH

−1(c) its tangent space at this
point. Notice that, by construction, Eλ is an hyperplane (i.e., dimEλ = 2n − 1) and dλH

∣∣
Eλ

= 0.

The restriction σ|H−1(c) is computed by σλ|Eλ
, for each λ ∈ H−1(c).

1by Sard Theorem almost every c > 0 is regular value.
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One one hand kerσλ|Eλ
is non trivial since the dimension of Eλ is odd. On the other hand the

symplectic 2-form σ is nondegenerate on T ∗M , hence the dimension of ker σλ|Eλ
cannot be greater

than one. It follows that dimkerσλ|Eλ
= 1.

We are left to show that ker σλ|Eλ
= ~H(λ). Assume that ker σλ|Eλ

= Rξ, for some ξ ∈ Tλ(T ∗M).
By construction, Eλ coincides with the subspace that is skew-orthogonal to ξ, namely

Eλ = {w ∈ Tλ(T ∗M)) |σλ(ξ, w) = 0} = ξ∠.

Since, by antisymmetricity, σλ(ξ, ξ) = 0, it follows that ξ ∈ Eλ. Moreover, by definition of Hamil-
tonian vector field σ(·, ~H) = dH, hence for the restriction to Eλ one has

σλ(·, ~H(λ))
∣∣
Eλ

= dλH
∣∣
Eλ

= 0.

Exercise 4.29. The sub-Riemannian Hamiltonian encodes all the informations about the distri-
bution and the metric defined on it.

1. Prove that a vector v ∈ TqM satisfies v ∈ Dq and ‖v‖ ≤ 1 if and only if

1

2
|〈λ, v〉|2 ≤ H(λ), ∀λ ∈ T ∗

qM.

2. Show that this implies the following characterization for the sub-Riemannian Hamiltonian

H(λ) =
1

2
‖λ‖2, ‖λ‖ = sup

v∈Dq,|v|=1
|〈λ, v〉|.

In particular if the structure is Riemannian, H is the “inverse” norm defined on the cotangent
space.

4.3.2 Abnormal extremals

In this section we provide a geometric characterization of abnormal extremals. Even if for abnor-
mal extremals it is not possible to determine their a priori regularity, we show that they can be
characterized as characteristic curves of the symplectic form. This gives an unified point of view of
both class of extremals.

We recall that an abnormal extremal is a non zero solution of the following equations

λ̇(t) =
m∑

i=1

ui(t)~hi(λ(t)), hi(λ(t)) = 0, i = 1, . . . ,m.

where {f1, . . . , fm} is a generating frame for the sub-Riemannian structure and h1, . . . , hm are
the corresponding functions on T ∗M linear on fibers. In particular every abnormal extremal is
contained in the set

H−1(0) = {λ ∈ T ∗M, 〈λ, fi(q)〉 = 0, i = 1, . . . ,m, q = π(λ)}. (4.37)

where H denotes the sub-Riemannian Hamiltonian (4.31).

Proposition 4.30. Let H be the sub-Riemannian Hamiltonian and assume that 0 is a regular value
of H. Then a curve γ is a characteristic curve of σ|H−1(0) if and only if it is the reparametrization
of a normal extremal on H−1(0).
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Proof. In this proof we denote for simplicity N := H−1(0) ⊂ T ∗M . For every λ ∈ N we have the
identity

Kerσλ|N = TλN
∠ = span{~hi(λ), i = 1, . . . ,m}. (4.38)

Indeed, from the definition of N , it follows that

TλN = {w ∈ Tλ(T ∗M)| 〈dλhi, w〉 = 0, i = 1, . . . ,m}
= {w ∈ Tλ(T ∗M)|σ(w,~hi(λ)) = 0, i = 1, . . . ,m}
= span{~hi(λ), i = 1, . . . ,m}∠.

and (4.38) follows by taking the skew-orthogonal. Thus w ∈ TλH−1(0) if and only if w is a linear
combination of the vectors ~hi(λ). This implies that λ(t) is a characteristic curve for σ|H−1(0) if and
only if there exists controls ui(·) for i = 1, . . . ,m such that

λ̇(t) =
m∑

i=1

ui(t)~hi(λ(t)). (4.39)

The following exercise shows that the assumption of Proposition 4.30 is always satisfied in the
case of a regular sub-Riemannian structure.

Exercise 4.31. Assume that the sub-Riemannian structure is regular , namely the following as-
sumption holds

dimDq = dim spanq{f1, . . . , fm} = const. (4.40)

Shows that, under this assumption, 0 is a regular value for H. In particular, the set H−1(0) defined
by (4.37) is a smooth submanifold of T ∗M .

Remark 4.32. From Proposition 4.30 it follows that abnormal extremals do not depend on the
sub-Riemannian metric, but only on the distribution. Indeed the set H−1(0) is characterized as
the annihilator of the distribution

H−1(0) = {λ ∈ T ∗M | 〈λ, v〉 = 0, ∀ v ∈ Dπ(λ)} = D⊥ ⊂ T ∗M,

Here the orthogonal is meant in the duality sense.

Under the regularity assumption we can select (at least locally) a basis of 1-forms ω1, . . . , ωm
for the dual of the distribution

D⊥
q = span{ωi(q), i = 1, . . . ,m}, (4.41)

Let us complete this set of 1-forms to a basis ω1, . . . , ωn of T
∗M and consider the induced coordinates

h1, . . . , hn as defined in Remark 4.14. In these coordinates the restriction of the symplectic structure
D⊥ to is expressed as follows

σ|D⊥ = d(s|D⊥) =

m∑

i=1

dhi ∧ ωi + hidωi, (4.42)

We stress that the restriction σ|D⊥ can be written only in terms of the elements ω1, . . . , ωm (and
not of a full basis of 1-forms) since the differential d commutes with the restriction.
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Example: codimension one distribution and contact distributions

Let M be a n-dimensional manifold endowed with a constant rank distribution D of codimension
one, i.e., dimDq = n− 1 for every q ∈M . In this case D and D⊥ are sub-bundles of TM and T ∗M
respectively and their dimension, as smooth manifolds, are

dim D = dimM + rankD = 2n− 1,

dim D⊥ = dimM + rankD⊥ = n+ 1.

Since the symplectic form σ is skew-symmetric, by a dimensional argument we easily get that for
n even, the restriction σ|D⊥ has always a nontrivial kernel, hence there always exist characteristic
curves of σ|D⊥ , that correspond to reparametrized abnormal extremals by Proposition 4.30.

Let us consider in more detail the simplest case n = 3. Assume that there exists a one form
ω0 ∈ Λ1(M) such that D = kerω (this is not restrictive, at least for a local description). Consider
a basis of one forms ω0, ω1, ω2 such that ω0 := ω and the associated coordinates h0, h1, h2 the
coordinate associated to these forms (see Remark 4.14). By (4.42)

σ|D⊥ = dh0 ∧ ω + h0 dω, (4.43)

and we can easily compute (recall that D⊥ is 4-dimensional)

σ ∧ σ|D⊥ = 2h0 dh0 ∧ ω ∧ dω. (4.44)

Lemma 4.33. Let N be a smooth 2k-dimensional manifold and Ω ∈ Λ2M . Then Ω is nondegen-
erate on N if and only if ∧kΩ 6= 0.2

Definition 4.34. LetM be a three dimensional manifold. We say that a constant rank distribution
D on M of corank one is a contact distribution if ω ∧ dω 6= 0.

Since M is three dimensional, the differential form ω ∧ dω is a top dimensional form, hence it
is meaningful to consider the set, called Martinet set

M = {q ∈M | (ω ∧ dω)|q = 0} ⊂M.

Corollary 4.35. Under the previous assumptions all nontrivial abnormal extremal trajectories are
contained in the Martinet set M. In particular if the structure is contact, there are no nontrivial
abnormal extremal trajectories.

Proof. Assume that the structure is contact. Then ω∧dω 6= 0 and, thanks to (4.44), it follows that
σ ∧ σ|D⊥ 6= 0. By Lemma 4.33 σ|D⊥ is non degenerate (notice that dh0 is always independent on
ω∧dω since they depend on coordinates on the fibers and on the manifold, respectively). This shows
that, under the contact assumption, the set M is empty and there exists no nontrivial characteristic
curve of σ|D⊥ . The first part of the statement follows by analogue arguments.

Remark 4.36. Since M is three dimensional, we can write

ω ∧ dω = adV

2Here ∧kΩ = Ω ∧ . . . ∧ Ω
︸ ︷︷ ︸

k

.
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where a ∈ C∞(M) and dV is some smooth volume form on M , that is a never vanishing 3-form on
M .

In particular the Martinet set is M = a−1(0) and the distribution is contact if and only if a
is never vanishing. If 0 is a regular value of a, the set a−1(0) defines a two dimensional surface
on M , called the Martinet surface. Recall that this condition is true for a generic choice of the
distribution.

In this case abnormal extremal trajectories can be precisely characterized as the horizontal
curves that are contained in the Martinet surface M. The intersection of the tangent bundle to
the surface M and the 2-dimensional distribution of admissible velocities defines, generically, a line
field on M. Abnormal extremal trajectories are exactly (reparametrized) integral curves of this line
field.

Exercise 4.37. Prove that if two smooth Hamiltonians h1, h2 : T ∗M → R define the same level
set, i.e. E = {h1 = c1} = {h2 = c2} for some c1, c2 ∈ R, then their Hamiltonian flow ~h1,~h2 coincide
on E, up to a reparametrization.

4.4 Lie derivatives

In this section we extend the notion of Lie derivative, already introduced for vector fields in Section
3.3), to differential forms. Recall that if X,Y ∈ Vec(M) are two vector fields we define

LXY =
d

dt

∣∣∣∣
t=0

e−tX∗ Y = [X,Y ].

If P : M →M is a diffeomorphism we can consider the pullback P ∗ : T ∗
P (q)M → T ∗

qM and extend

its action to k-forms. Let ω ∈ ΛkM , we define P ∗ω ∈ ΛkM in the following way:

(P ∗ω)q(ξ1, . . . , ξk) := ωP (q)(P∗ξ1, . . . , P∗ξk), q ∈M, ξi ∈ TqM. (4.45)

It is an easy check that this operation is linear and satisfies the two following properties

P ∗(ω1 ∧ ω2) = P ∗ω1 ∧ P ∗ω2, (4.46)

P ∗ ◦ d = d ◦ P ∗. (4.47)

Definition 4.38. Let X ∈ Vec(M) and ω ∈ ΛkM . We define the Lie derivative of ω with respect
to X as

LX : ΛkM → ΛkM, LXω =
d

dt

∣∣∣∣
t=0

(etX)∗ω. (4.48)

From (4.46) and (4.47), we easily deduce the following properties of the Lie derivative:

(i) LX(ω1 ∧ ω2) = (LXω1) ∧ ω2 + ω1 ∧ (LXω2),

(ii) LX ◦ d = d ◦ LX .

The first of these properties can be also expressed by saying that LX is a derivation of the exterior
algebra of k-forms.

The Lie derivative combines together a k-form and a vector field defining a new k-form. A second
way of combining these two object is to define their inner product, by defining a (k − 1)-form.
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Definition 4.39. Let X ∈ Vec(M) and ω ∈ ΛkM . We define the inner product of ω and X as the
operator iX : ΛkM → Λk−1M , where we set

(iXω)(Y1, . . . , Yk−1) := ω(X,Y1, . . . , Yk−1), Yi ∈ Vec(M). (4.49)

One can show that the operator iX is an anti-derivation, in the following sense:

iX(ω1 ∧ ω2) = (iXω1) ∧ ω2 + (−1)k1ω1 ∧ (iXω2), ωi ∈ ΛkiM, i = 1, 2. (4.50)

We end this section proving two classical formulas linking together these notions, and usually
referred as Cartan’s formulas.

Proposition 4.40 (Cartan’s formula). The following identity holds true

LX = iX ◦ d+ d ◦ iX . (4.51)

Proof. Define DX := iX ◦ d+ d ◦ iX . It is easy to check that DX is a derivation on the algebra of
k-forms, since iX and d are anti-derivations. Let us show that DX commutes with d. Indeed, using
that d2 = 0, one can write

d ◦DX = d ◦ iX ◦ d = DX ◦ d.

Moreover, since any k-form can be expressed in coordinates as ω =
∑
ωi1...ikdxi1 . . . dxik , it is

sufficient to prove that LX coincide with DX on functions. This last property is easily checked by

DXf = iX(df) + d(iXf)︸ ︷︷ ︸
=0

= 〈df,X〉 = Xf = LXf.

Corollary 4.41. Let X,Y ∈ Vec(M) and ω ∈ Λ1M , then

dω(X,Y ) = X 〈ω, Y 〉 − Y 〈ω,X〉 − 〈ω, [X,Y ]〉 . (4.52)

Proof. On one hand Definition 4.38 implies, by Leibnitz rule

〈LXω, Y 〉q =
d

dt

∣∣∣∣
t=0

〈
(etX )∗ω, Y

〉
q

=
d

dt

∣∣∣∣
t=0

〈
ω, etX∗ Y

〉
etX(q)

= X 〈ω, Y 〉 − 〈ω, [X,Y ]〉 .

On the other hand, Cartan’s formula (4.51) gives

〈LXω, Y 〉 = 〈iX(dω), Y 〉+ 〈d(iXω), Y 〉
= dω(X,Y ) + Y 〈ω,X〉 .

Comparing the two identities one gets (4.52).
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4.5 Examples

4.5.1 2D Riemannian Geometry

Let M be a 2-dimensional manifold and f1, f2 ∈ Vec(M) a local orthonormal frame for the Rie-
mannian structure. The problem of finding geodesics in M could be described as optimal control
problem

q̇ = u1f1(q) + u2f2(q),

where length and action are expressed as

ℓ(q(·)) =
∫ T

0

√
u21 + u22 dt, J(q(·)) = 1

2

∫ T

0
u21 + u22 dt.

Equations of geodesics are projections of integral curves of the sub-Riemannian Hamiltonian in
T ∗M

H =
1

2
(h21 + h22), hi(λ) = 〈λ, fi(q)〉 .

Now we consider coordinates (q, h1, h2) on T ∗M and using that on solutions we have ui(t) =
hi(λt), we find equation on the base:

q̇ = h1f1(q) + h2f2(q), (4.53)

and equation on the fiber (remember that along solutions ȧ = {H, a})
{
ḣ1 = {H,h1} = −{h1, h2}h2
ḣ2 = {H,h2} = {h1, h2}h1

(4.54)

from here we can also show directly that H is constant along solution, because

Ḣ = h1ḣ1 + h2ḣ2 = 0.

We fix the level

H =
1

2
⇐⇒ h21 + h22 = 1,

and we restrict to the spherical bundle SM (see Example 2.43)

h1 = cos θ, h2 = sin θ,

and equations (4.53) and (4.54) become:

{
θ̇ = {h1, h2}
q̇ = cos θf1(q) + sin θf2(q)

(4.55)

Moreover we have {h1, h2}(λ) = 〈λ, [f1, f2]〉 so that, if we let

[f1, f2] = a1f1 + a2f2, a1, a2 ∈ C∞(M),

we have
{h1, h2} = a1h1 + a2h2.
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{
θ̇ = a1(q) cos θ + a2(q) sin θ

q̇ = cos θf1(q) + sin θf2(q)
(4.56)

In other words we are saying that an arc-length parametrized curve on M (i.e. a curve which
satisfies the second equation) is a geodesic if and only if it satisfies the first! Heuristically this
suggests that the quantity

θ̇ − a1(q) cos θ − a2(q) sin θ,

has some relation with the geodesic curvature on M .

Let µ1, µ2 the dual frame of f1, f2 (so that dV = µ1 ∧ µ2) and consider the Hamiltonian field in
these coordinates

~H = cos θf1 + sin θf2 + (a1 cos θ + a2 sin θ)∂θ. (4.57)

The Levi-Civita connection on M is expressed by some coefficients (see Chapter ??)

ω = dθ + b1µ1 + b2µ2,

where bi = bi(q). On the other hand geodesics are projections of integral curves of ~H so that

〈ω, ~H〉 = 0 =⇒ b1 = −a1, b2 = −a2.

In particular if we apply ω = dθ − a1µ1 − a2µ2 to a generic curve (not necessarily a geodesic)

λ = cos θf1 + sin θf2 + θ̇ ∂θ,

which projects on γ we find geodesic curvature

κg(γ) = θ̇ − a1(q) cos θ − a2(q) sin θ,

as we infer above. To end this section we prove a useful formula for the Gaussian curvature of M

Corollary 4.42. If κ denotes the Gaussian curvature of M we have

κ = f1(a2)− f2(a1)− a21 − a22.

Proof. From (1.25) we have dω = −κdV where dV = µ1 ∧ µ2 is the Riemannian volume form. On
the other hand, using the following identities

dµi = −aiµ1 ∧ µ2, dai = f1(ai)µ1 + f2(ai)µ2, i = 1, 2.

we can compute

dω = −da1 ∧ µ1 − da2 ∧ µ2 − a1dµ1 − a2dµ2
= −(f1(a2)− f2(a1)− a21 − a22)µ1 ∧ µ2.
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4.5.2 Isoperimetric problem

Let M be a 2-dimensional Riemannian manifold, ν its volume form. A ∈ Λ1M and c ∈ R fixed.
Problem. Fixed q0, q1 ∈M , find (if exists) the minimum:

min{ℓ(γ), γ(0) = q0, γ(T ) = q1,

∫

γ
A = c}. (4.58)

Remark 4.43. Local minimizers depend only on dA, i.e. if we add an exact term to A we will find
same minima for the problem (obviously value of c will change!).

Problem 1 can be reformulated as a sub-Riemannian problem on the extended manifold

M̂ = R×M,

that means that solutions of the problem (4.58) turns to be geodesics for the sub-Riemannian

structure on M̂ .

So we define on the extended manifold the 1-form:

ω = dy −A, M̂ = {(y, q), y ∈ R, q ∈M}.

Admissible curves are pairs z(t) = (y(t), γ(t)) such that ż(t) ∈ ∆z(t), i.e. ω(ż(t)) = 0. This implies

ω(ż(t)) = ẏ(t)− 〈A, γ̇(t)〉 = 0.

In other words γ(t) is a curve on M and y(t) satisfies the identity

y(t) = y0 +

∫

γt

A, where γt = γ|[0,t].

In particular we can recover a basis for the distribution

{
γ̇ = u1f1 + u2f2

ẏ = u1 〈A, f1〉 ∂y + u2 〈A, f2〉 ∂y
⇒
(
γ̇
ẏ

)
= u1

(
f1

〈A, f1〉 ∂y

)
+ u2

(
f2

〈A, f2〉 ∂y

)
, (4.59)

and D = span(F1, F2) where

F1 = f1 + 〈A, f1〉 ∂y, F2 = f2 + 〈A, f2〉 ∂y.

Remark 4.44. Notice that the projection of the control system

ż = u1F1(z) + u2F2(z),

on the manifold M is

γ̇ = u1f1(γ) + u2f2(γ),

from which follows that the sub-Riemannian length on M̂ coincide exactly with the Riemannian
one on M .
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We denote with hi = 〈λ, Fi(q)〉 the Hamiltonians linear on fibers of T ∗M̂ and we want to
compute normal and abnormal geodesics of this problem. With analogous computations of 2D case
we get {

q̇ = cos θF1(q) + sin θF2(q)

θ̇ = {h1, h2}
(4.60)

where we have to compute {h1, h2} = 〈λ, [F1, F2]〉. We set, as in the previous paragraph:

[f1, f2] = a1f1 + a2f2, a1, a2 ∈ C∞(M). (4.61)

so that

[F1, F2] = [f1 + 〈A, f1〉 ∂y, f2 + 〈A, f2〉 ∂y]
= [f1, f2] + (f1 〈A, f2〉 − f2 〈A, f1〉)∂y

(by (4.61)) = a1(F1 − a1 〈A, f1〉) + a2(F2 − a2 〈A, f2〉) + f1 〈A, f2〉 − f2 〈A, f1〉)∂y
= a1F1 + a2F2 + dA(f1, f2)∂y.

where in the last equality we use (4.52).

Being dA ∈ Λ2M a volume form, dA = bµ1 ∧ µ2, for some b ∈ C∞(M). Then

[F1, F2] = a1F1 + a2F2 + b∂y.

Let we consider now h0 linear on fibers Hamiltonian associated with ∂y. From the previous we get

{h1, h2} = a1h1 + a2h2 + bh0.

It follows that {
θ̇ = a1 cos θ + a2 sin θ + bh0

ḣ0 = 0⇒ h0 = const.
(4.62)

In other words

κg(γ) = θ̇ − a1(q) cos θ − a2(q) sin θ = h0b. (4.63)

Normal geodesics are curves with geodesic curvature proportional to the function b at every
point. In the case M = R

2 and b = b0 costant we have that normal geodesics of this problem are
circles on M (and helix on M̂).

Abnormal geodesics are contained in the set of points where ω ∧ dω = 0.

ω ∧ dω = (dy −A) ∧ (bµ1 ∧ µ2)
= bdy ∧ µ1 ∧ µ2.

In other words abnormal geodesics are connected components of b−1(0). They are independent on
the metric and, in general, they are not normal geodesics.

4.5.3 Heisenberg case

To be done
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4.6 Symplectic geometry

In this section we generalize some of the construction we considered on the cotangent bundle T ∗M
to the case of a general symplectic manifold.

Definition 4.45. A symplectic manifold (N,σ) is a smooth manifold N endowed with a closed,
non degenerate 2-form σ ∈ Λ2(N). A symplectomorphism of N is a diffeomorphism φ : N → N
such that φ∗σ = σ.

Notice that a symplectic manifold N is necessarily even-dimensional. We stress that, in general,
the symplectic form σ is not necessarily exact, as in the case of N = T ∗M .

The symplectic structure on a symplectic manifold N permits us to define the Hamiltonian
vector field ~h ∈ Vec(N) associated with a function h ∈ C∞(N) by the formula i~hσ = −dh, or
equivalently σ(·,~h) = dh.

Proposition 4.46. A diffeomorphism φ : N → N is a symplectomorphism if and only if for every
h ∈ C∞(N):

(φ−1
∗ )~h =

−−−→
h ◦ φ. (4.64)

Proof. Assume that φ is a symplectomorphism, namely φ∗σ = σ. More precisely, this means that
for every λ ∈ N and every v,w ∈ TλN one has

σλ(v,w) = (φ∗σ)λ(v,w) = σφ(λ)(φ∗v, φ∗w),

where the second equality is the definition of φ∗σ. If we apply the above equality at w = φ−1
∗ ~h one

gets, for every λ ∈ N and v ∈ TλN

σλ(v, φ
−1
∗ ~h) = (φ∗σ)λ(v, φ

−1
∗ ~h) = σφ(λ)(φ∗v,~h)

=
〈
dφ(λ)h, φ∗v

〉
=
〈
φ∗dφ(λ)h, v

〉
.

= 〈d(h ◦ φ), v〉

This shows that σλ(·, φ−1
∗ ~h) = d(h ◦ φ), that is exactly (4.64). The converse implication follows

analogously.

Next we want to characterize those vector fields whose flow generates a one-parametric family
of symplectomorphisms.

Lemma 4.47. Let X ∈ Vec(N) be a complete vector field on a symplectic manifold (N,σ). The
following properties are equivalent

(i) (etX )∗σ = σ for every t ∈ R,

(ii) LXσ = 0,

(iii) iXσ is a closed 1-form on N .

Proof. By the group property e(t+s)X = etX ◦ esX one has the following identity for every t ∈ R:

d

dt
(etX )∗σ =

d

ds

∣∣∣∣
s=0

(etX)∗(esX)∗σ = (etX )∗LXσ.
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This proves the equivalence between (i) and (ii), since the map (etX )∗ is invertible for every t ∈ R.

Recall now that the symplectic form σ is, by definition, a closed form. Then dσ = 0 and
Cartan’s formula (4.51) reads as follows

LXσ = d(iXσ) + iX(dσ) = d(iXσ).

This proves the the equivalence between (ii) and (iii).

Corollary 4.48. The flow of a Hamiltonian vector field defines a flow of symplectomorphisms.

Proof. This is a direct consequence of the fact that, for an Hamitonian vector field ~h, one has
i~hσ = −dh. Hence i~hσ is a cloded form (actually exact) and property (iii) of Lemma 4.47 holds.

Notice that the converse of Corollary 4.48 is true when N is simply connected, since in this case
every closed form is exact.

Definition 4.49. Let (N,σ) be a symplectic manifold and a, b ∈ C∞(N). The Poisson bracket
between a and b is defined as {a, b} = σ(~a,~b).

We end this section by collecting some properties of the Poisson bracket that follow from the
previous results.

Proposition 4.50. The Poisson bracket satisfies the identities

(i) {a, b} ◦ φ = {a ◦ φ, b ◦ φ}, ∀ a, b ∈ C∞(N),∀φ ∈ Sympl(N),

(ii) {a, {b, c}} + {c, {a, b}} + {b, {c, a}} = 0, ∀ a, b, c ∈ C∞(N).

Proof. Property (i) follows from (4.64). Property (ii) follows by considering φ = et~c in (i), for some
c ∈ C∞(N),. and computing the derivative with respect to t at t = 0.

Finally we are able to prove the following generalization of (??).

Corollary 4.51. For every a, b ∈ C∞(N) we have

−−−→{a, b} = [~a,~b]. (4.65)

Proof. Property (ii) of Proposition 4.50 can be rewritten, by skew-symmetry of the Poisson bracket,
as follows

{{a, b}, c} = {a, {b, c}} − {b, {a, c}}. (4.66)

Using that {a, b} = σ(~a,~b) = ~ab one can rewrite again (4.66) as

−−−→{a, b}c = ~a(~bc)−~b(~ac) = [~a,~b]c.

Remark 4.52. Property (ii) of Proposition 4.50 says that {a, ·} is a derivation of the algebra C∞(N).
Moreover, the space C∞(N) endowed with {·, ·} as a product is a Lie algebra isomorphic to a sub-
algebra of Vec(N). Indeed, by (4.65), the correspondence a 7→ ~a is a Lie algebra homomorphism
between C∞(N) and Vec(N).
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4.7 Local minimality of normal trajectories

In this section we prove a fundamental result about local optimality of normal trajectories. More
precisely we show small pieces of a normal trajectory are length minimizers.

4.7.1 The Poincaré-Cartan one form

Fix a smooth function a ∈ C∞(M) and consider the smooth submanifold of T ∗M defined by the
graph of its differential

L0 = {dqa | q ∈M} ⊂ T ∗M. (4.67)

Notice that the restriction of the canonical projection π : T ∗M →M to L0 defines a diffeomorphism
between L0 and M , hence dimL0 = n. Let us then consider the image Lt of L0 under the
Hamiltonian flow

Lt := et
~H(L0), t > 0, (4.68)

and define the (n+ 1)-dimensional manifold with boundary in T ∗M × R as follows

L = {(t, λ) ∈ R× T ∗M |λ ∈ Lt, 0 ≤ t ≤ T} (4.69)

= {(t, et ~Hλ0) ∈ R× T ∗M |λ0 ∈ L0, 0 ≤ t ≤ T}. (4.70)

Here we assume that the Hamiltonian flow is defined on the interval [0, T ].
Finally, let us introduce the Poincaré-Cartan 1-form on T ∗M × R ≃ T ∗(M × R) defined by

s−Hdt ∈ Λ1(T ∗M × R)

where s ∈ Λ1(T ∗M) denotes, as usual, the tautological 1-form of T ∗M . We start by proving a
preliminary lemma.

Lemma 4.53. s|L0 = d(a ◦ π)|L0

Proof. By definition of tautological 1-form sλ(w) = 〈λ, π∗w〉, for every w ∈ Tλ(T ∗M). If λ ∈ L0
then λ = dqa, where q = π(λ). Hence for every w ∈ Tλ(T ∗M)

sλ(w) = 〈λ, π∗w〉 = 〈dqa, π∗w〉 = 〈π∗dqa,w〉 = 〈dq(a ◦ π), w〉 .

Proposition 4.54. The 1-form (s−Hdt)|L is exact.

Proof. We divide the proof in two steps: (i) we show that the restriction of the Poincare-Cartan
1-form (s−Hdt)|L is closed and (ii) that it is exact.

(i). To prove that the 1-form is closed we need to show that the differential

d(s −Hdt) = σ − dH ∧ dt, (4.71)

vanishes when applied to a pair of tangent vectors to L. Since, for each t ∈ [0, T ], the set Lt has
codimension 1 in L, there are only two possibilities for the choice of the two tangent vectors:

(a) both vectors are tangent to Lt, for some t ∈ [0, T ].

(b) one vector is tangent to Lt while the second one is transversal.
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Case (a). Since both tangent vectors are tangent to Lt, it is enough to show that the restriction of
the one form σ− dH ∧ dt to Lt is zero. First let us notice that dt vanishes when applied to tangent

vectors to Lt, thus σ − dH ∧ dt|Lt = σ|Lt . Moreover, since by definition Lt = et
~H(L0) one has

σ|Lt = σ|
et ~H (L0)

= (et
~H )∗σ|L0 = σ|L0 = ds|L0 = d2(a ◦ π)|L0 = 0.

where in the last line we used Lemma 4.53 and the fact that (et
~H)∗σ = σ, since et

~H is an Hamiltonian
flow and thus preserves the symplectic form.
Case (b). The manifold L is, by construction, the image of the smooth mapping

Ψ : [0, T ]× L0 → [0, T ]× T ∗M, Ψ(t, λ) 7→ (t, et
~Hλ),

Thus a tangent vector to L that is transversal to Lt can be obtained by differentiating the map Ψ
with respect to t:

∂Ψ

∂t
(t, λ) = ~H(λ) +

∂

∂t
∈ T(t,λ)L. (4.72)

It is then sufficient to show that the vector (4.72) is in the kernel of the two form σ − dH ∧ dt. In
other words we have to prove

i ~H+∂t
(σ − dH ∧ dt) = 0. (4.73)

The last equality follows from the following identities

i ~Hσ = σ( ~H, ·) = −dH, i∂tσ = 0,

i ~H(dH ∧ dt) = (i ~HdH︸ ︷︷ ︸
=0

) ∧ dt− dH ∧ (i ~Hdt︸︷︷︸
=0

) = 0,

i∂t(dH ∧ dt) = (i∂tdH︸ ︷︷ ︸
=0

) ∧ dt− dH ∧ (i∂tdt︸︷︷︸
=1

) = −dH.

where we used that i ~HdH = dH( ~H) = {H,H} = 0.
(ii). Next we show that the form s − Hdt|L is exact. To this aim we have to prove that, for

every closed curve Γ in L one has ∫

Γ
s−Hdt = 0. (4.74)

Every curve Γ in L can be written as follows

Γ : [0, T ]→ L, Γ(s) = (t(s), et(s)
~Hλ(s)), where λ(s) ∈ L0.

Moreover, it is easy to see that the continuous map defined by

K : [0, T ] ×L → L, K(τ, (t, et
~Hλ0)) = (t− τ, e(t−τ) ~Hλ0)

defines an homotopy of L such that K(0, (t, et
~Hλ0)) = (t, et

~Hλ0) and K(t, (t, et
~Hλ0)) = (0, λ0).

Then the curve Γ is homotopic to the curve Γ0(s) = (0, λ(s)). Since the 1-form s−Hdt is closed,
the integral is invariant under homotopy, namely

∫

Γ
s−Hdt =

∫

Γ0

s−Hdt.
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Moreover, the integral over Γ0 is computed as follows (recall that Γ0 ⊂ L0 and dt = 0 on L0):
∫

Γ0

s−Hdt =
∫

Γ0

s =

∫

Γ0

d(a ◦ π) = 0,

where we used Lemma 4.53 and the fact that the integral of an exact form over a closed curve is
zero. Then (4.74) follows.

4.7.2 Normal trajectory are geodesics

Now we are ready to prove a sufficient condition that ensures the optimality of small pieces of normal
trajectories. As a corollary we will get that small pieces of normal trajectories are geodesics.

Recall that normal trajectories for the problem

q̇ = fu(q) =

m∑

i=1

uifi(q), (4.75)

where f1, . . . , fm is a generating frame for the sub-Riemannian structure are projections of integral
curves of the Hamiltonian vector fields associated with the sub-Riemannian Hamiltonian

λ̇(t) = ~H(λ(t)), (i.e. λ(t) = et
~H(λ0)), (4.76)

γ(t) = π(λ(t)), t ∈ [0, T ]. (4.77)

where

H(λ) = max
u∈Uq

{
〈λ, fu(q)〉 −

1

2
|u|2
}

=
1

2

m∑

i=1

〈λ, fi(q)〉2 . (4.78)

Theorem 4.55. Assume that there exists a ∈ C∞(M) such that the restriction of the projection
π|Lt is a diffeomorphism for every t ∈ [0, T ]. Then for any λ0 ∈ L0 the normal geodesic

γ̃(t) = π ◦ et ~H(λ0), t ∈ [0, T ], (4.79)

is a strict length-minimizer among all admissible curves γ with the same boundary conditions.

Proof. Let γ(t) be an admissible trajectory, different from γ̃(t), associated with the control u(t)
and such that γ(0) = γ̃(0) and γ(T ) = γ̃(T ). We denote by ũ(t) the control associated with the
curve γ̃(t).

By assumption, for every t ∈ [0, T ] the map π|Lt : Lt → M is a local diffeomorphism, thus the
trajectory γ(t) can be uniquely lifted to a smooth curve λ(t) ∈ Lt. Notice that the corresponding
curves Γ and Γ̃ in L defined by

Γ(t) = (t, λ(t)), Γ̃(t) = (t, λ̃(t)) (4.80)

have the same boundary conditions, since for t = 0 and t = T they project to the same base point
on M and their lift is uniquely determined by the diffeomorphisms π|L0 and π|LT

, respectively.
Recall now that, by definition of the sub-Riemannian Hamiltonian, we have

H(λ(t)) ≤
〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2, γ(t) = π(λ(t)), (4.81)
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where λ(t) is a lift of the trajectory γ(t) associated with a control u(t). Moreover, the equality
holds in (4.81) if and only if λ(t) is a solution of the Hamiltonian system λ̇(t) = H(λ(t)). For this
reason we have the relations

H(λ(t)) <
〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2, (4.82)

H(λ̃(t)) =
〈
λ̃(t), fũ(t)(γ̃(t))

〉
− 1

2
|ũ(t)|2. (4.83)

since λ̃(t) is a solution of the Hamiltonian equation by assumptions, while λ(t) is not. Indeed
λ(t) and λ̃(t) have the same initial condition, hence, by uniqueness of the solution of the Cauchy
problem, it follows that λ̇(t) = H(λ(t)) if and only if λ(t) = λ̃(t), that implies that γ̃(t) = γ(t).

Let us then show that the energy associated with the curve γ is bigger than the one of the curve
γ̃. Actually we prove the following chain of (in)equalities

1

2

∫ T

0
|ũ(t)|2dt =

∫

Γ̃
s−Hdt =

∫

Γ
s−Hdt < 1

2

∫ T

0
|u(t)|2dt, (4.84)

where Γ and Γ̃ are the curves in L defined in (4.80).
By Lemma 4.54, the 1-form s − Hdt is exact. Then the integral over the closed curve Γ ∪ Γ̃

vanishes, and one gets ∫

Γ̃
s−Hdt =

∫

Γ
s−Hdt.

The last inequality in (4.84) can be proved as follows

∫

Γ
s−Hdt =

∫ T

0
〈λ(t), γ̇(t)〉 −H(λ(t))dt

=

∫ T

0

〈
λ(t), fu(t)(γ(t))

〉
−H(λ(t))dt

<

∫ T

0

〈
λ(t), fu(t)(γ(t))

〉
−
(〈
λ(t), fu(t)(γ(t))

〉
− 1

2
|u(t)|2

)
dt (4.85)

=
1

2

∫ T

0
|u(t)|2dt.

where we used (4.82). A similar computation gives computation, using (4.83), gives

∫

Γ̃
s−Hdt = 1

2

∫ T

0
|ũ(t)|2dt, (4.86)

that ends the proof of (4.84).

As a corollary we state a local version of the same theorem, that can be proved by adapting
the above technique.

Corollary 4.56. Assume that there exists a ∈ C∞(M) and neighborhoods Ωt of γ̃(t), such that

π ◦ et ~H ◦ da|Ω0 : Ω0 → Ωt is a diffeomorphism for every t ∈ [0, T ]. Then (4.79) is a strict
length-minimizer among all admissible trajectories γ with same boundary conditions and such that
γ(t) ∈ Ωt for all t ∈ [0, T ].
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We are in position to prove that small pieces of normal trajectories are global length minimizers.

Theorem 4.57. Let γ : [0, T ] → M be a sub-Riemannian normal trajectory. Then for every
τ ∈ [0, T [ there exists ε > 0 such that

(i) γ|[τ,τ+ε] is a length minimizer, i.e., d(γ(τ), γ(τ + ε)) = ℓ(γ|[τ,τ+ε]).

(ii) γ|[τ,τ+ε] is the unique length minimizer joining γ(τ) and γ(τ + ε), up to reparametrization.

Proof. Without loss of generality we can assume that the curve is parametrized by length and prove

the theorem for τ = 0. Let γ(t) be a normal extremal trajectory, such that γ(t) = π(et
~H (λ0)), for

t ∈ [0, T ]. Consider a smooth function a ∈ C∞(M) such that dqa = λ0 and let Lt be the family of
submanifold of T ∗M associated with this function by (4.67) and (4.68). By construction, for the

extremal lift associated with γ one has λ(t) = et
~H(λ0) ∈ Lt for all t. Moreover the projection π

∣∣
L0

is a diffeomorphism, since L0 is a section of T ∗M .
Hence, for every fixed compact K ⊂ M containing the curve γ, by continuity there exists

t0 = t0(K) such that the restriction onK of the map π
∣∣
Lt

is also a diffeomorphism, for all 0 ≤ t < t0.
Let us now denote δK the positive constant defined in Lemma 3.33 such that every curve starting
from γ(0) and leaving K is necessary longer than δK .

Then, defining ε = ε(K) := min{δK , t0(K)} we have that the curve γ|[0,ε] is contained in K and
is shorter than any other curve contained in K with the same boundary condition by Corollary 4.56
(applied to Ωt = K for all t ∈ [0, T ]). Moreover ℓ(γ|[0,ε]) = ε since γ is length parametrized, hence
it is shorter than any admissible curve that is not contained in K. Thus γ|[0,ε] is a global minimizer.
Moreover it is unique up to reparametrization by uniqueness of the solution of the Hamiltonian
equation (see proof of Theorem 4.55).

Remark 4.58. When Dq0 = Tq0M , as it is the case for a Riemannian structure, the level set of the
Hamiltonian

{H = 1/2} = {λ ∈ T ∗
q0M |H(λ) = 1/2},

is diffeomorphic to an ellipsoid, hence compact. Under this assumption, for each λ0 ∈ {H = 1/2},
the corresponding geodesic γ(t) = π(et

~H(λ0)) is optimal up to a time ε = ε(λ0), with λ0 belonging
to a compact set. It follows that it is possible to find a common ε > 0 (depending only on q0) such
that each normal trajectory with base point q0 is optimal on the interval [0, ε].

As we prove later, this is false as soon as Dq0 = Tq0M , see Theorem 10.21.
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Chapter 5

Integrable Systems

In this chapter we present some applications of the Hamiltonian formalism developed in the previous
chapter. In particular we give a proof the well-known Arnold-Liouville’s Theorem and, as an
application, we study the complete integrability of the geodesic flow on a special class of Riemannian
manifolds.

5.1 Completely integrable systems

Let M be an n-dimensional smooth manifold and assume that there exist n independent Hamilto-
nians in involution in T ∗M , i.e. a set of n smooth functions

hi : T
∗M → R, i = 1, . . . , n,

{hi, hj} = 0, ∀ i, j = 1, . . . , n. (5.1)

such that the differentials dλh1, . . . , dλhn of the functions are independent at every point λ ∈ T ∗M .

Definition 5.1. Under the assumptions (5.1), the Hamiltonian system defined by one of the Hamil-
tonian hi, i = 1, . . . , n, is said to be completely integrable.

Let us consider the vector valued map, called moment map, defined by

h : T ∗M → R
n, h = (h1, . . . , hn),

and let c = (c1, . . . , cn) ∈ R
n be a regular value of the map h.

Lemma 5.2. The set h−1(c) is a n-dimensional submanifold in T ∗M and we have

Tλh
−1(c) = span{~h1(λ), . . . ,~hn(λ)}, ∀λ ∈ h−1(c). (5.2)

Proof. Since c is a regular value of h, by Remark 2.44 the set h−1(c) is a submanifold of dimension
n in T ∗M . In particular dimTλh

−1(c) = n. Moreover, by Exercise 2.14, each vector field ~hi is
tangent to h−1(c), since ~hihj = {hi, hj} = 0 by assumption. To prove (5.2) it is then enough to
show that these vector fields are linearly independent.

Recall that the differentials of the functions hi are linearly independent on h−1(c), namely

dλh1 ∧ . . . ∧ dλhn 6= 0, ∀λ ∈ h−1(c). (5.3)
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Moreover the symplectic form σ on T ∗M induces for all λ an isomorphism Tλ(T
∗M)→ T ∗

λ (T
∗M)

defined by w 7→ σλ(·, w). By nondegeneracy of the symplectic form, this implies that the vectors
~h1(λ), . . . ,~hn(λ) are linearly independent, hence they form a basis for Tλh

−1(c).

Remark 5.3. Notice that the symplectic form vanishes on Tλh
−1(c). Indeed this is a consequence

of the fact that σ(~hi,~hj) = hi, hj = 0 for all i, j = 1, . . . , n.

In what follows we denote by Nc = h−1(c) the level set of h. If h−1(c) is not connected, Nc will
denote a connected component of h−1(c).

Proposition 5.4. Assume that the vector fields ~hi are complete and define the map

Ψ : Rn → Diff(Nc), Ψ(s1, . . . , sn) := es1
~h1 ◦ . . . ◦ esn~hn

∣∣∣
Nc

. (5.4)

The map Ψ defines a transitive action of Rn onto Nc. In particular Nc is diffeomorphic to T k×Rn−k
for some 0 ≤ k ≤ n, where T k denotes the k-dimensional torus.

Proof. The complete integrability assumption together with Corollary 4.51 implies that the flows
of ~hi and ~hj commute for every i, j = 1, . . . , n since

[~hi,~hj ] =
−−−−−→{hi, hj} = 0.

By Proposition 2.25, this is equivalent to

et
~hi ◦ eτ~hj = eτ

~hj ◦ et~hi , ∀ t, τ ∈ R. (5.5)

Since the vector fields are complete by assumption, we can compute for every s, s′ ∈ R
n

Ψ(s+ s′) = e(s1+s
′
1)
~h1 ◦ . . . ◦ e(sn+s′n)~hn

= es1
~h1 ◦ es′1~h1 ◦ . . . ◦ esn~hn ◦ es′n~hn

= es1
~h1 ◦ . . . ◦ esn~hn ◦ es′1~h1 ◦ . . . ◦ es′n~hn (by (5.5))

= Ψ(s) ◦Ψ(s′),

which proves that Ψ is a group action. Moreover, for every point λ ∈ Nc, we can consider its orbit
under the action of Ψ, namely

Ωλ = {Ψ(s)λ| s ∈ R
n}.

Notice that, for every λ, this defines a smooth local diffeomorphism between R
n and Ωλ. Indeed

the partial derivatives
∂Ψ

∂si
(Ψ(s)λ) = ~hi(Ψ(s)λ), i = 1, . . . , n,

are linearly independent on the level set Nc. As a consequence the stabilizer Sλ of the point λ, i.e.
the set

Sλ = {s ∈ R
n|Ψ(s)λ = λ},

is a discrete subgroup of Rn. Then the proof of Proposition 5.4 is completed by the next lemma.
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Lemma 5.5. Let G be a non trivial discrete subgroup of Rn. Then there exist k ∈ N with 1 ≤ k ≤ n
and e1, . . . , ek ∈ R

n such that

G =

{
k∑

i=1

miei, mi ∈ Z

}
.

Proof. We prove the claim by induction on the dimension n of the ambient space R
n.

(i). Let n = 1. Since G is a discrete subgroup of R, then there exists an element e1 6= 0 closest
to the origin 0 ∈ R. We claim that G = Ze1 = {me1, m ∈ Z}. By contradiction assume that there
exists an element f ∈ G such that me1 < f < (m + 1)e1 for some m ∈ Z. Then f̄ := f −me1
belong to G and is closer to the origin with respect to e1, that is a contradiction.

(ii). Assume the statement is true for n − 1 and let us prove it for n. The discreteness of G
guarantees the existence of an element e1 ∈ G, closest to the origin. Moreover one can prove that
G1 := G ∩ Re1 is a subgroup and, as in part (i) of the proof, that

G1 := G ∩ Re1 = Ze1.

If G = G1 then the theorem is proved with k = 1. Otherwise one can consider the quotient G/G1.

Exercise 5.6. (i). Prove that there exists a nonzero element e2 ∈ G/G1 that minimize the distance
to the line ℓ = Re1 in R

n.
(ii). Show that there exists a neighborhood of the line ℓ that does not contain elements of G/G1.

By Exercise 5.6 the quotient group G/G1 is a discrete subgroup in R
n/ℓ ≃ R

n−1. Hence, by the
induction step there exists e2, . . . , ek such that

G/G1 =

{
k∑

i=2

miei, mi ∈ Z

}
.

From Proposition 5.4 and the fact that T k ×R
n−k is compact if and only if k = n we have the

following corollary.

Corollary 5.7. If Nc is compact, then Nc ≃ T n.

Remark 5.8. On any level set λ ∈ Nc the map Ψλ : Rn → Nc defined by Ψλ(s) = Ψ(s)λ defines
coordinates (s1, . . . , sn) in a neighborhood of the point λ. In these coordinate set (defined on Nc)
the Hamiltonian vector fields ~hi are constant.

5.2 Arnold-Liouville theorem

In this section we consider the moment map of a completely integrable system

h : T ∗M → R
n, h = (h1, . . . , hn),

and we assume that for all values of c ∈ R the level set h−1(c) is a smooth compact and connected
manifold. In particular Nc ≃ T n for all c ∈ R by Corollary 5.7

Fix c ∈ R and a point λc ∈ Nc. Let us consider the basis e1, . . . , en in R
n given by Lemma 5.5

and denote by (θ1, . . . , θn) the coordinates defined in R
n by the choice of this basis.
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Since θ1, . . . , θn are obtained by (s1, . . . , sn) by a linear change of coordinates on each level set,
the vector fields ~hi are constant in these coordinates (see Remark 5.8) and the basis ∂θ1 , . . . , ∂θn
can be expressed as follows

∂θi =
n∑

j=1

bij(c)~hj , (5.6)

where the coefficients bij depend only on c, i.e., are constant on each level Nc.

Remark 5.9. Notice that the coordinate set (θ1, . . . , θn) are not uniquely defined. Indeed every
transformation of the kind θi 7→ θi + ψi(c) still defines a set of angular coordinates on each level
set. The choice of the functions ψi(c) corresponds to the choice of the initial value of θi at a point
(for every choice of c).

Notice that the vector fields ∂θi are well defined and independent on this choice.

Let us now introduce the diffeomorphism

Fc : T
n → Nc, Fc(θ1, . . . , θn) = Ψ(θ1 + 2πZ, . . . , θn + 2πZ)(λc).

Next we want to analyze the dependence of this construction with respect to c. Fix c̄ ∈ R
n and

consider a neighborhood O of the submanifold Nc̄ in the cotangent space T ∗M . Being Nc̄ compact,
in O we have a foliation of invariant tori Nc, for c close to c̄. In other words we have a well defined
coordinate set (c1, . . . , cn, θ1, . . . , θn).

Theorem 5.10 (Arnold-Liouville). Let us consider a moment map h : T ∗M → R
n associated with

a completely integrable system such that every level set Nc is compact and connected. Then for
every c̄ ∈ R there exists a neighborhood O of Nc̄ and a change of coordinates

(c1, . . . , cn, θ1, . . . , θn) 7→ (I1, . . . , In, ϕ1, . . . , ϕn) (5.7)

such that

(i) I = Φ ◦ h, where Φ : h(O)→ R
n is a diffeomorphism,

(ii) σ =
∑n

j=1 dIj ∧ dϕj .

Definition 5.11. The coordinates (I, ϕ) defined in Theorem 5.10 are called action-angle coordi-
nates.

Remark 5.12. This proves that there exists a regular foliation of the phase space by invariant
manifolds, that are actually tori, such that the Hamiltonian vector fields associated to the invariants
of the foliation span the tangent distribution.

There then exist, as mentioned above, special sets of canonical coordinates on the phase space
such that the invariant tori are the level sets of the action variables, and the angle variables are the
natural periodic coordinates on the torus. The motion on the invariant tori, expressed in terms of
these canonical coordinates, is linear in the angle variables.

Indeed, since the hj are functions on I variables only, we have

~hj =

n∑

i=1

∂hj
∂Ii

∂ϕi .
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In other words, the Hamiltonian system in the angle-action coordinate (I, ϕ) is written as follows

İi = −
∂hj
∂ϕi

= 0, ϕ̇i =
∂hj
∂Ii

(I). (5.8)

This explains also why this property is called complete integrability.

Proof of Theorem 5.10. In this proof we will use the following notation:

- if c = (c1, . . . , cn) ∈ R
n we set cj,ε = (c1, . . . , cj + ε, . . . , cn),

- γi(c) is the closed curve in the torus Nc parametrized by the i-th angular coordinate θi,
namely

γi(c) = {Fc(θ1, . . . , θi + τ, . . . , θn) ∈ Nc | τ ∈ [0, 2π]}.

- Cj,εi denotes the cylinder defined by the union of curves γi(c
j,τ ), for 0 ≤ τ ≤ ε.

Let us first define the coordinates Ii = Ii(c1, . . . , cn) by the formula

Ii(c) =
1

2π

∫

γi(c)
s,

where s is the tautological 1-form on T ∗M . Being σ|Nc ≡ 0, by Stokes Theorem the variable Ii
depends only on the homotopy class of γi.

1

Let us compute the Jacobian of the change of variables.

∂Ii
∂cj

(c) =
1

2π

∂

∂ε

∣∣∣∣
ε=0

(∫

γi(cj,ε)
s−

∫

γi(c)
s

)

=
1

2π

∂

∂ε

∣∣∣∣
ε=0

∫

∂Cj,ε
i

s

=
1

2π

∂

∂ε

∣∣∣∣
ε=0

∫

Cj,ε
i

σ (where σ = ds)

=
1

2π

∂

∂ε

∣∣∣∣
ε=0

∫ cj+ε

cj

∫

γi(cj,τ )
σ(∂cj , ∂θi)dθidτ

=
1

2π

∫

γi(c)
σ(∂cj , ∂θi)dθi.

Using that ∂θi =
∑n

j=1 bij(c)
~hj (see (5.6)) one gets

σ(·, ∂θi) =
n∑

j=1

bij(c)dhj . (5.9)

1Hence, in principle, we are free to choose any basis γ1, . . . , γn for the first homotopy group of Tn.
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Moreover dhi = dci since they define the same coordinate set. Hence

∂Ii
∂cj

(c) =
1

2π

∫

γi(c)

〈
n∑

k=1

bikdck, ∂ci

〉
dθi

=
1

2π

∫

γi(c)
bij(c)dθi

= bij(c)

Combining the last identity with (5.9) one gets

σ(·, ∂θi) = dIi

In particular this implies that the symplectic form has the following expression in the coordinates
(I, θ)

σ =
∑

ij

aij(I)dIi ∧ dIj +
∑

i

dIi ∧ dθi. (5.10)

where the smooth functions aij depends only on the action variables, since the symplectic form σ
and the term

∑
i dIi ∧ dθi are closed form. Moreover it is easy to see that the first term of (5.10)

can be rewritten as
n∑

i,j=1

aij(I)dIi ∧ dIj = d

(
n∑

i=1

βi(I)

)
∧ dIi

and σ can be rewritten as

σ =

n∑

i=1

dIi ∧ d(θi − βi(I))

The proof is completed by defining ϕi := θi − βi(I).

Remark 5.13. The notion of complete integrability introduced here is the classical one given by
Liouville and Arnold. Sometimes, complete integrability of a dynamical system is also referred to
systems whose solution can be reduced to a sequence of quadratures. Notice that by Theorem 5.10
complete integrability implies integrability by quadratures (see also Remark 5.12).

5.3 Integrable geodesic flows

In this section we want to discuss whether it is possible to apply the Arnold-Lioville’s Theorem to
the case of a geodesic flow on a Riemannian (or sub-Riemannian) manifold.

Recall that on a sub-Riemannian manifold, we denote by H the sub-Riemannian Hamiltonian.

Definition 5.14. We say that a complete smooth vector field X ∈ Vec(M) is a Killing vector field
if it generates a one parametric flow of isometries, i.e. etX :M →M is an isometry for all t ∈ R.

Recall that, for every X ∈ Vec(M), we can define the function hX ∈ C∞(T ∗M) linear on fibers
associated with X by hX(λ) = 〈λ,X(q)〉, where q = π(λ).

The following lemma shows that, if X is a Killing vector field, i.e. a vector field on M whose
flow generates isometries, then the Hamiltonian associated with it is in involution with the sub-
Riemannian Hamiltonian.
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Lemma 5.15. Let M be a sub- Riemannian manifold and H the sub-Riemannian Hamiltonian.
For a vector field X ∈ Vec(M) is a Killing vector field if and only if {H,hX} = 0.

Proof. A vector field X generates isometries if and only if, by definition, the differential of its
flow etX∗ : TqM → TetX(q)M preserves the sub-Riemannian distribution and the norm on it, i.e.

etX∗ v ∈ DetX(q) for every v ∈ Dq and ‖etX∗ v‖ = ‖v‖. By definition of H, this is equivalent to the
identity

H(etX∗λ) = H(λ), ∀λ ∈ T ∗M.

On the other hand Proposition 4.8 implies that (etX )∗ = et
~hX , where hX is the hamiltonian linear

on fibers related to X. Hence differentiating with respect to t we find the equivalence

H ◦ etX∗ = H ⇔ ~hXH = 0 ⇔ {H,hX} = 0.

In other words to every 1-parametric group of isometries of M we can associate an Hamiltonian
in involution with H. Let us show the complete integrability of the geodesic flow in some very
symmetric cases.

Example 5.16 (Revolution surfaces in R
3). Let M be a 2-dimensional revolution surface in R

3.
Since the rotation around the revolution axis preserves the Riemannian structure, by definition,
we have that the Hamiltonian generated by this flow and the Riemannian Hamiltonian H are in
involution. As a consequence the geodesic flow is completely integrable.

Example 5.17 (Isoperimetric sub-Riemannian problem). Let us consider a sub-Riemannian struc-
ture associated with an isoperimetric problem defined on a 2-dimensional revolution surfaceM (see
Section 4.5.2). The sub-Riemannian structure on M ×R is determined by the function b ∈ C∞(M)
satisfying dA = bdV , where A ∈ Λ1(M) is the 1-form defining the isoperimetric problem and dV is
the volume form on M .

(i) If both M and b are rotational invariant we find a first integral of the geodesic flow as in the
previous example

(ii) By construction the problem is invariant by translation along the z-axis

Hence there exists three Hamitonian in involution and the geodesic flow is completely integrable.

5.3.1 Geodesic flow

Let us consider now a smooth function a : Rn → R and consider the family of hypersurfaces defined
by the level sets of a

Mc := a−1(c) ⊂ R
n, c is a regular value of a,

endowed with the Riemannian structure induced by the ambient space R
n. By Sard’s Lemma

for almost every c ∈ R, c is a regular value for a (in particular, Mc is a smooth submanifold of
codimension one in R

n).
Adapting the arguments of Proposition 1.4 in Chapter 1, one can prove the following charac-

terization of geodesics on a hypersurface M .
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Proposition 5.18. Let γ : [0, 1] → M a lenght-parametrized curve on M . Then γ is a geodesic if
and only if γ̈(t) ⊥ Tγ(t)M .

For a large class of functions a, we will find an Hamiltonian, defined on the ambient space T ∗
R
n,

whose (reparametrized) flow generates the geodesic flow when restricted to each level set Mc.

Consider the standard symplectic structure on T ∗
R
n

T ∗
R
n = R

n × R
n = {(x, p), x, p ∈ R

n}, σ =

n∑

i=1

dpi ∧ dxi,

For x, p ∈ R
n we will denote by x+ Rp the line of Rn {x+ tp, t ∈ R}.

Assumptions. In what follows we assume that the function a : Rn → R satisfies the following
assumptions:

(i) the restriction of a : Rn → R to every line is strictly convex,

(ii) a(x)→ +∞ when |x| → +∞.

Under these assumptions the restriction of the function a to each affine line in R
n always attains a

minimum and we can define the function

h(x, p) = min
t∈R

a(x+ tp). (5.11)

Remark 5.19. Given x, p ∈ R
n the line x+Rp is tangent to the level set a−1(c) (with c = a(x+ t̄p))

at the point ξ = x+ t̄p ∈ R
n at which the minimum in (5.11) is attained. Indeed

0 =
d

dt

∣∣∣∣
t=t̄

a(x+ tp) = 〈dξa, p〉 .

It is clear from the definition of h that actually it is a well-defined function on the space of
affine lines in R

n. This is formally proved in the following lemma.

Lemma 5.20. The Hamiltonian b(x, p) = 1
2 |p|2 satisfies {h, b} = 0, i.e. h it is constant along the

flow of ~b.

Proof. The Hamiltonian system for~b is easily solved for every initial condition (x(0), p(0)) = (x0, p0)

{
ẋ = ∂b

∂p = p

ṗ = − ∂b
∂x = 0

⇒
{
x = x0 + tp0

p = p0
(5.12)

and it is easy to see that, by its very definition, h is constant under this flow.

Remark 5.21. Notice that to restrict to a level set of b is equivalent to restrict the function h to
the space of affine lines in R

n since

{(x, p) ∈ T ∗
R
n, b(x, p) = 1/2} = {(x, p) ∈ T ∗

R
n, |p| = 1}.
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Now we introduce the following function

ξ : Rn × R
n → R

n, ξ(x, p) = x+ s(x, p)p, (5.13)

where s(x, p) = t̄ is the point at which the function f(t) = a(x+ tp) attains its minimum.
The following proposition says that if we follow the flow of ~h, as a flow on the space of lines,

then the line is always tangent to the same quadric and actually describes a geodesic on it.

Proposition 5.22. Let (x(t), p(t)) be a trajectory of the Hamiltonian vector field ~h associated to
(5.11). Then the function

t 7→ ξ(t) := ξ(x(t), p(t)) ∈ R
n, (5.14)

(i) is contained in a level set Mc = a−1(c), for some c ∈ R,

(ii) is a geodesic on Mc,

Proof. Property (i) is a simple consequence of Corollary 4.18, since every function is constant
along the flow of its Hamiltonian vector field. Indeed, writing h(x, p) = a(ξ(x, p)) and denoting by
(x(t), p(t)) the Hamiltonian flow, we get

a(ξ(t)) = a(ξ(x(t), p(t))) = h(x(t), p(t)) = const,

i.e. the curve ξ(t) is contained on a level set of a. Moreover by definition s(x, p) denotes on the
line x+ Rp where a attains its minimum, hence

〈
∇ξ(t)a, p(t)

〉
= 0, ∀ t. (5.15)

The Hamiltonian system associated with h reads
{
ẋ = s∇ξa
ṗ = −∇ξa

(5.16)

that immediately implies ẋ+ sṗ = 0. Computing the derivative

ξ̇ = ẋ+ ṡp+ sṗ = ṡp,

it follows that ξ̇ is parallel to p, and actually p(t) is the velocity of the curve ξ(t), when reparametrized
with the parameter s, since |p| = 1 implies |ξ̇| = ṡ.

Finally, the second derivative of the reparametrized of ξ is ṗ and, since ṗ ∧ ∇ξa = 0 from the
Hamiltonian system, the second derivative of ξ(t) (when reparametrized by the length) is orthogonal
to the level set, i.e. ξ(t) is a geodesic.

Notice also that s is a well defined parameter. Computing the derivative with respect to t in
(5.15) we have that

ṡ〈∇2
ξa p, p〉 − |∇ξa|2 = 0.

and the strict convexity of a implies 〈∇2
ξa p, p〉 6= 0.

Remark 5.23. Thus we can visualize the solutions of ~h as a motion of lines: the lines move in
such a way to be tangent to one and the same geodesic. The tangency point x on the line moves
perpendicular to this line in this process. We will also refer to this flow as the “line flow” associated
with a.
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Consider now two functions a, b : Rn → R that satisfies our assumptions (i), (ii). Following our
notation, we set

h(x, p) = a(ξ(x, p)), ξ(x, p) = x+ s(x, p)p

g(x, p) = b(η(x, p)), η(x, p) = x+ t(x, p)p

where s(x, p) and t(x, p) are defined as above, and ξ, η denote the tangency point of the line x+Rp
with the level set of a and b respectively. The following proposition computes the Poisson bracket
of these Hamiltonian functions

Proposition 5.24. Under the previous assumptions

{h, g} = (s− t) 〈∇ξa,∇ηb〉 . (5.17)

Proof. From the very definition of Poisson bracket

{h, g} = 〈∇ph,∇xg〉 − 〈∇xh,∇pg〉
= (s− t) 〈∇ξa,∇ηb〉 .

where we used equations (5.16) for both h and g.

5.4 Geodesic flow on ellipsoids

It was Jacobi who first established that the geodesic flow on an ellipsoid is completely integrable,
using the separation of variables method. Here we give a different derivation, essentially due to
Moser, as an application of the theory developed in the previous section. More precisely we consider
the particular case when the function a is a quadratic polynomial, i.e. every level set of our function
is a quadric in R

n.

Definition 5.25. Let A be an n×n non degenerate symmetrix matrix. The quadric Q associated
to A is the set

Q = {x ∈ R
n, 〈A−1x, x〉 = 1}. (5.18)

For simplicity we consider the case when A has simple distinct eigenvalues α1 < . . . < αn.
Define, for every λ that is not an eigenvalue of A,

aλ(x) = 〈(A− λI)−1x, x〉, Qλ = {x ∈ R
n, aλ(x) = 1}.

If A = diag(α1, . . . , αn) is a diagonal matrix then (5.18) reads

Q = {x ∈ R
n,

n∑

i=1

x2i
αi

= 1},

and Qλ represents the family quadrics that are confocal to Q

Qλ = {x ∈ R
n,

n∑

i=1

x2i
αi − λ

= 1}, ∀λ ∈ R \ Λ,

where Λ = {α1, . . . , αn} denotes the set of eigenvalues of A. Note that Qλ = ∅ when λ > αn.

Note. In what follows by a “generic” point x for A we mean a point x that does not belong to
any proper invariant subspace of A. In the diagonal case it is equivalent to say that x = (x1, . . . , xn),
with xi 6= 0 for every i.
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Exercise 5.26. Denote by Aλ := (A− λI)−1. Prove the two following formulas:

(i) d
dλAλ = A2

λ,

(ii) Aλ −Aµ = (µ− λ)AλAµ.
Lemma 5.27. Let x ∈ R

n be a generic point for A and let {Qλ}λ∈Λ be the family of confocal
quadrics. Then there exists exactly n distinct real numbers λ1, . . . , λn in R \ Λ such that x ∈ Qλi
for every i = 1, . . . , n, and the quadrics Qλi are pairwise orthoghonal at the point x.

Proof. For a fixed x, the function λ 7→ aλ(x) = 〈Aλx, x〉 satisfies in R \ Λ
∂aλ
∂λ

(x) =
〈
A2
λx, x

〉
= |Aλx|2 ≥ 0, where Aλ := (A− λI)−1,

as follows from part (i) of Exercise 5.26 and the fact that A (hence Aλ) is self-adjoint. Thus aλ(x) is
monotone increasing as a function of λ, and takes values from −∞ to +∞ in each interval ]αi, αi+1[
contained between two eigenvalues of A. This implies that, for a fixed x, there exist exactly n values
λ1, . . . , λn such that aλi(x) = 1 (that means x ∈ Qλi). Next, using part (ii) of Exercise 5.26 (also
known as resolvent formula) we can compute, for two distinct values λi 6= λj and x ∈ Qλi ∩ Qλj :

〈
∇xaλi ,∇xaλj

〉
= 4

〈
Aλix,Aλjx

〉

= 4
〈
AλiAλjx, x

〉

=
4

λj − λi
(〈Aλix, x〉 −

〈
Aλjx, x

〉
) = 0,

where again we used the fact that Aλ is selfadjoint and 〈Aλx, x〉 = 1 for all λ.

Now we define the family of Hamiltonians associated with the family of confocal quadrics

hλ(x, p) = min
t
aλ(x+ tp) = aλ(ξλ(x, p)), (5.19)

Now we prove another interesting “orthogonality” property of the family. We show that if two
confocal quadrics are tangent to the same line, then their gradient are orthogonal at the tangency
points.

Proposition 5.28. Assume that two confocal quadrics are tangent to a given line, i.e. there exist
x, y ∈ R

n such that

aλ(ξλ) = aµ(ξµ), where ξλ = x+ tλp, ξµ = x+ tµp.

Then 〈∇ξλaλ,∇ξµaµ〉 = 0. In particular {hλ, hµ} = 0.

Proof. The condition that the quadric Qλ is tangent to the line x + Ry at ξλ is expressed by the
following two equality

〈Aλξλ, y〉 = 0, 〈Aλξλ, ξλ〉 = 1 (5.20)

and an analogue relations is valid for Qµ. Notice than from (5.20) one also gets 〈Aλξλ, ξµ〉 =
〈Aµξµ, ξλ〉 = 1. Then,with the same computation as before using (5.26)

〈
∇ξλaλ,∇ξµaµ

〉
= 4 〈Aλξλ, Aµξµ〉
= 4 〈AλAµξλ, ξµ〉

=
4

µ− λ(〈Aλξλ, ξµ〉 − 〈Aµξµ, ξλ〉) = 0,

The last claim follows from Proposition (5.24).
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Proposition 5.29. A generic line in R
n is tangent to n− 1 quadrics of a confocal family.

Proof. Consider the projection along the fixed line x + Rp of the quadrics of the confocal family
onto an orthogonal hyperplane. The following exercise shows that this projection defines a confocal
family of quadrics on the reduced space.

Exercise 5.30. (i). Show that the map x 7→ apλ(x) := 〈Aλ(x+ tλp), x+ tλp〉 is a quadratic form
and that p ∈ Ker apλ. In particular this implies that apλ is well defined on the quotient Rn/Rp.
(ii). Prove that {apλ}λ is a family of confocal quadric on the factor space (in n− 1 variables).

Applying then Lemma 5.27 to the family {apλ}λ we get that, for a generic choice of x, there
exists n − 1 quadrics passing through the point on the plane where the line is projected, i.e. the
line x+ Rp is tangent to n− 1 confocal quadrics of the family {aλ}λ.

Remark 5.31. Notice that this proves that every generic line in R
n is associated with an orthonormal

frame of Rn, being all the normal vectors to the n− 1 quadrics given by Proposition 5.29 mutually
orthogonal and orthogonal to the line itself.

Theorem 5.32. The geodesic flow on an ellipsoid is completely integrable. In particular, the
tangents of any geodesics on an ellipsoid are tangent to the same set of its confocal quadrics, i.e.
independently on the point on the geodesic.

Proof. We want to show that the functions λ1(x, p), . . . , λn−1(x, p) (as functions defined on the set
of lines in R

n) that assign to each line x + Rp in R
n the n − 1 values of λ such that the line is

tangent to Qλ are independent and in involution.
First notice that each level set λi(x, p) = c coincide with the level set hc = 1. Hence, by Exercise

4.37, the two functions defines the same Hamiltonian flow on this level set (up to reparametrization).
We are then reduced to prove that the functions hc1 , . . . , hcn−1 are independent and in involution,
which is a consequence of Proposition 5.28.

Since the lines that are tangent to a geodesic on the ellipsoid Qλ form an integral curve of
the Hamiltoian flow of the associated function hλ, and all the Poisson brackets with the other
Hamiltonians are zero, it follows that the line remains tangent to the same set of n−1 quadrics.
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Chapter 6

Chronological calculus

In this chapter we develop some tools from chronological caluculs that will allow us to manage in
a very efficient way with flows of nonautonomous vector fields.

The main idea is to replace a nonlinear object defined on the manifold M with its linear
counterpart, when interpreted as an operator on the space C∞(M) of smooth functions on M .

6.1 Duality

We recall that the set C∞(M) of smooth functions on M is an R-algebra with the usual operation
of pointwise addition and multiplication

(a+ b)(q) = a(q) + b(q),

(λa)(q) = λa(q), a, b ∈ C∞(M), λ ∈ R,

(a · b)(q) = a(q)b(q).

Any point q ∈M can be interpreted as the linear functional

q̂ : C∞(M)→ R, q̂(a) := a(q).

For every q ∈M , the functional q̂ is a homomorphism of algebras, i.e. it satisfies

q̂(a · b) = q̂(a)q̂(b).

A diffeomorphism P ∈ Diff(M) can be thought as the linear “change of variables” operator

P̂ : C∞(M)→ C∞(M), P̂ (a) := a(P (q)).

which is an automorphism of the algebra C∞(M).

Remark 6.1. Notice that every nontrivial homomorphism of algebras ϕ : C∞(M)→ R is represented
by some point, i.e. ϕ = q̂ for some q ∈ M . Moreover for every automorphism of algebras Φ :
C∞(M)→ C∞(M) there exists a diffeomorphism P ∈ Diff(M) such that P̂ = Φ.

Now we want to characterize tangent vectors as functionals on C∞(M). As remarked in Chapter
2 a tangent vector v ∈ TqM defines in a natural way the derivation in the direction of v, i.e. the
functional

v̂ : C∞(M)→ R, v̂(a) = 〈dqa, v〉 ,
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that satisfies the Leibnitz rule

v̂(a · b) = v̂(a)b(q) + a(q)v̂(b), ∀ a, b ∈ C∞(M).

On the other hand, considering v ∈ TqM as the tangent vector of a curve q(t) such that q(0) = q,

it is also natural to consider the family of functionals q̂(t) := q̂(t), and define

v̂ :=
d

dt

∣∣∣∣
t=0

q̂(t) : C∞(M)→ R. (6.1)

It is easy to check that (6.1) agrees with our definition of v̂, it is sufficient to differentiate at t = 0
the identity

q̂(t)(a · b) = q̂(t)a · q̂(t)b
In the same spirit, a vector field X ∈ Vec(M) will be characterized, as a derivation of C∞(M)

(for vector fields we already discussed this property in Chapter 2), as the infinitesimal version of a
flow (i.e. family of diffeomorphisms) Pt ∈ Diff(M). Indeed if we set

X̂ =
d

dt

∣∣∣∣
t=0

P̂t : C∞(M)→ C∞(M),

we find that X̂ satisfies (see (2.19))

X̂(ab) = X̂(a)b+ aX̂(b), ∀ a, b ∈ C∞(M).

Remark 6.2. It is possible to define on C∞(M) the Whitney topology and define regularity properties
of family of functionals in a weak sense, i.e. we say that At is continuos (differentiable, etc.) if the
map t 7→ Ata has the same property for every a ∈ C∞(M). For instance, if Xt denotes some locally
integrable family of vector fields we denote

∫ t

0
Xs ds : a 7→

∫ t

0
Xsa ds

For a more detailed presentation see [4]. 1

6.2 Operator ODE and Taylor expansion

Consider a nonautonomous vector field Xt and the correspondent nonautonomous ODE

d

dt
q(t) = Xt(q(t)), q ∈M. (6.2)

Using the notation exploited in the previous section we can rewrite (6.2) in the following way

d

dt
q̂(t) = q̂(t) ◦ X̂t. (6.3)

1With this interpretation it makes sense to consider, for instance, the sum of a point q and a vector v

q + v : a 7→ a(q) + 〈dqa, v〉
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Indeed assume that q(t) satisfies (6.2) and let a ∈ C∞(M). We compute
(
d

dt
q̂(t)

)
a =

d

dt
q̂(t)a =

d

dt
a(q(t))

=
〈
dq(t)a,Xt(q(t))

〉
= (X̂ta)(q(t)) (6.4)

= (q̂(t) ◦ X̂t)a

We discussed in Chapter 2 that, considering the solution to the nonautonomous ODE (6.2) ,
we have a well defined flow, i.e. family of diffeomorphisms, Pt : q0 7→ q(t). We call Pt the right
chronological exponential and use the notation

Pt :=
−→exp

∫ t

0
Xsds. (6.5)

Lemma 6.3. The flow Pt defined by (6.5) satisfies the differential equation

d

dt
P̂t = P̂t ◦ X̂t, P̂0 = Id. (6.6)

Proof. Fix a point q0 ∈M and denote by q(t) the solution of the Cauchy problem (6.2) with initial
condition q(0) = q0. By the very definition of Pt we have that q(t) = Pt(q0), which easily implies
q̂(t) = q̂0 ◦ P̂t.

Notation. In the following we will identify any object with its dual interpretation as operator
on functions and stop to use a different notation for the same object when acting on the space of
smooth functions. The meaning of the notation will be clear from the context. Notice that there
is no risk of confusion since, when using operatorial notation, composition works in the opposite
side.

Our differential equation (6.6), namely
{
Ṗt = Pt ◦Xt

P0 = Id
(6.7)

can be rewritten as an integral equation as follows

Pt = Id +

∫ t

0
Ps ◦Xsds (6.8)

Substituting into (6.8), and iterating we have

Pt = Id +

∫ t

0

(
Id +

∫ s1

0
Ps2 ◦Xs2ds2

)
◦Xs1ds1

= Id +

∫ t

0
Xsds +

∫∫

0≤s2≤s1≤t

Ps2 ◦Xs2 ◦Xs1ds1ds2

= . . .

= Id +
N∑

k=1

∫
· · ·
∫

0≤sk≤...≤s1≤t

Xsk ◦ · · · ◦Xs1d
ks+RN
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where

RN =

∫
· · ·
∫

0≤sN≤...≤s1≤t

PsN ◦XsN ◦ · · · ◦Xs1d
Ns

Formally, letting N →∞, we can write the chronological series

−→exp
∫ t

0
Xsds ≈ Id +

∞∑

k=1

∫
· · ·
∫

Sk(t)

Xsk ◦ · · · ◦Xs1d
ks (6.9)

where Sk(t) = {(s1, . . . , sk) ∈ R
k| 0 ≤ sk ≤ . . . ≤ s1 ≤ t} denotes the k-dimensional symplex.

Remark 6.4. If we write expansion (6.9) when Xt = X is an autonomous vector field, we find

etX = −→exp
∫ t

0
Xds ≈ Id +

∞∑

k=1

∫
· · ·
∫

Sk(t)

X ◦ · · · ◦X︸ ︷︷ ︸
k

dks =
∞∑

k=0

tk

k!
Xk.

since meas(Sk(t)) = tk/k!. This also shows that in the nonautonomous case the order in which
s1, . . . , sk are presented in the composition is very important. The key point is that for different
time Xs and Xτ might not commute.

Remark 6.5. Notice that the chronological exponential cannot be written as the flow of an au-
tonomous vector field

−→exp
∫ t

0
Xsds 6= e

∫ t
0 Xsds.

One can show that a necessary condition for the equality holds is [Xt,Xτ ] = 0 for all t, τ .

Consider now the inverse flow Qt := P−1
t , where Pt satisfies (6.8), and try to characterize the

differential equation satisfied by Qt. First we differentiate the identity

Pt ◦Qt = Id (6.10)

and Leibnitz rule give

Ṗt ◦Qt + Pt ◦ Q̇t = 0

Using (6.7) then we get

Pt ◦Xt ◦Qt + Pt ◦ Q̇t = 0

hence we get, multiplying Qt both sides, that Qt satisfies

{
Q̇t = −Xt ◦Qt,
Q0 = Id.

(6.11)

which is dual to the Cauchy problem (6.7).

The solution to the problem (6.11) will be denoted by the left chronological exponential

Qt :=
←−exp

∫ t

0
(−Xs)ds. (6.12)
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Repeating analogous reasoning, we find the formal expansion

←−exp
∫ t

0
(−Xs)ds ≈ Id +

∞∑

k=1

∫
· · ·
∫

0≤sk≤...≤s1≤t

(−Xs1) ◦ · · · ◦ (−Xsk)d
ks.

The difference with respect to the right chronological exponential is in the order of composition.
In particular the arrow over the exp says in which direction the time increases.

We can summarize properties of the chronological exponential into the following

d

dt
−→exp

∫ t

0
Xsds =

−→exp
∫ t

0
Xsds ◦Xt, (6.13)

d

dt
←−exp

∫ t

0
Xsds = Xt ◦←−exp

∫ t

0
Xsds, (6.14)

(
−→exp

∫ t

0
Xsds

)−1

=←−exp
∫ t

0
(−Xs)ds. (6.15)

Now we can study the action of diffeomorphisms on vectors and vector fields. Let v ∈ TqM and
P ∈ Diff(M). We claim that, as functionals on C∞(M), we have

P∗v = v ◦ P.
Indeed consider a curve q(t) such that q̇(0) = v and compute

(P∗v)a =
d

dt

∣∣∣∣
t=0

a(P (q(t))) =

(
d

dt

∣∣∣∣
t=0

q(t)

)
◦ Pa = v ◦ Pa

Recall that, if X ∈ Vec(M) is a vector field we have P∗X
∣∣
q
= P∗(X

∣∣
P−1(q)

). In a similar way we

will find an expression for P∗X as derivation of C∞(M)

P∗X = P−1 ◦X ◦ P. (6.16)

Remark 6.6. We can reinterpret the pushforward of a vector field in a totally algebraic way in the
space of linear operator on C∞(M). Indeed

P∗X = (AdP−1)X,

where
AdP : X 7→ P ◦X ◦ P−1, ∀X ∈ Vec(M)

is the adjoint action of P on the space of vector fields2.

Assume now that Pt =
−→exp

∫ t
0 Xsds. We try to characterize the flow AdPt by looking for the

ODE it satisfies. Applying to a vector field Y we have
(
d

dt
AdPt

)
Y =

d

dt
(AdPt)Y =

d

dt
(Pt ◦ Y ◦ P−1

t )

= Pt ◦Xt ◦ Y ◦ P−1
t + Pt ◦ Y ◦ (−Xt) ◦ P−1

t

= Pt ◦ (Xt ◦ Y − Y ◦Xt) ◦ P−1
t

= (AdPt)[Xt, Y ]

= (AdPt)(adXt)Y

2it is the differential of the conjugation Q 7→ P ◦Q ◦ P−1, Q ∈ Diff(M)
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where

adX : Y 7→ [X,Y ],

is the adjoint action on the Lie algebra of vector fields.

In other words we proved that AdPt is a solution to the differential equation

Ȧt = At ◦ adXt, A0 = Id.

Thus it can be expressed as chronological exponential and we have the identity

Ad

(
−→exp

∫ t

0
Xsds

)
= −→exp

∫ t

0
adXsds. (6.17)

Exercise 6.7. Prove that, if [Xt, Y ] = 0 for all t, then (AdPt)Y = Y .

Remark 6.8. More explicitly we can write the following formula

(AdPt)Y ≃ Y +

∞∑

k=1

∫
· · ·
∫

0≤sk≤...≤s1≤t

[Xsn , . . . , [Xs2 , [Xs1 , Y ]]dks, (6.18)

which generalizes the formula (2.30). Indeed if Pt = etX is the flow associated to an autonomous
vector field we get

(Ad etX)Y ≃ e−tX∗ Y = Y +
∞∑

k=1

tk

k!
[X, . . . , [X,Y ]]

= Y + t[X,Y ] +
t2

2
[X, [X,Y ]] + . . .

Exercise 6.9. Prove the following using operator notation:

1. Show that ad is the infinitesimal version of the operator Ad , i.e. if Pt is a flow generated by the
vector field X ∈ Vec(M) then

adX =
d

dt

∣∣∣∣
t=0

AdPt.

2. Show that, if P ∈ Diff(M), then P∗ preserves Lie brackets, i.e. P∗[X,Y ] = [P∗X,P∗Y ].

3. Show that the Jacobi identity in Vec(M) is the infinitesimal version of the identity proved in 2.
(Hint. use Pt = etZ)

Exercise 6.10. Prove the following formula on the change of variables on a nonautonomous flow

P ◦ −→exp
∫ t

0
Xsds ◦ P−1 = −→exp

∫ t

0
(AdP )Xsds. (6.19)

Notice that for an autonomous vector field it proves (2.24).
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6.3 Variations Formulae

Consider the following ODE

q̇ = Xt(q) + Yt(q) (6.20)

where Yt is some perturbation of our original equation (6.2). We want to describe the solution to
the perturbed equation (6.20) as the perturbation of the solution of the unperturbed one.

Proposition 6.11. Let Xt, Yt be two nonautonomous vector fields. Then

−→exp
∫ t

0
(Xs + Ys)ds =

−→exp
∫ t

0

(
−→exp

∫ s

0
adXτdτ

)
Ysds ◦ −→exp

∫ t

0
Xsds (6.21)

= −→exp
∫ t

0
(AdPs)Ysds ◦ Pt (6.22)

where Pt =
−→exp

∫ t
0 Xsds denote the flow of the original vector field.

Proof. Our goal is to find a flow Rt such that

Qt :=
−→exp

∫ t

0
(Xs + Ys)ds = Rt ◦ Pt (6.23)

By definition of right chronological exponential we have

Q̇t = Qt ◦ (Xt + Yt) (6.24)

On the other hand, from (6.23), we also find

Q̇t = Ṙt ◦ Pt +Rt ◦ Ṗt
= Ṙt ◦ Pt +Rt ◦ Pt ◦Xt

= Ṙt ◦ Pt +Qt ◦Xt (6.25)

Hence, comparing (6.24) and (6.25), we get

Qt ◦ Yt = Ṙt ◦ Pt

and we can write the ODE satisfied by Rt

Ṙt = Qt ◦ Yt ◦ P−1
t

= Rt ◦ (AdPt)Yt

Since R0 = Id we find that Rt is a chronological exponential and

−→exp
∫ t

0
(Xs + Ys)ds =

−→exp
∫ t

0
(AdPs)Ysds ◦ Pt

which is (6.22). Using (6.17) we get (6.21)

Exercise 6.12. Prove the following
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(i) Prove the second form of the variational formula, where the original flow appear to the left

−→exp
∫ t

0
(Xs + Ys)ds =

−→exp
∫ t

0
Xsds ◦ −→exp

∫ t

0

(
−→exp

∫ s

t
adXτdτ

)
Ysds (6.26)

(ii) For autonomous vector fields X,Y ∈ Vec(M) prove that

et(X+Y ) = −→exp
∫ t

0
es adXY ds ◦ etX = −→exp

∫ t

0
e−sX∗ Y ds ◦ etX (6.27)

= etX ◦ −→exp
∫ t

0
e(s−t) adXY ds (6.28)
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Chapter 7

End-point and Exponential map

7.1 First order conditions

In this section we introduce the end-point map (i.e. the map which associates to every control the
final point of the associate trajectory) and we interpret the optimality condition obtained above as
a Lagrange multipliers rule.

We start by defining the end-point map. Consider a smooth n-dimensional manifold M and a
trivializable sub-Riemannian structure on it

U =M × R
k, f : U→ TM, (q, u) 7→ fu(q) =

k∑

i=1

uifi(q)

For every measurable square integrable control function t 7→ u(t) ∈ L2 there exists an admissible
trajectory γ(t, u(·)) solution to the Cauchy problem

γ̇(t) = fu(t)(γ(t)), γ(0, u(·)) = q0.

In the sequel we fix the initial point q0 ∈M and we consider the set of admissible controls

U = {u ∈ L2([0, 1],Rk), γ(t, u(·)) is defined for t = 1} ⊂ L2

which is an open subset by ODE’s continuous dependence theorem. Notice that the choice of L2

will change topology in the space of controls but nothing change in our geometric space because
we know that we can always consider length parametrized curves.

Definition 7.1. In the previous hypothesis we define the end-point map

F : U →M, F (u(·)) := γ(1, u(·)) = q0 ◦ −→exp
∫ 1

0
fu(t)dt. (7.1)

The end-point map is a map from an open set of an Hilbert space in a smooth finite-dimensional
manifold. Using chronological calculus developed in Chapter ??, it is easy to compute its (Frechét)
differential.

Proposition 7.2. Let u ∈ U and q1 = F (u(·)). The end-point map F is smooth and its differential
at u is the map

DuF : L2 → Tq1M, DuF (v) =

∫ 1

0
P 1
t∗fv(t)(q1)dt. (7.2)

where P tτ : γu(τ) 7→ γu(t) is the flow generated by u.
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Proof. The end-point map from q0 can be rewritten as the chronological exponential

F (u(·)) = q0 ◦ −→exp
∫ 1

0
fu(t)dt.

Using the Volterra expansion (6.9) we can immediately compute the differential of the end-point
map near u ≡ 0. Indeed we have that, for any control v(·) sufficiently close to 0:

F (v(·)) = q0 ◦


Id +

∫ 1

0
fv(t)dt+

∫∫

0≤t2≤t1≤t

fv(t2) ◦ fv(t1)ds1ds2 + . . .


 (7.3)

From here we find that the linear term with respect to v is exactly where f appear only once,

D0F : L2 → Tq0M, D0F (v) = q0 ◦
∫ 1

0
fv(t)dt =

∫ 1

0
fv(t)(q0)dt.

To compute the differential at a generic point u ∈ U we have to consider the expansion near 0 of
the map

v(·) 7→ F (u(·) + v(·)) = q0 ◦ −→exp
∫ 1

0
f(u+v)(t)dt.

The variation formula (6.21) let us to write (compare also with the proof of Proposition 3.41)

−→exp
∫ 1

0
f(u+v)(t)dt =

−→exp
∫ 1

0
fu(t) + fv(t)dt

= −→exp
∫ 1

0

(
−→exp

∫ t

0
ad fu(s)ds

)
fv(t)dt ◦ −→exp

∫ 1

0
fu(t)dt

= −→exp
∫ 1

0
P 0
t∗fv(t)dt ◦ P 1

0

where P tτ : γ(τ, u) 7→ γ(t, u). In other words we rewrite

F (u) = P 1
0 (G(u)), DuF = P 1

0∗DuG,

and reduced the problem to the expansion of G, which is easier. Indeed we have the Volterra
expansion

−→exp
∫ 1

0
P 0
t∗fv(t)dt ≈ Id +

∫ 1

0
P 0
t∗fv(t)dt+

∫∫

0≤t2≤t1≤t

P 0
t∗fv(t2) ◦ P 0

t∗fv(t1)dt1dt2 + . . . (7.4)

from which we get, denoting q1 = F (u)

DuF : L2 → Tq1M, DuF (v) = P 1
0∗

∫ 1

0
P 0
t∗fv(t)(q0)dt =

∫ 1

0
P 1
t∗fv(t)(q1)dt.

Now we want to characterize sub-Riemannian extremals as critical points of the end point map.
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Proposition 7.3. The following properties hold:

(i) (u(t), λ(t)) is an abnormal extremal if and only if u(t) is a critical point for F . Moreover
there exists λ1 ∈ T ∗

F (u)M such that

λ1DuF = 0, λ(t) = P 1∗
t λ1, (7.5)

(ii) (u(t), λ(t)) is a normal extremal if and only if there exists λ1 ∈ T ∗
F (u)M such that

λ1DuF = u, λ(t) = P 1∗
t λ1. (7.6)

where in the last equality we identify u ∈ L2 with the element (u, ·)L2 ∈ (L2)′

Proof. (i). u is a critical point of F if and only if DuF is not surjective. In other words there exists
a covector

λ1 : TF (u)M → R such that λ1DuF = 0, (7.7)

where λ1DuF denotes the composition of maps

L2 DuF// Tq1M
λ1 // R (7.8)

Now, if we let λt = P 1∗
t λ1, it remains to prove that the curve λt satisfies the relation

hi(λ(t)) = 0, hi(λ(t)) = 〈λ(t), fi(q(t))〉

We have

〈λ1,DuF 〉 = 0⇔
∫ 1

0

〈
λ1, P

1
t∗fv(t)(q1)

〉
dt = 0,∀v

⇔
∫ 1

0

〈
λ(t), fv(t)(q(t))

〉
dt = 0,∀v

⇔
∑

i

∫ 1

0
vi 〈λ(t), fi(q(t))〉 dt = 0,∀v

⇔ 〈λ(t), fi(q(t))〉 = 0,∀i

(ii). With analogous proof.

At the end we can rewrite this result in the following way

Corollary 7.4. A control u ∈ U is an extremal if and only if there exist some “Lagrange multiplier”

λ ∈ T ∗
F (u)M, λ 6= 0

such that the following equality holds
λDuF = νu

where

(i) ν = 0 in the abnormal case,

(ii) ν 6= 0 in the normal case.
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7.2 Lagrange points and Lagrange submanifolds

In this section we will work in the following setting:

Let U be an open set in a Hilbert space and letM be a smooth n-dimensional manifold. Assume
we have a pair of smooth maps

F : U →M, ϕ : U → R.

We want to characterize critical points of the functional ϕ when restricted to level set of F .

min
F−1(q)

ϕ, q ∈M. (7.9)

Definition 7.5. Let a : M → R be a smooth function and N ⊂ M be a smooth submanifold.
Then q ∈ N is said a critical point of a

∣∣
N

if dqa
∣∣
TqN

= 0.

We start with a geometric version of the Lagrange multipliers rule, which characterize con-
strained critical points.

Proposition 7.6 (Lagrange multipliers rule). Assume u ∈ U is a regular point of F : U →M such
that F (u) = q. Then u is a critical point of ϕ

∣∣
F−1(q)

if and only if

∃λ ∈ T ∗
qM, λ 6= 0, s.t. duϕ = λDuF. (7.10)

Proof. Recall that the differential of F is a well defined map

DuF : TuU → TqM, q = F (u),

and, since u is a regular point, DuF is surjective and the level set

Aq := F−1(q) = {u ∈ U , F (u) = q} ⊂ U ,

is a smooth submanifold, with u ∈ Aq.
Since u is a critical point of ϕ

∣∣
Aq

, by definition duϕ
∣∣
TuAq

= 0. Moreover TuAq = KerDuF .

Thus we have that

KerDuF ⊂ Ker duϕ. (7.11)

Now consider the following diagram

TuU

duϕ
##●

●●
●●

●●
●●

DuF // TqM

?
��
R

(7.12)

From (7.11), using a standard lemma of linear algebra and the fact that DuF is surjective, it follows
that there exists a nontrivial linear map λ : TqM → R (that means λ ∈ T ∗

qM \ {0}) that makes the
diagram (7.12) commutative.
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Remark 7.7. In the case of sub-Riemannian geometry U represents the set of controls, F is the
end-point map and ϕ is the length of the curve associated to controls. In this framework, the
problem of finding constrained critical points means exactly to find critical points of the length
when the initial point of the curve is fixed. Hence the solutions of the problem (7.9) represent
exactly sub-Riemannian geodesics. In particular abnormal extremals corresponds to critical points
of F , while normal extremals satisfy the Lagrange multipliers rule.

Now we want to consider second order information about our critical points. Recall that, if V
is a submanifold in a Hilbert space U , the first differential of a smooth function ψ : V → R at a
point u ∈ V is well defined independently on coordinates

duψ : TuV → R, duψ(v) =
d

dt

∣∣∣∣
t=0

ψ(γ(t)),

where γ : (−ε, ε)→ V is a curve that satisfies γ(0) = u, γ̇(0) = v.

This is not the case for the second differential. Indeed the second order derivative of a function
ψ is meaningful only at its critical points (at a regular point, by implicit function theorem, one
can always find coordinates such that ψ is locally linear). Hence, if u is a critical point for ψ it is
intrinsically defined the quadratic map

Hessu ψ : TuV → R, v 7→ d2

dt2

∣∣∣∣
t=0

ψ(γ(t))

In our case V = F−1(q), ψ = ϕ
∣∣
F−1(q)

, and since TuF
−1(q) = KerDuF , we have a well defined

quadratic form

Hessu ϕ
∣∣
F−1(q)

: KerDuF → R

which is computed as follows

Proposition 7.8. For all v ∈ KerDuF we have

Hessu ϕ
∣∣
F−1(q)

(v) = d2uϕ(v) − λD2
uF (v). (7.13)

where λ is defined by (7.10).

Proof. Notice that F−1(q) ⊂ U is a submanifold in a Hilbert space. Fix a point q ∈ M and
u ∈ F−1(q). Consider a path u(s) in U such that u(0) = u and u(s) ∈ F−1(q) for all s. Then in
coordinates we have, differentiating twice with respect to u

F (u(s)) = q =⇒ dF

du
u̇ = 0

=⇒ 〈d
2F

du2
u̇, u̇〉+ dF

du
ü = 0. (7.14)
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where we denoted1 by u̇ = u̇(0) and ü = ü(0). The same computation for ϕ gives

D2
uϕ(u̇) =

d2

ds2

∣∣∣
s=0

ϕ(u(s))

= 〈d
2ϕ

du2
u̇, u̇〉+ dϕ

du
ü

= 〈d
2ϕ

du2
u̇, u̇〉+ λ

dF

du
ü (by (7.10))

= 〈d
2ϕ

du2
u̇, u̇〉 − λ〈d

2F

du2
u̇, u̇〉 (by (7.14))

Definition 7.9. In the previous setting let u ∈ U and λ ∈ T ∗
F (u)M be a non zero covector. We say

that λ is a Lagrange multiplier for the problem (7.9) associated to u (equivalently that (u, λ) is a
Lagrange point) if

∃λ ∈ T ∗
F (u)M s.t. duϕ = λDuF (7.15)

We denote the set of all Lagrange points by CF,ϕ. More precisely

CF,ϕ = {(u, λ) ∈ U × T ∗M | F (u) = π(λ), duϕ = λDuF} (7.16)

The set CF,ϕ is a well-defined subset of the vector bundle F ∗(T ∗M) (see Definition 2.42).

Now we give some transversality conditions that ensure Fc is an immersion.

Definition 7.10. The pair (F,ϕ) is said to be a Morse pair (or a Morse problem) if 0 is not a
critical value for the smooth map

θ : F ∗(T ∗M)→ U∗ ≃ U , (u, λ) 7→ duϕ− λDuF. (7.17)

Remark 7.11. Notice that, if M = {0}, then F is the trivial map and with this definition we have
that (F,ϕ) is a Morse pair if and only if ϕ is a Morse function.

In canonical coordinates λ = (ξ, x) in T ∗M we can describe the set CF,ϕ ⊂ F ∗(T ∗M) as the set
of (u, ξ, x) that satisfy 




dϕ

du
− ξ dF

du
= 0

F (u) = x
(7.18)

The linearization of the system (7.18) at a point (u, ξ, x) is given by the set of points (u′, ξ′, x′)
that satisfy 




d2ϕ

du2
u′ − ξ d

2F

du2
u′ − ξ′dF

du
= 0

dF

du
u′ = x′

(7.19)

Let us denote the linear map Q : U → U∗ ≃ U defined by

Qu′ = ξ
d2F

du2
u′ − d2ϕ

du2
u′.

1Recall that the notation dF
du

stands for the differential of F in coordinates, while the notation 〈duF, ·〉 is intrinsic.

128



Recall that U is an Hilbert space and we can identify the space with its dual using the scalar
product. Since Q is defined by second derivatives of the maps F and ϕ, it is a symmetric operator.

Note. We also need the extra assumption that imQ is closed. This is not restrictive for our
purposes since, as explained later, for a Morse problem ImQ has finite codimension, hence it is a
closed subspace.

The definition of Morse problem is immediately rewritten as follows: the pair (F,ϕ) define a
Morse problem if and only if the following map is surjective.

Θ : U × R
n∗ → U , Θ(u′, ξ′) = Qu′ − ξ′dF

du
. (7.20)

Indeed the map Θ is exactly the coordinate expression of the differential of the first equation in
(7.18) (that is the coordinate version of (7.17)).

Lemma 7.12. If (F,ϕ) define a Morse problem, then CF,ϕ is a smooth n-dimensional manifold in
F ∗(T ∗M).

Proof. First notice that, from (7.16) and (7.17), it immediately follows that

CF,ϕ = θ−1(0) (7.21)

Since 0 is not a critical value for θ, from the implicit function theorem it follows that CF,ϕ is a
submanifold. A simple dimension argument let us to conclude under the additional assumption
dim U < +∞. Indeed in this case, since the differential of the map (7.17) is surjective we have that

dim φ∗(T ∗M)− dim CF,ϕ = dim U

so we can compute the dimension of CF,ϕ

dim CF,ϕ = dim φ∗(T ∗M)− dim U
= (dim U + rankT ∗M)− dim U
= rankT ∗M = n

In the general case (when dim U = +∞) the above argument is no more valid and we have to use
explicitly that Q is self-adjoint. Let us denote with B : Rn∗ → U the map

Bξ′ = ξ′
dF

du
, so that Θ : (u′, ξ′) 7→ Qu′ −Bξ′

Since Θ is surjective and dim(ImB) ≤ n we get

codim ImQ ≤ dim ImB ≤ n

Moreover since Q is self-adjoint we have

U = KerQ⊕ ImQ, dimKerQ = dim(ImQ)⊥ ≤ n

Now, being Θ the coordinate expression of the differential of θ, the dimension of CF,ϕ coincide
with the dimension of the kernel of Θ. In addition, if we denote with πKer : U → KerQ and
πIm : U → ImQ the orthogonal projection onto the two subspaces, it is easy to see that

Θ(u′, ξ′) = 0 ⇐⇒
{
πKerBξ

′ = 0,

πImBξ
′ = Qu′
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from which it immediately follows the identity

dimKerΘ = dimKerQ+ dimKer (πKerB) = n

since πKerB : Rn → KerQ is a surjective map between finite-dimensional spaces.

The last characterization of Morse problem leads to a convenient criterion to check, in coordi-
nates, whether a pair (F,ϕ) defines a Morse problem or not.

Lemma 7.13. Assume that ImQ is closed. Then the pair (F,ϕ) defines a Morse problem if and
only if

KerQ ∩KerDuF = 0 (7.22)

Proof. The problem is not Morse if and only if the image of the differential of the map (7.17) is
not surjective, i.e. there exists w ∈ U that is orthogonal to imΘ,

〈Qu′, w〉 − 〈ξ′ dF
du
,w〉 = 0

Using that Q is self-adjoint we get

〈u′, Qw〉 − 〈ξ′dF
du

,w〉 = 0, ∀ ξ′, u′

that is equivalent, since we have disjoint variables, to

Qw = 0 and
dF

du
w = 0

Let us consider now the projection map φc : CF,ϕ −→ T ∗M defined by :

Fc(u, λ) = λ.

Definition 7.14. Let N be a n-dimensional submanifold. An immersion F : N → T ∗M is said to
be a Lagrange immersion if F ∗σ = 0, where σ denotes the standard symplectic form on T ∗M .

Proposition 7.15. If the pair (F,ϕ) defines a Morse problem, then Fc is a Lagrange immersion.

Proof. First we prove that Fc is an immersion and then that it is Lagragian.

(i). Recall that Fc : CF,ϕ → T ∗M where

CF,ϕ = {(u, ξ, x) | equations (7.18) holds}

The differential D(u,λ)Fc : T(u,λ)CF,ϕ → TλT
∗M is defined by the linearization of equations (7.18)

T(u,λ)CF,ϕ = {(u′, ξ′, x′) | equations (7.19) holds}

where

D(u,λ)Fc(u
′, ξ′, x′) = (ξ′, x′)
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Now looking at (7.19) it easily seen that

D(u,λ)Fc(u
′, ξ′, x′) = 0 iff Qu′ =

dF

du
u′ = 0.

Since (F,ϕ) defines a Morse problem we have by (7.22) that such a u′ does not exists. Hence the
differential is never zero and Fc is an immersion.

(ii). We now show that F ∗
c σ = 0. Since σ = ds and pullback commutes with the differential it

is sufficient to show that F ∗
c s is closed. In particular we will show that

F ∗
c s = dϕ

∣∣
CF,ϕ

.

By definition the map Fc we have that the following diagram is commutative:

CF,ϕ

πU
��

Fc // T ∗M

πM
��

U
F

//M

(7.23)

Moreover, notice that if F :M → N is smooth and ω ∈ Λ1(N), by definition of pull-back we have
(F ∗ω)q = ωF (q) ◦DqF . Hence

(F ∗
c s)(u,λ) = sλ ◦D(u,λ)Fc (by definition of s)

= λ ◦ πM∗ ◦D(u,λ)Fc (by (7.23))

= λ ◦DuF ◦ πU∗ (by (7.10))

= du(ϕ ◦ πU )

Remark 7.16. Recall that the set LF,ϕ of Lagrange multipliers (see Definition 7.9) is the image of
CF,ϕ under the map

Fc : CF,ϕ → T ∗M, (u, λ) 7→ λ, LF,ϕ := imFc

From the last proposition it follows that, if LF,ϕ is a submanifold, then it is a Lagrangian subman-
ifold.

We resume the results obtained above in the following

Proposition 7.17. Let (F,ϕ) be a Morse problem and assume (u, λ) is a Lagrange point such that
u is a regular point for F , where F (u) = q. The following properties are equivalent:

(i) Hessu ϕ
∣∣
F−1(q)

is degenerate,

(ii) (u, λ) is a critical point for the map π ◦ Fc = F
∣∣
CF,ϕ

: CF,ϕ →M ,

(iii) if LF,ϕ is a submanifold, λ is a critical point for the map π
∣∣
LF,ϕ

: LF,ϕ →M .
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Proof. In coordinates we have the following expression for the Hessian

Hessuϕ
∣∣
F−1(q)

(v) = 〈Qv, v〉, ∀ v ∈ KerDuF.

and Q is the linear operator associated to the bilinear form. Assume that Hessu ϕ
∣∣
F−1(q)

is degen-

erate, i.e. there exists u′ ∈ KerDuF such that

〈Qu′, v〉 = 0, ∀ v ∈ KerDuF.

In other words Qu′ ⊥ KerDuF that is equivalent to say that Qu′ is a linear combination of the
row of the Jacobian matrix

∃ ξ′ such that Qu′ = ξ′
dF

du

From equations (7.19) it follows immediately that (i) is equivalent to (ii). The fact that (ii) is
equivalent to (iii) is obvious.

7.3 Sub-Riemannian case

In this section we want to specify all the theory we developed in the previous one to the sub-
Riemannian case. As we mentioned, we will consider the functional J defined by J(u) = 1

2

∫
|u|2

and we consider its critical points constrained to level set of the end point map F , that means that
we fix the final point of our trajectory (as usual we assume that the starting point q0 is fixed by
the very beginning).

We already characterized critical points by means of Lagrange multipliers, now we want to
consider second order informations. We start by computing the Hessian of J .

Lemma 7.18. Let q1 ∈M and (u, λ) be a critical point of J
∣∣
F−1(q1)

. Then for every v ∈ KerDuF

HessuJ
∣∣
F−1(q1)

(v) = ‖v‖2L2 − 〈λ ,
∫∫

0≤τ≤t≤1

[P 1
τ∗fv(τ), P

1
t∗fv(t)]dτdt〉 (7.24)

where P ts : γ(s) 7→ γ(t) is the flow defined by the control u.

Proof. By Proposition 7.8 we have

HessuJ
∣∣
F−1(q1)

(v) = d2uJ − λD2
uF.

It is easy to compute derivatives of J . Indeed we can rewrite it as J(u) = 1
2(u, u)L2 , hence

duJ(v) = (u, v)L2 , d2uJ(v) = (v, v)L2 = ‖v‖2L2 , ∀ v ∈ KerDuF

It remains to compute the second derivative of the end-point map. From the Volterra expansion
(7.4) we get

D2
uF (v, v) = 2 q1 ◦

∫∫

0≤τ≤t≤1

P 1
τ∗fv(τ) ◦ P 1

t∗fv(t)dτdt

To end the proof we use the following lemma on chronological calculus, which we will use to
symmetrize the second derivative
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Lemma 7.19. Let Xt be a nonautonomous vector field on M . Then

∫∫

0≤s≤t≤1

Xs ◦Xtdsdt =
1

2

∫ 1

0
Xsds ◦

∫ 1

0
Xtdt+

1

2

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt (7.25)

Proof of the Lemma. It is a simple computation

2

∫∫

0≤s≤t≤1

Xs ◦Xtdsdt = 2

∫∫

0≤s≤t≤1

Xs ◦Xtdsdt−
∫∫

0≤s≤t≤1

Xt ◦Xsdsdt+

∫∫

0≤s≤t≤1

Xt ◦Xsdsdt

=

∫ 1

0

∫ 1

0
Xs ◦Xtdsdt+

∫∫

0≤s≤t≤1

[Xt,Xs]dsdt

=

∫ 1

0
Xsds ◦

∫ 1

0
Xtdt+

∫∫

0≤s≤t≤1

[Xs,Xt]dsdt

where in the second line we exchange the role of s and t in the integral.

Proposition 7.20. The sub-Riemannian problem (F, J) is Morse.

Proof. We use the characterization of Lemma 7.13. We have to show that, in canonical coordinates
λ = (ξ, x),

Im

(
ξ
d2F

du2
− Id

)
is closed, Ker

(
ξ
d2F

du2
− Id

)
∩Ker

(
dF

du

)
= 0. (7.26)

Using the previous notation and defining gtv := P 1
t∗fv, we can write

dF

du
v(·) = q1 ◦

∫ 1

0
gtv(t)dt

Moreover we have 〈
ξ
d2F

du2
v(·), v(·)

〉
= ξ

∫∫

0≤τ≤t≤1

gτv(τ) ◦ gtv(t)dτdt

Since we want to find the kernel of the bilinear form we need to recover the linear operator associated
to it, i.e. to symmetrize the form

(Av)(t) :=

(
ξ
d2F

du2
v(·)
)
(t) = ξ

∫ t

0
gτv(τ)dτ ◦ gtv(t) + ξ gtv(t) ◦

∫ 1

t
gτv(τ)dτ (7.27)

Since (7.27) is an compact integral operator, then A − Id is Fredholm, and the closedness of
Im (A − Id) follows from the fact that it is of finite codimension. On the other hand, for every
control v ∈ KerDuF we can compute (see (7.2))

q1 ◦
∫ t

0
gτv(τ)dτ = −q1 ◦

∫ 1

t
gτv(τ)dτ
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Hence we have that v belong to the intersection (7.26) if and only if it satisfies

(
I − ξ d

2F

du2
v(·)
)
(t) = v(t) + ξ

[
gtv(t),

∫ 1

t
gτv(τ)dτ

]
(q1)

which has trivial kernel since is a Volterra operator, of the form v(t) +
∫ t
0 K(t, τ)v(τ)dτ .

Corollary 7.21. The manifold of Lagrange multilpliers of the sub-Riemannian problem (F, J) is
a smooth n-dimensional submanifold of T ∗M , namely

L(F,J) := {λ1 ∈ T ∗M |λ1 = e
~H(λ0), λ0 ∈ T ∗

q0M}

where H is the sub-Riemannian Hamiltonian.

To end this chapter we consider the free initial point problem, i.e. we consider the free end
point map

F :M ×U→M, (q, u) 7→ γ(1, q, u),

where

γ(t, q, u) = q ◦ −→exp
∫ t

0
fu(s)ds,

is the solution to the Cauchy problem

γ̇(t) = fu(t)(γ(t)), γ(0) = q.

We look for solution of the problem

min
F−1(q1)

J(u) + a(q), a ∈ C∞(M) (7.28)

Critical points of this problem can be found with the Lagrange multiplier rule, where, following
the notation exploited in the previuos Chapter

F = F, ϕ = J + a.

Fix a point (q0, ũ) ∈M ×U. It is easy to see that

F
∣∣
{q0}×U

= F, F
∣∣
M×{ũ} = P 1

0

and it is easy to see that the equation

λ1D(q0,ũ)F = d(q0,ũ)ϕ

splits into {
λ1DuF = duJ = u,

λ1P
1
0∗ = dq0a

In other words, by PMP, we have that to every critical point of the problem (7.28) we can associate
the normal extremal

λt = P 0∗
t λ0, λ0 = dq0a,

where the initial condition is defined by the function a.
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Exercise 7.22. Consider the free endpoint problem, i.e. find solution of the problem

min
u

J(u)− a(F (u)), a ∈ C∞(M) (7.29)

In other words now we do not restrict to the sublevel F−1(q1) (we do not fix the final point of
the trajectory) but we consider a penalty in the functional we want to minimize.

Prove that u is a critical point of this functional if and only if

λ1DuF = u, λ1 = dF (u)a.

7.4 Exponential map

Now we can define the sub-Riemannian exponential map.

Definition 7.23. Let q0 ∈ M . We define the exponential map (from q0) of the sub-Riemannian
problem the mapping

Eq0 : T ∗
q0M →M, Eq0(λ0) = π ◦ e ~H(λ0). (7.30)

When the initial point q0 is fixed we omit it in the notation, writing simply E .

The homogeneity of the sub-Riemannian Hamiltonian H yields to the following homogeneity
property of the flow of ~H.

Lemma 7.24. Let H be the sub-Riemannian Hamiltonian. Then, for every λ ∈ T ∗M

et
~H(αλ) = αeαt

~H (λ), ∀α, t > 0. (7.31)

Proof. By Remark ?? we know that if λ(t) = et
~H(λ0) is a solution of the Hamiltonian system, then

also λα(t) := αλ(αt) is a solution. The result follows from the uniqueness of the solution and the
identity that λα(0) = αλ(0).

The exponential map sends a covector λ0 to the point at time 1 of the normal extremal path
with initial condition λ0. The homogeneity property let us to recover the whole geodesic as the
image of the ray that join 0 to λ0 in the fiber T ∗

q0M .

Corollary 7.25. Let λ(t), t ∈ [0, T ], be the normal extremal that satisfies the initial condition

λ(0) = λ0 ∈ T ∗
q0M.

Then the normal extremal path γ(t) = π(λ(t)) satisfies

γ(t) = E(tλ0), t ∈ [0, T ]

Proof. Using (7.31) we get

E(tλ0) = π(e
~H(tλ0)) = π(et

~H (λ0)) = π(λ(t)) = γ(t).
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Remark 7.26. Due to the homogeneity property we can consider the following map

Eq0 : R+ × Cq0 →M, Eq0(t, λ0) = Eq0(tλ0)

where Cq0 is the hypercilynder of normalized covectors

Cq0 = {λ ∈ T ∗
q0M | H(λ) = 1/2}

In other words we restrict to length parametrized extremal paths, considering the time as an extra
variable.

We end this section by the Hamiltonian version of the Gauss’ Lemma

Proposition 7.27 (Gauss’ Lemma). Let (u, λ1) be associated with a normal minimizer starting
from q0. The covector λ1 annihilates the tangent space to the sub-Riemannian front Eq0(T ∗

q0M).

Proof. It is enough to show that for every smooth variation ηs of initial covectors such that η0 = λ
we have 〈

λ(1),
d

dt

∣∣∣∣
s=0

Eq0(ηs)
〉

= 0

Let us consider a family of initial covectors λs ∈ H−1(1/2) and their associated controls us(·)
defined by the identities

usi (t) = 〈ηs(t), fi(γs(t))〉 , ‖us‖L2 = 1

where ηs(t) is the solution of the Hamiltonian equation with initial value ηs and γs(t) is the
corresponding trajectory. For these controls one has Eq0(ηs) = F (us) hence

d

ds

∣∣∣∣
s=0

Eq0(ηs) =
d

ds

∣∣∣∣
s=0

F (us) = DuF (v), v :=
d

ds

∣∣∣∣
s=0

us (7.32)

Notice that v is orthogonal to u since ‖us‖ = const. Thus by the normal equation (7.5) and (7.32)

〈
λ(1),

d

ds

∣∣∣∣
s=0

Eq0(ηs)
〉

= 〈λ(1),DuF (v)〉 = (u, v)L2 = 0. (7.33)

7.5 Conjugate points and minimality properties of geodesics

Consider now an extremal pair (u(t), λ(t)), t ∈ [0, 1], such that the corresponding extremal path
γ(t) is strictly normal. Recall that by Corollary 4.57, the curve γ is a geodesic. Moreover, γ|[0,s] also
is a geodesic, for every s > 0, and if we reparametrize it as γs(t) := γ(st), t ∈ [0, 1] it corresponds
to the control us(t) = su(st).

Definition 7.28. A geodesic γ(t) is said to be strongly normal, if γ|[0,s] is stricly normal ∀ s > 0.

Proposition 7.29. Let γ be a strongly normal geodesic. The following are equivalent:

(i) HessuJ
∣∣
F−1(γ(1))

is positive definite,

(ii) HessusJ
∣∣
F−1(γs(1))

is non degenerate for all s > 0.
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Proof. Recall that

HessusJ
∣∣
F−1(γs(1))

(v) = ‖v‖2L2 − 〈λs ,D2
usF (v, v)〉 (7.34)

which is a well defined quadratic form of the kind Id−Qs, with Qs compact, since it is a Volterra
operator (see also the proof of Proposition 7.20). Then define the function

α(s) : = inf
‖v‖=1

{
‖v‖2L2 − 〈λs ,D2

usF (v, v)〉
}

= 1− sup
‖v‖=1

〈
λs,D

2
usF (v, v)

〉
(7.35)

Notice that, being a compact operator, if the quadratic form is not negative definite then the
maximum is attained in (7.35) and it is the maximum eigenvalue2. On the other hand, if the
quadratic form is negative definite the supremum is always zero (it is sufficient to evaluate it on
any orthonormal sequence).

Now we prove the following claim, which immediately implies the proposition, using that the
Hessian is degenerate at some point s̄ then α(s̄) = 0 (indeed α(s̄) = 0 means that the quadratic
form is nonnegative and has infimum zero, hence has zero as eigenvalue, by compactness).

Claim. α(s) is a continuous and monotonic decreasing function, with α(0) = 1.

Proof of the Claim. It is easy to show that the following formulas hold for the first and second
differentials computed at points us

DusF (v) =

∫ s

0
P 1
t∗fv(t)dt, D2

usF (v, v) =

∫∫

0≤τ≤t≤s

[P 1
τ∗fv(τ), P

1
t∗fv(t)]dτdt (7.36)

Now consider 0 ≤ s ≤ ŝ ≤ 1 and v ∈ KerDusF and define the control

v̂(t) =




v(
ŝ

s
t), 0 ≤ t ≤ s

ŝ
,

0,
s

ŝ
< t ≤ 1.

Then ‖v̂‖ = ‖v‖, v̂ ∈ KerDuŝF and D2
usF (v, v) = D2

uŝ
F (v̂, v̂), hence α(s) ≥ α(ŝ).

On the other hand, if we consider γs(t) = γ(st) as defined on the whole segment [0, 1], we can
rewrite (7.36) as follows

DusF (v) = s

∫ 1

0
P 1
st∗fv(t)dt, D2

usF (v, v) = s2
∫∫

0≤τ≤t≤1

[P 1
sτ∗fv(τ), P

1
st∗fv(t)]dτdt (7.37)

To prove that α is continuous we need that both the integrand in the expression of DusF and the
kernel KerDusF of these quadratic form is continuous with respect to s. This follows from our
main assumption on γ. Indeed, since every restriction γ|[0,s] is strictly abnormal we have that rank
of the quadratic form is always equal3 to n, and the kernel continuously depend on s.

2a compact operator in a Hilbert space is diagonalizable and the set of eigenvalues is countable, bounded, and can
be ordered in such a way that µn → 0.

3a piece of curve γs is abnormal if and only if it is a critical point of F , that means that the rank of the derivative
is not maximum at this point
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Remark 7.30. Notice that (i) implies only that u is local minimizer in the L2-topology. We will
discuss more stronger minimality conditions in next sections.

As we said the definition of exponential map is nothing but the map of the Proposition 7.17. Is
natural then to give the following definition:

Definition 7.31. Fix q0 ∈M and consider the exponential map E = Eq0 starting from q0. A point
q 6= q0 is said conjugate to q0 if q is a critical value for E .

We say that q is conjugate to q0 along the geodesic γ(t) = E(tλ) if q = γ(s) and sλ is a critical
point of the exponential map E .
Remark 7.32. Recall that E(λ)
Proposition 7.33. Let γ(t) be a strongly normal geodesic and 0 ≤ s ≤ t. Then γ(s) is conjugate
to γ(0) if and only if Hessus c

∣∣
F−1(γs)

is degenerate.

Proof. We apply Proposition 7.17. Indeed γ(s) is a conjugate point if and only if us is a critical
point of the exponential map, that is equivalent to the fact that Hessus c

∣∣
F−1(γs)

is degenerate.

Corollary 7.34. Let γ(t) be a strongly normal geodesic and assume that there are no conjugate
points. Then Hessuc

∣∣
F−1(q1)

> 0. In particular γ(t) is a local minimizer in the L2-topology for

controls.

Proof. Indeed, since there are no conjugate points, by Proposition 7.33 it follows that Hessus c
∣∣
F−1(γs)

is non degenerate for every s ∈ [0, 1], hence Hessuc
∣∣
F−1(q1)

> 0 by Proposition 7.29.

Corollary 7.35. Let γ(t) be a strongly normal geodesic. Then the set {s > 0, γ(s) is conjugate} is
isolated from 0.

Proof. It follows from the fact that small pieces of a normal geodesic are minimizers and Proposition
7.33.

Hence we have a good characterization of minimizers for the sub-Riemannian distance in terms
of conjugate points, but only in the L2-topology for controls, that is equivalent to the H1-topology
for the trajectories. Now we want to prove that, if there are no conjugate points, the trajectory is
also a minimizer in the C0-topology, that is more strong.

Proposition 7.36. Let γ be a strongly normal geodesic. If γ(s) is not conjugate to γ(0) for every
0 < s ≤ 1, then γ is a strong miminum in the C0-topology for trajectories.

Proof. Assume that

γ(t) = π ◦ et ~H(λ0), λ0 ∈ T ∗
qM

We want to show that hypothesis of Theorem 4.55 are satisfied. We will use the following lemma,
which we prove at the end of the proposition.

Lemma 7.37. There exists a ∈ C∞(M) such that

λ0 = dq0a, Hess(q0,u)J + a
∣∣∣
F−1(γs)

> 0,

In this case (F, J + a) is a Morse problem and

L(F,J+a) = {e
~H(dqa), q ∈M}

138



From this Lemma it follows that sλ0 is a regular point of the map π ◦ e ~H
∣∣
L0
, where as usual

L0 = {dqa, q ∈ M} denotes the graph of the differential. Using the homogeneity property (7.31)
we can rewrite this saying that

π ◦ es ~H
∣∣
L0

is an immersion at λ0, ∀ s ∈ [0, 1],

In particular it is a local diffeomorphism. Hence we can apply the local version of Theorem 4.55.

Proof of Lemma 7.37. First we notice that

KerD(q0,u)F ⊂ Tq0M ⊕U, U Hilbert

In particular
KerD(q0,u)F ∩ (0⊕U) = KerDuF

Since there are no conjugate points, it follows that

Hess(q0,u)J + a
∣∣∣
0⊕KerDuF

= HessuJ > 0 (7.38)

Then it is sufficient to show that there exists a choice of the function a ∈ C∞(M) such that the
Hessian is positive definite also in the complement. We define

Ws := {ξ ⊕ v ∈ KerD(q0,us)F|Hess(J + a)(ξ ⊕ v, 0⊕KerDusF ) = 0}

Notice from (7.38) that, if there is some ξ ⊕ v ∈Ws, then ξ 6= 0. Now we prove that there exists a
map

Bs : TqM → U, Ws = {ξ ⊕Bsξ, ξ ∈ TqM}
Then we will have

KerD(q0,us)F = (0⊕KerDusF ) +Ws

and we get

Hess(J + a)(ξ ⊕Bsξ + 0⊕ v, ξ ⊕Bsξ + 0⊕ v) =
= HessJ(v, v) + Hess(J + a)(ξ ⊕Bsξ, ξ ⊕Bsξ)
= HessJ(v, v) + d2a(ξ, ξ) +Q(ξ)

where we used that mixed terms give no contribution and denote with Q(ξ) a quadratic form that
does not depend on second derivatives of a. In particular, since the first term is positive, we can
choose a in such a way that it remains positive.

Remark 7.38. The assumption that the curve γ is strictly normal is essential in what we proved.
Indeed if a curve γ is both normal and abnormal we have that there exists two covectors λ1, ν1 6= 0
that satisfy

λ1DuF = u, ν1DuF = 0,

that implies
(λ1 + sν1)DuF = u, ∀ s ∈ R

and the whole one parameter family of covectors projects on the same geodesic, and γ would be a
critical point of the projection. In this case the definition of conjugate point should be changed.
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Up to now we proved a sufficient condition for a strictly normal geodesic to be a strong minimum
of the sub-Riemannian distance. Indeed Proposition 7.36 says that, if γ contains no conjugate
points, then it is optimal with respect to sufficiently C0-closed curves.

On the other hand, if we consider a control u such that the corresponding trajectory

γ(t) = q0 ◦ −→exp
∫ t

0
fu(s)ds

is strictly normal, that means u is not a critical point of the end-point map F , then it is well defined
the Hessian of J

∣∣
F−1(q1)

, where q1 = F (u) at the point u. Moreover, if γ is locally optimal, also in

a very weak sense, then necessarily we have

Hessu J
∣∣
F−1(q1)

≥ 0

Indeed if the Hessian is sign-indefinite, then the map is locally open around the point u and we
have that small perturbations give rise to a smaller cost.

As in the proof of Proposition 7.29 we consider the family of rescaled controls (and corresponding
trajectories)

us(t) = su(st), γs(t) = γ(st), s, t ∈ [0, 1],

and we define the function
α(s) = min

‖v‖=1
Hessus J

∣∣
F−1(γs(1))

that is well defined, continuous and non-increasing, under the assumption that γs is strictly normal
for every s ∈ [0, 1]. Notice that α(s̄) = 0 if and only if γ(s̄) is a conjugate point. Since α(0) = 1 we
have only three cases

(a) α(1) > 0. By monotonicity this implies α(s) > 0 for all s and we have no conjugate points.
Hence, by Proposition 7.36, γ is a minimum in the strong topology.

(b) α(1) < 0. Then the Hessian at u is sign indefinite and γ is not a minimum, also in the weak
topology.

(c) α(1) = 0. In this case the Hessian is semi-definite and we cannot conclude anything on the
minimality of γ.

Notice that in cases (b) and (c) also a segment of conjugate point can appear. To analyze
in details case (c) and to understand better the properties of a segment of conjugate point we
introduce the notion of Jacobi curves, which is some sense generalize the notion of Jacobi fields in
Riemannanian geometry. (see Chapter 13)

7.6 Application: Conjugate locus on perturbed S
2

In this section we prove that the conjugate locus of a generic C2 perturbation of the standard
metric on S2, generates a conjugate locus which has at least 4 cusps. Recall that the conjugate
locus from a point q on the standard sphere S2 coincide with the point that is antipodal to q, where
all geodesics starting from q meets and lose their optimality.

Let us then consider a point q0 on S2 with a Riemannian Hamiltonian H sufficiently close
to H0 (with respect to the C2 topology). Normal geodesic starting from q0 can be parametrized
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by an angle θ ∈ S1, that describes the set of normal extremal paths parametrized by length, or
equivalently covectors λ ∈ T ∗

q0M such that H(λ) = 1/2.
For a fixed initial condition λ = (q0, θ) we have that

λ(t) = et
~H(λ) = (p(t, θ), γ(t, θ)),

and we denote by Eq0 the exponential map based at q0

Eq0(t, λ) = π ◦ et ~H(λ) = γ(t, θ)

For every initial condition θ ∈ S1 let us denote by γθ(t) (also γ(t, θ)) the normal extremal path
associated with θ and starting from q0, and by tc(θ) the first conjugate time along γθ. The conjugate
locus is the set Con(q0) = {γ(tc(θ), θ), θ ∈ S1}.

Proposition 7.39. The conjugate time along γθ is characterized as follows

tc(θ) = min

{
t > 0

∣∣∣∣
∂E
∂θ

(t, θ) = 0

}
. (7.39)

Proof. The conjugate point corresponds to points (t, θ) such that the differential of the exponential
map is not surjective, i.e. when

rank

{
∂E
∂t

(t, θ),
∂E
∂θ

(t, θ)

}
= 1. (7.40)

Let us show that the two vector cannot be proportional unless ∂E
∂θ (t, θ) = 0. Indeed it follows from

Proposition 7.27 that 〈
p,
∂E
∂t

(t, θ)

〉
= 1,

〈
p,
∂E
∂θ

(t, θ)

〉
= 0,

thus, whenever ∂E∂θ (t, θ) 6= 0, the two vectors appearing in (7.40) are always linearly independent.

Let us now consider solutions of the equation

∂E
∂θ

(t, θ) = 0. (7.41)

In other words introduce the function β : θ 7→ E(tc(θ), θ). By the chain rule and (7.41), it is easy
to see that

β′(θ) = t′c(θ)
∂E
∂θ

(tc(θ), θ) +
∂E
∂θ

(tc(θ), θ)
︸ ︷︷ ︸

=0

(7.42)

Let us denote by g : S1 → R
2 the function g(θ) := ∂E

∂θ (tc(θ), θ). When H corresponds to the
Hamiltonian H0 of the standard Riemannian structure on the sphere then the function g describes
a circle:

g0(θ) =

(
cos θ
sin θ

)

By assumption the perturbation of the metric is small in the C2-topology, hence the perturbation
does not change the convexity property of g. Then the cuspidal point of the conjugate locus
corresponds exactly to those points where the function θ 7→ t′c(θ) change sign.
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Theorem 7.40. The conjugate locus of the perturbed sphere has at least 4 cuspidal points.

Proof. Notice that the function θ 7→ t′c(θ), seen as a periodic function defined on R, can change
sign only an even number of times on an interval [0, 2π]. Moreover it is has zero mean since

∫ 2π

0
t′c(θ)dθ = tc(2π) − tc(0) = 0 (7.43)

that implies that, if it is not identically zero, it has to change sign at least twice on [0, 2π]. Notice
also that ∫ 2π

0
t′c(θ)g(θ)dθ =

∫ 2π

0
β′(θ)dθ = β(2π) − β(0) = 0. (7.44)

Let us now assume by contradiction that the function θ 7→ t′c(θ) changes sign exactly twice at
points θ1, θ2 ∈ S1. Then, by convexity, there exists a covector λ ∈ (R2)∗ such that 〈λ, g(θi)〉 = 0
for i = 1, 2 and such that t′c(θ) 〈λ, g(θ)〉 ≥ 0, that implies in particular

∫ 2π

0
t′c(θ) 〈λ, g(θ)〉 dθ 6= 0

which contradicts (7.44).

Remark 7.41. The same argument can be applied for every small C2 perturbation H of the Rieman-
nian Hamiltonian H0 associated with the standard Riemannian structure on S2, and not necessarily
a quadratic Hamiltonian coming from a Riemannian metric.

7.7 Global minimizers

Before going to the analysis of global minimality of geodesics, let us resume in the following Theorem
our results about local minimality.

Theorem 7.42. Let M be complete and γ(s) with γ|[0,s] and γ|[s,1] strictly normal 0 ≤ s ≤ 1.

(i) if γ has no conjugate point then its a minimizer in the C0-topology for the trajectories,

(ii) if γ has at least a conjugate point then its not minimizer in the L2-topology for controls.

Remark 7.43. Notice that the hypotheses of the above theorem imply that in the case (ii) it not
possible to have ha segment of full conjugate point up to t = 1.

Definition 7.44. We say that a point q is in the cut locus of q0 if there exists two length minimizers
joining q0 and q.

Our previous analysis of conjugate points let us to state the following result.

Theorem 7.45. Let M be a complete sub-Riemannian manifold and γ : [0, 1] → M be a normal
extremal path. Then

(i) assume that γ|[0,s] is strictly normal for all s > 0 and that γ is not a minimizer. Then there
exists τ ∈]0, 1] such that γ(τ) is either cut or conjugate to γ(0),
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(ii) assume that γ|[s,1] is strictly normal for all s > 0 and that there exists τ ∈]0, 1] such that γ(s)
is either cut or conjugate to γ(0). Then γ not a minimizer.

In particular if γ is strongly normal then we have that γ is not a minimizer if and only if there
exists a cut or a conjugate point along γ.

Proof. (i). Let us assume that γ is not a minimizer and that there are no conjugate points along
γ. We prove that this implies the presence of a cut point. Define

t∗ := sup{t | γ|[0,t] is minimizing}
Let us show that 0 < t∗ < 1. Indeed t∗ > 0 since small pieces of a normal extremal path are
minimizers. Moreover, since γ|[0,1] is not a minimizer, by continuity of the distance also t∗ < 1.
Denote by αs(·) a minimizer joining γ(0) to γ(s), for each s > t∗. The existence of such a minimizers
follows from the completeness assumption.

Let us consider the trajectories αtn for a sequence tn → t∗. By compactness of minimizers
(up to considering a subsequence tnk

, which we still demote by tn) there exists a limit minimizer
αtn → α joining γ(0) to γ(t∗).

Moreover, in the segment γ|[0,t∗] there are no conjugate points (by definition of t∗), hence the
curve γ|[0,t∗] is a minimizer in the strict C0-topology. Thus α, that by continuity is not shorter than
γ|[0,t∗], is not contained in a neighborhood γ. From this it follows that γ(t∗) is a cut point.

(ii). Assume that there exists a conjugate point γ(τ) in the segment [0, 1]. Then γ is not a local
(hence global) minimizer, as proved in Theorem 7.42. It remains to show that the same remains
true if γ(τ) is a cut point. Indeed in this case we have a minimizer γ̂ such that γ̂(τ) = γ(τ).
From this it follows that the curve built with γ̂|[0,τ ] and γ|[τ,1] is also a minimizer and the piece
γ[τ,1], by uniqueness of the covector, would be associated with two different normal covectors, hence
abnormal, that contradicts our assumptions.

Theorem 7.46. Let γ : [0, 1]→M be a normal extremal path. Assume that for some s > 0

(i) γ|[0,s] is a global minimizer,

(ii) at each point in a neighborhood of γ(s) there exists a unique normal minimizer joining γ(0)
to γ(s).

Then γ(s) is not conjugate to γ(0).

Proof. Let us consider a neighborhood O of γ(s) and, for each q ∈ O, let us denote by uq (resp.
γq) the minimizing control (resp. trajectory) joining γ(0) to q.

The map q 7→ uq is continuous in the L2 topology. Hence we can consider the family λq1 of
covectors such that

λq1DuqF = uq, ∀ q ∈ O.
By the smoothness of F and the contiuity of the map q 7→ DuqF we have that the map q 7→ λq1
is continuous. Thus the map q 7→ λq0 is continuous too, being the composition of the previous one
with (P ∗

0,1)
−1.

Moreover, the map q 7→ λq0 is also injective. Indeed it is an inverse of the exponential map. By
the invariance of domain theorem we have that O′ = {λq0, q ∈ O} is open in T ∗

qM .

Thus (1+ ε)λ
γ(s)
0 ∈ O′ for |ε| small enough. This proves that for points in γ([0, 1]) ∩O that are

close to γ(s), the restriction of γ is the unique minimizer. Hence γ(s) is not conjugate.
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Chapter 8

Nonholonomic tangent space

8.1 Jet spaces

Consider a smooth curve γ on a smooth manifold M and assume γ(0) = q ∈ M is fixed. In
coordinates we can write

γ(t) = q + tγ̇(0) +O(t2) (8.1)

and we defined a tangent vector v ∈ TqM as equivalence classes of curves such that, in some
coordinate chart, they have the same 1-st order Taylor polynomial.

In the same spirit we can consider, given a smooth curve such that γ(0) = q, its m-th order
Taylor polynomial at q

γ(t) = q + tγ̇(0) +
t2

2
γ̈(0) + . . .+

tm

m!
γ(m)(0) (8.2)

Exercise 8.1. Let γ, γ′ be two curves starting from q. We say that γ is (m-)equivalent to γ′, and
we write γ ∼m γ′, if their Taylor polynomial of order m in some coordinate chart coincide. Prove
that ∼m is a well-defined equivalence relation on the set of curves starting from q.

Definition 8.2. Let m > 0 be an integer and q ∈ M . We define the set of m-th jets of curves at
point q ∈ M as the equivalence classes of curves starting from q with respect to ∼m. We denote
with Jmq γ the equivalence class of a curve γ and with

Jmq := {Jmq γ, γ smooth curve on M}

Remark 8.3. It is easy to show from coordinates representation (8.2) that Jmq is a smooth manifold

and dimJmq = nm. Indeed in (8.2) every term γ(i)(0) is an n-dimensional vector.
Notice that Jmq is not a vector space since a change of coordinates does not act linearly on the

m-th Taylor polynomial. For instance, given a smooth curve γ such that γ̇(0) 6= 0 there always
exists a coordinate chart in which γ is a straight line, hence higher order derivatives have no intrinsic
meaning.

In the following we always assume that q ∈ M is fixed and we simplify the notation assuming
that it coincides with the origin in our coordinate chart. The Taylor expansion then is written as
follows

Jmq γ =

m∑

i=1

ti

i!
γ(i)(0)
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To better understand the structure of Jmq as a smooth manifold we consider the map which
“forget about” the m-th derivative

Πmm−1 : Jmq −→ Jm−1
q

m∑

i=1

ti

i!
γ(i)(0) 7→

m−1∑

i=1

ti

i!
γ(i)(0)

Proposition 8.4. Jmq is an affine bundle over Jm−1
q with projection Πmm−1, whose fibers are affine

spaces over TqM .

Fix an element j ∈ Jm−1
q , then the fiber at point j is the set of all mth-jets with fixed m − 1

terms. To show that it is an affine space we should define properly an action of tangent vectors on
mth-jets with (m− 1)th-jet fixed.

The geometric meaning of the fact that Jmq is an affine bundle (and not an vector bundle) is

that we cannot complete in a canonic way a (m− 1)th-jet to a mth-jet, i.e. we cannot fix an origin
in the fiber. On the other hand we can choose as a “global” origin on Jmq the jet of the constant
curve γ(t) ≡ q.

Proof. Let j = Jmq γ be the mth-jet of a smooth curve in M and let v ∈ TqM . Extend the vector v
to a vector filed V ∈ Vec(M) such that V (q) = v and define the action of v on j as

Jmq γ + v := Jmq (et
mV (γ(t)))

It is easily seen that

Jmq (et
mV (γ(t))) = Jmq γ + tmV (q)

hence Jm−1
q (γ(t))) = Jm−1

q (et
mV (γ(t))) and one can check that all is well defined.

Now we want to define dilations on jet spaces, analogously to homothety in Euclidean spaces.
Since we have no vector space structure we have to find an appropriate notion

Definition 8.5. Let α ∈ R and define γα(t) := γ(αt) for every t ∈ R. Define the dilation of factor
α as

δα : Jmq → Jmq , δα(J
m
q γ) = Jmq (γα)

This definition does not depend on the representative and in coordinates it is a quasi-homogeneous
multiplication

δα(

m∑

i=1

tiξi) =

m∑

i=1

tiαiξi

Now we extend the notion of jets also for vector fields. To start with we consider flows on the
manifold

Definition 8.6. A flow on M is a smooth family of diffeomorphisms

P· = {Pt ∈ Diff(M), t ∈ R}, P0 = Id
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Notice that we do not ask P to be a one parametric group (i.e. Pt ◦ Ps 6= Pt+s) and this in
general is charachterized as the flow of the nonautonomous vector field

Xt :=
d

dε

∣∣∣∣
ε=0

P t+εt .

The set of all flows on M is a group with the point-wise product, i.e. the product of the flows
Pt and Qt is given by

(P ◦Q)t := Pt ◦Qt

Clearly we can act with a flow on a smooth curve on M as (P·γ)(t) = Pt(γ(t)). Moreover, since
P0 = id, it makes sense to consider if this action is well-behaved with respect to Jmq . Indeed the
new curve start from q and it is easy to see from the chain rule that Jmq (P·γ) depends only on first
m derivatives of γ. Then we can define

Definition 8.7. Let Pt be a smooth flow on M and j = Jmq γ ∈ Jmq . The action of P on Jmq is
defined by

P·(Jmq γ) := Jmq (P·γ)

It can be easily checked that (P ◦Q)·j = P·(Q·j) for every j ∈ Jmq .

Given a vector field V ∈ Vec(M) we want to define its mth-jet Jmq V which should be an element
of Vec(Jmq ).

Let us denote with etV the 1-parametric group defined by the flow of V . As we explained we
can act on jets

e·V : j 7→ e·V (j)

By the way we need a family of flows to acts on a family of curves so we consider the 1-parametric
group of flows s 7→ estV

Definition 8.8. The map Jmq V : Jmq → TJmq is defined as

(Jmq V )(Jmq γ) :=
∂

∂s

∣∣∣∣
s=0

e·sV (Jmq γ) =
∂

∂s

∣∣∣∣
s=0

Jmq (etsV (γ(t))) (8.3)

Exercise 8.9. A vector field, when written in coordinates, can be identified with a vector function.
Prove that

(Jmq V )(Jmq γ) =

m∑

i=1

ti

i!

di

dti

∣∣∣
t=0

(tV (γ(t)))

To end this section we study the interplay between dilations and jets of vector fields. Since δα
is a map on Jmq its differential (δα)∗ acts on elements of Vec(Jmq ), in particular on jets of vector
fields on M . Surprisingly, its action on these fields is linear with respect to α:

Proposition 8.10. (δα)∗(Jmq V ) = Jmq (αV ) = αJmq V
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Proof. From the very definition of the differential of a map (see also Chapter 2) we have

((δα)∗J
m
q V )(Jmq γ) =

∂

∂s

∣∣∣∣
s=0

Jmq (δα e
tsV δ1/α(γ(t)))

=
∂

∂s

∣∣∣∣
s=0

Jmq (δα e
tsV (γ(t/α)))

=
∂

∂s

∣∣∣∣
s=0

Jmq (eαtsV (γ(t)))

= Jmq (αV ) = αJmq V

8.2 Admissible variations

In this section we define the appropriate notion of tangent vector to a sub-Riemannian manifold.
Our goal is to define the “tangent structure” to a sub-Riemannian one.

As we know, we can assume that the sub-Riemannian structure is defined by the orthonormal
frame {f1, . . . , fk}. Admissible curves on M are maps γ : [0, T ] → M such that there exists a
control function u(t) ∈ L∞ such that

γ̇(t) = fu(t)(γ(t)) =

k∑

i=1

ui(t)fi(γ(t))

To have a good definition of tangent vector we could not restrict to family of admissible curves,
because in this way we loose all the information about directions that are not in the distribution.
Indeed we want the tangent space to be a first order approximation of the structure, containing
informations about all directions.

We need a proper definition of tangent vector, that means a proper definition of variation of a
point, in order to give a precise meaning to its “principal term”, that is going to be the “tangent
vector”.

The idea is to introduce the notion of admissible variation

Definition 8.11. A curve γ : [0, T ]→M such that γ(0) = q is said a smooth admissible variation
of q if there exists a family of controls {u(t, s)}t∈[0,T ] such that

(i) u(t, ·) is measurable and bounded for all t ∈ [0, T ],

(ii) u(·, s) is smooth with bounded derivatives, for all s ∈ [0, τ ],

(iii) u(0, s) = 0 for all s ∈ [0, τ ],

(iv) γ(t) = q ◦ −→exp
∫ τ

0
fu(t,s)ds

In other words γ is an admissible variation if it can be parametrized as the final point of a smooth
family of admissible curves. We stress that γ is not admissible, in general.
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Remark 8.12. We recall that two distributions are said to be equivalent (see also Definition 3.3 and
3.17) if and only if the corresponding modulus of horizontal vector fields are isomorphic D ≃ D′,
where we recall that

D = span{f(σ), σ smooth section of U}.
which is finitely generated by a basis f1, . . . , fk.

Now we show that the definition of admissible variation does not depend on the frame f1, . . . , fk.
Notice that γ(t) is an admissible variation if γ(t) = q(t, τ) where q(t, s) is a solution of

∂

∂s
q(t, s) =

k∑

i=1

ui(t, s)fi(q(t, s)), s ∈ [0, τ ]

Let now f̃1, . . . , f̃k be another set of local generators of the modulus. There exist functions aij ∈
C∞(M) such that

f̃i(q) =
k∑

j=1

aij(q)fj(q), ∀ q ∈M, ∀ i = 1, . . . , k (8.4)

and assume that γ is an admissible variation with respect to u(t, s) in this new frame, i.e.

∂

∂s
q(t, s) =

k∑

i=1

ui(t, s)f̃i(q(t, s)), s ∈ [0, τ ] (8.5)

Now we prove that there exist a control ũ(t, s) such that γ is an admissible variation of the old
frame with respect to this control. From (11.23) we get

f̃(u, q) =
∑

i

ui(t, s)f̃i(q)

=
∑

i,j

ui(t, s)aij(q)fj(q)

=
∑

j

vj(t, s, q)fj(q)

= f(v(u, q), q)

Then we could define, using the solution q(t, s) of (8.5), the new control

ũj(t, s) =
∑

i

ui(t, s)aij(q(t, s))

and we see from identities above that

∂

∂s
q(t, s) =

k∑

i=1

ũj(t, s)fj(q(t, s)), s ∈ [0, τ ] (8.6)

Note. We assume that the sub-Riemannian structure is bracket generating at q and let m the
degree of nonholonomy of the distribution, i.e. such that Dmq = TqM .
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Definition 8.13. The set of admissible jets with respect to the sub-Riemannian structure is

Jfq := {Jmq γ, γ is an admissible variation}

Example 8.14. Consider two vector fields X,Y ∈ Vec(M) and the curve

γ : t 7→ e−tY ◦ e−tX ◦ etY ◦ etX(q)

It is easily seen that γ is an admissible variation if we set

γ(t) = −→exp
∫ 4

0
ftv(s)(q)ds

where

v(s) =





(1, 0), if s ∈ [0, 1],

(0, 1), if s ∈ [1, 2],

(−1, 0), if s ∈ [2, 3],

(0,−1), if s ∈ [3, 4].

In coordinates we have expansion γ(t) = q + t2[X,Y ] + o(t2).

Now we want to describe the nonholonomic tangent space in an intrinsic coordinate free way.
Then we will see how it can be described in special coordinates.

Definition 8.15. The group of flows of admissible variations is

Pf :=

{
−→exp

∫ τ

0
fu(t,s)ds, u(t, s) smooth variation

}

Any admissible variation is given by γ(t) = Pt(q) for some P· ∈ Pf , where we identify q with the
constant curve γ(t) ≡ q for all t. Then we have

Jfq = {Jmq (P·(q)), P· ∈ Pf}

and the set of admissible jets is exactly the orbit of q under the action of the group Pf .

Remark 8.16. It is easy to see that Pf is a group since the following equality holds

−→exp
∫ τ1

0
fu(t,s)ds ◦ −→exp

∫ τ2

0
fv(t,s)ds =

−→exp
∫ τ1+τ2

0
fw(t,s)ds

where

w(t, s) =

{
u(t, s), 0 ≤ s ≤ τ1,
v(t, s − τ1), τ1 ≤ s ≤ τ1 + τ2.

is the concatenation of controls.1

Now we want to describe the tangent space as the quotient of this set with respect to some
subgroup of “slow” flows. The heuristic idea is that a flow is slow if the first nonzero jet of its
associated trajectory J iqγ belong to a subspace ∆j, with j < i.

1Here we see that is useful not to fix τ in the definition, otherwise we need to rescale controls.
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Definition 8.17. Let P · ∈ Pf . P · is said to be purely slow if it is associated to a smooth variation

u(t, s) such that satisfies u(0, s) =
∂u

∂t
(0, s) = 0.

The subgroup of slow flows is the normal subgruop of Pf generated by purely slow flows, i.e.

Pf0 := {(Qt)−1 ◦ Pt ◦Qt, Qt ∈ Pf , Pt purely slow}

Remark 8.18. Notice that, from the definition and the linearity of f , a purely slow flow can be
written as follows: u(t, s) = tv(t, s), where v(0, s) = 0. Moreover we have

Pt =
−→exp

∫ τ

0
fu(t,s)ds =

−→exp
∫ τ

0
ftv(t,s)ds =

−→exp
∫ τ

0
tfv(t,s)ds = t−→exp

∫ τ

0
fv(t,s)ds,

Definition 8.19. Let γ, γ̃ be two curves on M . We say that Jmq γ and Jmq γ̃ are equivalent if

γ̃(t) = Pt(γ(t)) for some Pt ∈ Pf0 . The nonholonomic tangent space T fq is defined as

T fq := Jfq / ∼

We end this section with the coordinate presentation of jets of horizontal vector fields of the
sub-Riemannian structure

Proposition 8.20. Let X ∈ D be an horizontal vector field for the sub-Riemannian structure on
M . Then the one parametric group etX acts on the set Jfq . Moreover the action is well defined on
the equivalence classes with respect to ∼.

Proof. From the very definition of Jfq it is easy to see that if Jmq γ is the jet of an admissible variation
then the right hand side of (8.3) is an admissible variation for every s. We are left to show that if

γ(t) ∼ γ′(t) =⇒ etXγ(t) ∼ etXγ′(t).

From our assumption we get γ′(t) = γ(t) ◦Qt for a slow flow Q· ∈ Pf0 . It follows that

γ′(t) ◦ etX = γ(t) ◦Qt ◦ etX

= γ(t) ◦ etX ◦ e−tX ◦Qt ◦ etX

= (γ(t) ◦ etX) ◦ Q̃t

where Q̃t := e−tX ◦ Qt ◦ etX is also a slow flow. This shows that etX is independent on the
representative and is well defined on the quotient.

8.3 Nilpotent approximation and privileged coordinates

In this section we want to introduce some coordinates in which we have a good description of the
nonholonomic tangent space.

Consider some non negative integers k1, . . . , km such that n = k1 + . . .+ km and the splitting

R
n = R

k1 ⊕ . . .⊕ R
km, x = (x1, . . . , xm)

where every xi = (x1i , . . . , x
ki
i ) ∈ R

ki .
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The space Der(Rn) of all differential operators in R
n with smooth coefficients form an associative

algebra with composition of operators as multiplication. The differential operators with polynomial
coefficients form a subalgebra of this algebra with generators 1, xji ,

∂

∂xji
, where i = 1, . . . ,m; j =

1, . . . , ki. We define weights of generators as

ν(1) = 0, ν(xji ) = i, ν(
∂

∂xji
) = −i.

Then for any monomial

ν(y1 · · · yα
∂β

∂z1 · · · ∂zβ
) =

α∑

i=1

ν(yi)−
β∑

j=1

ν(zj).

We say that a polynomial differential operator D is homogeneous if it is a sum of monomial terms
all of same weight.

Lemma 8.21. Let D1,D2 be two homogeneous differential operators. Then D1◦D2 is homogeneous
and

ν(D1 ◦D2) = ν(D1) + ν(D2) (8.7)

Proof. It is sufficent to check for monomials of kind D1 = ∂

∂x
j1
i1

and D2 = xj2i2 and formula (8.7)

follows from identity

∂

∂xj1i1

◦ xj2i2 = xj2i2
∂

∂xj1i1

+
∂xj2i2

∂xj1i1

A special case is when we consider vector fields. If V1, V2 ∈ Vec(Rn) are homogeneous vector
fields then [V1, V2] is homogeneous and ν([V1, V2]) = ν(V1) + ν(V2).

With these properties we can define a filtration in the space of all smooth differential operators
Indeed we can write (in multiindex notation)

D =
∑

α

ϕα(x)
∂|α|

∂xα

Considering the Taylor expansion at 0 of every coefficient we can splitD as a sum of its homogeneous
components

D ≈
∞∑

i=−∞
D(i)

and define the filtration

D(h) = {D ∈ Der(Rn) : D(i) = 0,∀ i < h}, h ∈ Z

It is easy to see that it is a decreasing filtration, i.e. D(h) ⊂ D(h−1) for every h, and if we restrict
our attention to vector fields we get

V ∈ Vec(Rn) ⇒ V (i) = 0, ∀ i < −m

Indeed every monomial of a N th-order differential operator has weight not smaller than −mN). In
other words we have
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(i) Vec(Rn) ⊂ D(−m),

(ii) V ∈ Vec(Rn) ∩D(0) implies V (0) = 0.

and every vector field that is not zero at the origin is necessarily in D(−1). This motivates the
folowing definition

Definition 8.22. A system of coordinates near the point q is said privileged for a sub-Riemannian
structure M if the following conditions are satisfied

(i) Diq = R
k1 ⊕ . . .⊕ R

ki , ∀ i = 1, . . . ,m,

(ii) f ∈ D(−1) for every f ∈ D.

Condition (i) says that our coordinates are linearly adapted to the flag D1
q ⊂ D2

q ⊂ . . . ⊂ Dmq .
Notice that this condition can be always satisfied with a linear change of coordinates.

Example 8.23. We analyze the meaning of privileged coordinates in the easiest cases m = 1, 2
and we show that in general not all system of linearly adapted coordinates are privileged.

(1) If m = 1 all sets of coordinates are privileged because Vec(M) ⊂ D(−1) since ν(∂xi) = −1 for
all i.

(2) If m = 2 then all systems of coordinates that are linearly adapted to the flag are privileged.
Indeed we have ν(∂

xj1
) = −1 and ν(∂

xj2
) = −2 and a vector field that belong to D(−2) \ D(−1)

must contain a monomial of the second kind, with constant coefficient. On the other hand
vector fields f1, . . . , fk cannot contain such a monomial since, by our assumption

span{f1(0), . . . , fk(0)} = D1
0 = R

k1 .

(3) Let we consider the following set of vector fields in R
3 = R⊕ R⊕ R

f1 = ∂x1 + x1∂x3 , f2 = x1∂x2 , f3 = x2∂x3

where we put ν(xi) = i for i = 1, 2, 3. All nontrivial commutators are computed as follows

[f1, f2] = ∂x2 , [f2, f3] = x1∂x3 , [[f1, f2], f3] = ∂x3 ,

and it is easy to see that the flag (computed at x = 0) is

D1
0 = span{∂x1}, D2

0 = span{∂x1 , ∂x2}, D3
0 = span{∂x1 , ∂x2 , ∂x3}

Then this set of coordinates are linearly adapted to the flag but are not privileged since
ν(x1∂x3) = −2

Theorem 8.24. Let M be a sub-Riemannian manifold and q ∈ M . There always exists a system
of privileged coordinates near q.

We postpone the proof of this theorem to the end of this section, after having analyzed the
meaning of privileged coordinates.
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Theorem 8.25. Let M be a sub-Riemannian manifold and q ∈ M . In privileged coordinates we
have the following

(i) Jfq = {∑m
i=1 t

iξi, ξi ∈ Diq} and dim Jfq = mk1 + (m− 1)k2 + . . .+ km.

(ii) Let j1, j2 ∈ Jfq . Then j1 ∼ j2 if and only if j1 − j2 =
∑m

i=1 t
iηi, where ηi ∈ Di−1

q .

First part of proof of Theorem 8.25. We start by proving the inclusion Jfq ⊂ {
∑m

i=1 t
iξi, ξi ∈ Diq}.

For any smooth variation γ(t) we can write

γ(t) = q ◦ −→exp
∫ τ

0
fu(t,s)ds

Taylor expansion leads to

γ(t) = q +
i∑

j=1

∫
· · ·
∫

0≤sj≤...≤s1≤s

q ◦ fu(t,s1) ◦ . . . ◦ fu(t,sj) ds1 . . . dsj +O(ti+1)

Indeed using the fact that f is linear in u, we can factor out t from every term since u(0, s) = 0. If
we want compute our curve in privileged coordinates (to compute weights) it is sufficient to apply
all to the coordinate function. In particular, since fu ∈ D(−1) we have that

fu(t,s1) ◦ . . . ◦ fu(t,sj) ∈ D(−i)

and applying to a coordinate function xβα, where α = 1, . . . ,m and β = 1, . . . , kα we have

fu(t,s1) ◦ . . . ◦ fu(t,sj)xβα ∈ D(−i+α)

because ν(xβα) = α. Then, if α > i we have that this function has positive weight. Thus, when
evaluated at x = 0 it is zero.

In other words we proved that, for every i = 1, . . . ,m, up to the ith-term we can find only
element in Diq.

To prove the converse inclusion we have to show that, given some elements ξi ∈ Diq we can find
a smooth variation that has these vectors as elements of its jet. We start with some preliminary
lemmas.

Lemma 8.26. Let m,n be two integers. Assume that we have two flows

Pt = Id + tnV +O(tn+1)

Qt = Id + tmW +O(tm+1)

Then PtQtP
−1
t Q−1

t = Id + tn+m[V,W ] +O(tn+m+1).

Proof. Denoting Vt the nonautonomous vector filed associated to Pt it is easily check that

Vt = ntn−1V +O(tn)
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Moreover for the inverse flow we have

P−1
t = Id− tnV +O(tn+1)

Q−1
t = Id− tmW +O(tm+1)

Define R(t, s) := PtQsP
−1
t Q−1

s . Since P0 = Q0 = Id we have that R is constant on the axes,i.e.
R(0, s) = R(t, 0) = Id. Hence the only derivative that enter in our expansion, that coincide with
F (t) = R(t, t), are mixed derivatives. This remark let us to expand the product PtQtP

−1
t Q−1

t and
consider only terms with mixed power of t and s to get

(Id + tnV +O(tn+1))(Id + tmW +O(tm+1))(Id − tnV +O(tn+1))(Id − tmW +O(tm+1)) =

= Id + tnsm(V W −WV ) + . . .

= Id + tnsm[V,W ]

and the lemma is proved.

Lemma 8.27. For all l ≥ h and ∀ i1, . . . , ih ∈ {1, . . . , k}, there exists an admissible variation
u(t, s) such that

q ◦ −→exp
∫ τ

0
fu(t,s)ds = q + tl[fi1 , . . . , [fih−1

, fih ]](q) +O(tl+1)

Proof. By induction

- ∀ l ≥ 1 and ∀ i = 1, . . . , k there exists an admissible variation u(t, s) such that

q ◦ −→exp
∫ τ

0
fu(t,s)ds = q + tlfi(q) +O(tl+1)

It is sufficient to consider u = (u1, . . . , uk) where ui = tl and uh = 0 for all h 6= i.

- ∀ l ≥ 2 and ∀ i, j = 1, . . . , k, there exists an admissible variation u(t, s) such that

q ◦ −→exp
∫ τ

0
fu(t,s)ds = q + tl[fi, fj](q) +O(tl+1)

It is sufficient to use the previous lemma where Pt and Qt are flows respectively of nonau-
tonomous vector fields Vt = tl−1fi1 and Wt = tfi2 .

With analogous arguments we can prove by induction the lemma

In other words we proved that every bracket monomial of degree i can be presented as the i-th
term of a jet of some admissible variation. Now we prove that we can do the same for any linear
combination of such monomials (recall that Di id the linear span of all i-th order brackets).

Remark 8.28. The previuous construction of u(t, s) does not depend on the sub-Riemannian struc-
ture but only on the structure of the Lie bracket.
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Lemma 8.29. Let π = π(f1, . . . , fk) a bracket polynomial of degree deg π ≤ l. There exists an
admissible variation u(t, s) such that

q ◦ −→exp
∫ τ

0
fu(t,s)ds = q + tlπ(f1, . . . , fk)(q) +O(tl+1)

Proof. Let π(f1, . . . , fk) =
∑

j Vj(f1, . . . , fk) where Vj are monomials. By our previous argument

we can find uj(t, s), s ∈ [0, τj ] such that

q ◦ −→exp
∫ τ

0
fuj(t,s)ds = q + tlVj(f1, . . . , fk)(q) +O(tl+1)

Now consider the concatenation of controls u(t, s), where s ∈ [0, τ ] and τ =
∑
τj defined as follows

u(t, s) = uj(t, s−
j∑

i=1

τi), if τj ≤ s ≤ τj+1

Exercise 8.30. End the previous proof showing that the flow relative to u has as l-th term
∑

j Vj .
Then prove, by rescaling that also any monomial of type αV can be presented.

Now we can complete the proof of the first statemet of Theorem 8.25 proving the following
inclusion {∑m

i=1 t
iξi, ξi ∈ Diq} ⊂ Jfq .

Second part of Theorem 8.25. Let we consider a m-th jet
∑m

i=1 t
iξi, ξi ∈ Diq. We prove by induction

- From previous lemmas there exists an admissible variation γ(t) such that

γ(t) = q ◦ −→exp
∫ τ

0
fu(t,s)ds, γ̇(t) = ξ1

Then we will have γ(t) = tξ1+ t
2η2+ . . . where η2 ∈ D2 from first part of the proof. We want

to correct the second order term

- From previous lemma there exists an admissible variation γ1(t) such that

γ1(t) = q ◦ −→exp
∫ τ

0
fv(t,s)ds, γ(t) = t2(ξ2 − η2) + o(t2)

Defining γ2(t) = γ1(t) ◦ γ(t) we have

γ2(t) ≃ tξ1 + t2η2 + t2(ξ2 − η2) + t3η3

≃ tξ1 + t2ξ2 + t3η3

where η3 ∈ D3.

At every step we can correct the right term of the jet and prove the inclusion.
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(ii) We have to prove that

j ∼ j′ ⇐⇒ j − j′ =
m∑

i=1

tiηi, ηi ∈ Di−1
q .

(⇒). Assume that j ∼ j′, where j = Jmq γ =
∑
tiξi and j

′ = Jmq γ
′ =

∑
tiξ′i. Then γ′ = γ ◦Qt for

some slow flow Qt ∈ Pf0 of the form

Qt = Q1
t ◦ · · · ◦Qht

Qit = P it ◦ −→exp
∫ τ

0
ftvi(t,s)ds ◦ (P it )−1

for some P i ∈ Pf , i = 1, . . . , h. For simplicity we prove only the case h = 1. By formula (6.19) we
have that

Qt = Pt ◦ −→exp
∫ τ

0
ftv(t,s)ds ◦ P−1

t = −→exp
∫ τ

0
Pt ◦ ftv(t,s) ◦ P−1

t ds

then by linearity of f we have

Qt =
−→exp

∫ τ

0
tAdPt fv(t,s)ds

Now recall that Pt =
−→exp

∫ τ
0 fw(t,θ)dθ for some admissible variation w(t, θ) and from (6.17) we get

Qt =
−→exp

∫ τ

0
t −→exp

∫ s

0
adfw(t,θ)dθ fv(t,s)ds

Finally, if γ(t) = q ◦ −→exp
∫ τ
0 fu(t,s)ds we can write

γ′(t) = q ◦ −→exp
∫ τ

0
fu(t,s)ds ◦ −→exp

∫ τ

0
t −→exp

∫ s

0
adfw(t,θ)dθ fv(t,s)ds

Expanding with respect to tQt ≃ (Id+ t
∑
tiVi) = Id+

∑
ti+1Vi where Vi is a bracket polynomial

of degree ≤ i. Due to the presence of t it is easy to see that in the expansion of γ′ we will find the
same terms of γ plus something that belong to Di−1.

(⇐). Assume now that j = Jmq γ =
∑
tiξi and j

′ = Jmq γ
′ =

∑
tiξ′i, with

j − j′ =
m∑

i=1

tiηi, ηi ∈ Di−1
q .

We need to find a slow flow Qt such that γ′ = γ ◦Qt. In other words it is sufficient to prove that we
can realize with a slow flow every jet of type

∑m
i=1 t

iηi, ηi ∈ Di−1
q . To this purpose we can repeat

arguments of proof of part (i), using the following

Lemma 8.31. Let Pt, Qt be two flows with Pt ∈ Pf and Qt ∈ Pf0 (or Pt ∈ Pf0 and Qt ∈ Pf ). Then

PtQtP
−1
t Q−1

t ∈ Pf0 .

Proof. If Qt ∈ Pf0 then Q−1
t ∈ Pf0 . Moreover from the definition of Pf0 we have that PtQtP

−1
t ∈ Pf0 .

Hence also their composition is in Pf0 .
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Corollary 8.32. In privileged coordinates (x1, . . . , xm) defined by the splitting R
n = R

k1 ⊕R
km we

have

Jfq =








tx1 +O(t2)
t2x2 +O(t3)

...
tmxm


 , xi ∈ R

ki , i = 1, . . . ,m





Proof. Indeed we know that Di = R
k1 ⊕ R

ki and writing

ξi = xi,1 + . . .+ xi,i, xi,j ∈ R
kj

we have, expanding and collecting terms

∑
tiξi = tξ1 + t2ξ2 + . . .+ tmξm

= tx1,1 + t2(x2,1 + x2,2) + . . .+ tm(xm,1 + . . . + xm,m)

= (tx1,1 + t2x2,1 + . . .+ tmxm,1, t
2x2,2 + . . .+ tmxm,2, t

mxm,m)

Corollary 8.33. The nonholonomic tangent space T fq is a smooth manifold of dimension dimT fq =∑m(q)
i=1 ki(q). In privileged coordinates we can write

T fq =








tx1
t2x2
...

tmxm


 , xi ∈ R

ki, i = 1, . . . ,m





and dilations δα acts on T fq in a quasi-homogeneous way

δα(tx1, . . . , t
mxm) = (αtx1, . . . , α

mtmxm), α > 0.

Proof. It follows directly from the representation of the equivalence relation. Indeed two elements
j and j′ can be written in coordinates as

j = (tx1 +O(t2), t2x2 +O(t3), . . . , tmxm)

j′ = (ty1 +O(t2), t2y2 +O(t3), . . . , tmym)

and j ∼ j′ if and only if xj = yj for all j.

Remark 8.34. Notice that a polynomial differential operator homogeneous with respect to ν (i.e.
whose monomials are all of same weight) is homogeneous with respect to dilations δt : R

n → R
n

defined by
δt(x1, . . . , xm) = (tx1, t

2x2, . . . , t
mxm), t > 0. (8.8)

In particular for a homogeneous vector field X of weight h it holds δ∗X = t−hX.

Now we can improve Proposition 8.20 and see that actually the jet of a horizontal vector field
is a vector field on the tangent space and belongs to D(−1) (in privileged coordinates).
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Lemma 8.35. Fix a set of privileged coordinate. Let V ∈ D(−1), then the jet Jmq V is tangent to the

submanifold Jfq . Moreover it is well defined as vector field V̂ on the nonhonolomic tangent space.

In other words V̂ ∈ Vec(T fq ) and we have

V =




v1(x)
v2(x)
...

vm(x)


 =⇒ V̂ =




v̂1(x)
v̂2(x)
...

v̂m(x)


 (8.9)

where v̂i is the i− 1 order term of vi.

Proof. Let V ∈ D(−1) and γ(t) be an admissible variation. When expressed in coordinates we have
(see . . . )

V =




v1(x)
v2(x)
...

vm(x)


 , γ(t) =




tx1 +O(t2)
t2x2 +O(t3)

...
tmxm




We know that (Jmq V )(Jmq γ) is expressed as the m-th jet of tV (γ(t)) by Exercise . . . Hence we
compute

(Jmq V )(Jmq γ) =




tv1(tx1 +O(t2), . . . , tmxm)
tv2(tx1 +O(t2), . . . , tmxm)

...
tvm(tx1 +O(t2), . . . , tmxm)


 (8.10)

Notice that V ∈ D(−1) means exactly that

V =
∑

vi(x)
∂

∂xi
=
∑

vji (x)
∂

∂xji
, ν(

∂

∂xji
) = −i

and vi is a function of order at least i − 1. Let we denote with v̂i the homogeneous part of vi of
order i− 1. To compute the value of V̂ then we have to restrict its action on admissible variations
from T fq , then evaluate and neglect the higher order part (that corresponds to the projection on
the factor space) in order to have

vi(tx1, . . . , t
mxm) = ti−1v̂i(x1, . . . , xm) +O(ti)

and using equality we have

(Jmq V )
∣∣∣
T f
q

=




tv1(tx1, . . . , t
mxm)

tv2(tx1, . . . , t
mxm)

...
tvm(tx1, . . . , t

mxm)


 =




tv̂1 +O(t2)
t2v̂2 +O(t3)

...
tmv̂m +O(tm+1)


 (8.11)

From this easily follows (8.9).
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Remark 8.36. Notice that, since v̂i is a homogeneous function of weight i − 1, it depends only
on variables x1, . . . , xi−1 of weight equal of smaller than its weight. Hence V̂ has the following
triangular form

V̂ (x) =




v̂1
v̂2(x1)

...
v̂m(x1, . . . , xm−1)


 (8.12)

Moreover the flow of a vector field of this kind can be easily computed by a step by step substitution.

Now we prove existence of privileged coordinates

Proof of Theorem 8.24. Consider our sub-Riemannian structure on M defined by the orthonormal
frame {f1, . . . , fk} and its flag D1

q ⊂ D2
q ⊂ . . . ⊂ Dmq = TqM , with

nj := dimDjq (nj = k1 + . . .+ kj)

Let we consider a basis {V1, . . . , Vn} of the tangent space adapted to the flag, i.e.

Vi = πi(f1, . . . , fk)

πi bracket polynomial, deg πi ≤ j if i ≤ nj
Djq = span{V1(q), . . . , Vnj (q)}, j = 1, . . . ,m

In particular V1, . . . , Vn1 are selected in {fi, i = 1, . . . , k}, Vn1+1, . . . , Vn2 are selected from {[fi, fj], i, j =
1, . . . , k} and so on.

Define the map
Ψ : (s1, . . . , sn) 7→ q ◦ es1V1 ◦ . . . ◦ esnVn (8.13)

We want to show that Ψ−1 defines privileged coordinates around q. It is easy to show that (8.13)
is a local diffeomorphism since

∂Ψ

∂si

∣∣∣
s=0

= Ψ∗
∂

∂si

∣∣∣
s=0

= Vi(q), i = 1, . . . , n (8.14)

Hence it remains to show that

(i) Ψ−1
∗ (Diq) = span{ ∂

∂s1
, . . . ,

∂

∂sni

},

(ii) Ψ−1
∗ fi ∈ D(−1) for every i = 1, . . . , k

Part (i) easily follows from our choice of adapted frame to the flag and (8.14). On the other hand
the second part is not trivial since we need to compute differential of Ψ at every point and not only
at s = 0.

Remark 8.37. In what follows we consider on TqM the weight defined by coordinates (y1, . . . , yn)
induced by the flag. In other words we consider the basis V1(q), . . . , Vn(q) in TqM and write

v = (y1, . . . , yn) =
∑

yiVi(q), where ν(yi) := wi = j if nj−1 < i ≤ nj

Moreover we can think at v ∈ TqM as the constant vector field on TqM identically equal to v. In
this way it makes sense to consider the value of a polynomial bracket at π(f1, . . . , fk) at the point
q and consider its weight ν(π).
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We prove the following auxiliary

Lemma 8.38. Let X = π(f1, . . . , fk)(q) ∈ Vec(TqM), ν(X) ≤ d. Consider now the polynomial
vector field on TqM

Y (y) =
∑

yil · · · yi1(ad Vil ◦ · · · ◦ adVi1X)(q) (8.15)

=
∑

pi(y)Vi(q)

for some polynomial pi. Then pi ∈ D(wi−d).

Proof of Lemma. It easily follows from definition of weights that

adVil ◦ · · · ◦ adVi1(X) ∈ D(−∑
wij

−d)

hence every summand of (8.15) belong to D(−d). Then if we rewrite the sum in terms of the basis
Vi(q), i = 1, . . . , k we have that every coefficient pi(y) must belong to D(wi−d), since ν(Vi(q)) =
wi.

Now we prove the following claim: for every bracket polynomial X = π(f1, . . . , fk) we have
Ψ−1

∗ X ∈ D(−d). In particular part (ii) will follow when d = 1. Clearly we can write in coordinates

Ψ−1
∗ X =

n∑

i=1

ai(s)
∂

∂si
(8.16)

and our claim is equivalent to show that ai ∈ D(wi−d). First we notice that

Ψ∗
∂

∂si
=

∂

∂ε

∣∣∣∣
ε=0

q ◦ es1V1 ◦ · · · ◦ e(si+ε)Vi ◦ · · · ◦ esnVn

= q ◦ es1V1 ◦ · · · ◦ esiVi ◦ Vi ◦ esi+1Vi+1 ◦ · · · ◦ esnVn

= q ◦ es1V1 ◦ · · · ◦ esnVn︸ ︷︷ ︸
Ψ(s)

◦ e−snVn ◦ · · · ◦ e−si+1Vi+1 ◦ Vi ◦ esi+1Vi+1 ◦ · · · ◦ esnVn

In geometric notation we can write

Ψ∗
∂

∂si
= esnVn∗ · · · esi+1Vi+1

∗ Vi

∣∣∣
Ψ(s)

(8.17)

Remember that, as operator on functions, etY∗ = e−t adY . This implies that in (8.17) we have a
series of bracket polynomials. Apply Ψ∗ to (8.16) we get

X
∣∣∣
Ψ(s)

=

n∑

i=1

ai(s)e
snVn
∗ · · · esi+1Vi+1

∗ Vi

∣∣∣
Ψ(s)

Now we apply e−s1V1∗ · · · e−snVn∗ to both sides to compute the vector field at the point q

e−s1V1∗ · · · e−snVn∗ X
∣∣∣
q
=

n∑

i=1

ai(s)e
−s1V1∗ · · · e−si−1Vi−1

∗ Vi

∣∣∣
q

(8.18)
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Rewriting this identity in coordinates
∑

i

bi(s)Vi(q) =
∑

i,j

ai(s)(ϕij(s)Vj(q) + Vi(q)) (8.19)

where ϕij(0) = 0. Indeed we split the zero order term since we know that for s = 0 the pushforward
of the vector fields is exactly Vi. Using Lemma above with X and Vi, i = 1, . . . , n we have

bi ∈ Dwi−d, ϕij ∈ Dwj−wi

On the other hand we can rewrite relation between coefficients as follows

B(s) = A(s)(Φ(s) + I)

where we denote B(s) = (b1(s), . . . , bn(s)), A(s) = (a1(s), . . . , an(s)) and Φ(s) = (ϕij)ij Thus we
get

A(s) = B(s)(I +Φ(s))−1

= B(s)(I − Φ(s) + Φ(s)2 − . . .)
= B(s)− (BΦ)(s) + (BΦ2)(s)− . . .

and we can finish the proof noticing that

(B)i = bi ∈ Dwi−d

(BΦ)i =
∑

bjϕji ∈ Dwj−d+(wi−wj) = Dwi−d

...

and so on. Hence we get ai ∈ Dwi−d.

Remark 8.39. One can repeat all calculation in chronological notation and recover the proof in a
purely algebraic way. In the above computations nothing change if we consider any permutation
σ = (i1, . . . , in) of (1, . . . , n) and the coordinate map

Ψσ : (s1, . . . , sn) 7→ q ◦ esinVin ◦ . . . ◦ esi1Vi1

In particular we can consider the coordinate map

Φ : (x1, . . . , xn) 7→ q ◦ exnVn ◦ . . . ◦ ex1V1

and it is easy to see that it satisfies

Φ−1
∗ V1 = ∂x1

Φ−1
∗ V2

∣∣∣
x1=0

= ∂x2

... (8.20)

Φ−1
∗ Vi

∣∣∣
x1=...=xi−1=0

= ∂xi

for i = 1, . . . , n1, the set of vector fields among f1, . . . , fk that generates Dq.
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In Riemannian geometry the tangent space depends only on the dimension of the manifold
(i.e. all tangent spaces to a n-dimensional manifold are isometric). Now we can prove that in
sub-Riemannian geometry this is not true. Indeed we see that, even in dimension 3, we can have
non isometric tangent space, depending on the growth vector (n1, . . . , nm).

In bigger dimension it is also possible to prove that, for a fixed growth vector, we have non
isometric tangent space depending on the point on the manifold.

Example 8.40. (Heisenberg)
Assume n = 3 and that growth vector is (2, 3). Then we consider coordinates (x1, x2, x3) and
weights (w1, w2, w3) = (1, 1, 2). We can assume that

V1 = f1, V2 = f2, V3 = [f1, f2]

From last Remark we have that, in privileged coordinates we can assume

f1 = ∂x1 , f2 = ∂x2 + αx1∂x3 , α ∈ R (8.21)

because fi = ∂xi+ something that has weight −1 and depend only on ∂xj , j > n1. On the other
hand from (8.20) we have

[f1, f2]
∣∣∣
0
= ∂x3 =⇒ α = 1

and we get the Heisenberg algebra

f1 = ∂x1 , f2 = ∂x2 + x1∂x3 , f3 = ∂x3 (8.22)

Example 8.41. (Martinet)
Assume n = 3 and that growth vector is (2, 2, 3). Then we consider coordinates (x1, x2, x3) and
weights (w1, w2, w3) = (1, 1, 3). We can assume, up to change indices, that

V1 = f1, V2 = f2, V3 = [f1, [f1, f2]]

From last Remark we have that, in privileged coordinates we can write

f1 = ∂x1 , f2 = ∂x2 + (αx21 + βx1x2)∂x3 , α, β ∈ R (8.23)

since we assume f2|x1=0 = ∂x2 that implies f2 = ∂x2 + x1a(x)∂x3 , but ν(f2) = −1 and so (8.23)
follows.

From V3|x=0 = ∂x3 we have

[f1, [f1, f2]] = 2α∂x3 =⇒ α = 1/2.

Moreover, since we are interested to normalize sub-Riemannian structure and not only the pair of
vector fields, we consider rotations of the orthonormal frame.

Remark 8.42. Notice that

f̃1 = cos θf1 − sin θf2
f̃2 = sin θf1 + cos θf2

=⇒ [f̃1, f̃2] = [f1, f2].
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Thus, denoting as usual

fu = u1f1 + u2f2

we can consider the linear map

ϕ : u 7→ [fu, [f1, f2]]/D

which vanish on some line on the plane D = span{f1, f2}. Up to a rotation of the frame we can
assume that f2 ∈ kerϕ so that [f2, [f1, f2]] = 0, hence β = 0.

f1 = ∂x1 , f2 = ∂x2 +
1

2
x21∂x3 , f3 = ∂x3 (8.24)

8.4 Geometric meaning

In the previous section we very clearly found how V̂ is analitically recovered from V . It is nothing
else but the principal part of V in privileged coordinates. But now we want to discuss in which
sense V̂ is an approximation of V . It turns out that in this nonholonomic setting it plays the same
role that linearization of a vector filed does in the Euclidean case.

Lemma 8.43. Let V a vector field. In privileged coordinates we have equality

εδ 1
ε
∗V = V̂ + εWε, where Wε is smooth

Proof. Write V = V̂ +W and applying the dilation we find

δ 1
ε
∗V = δ 1

ε
∗V̂ + δ 1

ε
∗W

Since V̂ is homogeneous of degree −1 we have δ 1
ε
∗V̂ = 1

ε V̂ and settingWε = εδ 1
ε
∗W we are done.

Remark 8.44. Geometrically this procedure means that we consider a small neighborhood of the
point q and we make a dilation. Then we properly rescale in order to catch the principal term.
This is a blow-up procedure. Notice that we are blowing-up in a nonisotropic way and it contains
information about local structure of the bracket .

Now we can give a very precise meaning of the fact that nilpotent approximation is the principal
part of the sub-Riemannian structure, which knows local geometry near the point q. Let us consider
the end point map

F : U →M, u(·) 7→ q ◦ −→exp
∫ 1

0
fu(t)dt

where U = Lk2(0, 1) = L2([0, 1],Rk) is the set of admissible controls. Let we denote by ρ the
sub-Riemannian distance from the fixed point

ρ(x) := d(x, q) = inf{‖u‖, F (u) = x} (8.25)

From Lemma 8.43 we can write for ε > 0

f εu := εδ 1
ε
∗fu = f̂u + εW ε

u
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Denote now with f ε and f̂ respectively the sub-Riemannian structures on R
n and by dε and d̂ the

associated sub-Riemannian distance. Notice that, from the very definition of dε we have

dε(x, y) =
1

ε
d(δε(x), δε(y))

that says dε is d when we look infinitesimally near the point q and rescale.

Let ρε, ρ̂ and F ε, F̂ have analogous meaning. We start from an auxiliary proposition.

Proposition 8.45. F ε → F̂ uniformly on balls in Lk2(0, 1) (actually in C∞ sense).

Proof. Consider the solution xε(t) and x̂(t) of the two systems starting from q = 0

˙̂x(t) = f̂u(t)(x̂(t)), ẋε(t) = f εu(t)(x
ε(t))

Using Lemma 8.43 we rewrite the second equation as

ẋε(t) = f̂u(t)(x
ε(t)) + εW ε

t (x
ε(t))

and standard estimates from ODE theory prove that xε → x̂.

Notice that, since nilpotent vector fields are complete, the solution x̂(t) is defined for all t ∈
R.

Lemma 8.46. {ρε}ε>0 is an equicontinuous family.

Proof. We will prove the following: for every compact K ⊂ R
n there exists ε0, C > 0, depending

on K, such that

dε(x, y) ≤ C|x− y|1/m, ∀ ε < ε0,∀x, y ∈ K. (8.26)

where m is the degree of nonholonomy. Notice that from (8.26) we get, using triangle inequality

|ρε(x)− ρε(y)| = |dε(0, x) − dε(0, y)| ≤ dε(x, y) ≤ C|x− y|1/m

which proves the lemma. We are then reduced to prove (8.26). Idea is to cover a fixed neighborhood
of the origin using controls with bounded norms, uniformly in ε.

Let V̂1, . . . , V̂n an adapted basis of the nilpotent system f̂ , such that V̂i = πi(f̂1, . . . , f̂k) for
some bracket polynomials πi, i = 1, . . . , n. From the very definition we have

V̂1(0) ∧ . . . ∧ V̂n(0) 6= 0

On the other hand, by continuity, this implies that they are linearly independent also in a small
neighborhood of the origin and by quasi-homogeneity we get

V̂1(x) ∧ . . . ∧ V̂n(x) 6= 0, ∀x ∈ R
n.

Let V ε
i = πi(f

ε
1 , . . . , f

ε
k) denote vector fields defined by the same bracket polynomials but in terms

of the vector fields of the approximating system. For every K ⊂ R
n there exists ε0 = ε0(K) such

that

V ε
1 (x) ∧ . . . ∧ V ε

n (x) 6= 0, ∀x ∈ K,∀ ε ≤ ε0.
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Recall that by Lemma 8.29, given a bracket polynomial πi(g1, . . . , gk),deg πi = wi there exists
an admissible variation ui(t, s), depending only on πi, such that

−→exp
∫ 1

0
gui(t,s)ds = Id + twiπi(g1, . . . , gk) +O(twi+1)

If we apply this lemma for gi = f εi we find ui(t, s) such that

−→exp
∫ 1

0
f εui(t,s)ds = Id + twiV ε

i +O(twi+1), ∀ ε > 0

where wi = deg V̂i = degV ε
i . Now consider the map

Φε(t1, . . . , tn, x) = x ◦ −→exp
∫ 1

0
f ε
u1(t

1/w1
1 ,s)

ds ◦ . . . ◦ −→exp
∫ 1

0
f ε
un(t

1/wn
n ,s)

ds (8.27)

Remark 8.47. We have the expansion

x ◦ −→exp
∫ 1

0
f ε
ui(t

1/wi
i ,s)

ds = x+ tiV
ε
i (x) +O(t

wi+1

wi
i )

In particular this is a C1 map with respect to t. Notice that it is not C2 if wi > 1 for some i (i.e. a
“real” subriemannian problem).

From this remark it follows that Φε ∈ C1 as a function of t, being a composition of C1 maps.
Moreover we get the expansion

Φε(t1, . . . , tn, x) = x+

n∑

i=1

tiV
ε
i (x) +O(|t|) =⇒ ∂Φε

∂ti

∣∣∣
t=0

= V ε
i (x)

Hence the map Φε is a local diffeomorphism near the origin t = (t1, . . . , tn) = 0 and by Implicit
Function Theorem there exists a constant c > 0 such that

x+ cνB ⊂ Φε(νB, x), B = B(0, 1) ⊂ R
n, x ∈ K, (8.28)

where c is independent of ε and ν is small enough.

Let us denote now with Fx the end-point map starting from the point x ∈ R
n (with analogous

meaning for F εx , F̂x), and with BL2 the unit ball in Lk2 [0, 1].
We claim that (8.28) implies that there exists a constant c′ such that

x+ c′νB ⊂ F εx(ν
1
mBL2), ∀ ν, ε > 0 (8.29)

Since t 7→ ui(t, ·) is a smooth map for every i, and ui(0, ·) = 0 we have that there exist a
constant ci such that

t ∈ νB ⇒ ui(t, ·) ∈ ciνBL2 , (8.30)

⇒ ui(t
1/wi , ·) ∈ ciν1/wiBL2 , (8.31)

for all ν > 0 small enough.
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For such ν we have by inclusion (8.29) that

|x− y| ≤ cν =⇒ dε(x, y) ≤ ν1/m

where we used the fact that dε is the infimum of norm of u such that F εx(u) = y. From this easily
follows

dε(x, y) ≤ c− 1
m |x− y| 1m (8.32)

Remark 8.48. All estimates are valid also for ε → 0, i.e. for the nilpotent approximation. In
particular, using homogeneity

d̂(x, y) ≤ C|x− y| 1m , ∀x, y ∈ R
n (8.33)

Indeed from the proof of Lemma 8.46 it follows that the estimate (8.33) holds in a compact K
containing the origin. Consider two arbitrary points x, y ∈ R

n and ε > 0 such that δεx, δεy ∈ K.
By the homogeneity of the distance

d̂(δεx, δεy) = ε d̂(x, y).

Moreover since the estimate (8.33) holds in K

d̂(δεx, δεy) ≤ C|δεx− δεy|1/m

≤ Cε|x− y|1/m

We can state now the main result

Theorem 8.49. ρε → ρ̂ uniformly on compacts in R
n.

Proof. By Lemma 8.46 it is sufficient to prove pointwise convergence. We prove the following
inequalities

lim sup
ε→0+

ρε(x) ≤ ρ̂(x) ≤ lim inf
ε→0+

ρε(x) (8.34)

(i) Fix a point x and a control û such that

F̂ (û) = x, ‖û‖ = ρ̂(x),

i.e. such that the corresponding trajectory is a minimizer for the system f̂ . Now consider xε :=
F ε(û). From Proposition 8.45 we get xε → x for ε → 0. Moreover, from the definition of ρε we
have ρε(xε) ≤ ρ̂(x). Hence

ρε(x) = ρε(xε) + ρε(x)− ρε(xε)
≤ ρ̂(x) + |ρε(x)− ρε(xε)|

Using that ρε is an equicontinuous family and that xε → x we have the left inequality in (8.34).
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(ii) Let now uε be a control such that

F ε(uε) = x, ‖uε‖ = ρε(x)

and define xε := F̂ (uε). As before we have ρ̂(xε) ≤ ρε(x). Then

ρ̂(x) = ρ̂(xε) + ρ̂(x)− ρ̂(xε)
≤ ρε(x) + |ρ̂(x)− ρ̂(xε)|

and now it is sufficient to notice that xε = F ε(uε) → F̂ (uε) = x since F ε → F̂ uniformly on balls
of L2 and uε bounded since ρε are equicontinuous..

In privileged coordinates x = (x1, . . . , xm) ∈ R
k1 ⊕ . . .⊕ R

km = R
n we set

Πε = {x ∈ R
n, |xi| ≤ εi, i = 1, . . . ,m}

Corollary 8.50 (Ball-Box Theorem). There exists constants c1, c2 > 0 such that

c1Πε ⊂ B(x, ε) ⊂ c2Πε
where B(x, ε) is the subriemannian ball in privileged coordinates.

Notice that this is a weaker statement with respect to Theorem 8.49.

Exercise 8.51. Prove Corollary 8.50.

Definition 8.52. Let f and f̃ be two sub-Riemannian structures on the same manifoldM . We say
that the structures are locally Lipschitz equivalent if, for any compact K ⊂M there exist c1, c2 > 0
such that

c1d(x, y) ≤ d̃(x, y) ≤ c2d(x, y)
where µ and µ̃ are respectively the sub-Riemannian distances induced by f and f̃ .

From the Ball-Box Theorem we easily get a characterization of locally Lipschitz equivalent
structures in term of the distribution.

Corollary 8.53. Two sub-Riemannian structures are locally Lipschitz equivalent if and only if the
two flags are equal at al points, i.e.

Diq = D̃iq, ∀ q ∈M, ∀ i ≥ 1.

Corollary 8.54. Two regular sub-Riemannian structures are locally Lipschitz equivalent if and
only if their distributions are equal at al points, i.e.

Dq = D̃q, ∀ q ∈M.

In other words, in the regular case, the distribution define the metric up to locally Lipschitz equiv-
alence.

Remark 8.55. In the proof of Theorem 8.49 we showed that, in some coordinates, the sub-Riemannian
metric has an holder estimate with respect to the Euclidean one. The fact that the metric is Lips-
chitz equivalent to the Euclidean one characterize exactly Riemannian structures on M .

Moreover we notice that this is only local property since we do not study the behaviour of the
constants c1, c2 when K become big.
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8.5 Algebraic meaning

In the last section we proved in which sense the sub-Riemannian tangent space approximate the
sub-Riemannian structure on the manifold. Now we also show that, at least in the regular case, the
nilpotent approximation has a structure of Lie group, endowed with a left-invariant sub-Riemannian
structure.

Recall that given an orthonormal frame {f1, . . . , fk} for the sub-Riemannian structure, by
Proposition 8.20 the vector field Jmq fi, jet of a vector field on M , is a well defined vector field

on the quotient T fq := Jfq / ∼, which we denote f̂i.

Proposition 8.56. The Lie algebra Lie{f̂1, . . . , f̂k} is a nilpotent Lie algebra of step m, where m
is the nonholonomic degree of f at q.

Proof. Consider privileged coordinates around the point q. Then f̂i has weight −1 and is homoge-
neous with respect to the dilation δλ. Moreover for any bracket monomial we have

ν([f̂i1 , . . . , [f̂ij−1 , f̂ij ]]) = −j

Since every vector field V , when written in privileged coordinates, satisfies ν(V ) ≥ −m, then every
bracket of m vector fileds is necessarily zero.

Consider now the group generated by the flows of these vector fields

G = Gr{etf̂1 , . . . , etf̂k}

which acts on T fq on the right, and is by definition a nilpotent Lie group.2 Moreover in the proof
of Theorem 8.25 we showed that this action is also transitive (i.e. we can realize every element of

T fq with this action)
Collecting together all these results we have

Corollary 8.57. The nilpotent approximation T fq is a homogeneous space, diffeomorphic to the

quotient G/G0, where G0 is the isotropy group of the trivial element of T fq .

Before interpreting this contruction at the level of Lie algebras, we recall some definitions.
The free associative algebra on k generators x1, . . . , xk is the associative algebra Ak of linear

combinations of words of its generators, where the product of two element is defined by juxtaposi-
tion. The free Lie algebra on k generators, denoted Lk, is the algebra of Lie elements of Ak where
the product of two elements x, y is defined by the commutator [x, y] = xy − yx.

The nilpotent step m free Lie algebra on k generators x1, . . . , xk, is the quotient of the free Lie
algebra by the ideal Im+1 generated as follows: I1 = L, and Ij = [Ij−1,L].

Let Liem{X1, . . . ,Xk} be the nilpotent step m free Lie algebra generated by the vector fields
X1, . . . ,Xk and consider the subalgebra

C := {π ∈ Liem{X1, . . . ,Xk} |π(f̂1, . . . , f̂k)(0) = 0}

of all polynomial bracket such that if we replace Xi with f̂i are zero when evaluated at zero. Then

LieT fq ≃ Liem{X1, . . . ,Xk}/C
2A Lie group G is nilpotent if its Lie algebra g is nilpotent. The fact that G acts on the right is because right

action satisfies Rhg = RgRh (i.e. x · (hg) = (x · h) · g).
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Remark 8.58. To discuss regularity properties of T fq with respect to q, we can restate this charac-
terization in such a way that does not depend on the nilpotent approximation:

LieT fq ≃ Liem{X1, . . . ,Xk}/Cq

where Cq is the core subalgebra

Cq := {π ∈ Liem{X1, . . . ,Xk} |π(f1, . . . , fk)(q) ∈ Ddeg π−1
q } (8.35)

Lemma 8.59. Assume that the sub-Riemannian structure has constant growth vector, i.e. that
ni(q) = dimDiq does not depend on q. Then Cq is an ideal.

In particular T fq is a Lie group.

Proof. It is sufficent to prove that

X ∈ Cq =⇒ [fi,X] ∈ Cq, ∀ i = 1, . . . , k

Since the structure has constant growth vector, we can consider an adapted basis V1, . . . , Vn, well
defined in a neighborhood Oq of q. In particular if X = π(f1, . . . , fk) is a bracket polynomial of
degree deg π = d we can write

X(q′) =
∑

i:wi≤d
ai(q

′)Vi(q
′), ∀ q′ ∈ Oq

where ai are suitable smooth functions. From (8.35) we have that X ∈ Cq if and only if it belongs
to Dd−1

q , i.e. ai(q) = 0, ∀ i s.t. wi = d. On the other hand

[fi,X] = [fi,
∑

wj≤d
ajVj ]

=
∑

wj≤d
aj [fi, Vj ] + fi(aj)Vj (8.36)

From this equality it is easy to check that every coefficient of degree d+ 1 in this sum is null at q,
since they can appear only in the first summand of (8.36).

Corollary 8.60. Under previuos assumptions f̂1, . . . , f̂k are a basis of left-invariant vector fields
on T fq .

Proof. All relies on the fact that if we consider a left invariant vector field X on a Lie group G, and
we consider the right action of a normal subgroup H on it, then X is a well defined left-invariant
vector field on the quotient G/H, which is still a Lie group.

Examples

Heisenberg

Martinet

Grushin
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Chapter 9

The volume in sub-Riemannian

geometry

9.1 The Popp volume

For an equiregular sub-Riemannian manifold M , Popp’s volume is a smooth volume which is
canonically associated with the sub-Riemannian structure, and it is a natural generalization of
the Riemannian one. In this chapter we define the Popp volume and we prove a general formula
for its expression, written in terms of a frame adapted to the sub-Riemannian distribution.

As a first application of this result, we prove an explicit formula for the canonical sub-Laplacian,
namely the one associated with Popp’s volume. Finally, we discuss sub-Riemannian isometries, and
we prove that they preserve Popp’s volume.

9.2 Popp volume for equiregular sub-Riemannian manifolds

Recall that a distribution D is equiregular if the growth vector is constant, i.e. for each i =
1, 2, . . . ,m, ki(q) = dim(Diq) does not depend on q ∈M . In this case the subspaces Diq are fibres of
the higher order distributions Di ⊂ TM .

For equiregular distributions we will simply talk about growth vector and step of the distribu-
tion, without any reference to the point q.

Next, we introduce the nilpotentization of the distribution at the point q, which is fundamental
for the definition of Popp’s volume.

Definition 9.1. Let D be an equiregular distribution of step m. The nilpotentization of D at the
point q ∈M is the graded vector space

grq(D) = Dq ⊕D2
q/Dq ⊕ . . .⊕Dmq /Dm−1

q .

The vector space grq(D) can be endowed with a Lie algebra structure, which respects the
grading. Then, there is a unique connected, simply connected group, Grq(D), such that its Lie
algebra is grq(D). The global, left-invariant vector fields obtained by the group action on any
orthonormal basis of Dq ⊂ grq(D) defines a sub-Riemannian structure on Grq(D), which is called
the nilpotent approximation of the sub-Riemannian structure at the point q.

In what follows, we provide the definition of Popp’s volume. Our presentation follows closely
the one that can be found in [?]. (See also [16]). The definition rests on the following lemmas.
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Lemma 9.2. Let E be an inner product space and V a vector space. Let π : E → V be a surjective
linear map. Then π induces an inner product on V such that the length of v ∈ V is

‖v‖V = min{‖e‖E s.t. π(e) = v} . (9.1)

Proof. It is easy to check that Eq. (9.1) defines a norm on V . Moreover, since ‖ · ‖E is induced
by an inner product, i.e. it satisfies the parallelogram identity, it follows that ‖ · ‖V satisfies the
parallelogram identity too. Notice that this is equivalent to consider the inner product on V defined
by the linear isomorphism π : (ker π)⊥ → V . Indeed the length of v ∈ V is the length of the shortest
element e ∈ π−1(v).

Lemma 9.3. Let E be a vector space of dimension n with a flag of linear subspaces {0} = F 0 ⊂
F 1 ⊂ F 2 ⊂ . . . ⊂ Fm = E. Let gr(F ) = F 1 ⊕ F 2/F 1 ⊕ . . . ⊕ Fm/Fm−1 be the associated graded
vector space. Then there is a canonical isomorphism θ : ∧nE → ∧ngr(F ).

Proof. We only give a sketch of the proof. For 0 ≤ i ≤ m, let ki := dimF i. Let X1, . . . ,Xn be a
adapted basis for E, i.e. X1, . . . ,Xki is a basis for F i. We define the linear map θ̂ : E → gr(F )
which, for 0 ≤ j ≤ m−1, takes Xkj+1, . . . ,Xkj+1

to the corresponding equivalence class in F j+1/F j .
This map is indeed a non-canonical isomorphism, which depends on the choice of the adapted basis.
In turn, θ̂ induces a map θ : ∧nE → ∧ngr(F ), which sends X1∧ . . .∧Xn to θ̂(X1)∧ . . .∧ θ̂(Xn). The
proof that θ does not depend on the choice of the adapted basis is “dual” to [16, Lemma 10.4].

The idea behind Popp’s volume is to define an inner product on each Diq/Di−1
q which, in turn,

induces an inner product on the orthogonal direct sum grq(D). The latter has a natural volume
form, which is the canonical volume of an inner product space obtained by wedging the elements an
orthonormal dual basis. Then, we employ Lemma 9.3 to define an element of (∧nTqM)∗ ≃ ∧nT ∗

qM ,
which is Popp’s volume form computed at q.

Fix q ∈ M . Then, let v,w ∈ Dq, and let V,W be any horizontal extensions of v,w. Namely,
V,W ∈ Γ(D) and V (q) = v, W (q) = w. The linear map π : Dq ⊗Dq → D2

q/Dq

π(v ⊗ w) := [V,W ]q mod Dq , (9.2)

is well defined, and does not depend on the choice the horizontal extensions. Indeed let Ṽ and
W̃ be two different horizontal extensions of v and w respectively. Then, in terms of a local frame
X1, . . . ,Xk of D

Ṽ = V +
k∑

i=1

fiXi , W̃ =W +
k∑

i=1

giXi , (9.3)

where, for 1 ≤ i ≤ k, fi, gi ∈ C∞(M) and fi(q) = gi(q) = 0. Therefore

[Ṽ , W̃ ] = [V,W ] +
k∑

i=1

(V (gi)−W (fi))Xi +
k∑

i,j=1

figj [Xi,Xj ] . (9.4)

Thus, evaluating at q, [Ṽ , W̃ ]q = [V,W ]q mod Dq, as claimed. Similarly, let 1 ≤ i ≤ m. The linear
maps πi : ⊗iDq → Diq/Di−1

q

πi(v1 ⊗ · · · ⊗ vi) = [V1, [V2, . . . , [Vi−1, Vi]]]q mod Di−1
q , (9.5)
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are well defined and do not depend on the choice of the horizontal extensions V1, . . . , Vi of v1, . . . , vi.

By the bracket-generating condition, πi are surjective and, by Lemma 9.2, they induce an
inner product space structure on Diq/Di−1

q . Therefore, the nilpotentization of the distribution at q,
namely

grq(D) = Dq ⊕D2
q/Dq ⊕ . . .⊕Dmq /Dm−1

q , (9.6)

is an inner product space, as the orthogonal direct sum of a finite number of inner product spaces.
As such, it is endowed with a canonical volume (defined up to a sign) µq ∈ ∧ngrq(D)∗, which is the
volume form obtained by wedging the elements of an orthonormal dual basis.

Finally, Popp’s volume (computed at the point q) is obtained by transporting the volume of
grq(D) to TqM through the map θq : ∧nTqM → ∧ngrq(D) defined in Lemma 9.3. Namely

Pq = θ∗q(µq) = µq ◦ θq , (9.7)

where θ∗q denotes the dual map and we employ the canonical identification (∧nTqM)∗ ≃ ∧nT ∗
qM .

Eq. (9.7) is defined only in the domain of the chosen local frame. Since M is orientable, with a
standard argument, these n-forms can be glued together to obtain Popp’s volume P ∈ Ωn(M). The
smoothness of P follows directly from Theorem 9.5.

Remark 9.4. The definition of Popp’s volume can be restated as follows. Let (M,D) be an oriented
sub-Riemannian manifold. Popp’s volume is the unique volume P such that, for all q ∈ M , the
following diagram is commutative:

(M,D) P−−−−→ (∧nTqM)∗

grq

y
yθ∗q

grq(D) −−−−→µ (∧ngrq(D))∗

where µ associates the inner product space grq(D) with its canonical volume µq, and θ
∗
q is the dual

of the map defined in Lemma 9.3.

9.3 A formula for Popp volume

In this section we prove an explicit formula for the Popp volume.
We say that a local frame X1, . . . ,Xn is adapted if X1, . . . ,Xki is a local frame for Di, where

ki := dimDi, and X1, . . . ,Xk are orthonormal. Even though it is not needed right now, it is useful
to define the functions clij ∈ C∞(M) by

[Xi,Xj ] =

n∑

l=1

clijXl . (9.8)

With a standard abuse of notation we call them structure constants. For j = 2, . . . ,m we define
the adapted structure constants bli1... ij ∈ C∞(M) as follows:

[Xi1 , [Xi2 , . . . , [Xij−1 ,Xij ]]] =

kj∑

l=kj−1+1

bli1i2... ijXl mod Dj−1 , (9.9)
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where 1 ≤ i1, . . . , ij ≤ k. These are a generalization of the clij , with an important difference: the
structure constants of Eq. (9.8) are obtained by considering the Lie bracket of all the fields of the
local frame, namely 1 ≤ i, j, l ≤ n. On the other hand, the adapted structure constants of Eq. (9.9)
are obtained by taking the iterated Lie brackets of the first k elements of the adapted frame only
(i.e. the local orthonormal frame for D), and considering the appropriate equivalence class. For
j = 2, the adapted structure constants can be directly compared to the standard ones. Namely
blij = clij when both are defined, that is for 1 ≤ i, j ≤ k, l ≥ k + 1.

Then, we define the kj − kj−1 dimensional square matrix Bj as follows:

[Bj]
hl =

k∑

i1,i2,...,ij=1

bhi1i2...ijb
l
i1i2...ij , j = 1, . . . ,m , (9.10)

with the understanding that B1 is the k × k identity matrix. It turns out that each Bj is positive
definite.

Theorem 9.5. Let X1, . . . ,Xn be a local adapted frame, and let ν1, . . . , νn be the dual frame. Then
Popp’s volume P satisfies

P =
1√∏
j detBj

ν1 ∧ . . . ∧ νn , (9.11)

where Bj is defined by (9.10) in terms of the adapted structure constants (9.9).

To clarify the geometric meaning of Eq. (9.11), let us consider more closely the case m = 2.
If D is a step 2 distribution, we can build a local adapted frame {X1, . . . ,Xk,Xk+1, . . . ,Xn} by
completing any local orthonormal frame {X1, . . . ,Xk} of the distribution to a local frame of the
whole tangent bundle. Even though it may not be evident, it turns out that B−1

2 (q) is the Gram
matrix of the vectors Xk+1, . . . ,Xn, seen as elements of TqM/Dq. The latter has a natural structure
of inner product space, induced by the surjective linear map [ , ] : Dq ⊗ Dq → TqM/Dq (see
Lemma 9.2). Therefore, the function appearing at the beginning of Eq. (9.11) is the volume
of the parallelotope whose edges are X1, . . . ,Xn, seen as elements of the orthogonal direct sum
grq(D) = Dq ⊕ TqM/Dq.

Proof of Theorem 9.5

We are now ready to prove Theorem 9.5. For convenience, we first prove it for a distribution of step
m = 2. Then, we discuss the general case. In the following subsections, everything is understood
to be computed at a fixed point q ∈ M . Namely, by gr(D) we mean the nilpotentization of D at
the point q, and by Di we mean the fibre Diq of the appropriate higher order distribution.

Step 2 distribution

If D is a step 2 distribution, then D2 = TM . The growth vector is G = (k, n). We choose n − k
independent vector fields {Yl}nl=k+1 such that X1, . . . ,Xk, Yk+1, . . . , Yn is a local adapted frame for
TM . Then

[Xi,Xj ] =
n∑

l=k+1

blijYl mod D . (9.12)

174



For each l = k + 1, . . . , n, we can think to blij as the components of an Euclidean vector in R
k2 ,

which we denote by the symbol bl. According to the general construction of Popp’s volume, we
need first to compute the inner product on the orthogonal direct sum gr(D) = D ⊕ D2/D. By
Lemma 9.2, the norm on D2/D is induced by the linear map π : ⊗2D → D2/D

π(Xi ⊗Xj) = [Xi,Xj ] mod D . (9.13)

The vector space ⊗2D inherits an inner product from the one on D, namely ∀X,Y,Z,W ∈ D,
〈X ⊗ Y,Z ⊗W 〉 = 〈X,Z〉〈Y,W 〉. π is surjective, then we identify the range D2/D with ker π⊥ ⊂
⊗2D, and define an inner product on D2/D by this identification. In order to compute explicitly
the norm on D2/D (and then, by polarization, the inner product), let Y ∈ D2/D. Then

‖D2/D‖Y = min{‖ ⊗2 D‖Z s.t. π(Z) = Y } . (9.14)

Let Y =
∑n

l=k+1 c
lYl and Z =

∑k
i,j=1 aijXi ⊗Xj ∈ ⊗2D. We can think to aij as the components

of a vector a ∈ R
k2 . Then, Eq. (9.14) writes

‖D2/D‖Y = min{|a| s.t. a · bl = cl, l = k + 1, . . . , n} , (9.15)

where |a| is the Euclidean norm of a, and the dot denotes the Euclidean inner product. Indeed,
‖D2/D‖Y is the Euclidean distance of the origin from the affine subspace of Rk

2
defined by the

equations a · bl = cl for l = k + 1, . . . , n. In order to find an explicit expression for ‖D2/D‖2Y in
terms of the bl, we employ the Lagrange multipliers technique. Then, we look for extremals of

L(a, bk+1, . . . , bn, λk+1, . . . , λn) = |a|2 − 2

n∑

l=k+1

λl(a · bl − cl) . (9.16)

We obtain the following system




n∑

l=k+1

λl · bl − a = 0,

n∑

l=k+1

λlb
l · br = cr , r = k + 1, . . . , n.

(9.17)

Let us define the n−k square matrix B, with components Bhl = bh ·bl. B is a Gram matrix, which is
positive definite iff the bl are n−k linearly independent vectors. These vectors are exactly the rows
of the representative matrix of the linear map π : ⊗2D → D2/D, which has rank n− k. Therefore
B is symmetric and positive definite, hence invertible. It is now easy to write the solution of
system (9.17) by employing the matrix B−1, which has components B−1

hl . Indeed a straightforward
computation leads to

‖D2/D‖2csYs = chB−1
hl c

l . (9.18)

By polarization, the inner product on D2/D is defined, in the basis Yl, by

〈Yl, Yh〉D2/D = B−1
lh . (9.19)

Observe that B−1 is the Gram matrix of the vectors Yk+1, . . . , Yn seen as elements of D2/D. Then,
by the definition of Popp’s volume, if ν1, . . . , νk, µk+1, . . . , µn is the dual basis associated with
X1, . . . ,Xk, Yk+1, . . . , Yn, the following formula holds true

P =
1√

detB
ν1 ∧ · · · ∧ νk ∧ µk+1 ∧ · · · ∧ µn . (9.20)
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General case

In the general case, the procedure above can be carried out with no difficulty. Let X1, . . . ,Xn

be a local adapted frame for the flag D0 ⊂ D ⊂ D2 ⊂ · · · ⊂ Dm. As usual ki = dim(Di). For
j = 2, . . . ,m we define the adapted structure constants bli1... ij ∈ C∞(M) by

[Xi1 , [Xi2 , . . . , [Xij−1 ,Xij ]]] =

kj∑

l=kj−1+1

bli1i2... ijXl mod Dj−1 , (9.21)

where 1 ≤ i1, . . . , ij ≤ k. Again, bli1...ij can be seen as the components of a vector bl ∈ R
kj .

Recall that for each j we defined the surjective linear map πj : ⊗jD → Dj/Dj−1

πj(Xi1 ⊗Xi2 ⊗ · · · ⊗Xij ) = [Xi1 , [Xi2 , . . . , [Xij−1 ,Xij ]]] mod Dj−1 . (9.22)

Then, we compute the norm of an element of Dj/Dj−1 exactly as in the previous case. It is
convenient to define, for each 1 ≤ j ≤ m, the kj−kj−1 dimensional square matrix Bj, of components

[Bj]
hl =

k∑

i1,i2,...,ij=1

bhi1i2...ijb
l
i1i2...ij . (9.23)

with the understanding that B1 is the k×k identity matrix. Each one of these matrices is symmetric
and positive definite, hence invertible, due to the surjectivity of πj. The same computation of the
previous case, applied to each Dj/Dj−1 shows that the matrices B−1

j are precisely the Gram matrices

of the vectors Xkj−1+1, . . . ,Xkj ∈ Dj/Dj−1, in other words

〈Xkj−1+l,Xkj−1+h〉Dj/Dj−1 = B−1
lh . (9.24)

Therefore, if ν1, . . . , νn is the dual frame associated with X1, . . . ,Xn, Popp’s volume is

P =
1√∏m

j=1 detBj
ν1 ∧ . . . ∧ νn . (9.25)

9.4 Popp volume and isometries

In the last part of the paper we discuss the conditions under which a local isometry preserves Popp’s
volume. In the Riemannian setting, an isometry is a diffeomorphism such that its differential is an
isometry for the Riemannian metric. The concept is easily generalized to the sub-Riemannian case.

Definition 9.6. A (local) diffeomorphism φ : M → M is a (local) isometry if its differential
φ∗ : TM → TM preserves the sub-Riemannian structure (D, 〈·|·〉), namely

i) φ∗(Dq) = Dφ(q) for all q ∈M ,

ii) 〈φ∗X|φ∗Y 〉φ(q) = 〈X|Y 〉q for all q ∈M , X,Y ∈ Dq .

Remark 9.7. Condition i), which is trivial in the Riemannian case, is necessary to define isometries
in the sub-Riemannian case. Actually, it also implies that all the higher order distributions are
preserved by φ∗, i.e. φ∗(Diq) = Diφ(q), for 1 ≤ i ≤ m.
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Definition 9.8. Let M be a manifold equipped with a volume form µ ∈ Ωn(M). We say that a
(local) diffeomorphism φ :M →M is a (local) volume preserving transformation if φ∗µ = µ.

In the Riemannian case, local isometries are also volume preserving transformations for the
Riemannian volume. Then, it is natural to ask whether this is true also in the sub-Riemannian
setting, for some choice of the volume. The next proposition states that the answer is positive if
we choose Popp’s volume.

Proposition 9.9. Sub-Riemannian (local) isometries are volume preserving transformations for
Popp’s volume.

Proposition 9.9 may be false for volumes different than Popp’s one. We have the following.

Proposition 9.10. Let Iso(M) be the group of isometries of the sub-Riemannian manifold M . If
Iso(M) acts transitively on M , then Popp’s volume is the unique volume (up to multiplication by
scalar constant) such that Proposition 9.9 holds true.

Definition 9.11. Let M be a Lie group. A sub-Riemannian structure (M,D, 〈·|·〉) is left invariant
if ∀g ∈M , the left action Lg :M →M is an isometry.

As a trivial consequence of Proposition 9.9 we recover a well-known result (see again [16]).

Corollary 9.12. Let (M,D, 〈·|·〉) be a left-invariant sub-Riemannian structure. Then Popp’s vol-
ume is left invariant, i.e. L∗

gP = P for every g ∈M .

This section is devoted to the proof of Propositions 9.9 and 9.10.

Proof of Proposition 9.9

Let φ ∈ Iso(M) be a (local) isometry, and 1 ≤ i ≤ m. The differential φ∗ induces a linear map

φ̃∗ : ⊗iDq → ⊗iDφ(q) . (9.26)

Moreover φ∗ preserves the flag D ⊂ . . . ⊂ Dm. Therefore, it induces a linear map

φ̂∗ : Diq/Di−1
q → Diφ(q)/Di−1

φ(q) . (9.27)

The key to the proof of Proposition 9.9 is the following lemma.

Lemma 9.13. φ̃∗ and φ̂∗ are isometries of inner product spaces.

Proof. The proof for φ̃∗ is trivial. The proof for φ̂∗ is as follows. Remember that the inner product
on Di/Di−1 is induced by the surjective maps πi : ⊗iD → Di/Di−1 defined by Eq. (9.5). Namely,
let Y ∈ Diq/Di−1

q . Then

‖Y ‖Di
q/Di−1

q
= min{‖Z‖⊗Dq s.t. πi(Z) = Y } . (9.28)

As a consequence of the properties of the Lie brackets, πi ◦ φ̃∗ = φ̂∗ ◦ πi. Therefore

‖Y ‖Di
q/Di−1

q
= min{‖φ̃∗Z‖⊗Dφ(q)

s.t. πi(φ̃∗Z) = φ̂∗Y } = ‖φ̂∗Y ‖Di
φ(q)

/Di−1
φ(q)

. (9.29)

By polarization, φ̂∗ is an isometry.
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Since grq(D) = ⊕mi=1Diq/Di−1
q is an orthogonal direct sum, φ̂∗ : grq(D) → grφ(q)(D) is also an

isometry of inner product spaces.
Finally, Popp’s volume is the canonical volume of grq(D) when the latter is identified with TqM

through any choice of a local adapted frame. Since φ∗ is equal to φ̂∗ under such an identification,
and the latter is an isometry of inner product spaces, the result follows.

Proof of Proposition 9.10

Let µ be a volume form such that φ∗µ = µ for any isometry φ ∈ Iso(M). There exists f ∈ C∞(M),
f 6= 0 such that P = fµ. It follows that, for any φ ∈ Iso(M)

fµ = P = φ∗P = (f ◦ φ)φ∗µ = (f ◦ φ)µ , (9.30)

where we used the Iso(M)-invariance of Popp’s volume. Then also f is Iso(M)-invariant, namely
φ∗f = f for any φ ∈ Iso(M). By hypothesis, the action of Iso(M) is transitive, then f is constant.

Hausdorff dimension and Hausdorff volume

Density of the Hausdorff volume with respect to a smooth volume

Bibliographical notes
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Chapter 10

Regularity of the sub-Riemannian

distance

In this chapter we focus our attention on the analytical properties of the sub-Riemannian distance
d. In particular we want to answer to the following questions:

(i) Which is the minimal regularity of d that we can always expect?

(ii) Is the sub-Riemannian distance smooth? If not, can we characterize smooth points?

10.1 General properties of the distance function

In the following we work in the usual setting

f : U→ TM, q̇ =

k∑

i=1

uifi(q)

where U is a rank k trivial Euclidean bundle onM and ui(t) ∈ L2, and f1, . . . , fk are smooth vector
fields.

Definition 10.1. Fix a point q ∈ M . The flag of the sub-Riemannian structure at the point q is
the sequence of subspaces D1

q ⊂ D2
q ⊂ . . . defined by

Diq := span{[fi1 , . . . , [fil−1
, fil ]](q), l ≤ i}

Notice that D1
q = Dq is the set of admissible directions, D2

q is the set of directions that are admissible
with one bracket etc.

The bracket generating assumptions implies that

∀ q ∈M, ∃m(q) > 0 s.t. Dm(q)
q = TqM

and m(q) is called the step of the sub-Riemannian structure at q.

Exercise 10.2. Prove that the filtration defined by the subspaces Diq, i ≥ 1 is intrinsic for the
sub-Riemannian structure. In particular this implies that m(q) does not depend on the basis of
vector fileds (i.e. on the trivialization of U).
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In the Chapter ?? we already proved that the sub-Riemannian distance is Hölder continuous.
For the reader’s convenience, we recall here the statement.

Proposition 10.3. For every q ∈ M there exists a neighborhood Oq such that ∀ q0, q1 ∈ Oq and
for every coordinate map φ : Oq → R

n

d(q0, q1) ≤ C|φ(q0)− φ(q1)|1/m

where m = m(q) is the step of the sub-Riemannian structure at q.

Now fix a point q0 ∈M and define the following functions

ρ(q) = d(q0, q), µ(q) =
1

2
d2(q0, q).

Note. In what follows we always consider the point q0 to be fixed and r0 > 0 such that
B = Bq0(r0) is a closed compact ball centered in q0.

Our main goal is to prove the following

Theorem 10.4. The function µ
∣∣
B
: B → R is smooth on a open dense subset of B.

Let us denote by F = Fq0 : U → M the end-point map with fixed point q0 ∈ M , i.e. the map
that associates to every control u(·) ∈ U ⊂ L2 the end-point qu(1) of the solution associated to the
control u and denote with B the ball of radius r0 (defined above) in L2. Notice that since B is
compact then B ⊂ U .

The proof of Theorem 10.4 is the object of all this section. Let us start recalling the following
result and its corollary, some of which were already obtained in the previous chapters.

Proposition 10.5. F
∣∣
B is weakly continuous in L2. In other words if un ⇀ u in the weak topology

then F (un)→ F (u).

Remark 10.6. Actually we prove that all trajectories converge uniformly and not only their end-
points.

Proof. Consider the solution of the problem

γ̇(t) = fu(t)(γ(t)), γ(0) = q0, u ∈ B.
Since the ball B is compact, all trajectories are Lipschitzian with the same Lipchitz constant. In
particular they form a precompact set in the C0 topology.

Assume now that un ⇀ u and consider the family of curves γn(t) associated to un, that satisfy

γn(t) = q0 +

∫ t

0
fun(τ)(γn(τ))dτ.

By compactness there exists a subsequence, which we still denote γn, such that γn → γ uniformly,
for some curve γ, in particular their endpoints converge. It remains to show that γ is the trajectory
associated to u.

Since un ⇀ u we have that fun(t)(γn(t)) → fu(t)(γ(t)) being the product between strong and
weak convergent sequences.1 taking the limit we find

γ(t) = q0 +

∫ t

0
fu(τ)(γ(τ))dτ,

i.e. γ is the trajectory associated to u.

1one can write the coordinate expression
∑

ui
kfi(qk(t))
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The previous proposition reproves the existence of minimizers

Corollary 10.7 (Existence of minimizers). For any q1 ∈ Bq0(r) there exists ũ (with ‖ũ‖ ≤ r) that
join q0 and q1 and is a minimizer. i.e. ‖ũ‖ = d(q0, q1) = ρ(q1).

Proof. Consider a point q1 in the compact ball B. Then take a minimizing sequence un such that
F (un) = q1 and ‖un‖ → ρ(q1). Since un ∈ B and bounded sets are compact in the weak L2

topology, we can assume un ⇀ ũ. On the other hand the standard semicontinuity result of the
norm gives

‖ũ‖ ≤ lim inf
n
‖un‖ = ρ(q1),

and the equality holds.

Definition 10.8. A control u is called minimizer if it satisfies µ(F (u)) = J(u). Notice that in this
case we have |u(t)| = const and moreover |u(t)| = ‖u‖ = ρ(F (u)).

Theorem 10.9 (Compactness). The set of all minimizer controls with value in a compact ball

M = {u minimizer, F (u) ∈ B},

is compact in the strong L2 topology.

Proof. Consider a sequence un ∈ M, that we can assume weakly convergent un ⇀ u (since bounded
sets are weakly compact). If we prove that ‖un‖ → ‖u‖ we are done by a standard argument.

From Proposition it follows that F (un) → F (u) strongly and the continuity of the distance
implies ρ(F (un))→ ρ(F (u)). Moreover since un ∈ M we have that ‖un‖ = ρ(F (un)) and by weak
semicontinuity of the norm we get

‖u‖ ≤ lim inf
n
‖un‖ = lim inf

n
ρ(F (un)) = ρ(F (u)),

that implies un → u and u ∈ M.

Now we focus on normal extremal paths starting from the fixed point q0 and we want to
understand how they cover a neighborhood of the initial point.

Recall that normal extremal paths are projections of the Hamiltonian flow on T ∗M

λ̇(t) = ~H(λ(t)), H(λ) =
1

2

k∑

i=1

〈λ, fi(q)〉2 ,

where H is the sub-Riemannian Hamiltonian.

In particular the exponential map can be interpreted as the restriction of the end-point map to
a special class of controls parametrized by a covector λ0 ∈ T ∗

q0M

Eq0(λ0) = π ◦ e ~H(λ0) = F (uλ0),

where

uλ0(t) = (uλ0i (t))i=1,...,k, uλ0i (t) = 〈λ(t), fi(γ(t))〉 .
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Recall that, if we denote by γλ0(t) the normal extremal path with initial covector λ0, from the
homogeneity property of H it follows that

E(tλ(0)) = γλ0(t),

from which one get

D0E(λ0) = γ̇λ0(0) =
∂H

∂p
(q0, p0) = D0(H

∣∣
T ∗
q0
M
).

It follows that 0 is a regular point of E if and only if Dq0 = Tq0M .

Remark 10.10. In the Riemannian case E gives local coordinates to M around q0, being a diffeo-
morphism of a small ball in T ∗

q0M onto a small geodesic ball in M , where geodesics are images
of straight lines in the cotangent space. Moreover there is a unique minimizer joining q0 to every
point of the (sufficiently small) ball and d2 is a smooth function around q0.

As we show next, as soon as Dq0 6= Tq0M singularities appear. Recall the notation µ(q) =
1

2
d2(q0, q)

and let us consider, as before, a compact ball B = Bq0(r0), where we have existence of minimizers
by Proposition 10.7.

Theorem 10.11. The function µ is smooth in a neighborhood Oq of q ∈ B if and only if for all
q′ ∈ Oq
(i) q′ is connected with q0 by a unique minimizer,

(ii) q′ = Eq0(λ′0), where λ′0 is a regular point of Eq0,

In this case the final covector on the geodesic is λ′1 := e
~H(λ′0) = dq′µ.

We divide the proof of this Theorem into two part, proving separately the two implications.

First part of the Proof of Theorem 10.11. Assume that µ is smooth in a neighborhood Oq of q ∈ B,
we want to show that (i) and (ii) holds. Moreover, we show that dq1µ is the covector associated to
the minimizer.

Denote by F the endpoint map from q0 and consider the function

Ψ : u 7→ 1

2

∫ 1

0
|u(t)|2dt− µ(F (u)),

Notice that Ψ ≥ 0 and Ψ(u) = 0 if and only if u is lenght-minimizer. Since µ is smooth we have
that u is lenght-minimizer implies DuΨ = 0, but

DuΨ = u− (dF (u)µ)DuF = 0,

that means exactly that u is normal and λ1 = dF (u)µ. Moreover u is unique, since from the
covector λ1 ∈ Tq1M we can uniquely recover the extremal λ(t) and its projection γ(t) = π(λ(t)),
that uniquely determines ui(t) = 〈λ(t), fi(γ(t))〉.

It remains to prove (ii). For any q1 ∈ Oq define the following map

Φ : q1 7→ e−
~H(dq1µ) ∈ T ∗

q0M.

Clearly it is smooth and is a right inverse for the exponential map, since

E(Φ(q1)) = π ◦ e ~H(e− ~H(dq1µ)) = π(dq1µ) = q1. (10.1)

The existence of a smooth right inverse, using the chain rule, implies that q is a regular point.
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Remark 10.12. Notice that (ii) proves that u is strictly normal, being a regular point of the
exponential map.

Before proving the converse we show an important corollary of this result. Denote by Sr :=
µ−1(r) the sub-Riemannian sphere centered at q0

Corollary 10.13. Assume that Dq0 6= Tq0M . Any non empty level set Sr contains a non smooth
point of the function µ.

Proof. Assume, by contradiction, that µ is smooth at every point of the sphere Sr. Then, since
dqµ 6= 0 for every q ∈ Sr (since dqµ is the nonzero covector attached at the final point of a geodesic,
see the Theorem 10.11) it follows that Sr is a submanifold of dimension n− 1. Moreover, being the
level set of a continuous function, it is closed, hence compact.

Consider the map

Φ : Sr → T ∗
q0M, q 7→ e−

~H(dqµ) ∈ T ∗
q0M,

which defines an inverse of the exponential map (see also (10.1)). Moreover

H(Φ(q)) = r, since µ(q) = H(λ) = r,

from which it follows that actually Φ defines a map

Φ : Sr → H−1(r) ∩ T ∗
q0M, (10.2)

that is a diffeomorphism of Sr, onto some connected and compact n− 1 dimensional region in the
image. On the other hand the set

H−1(r) ∩ T ∗
q0M = {λ ∈ T ∗

q0M :
1

2

k∑

i=1

〈λ, fi(q)〉2 = r}

is a connected n−1 dimensional submanifold, being diffeomorphic to the cylinder Sℓ×R
n−ℓ, where

ℓ is the rank of the structure at the point. Since the cylinder Sℓ × R
n−ℓ is connected, but not

compact, we get a contradiction.

Second part of the Proof of Theorem 10.11. We start with the definition of smooth point for µ.

Definition 10.14. A point q ∈ M is called a smooth point if there exists a unique minimizer
joining q0 to q such that it is strictly normal, associated to a control u s.t. λ1DuF = u for some

λ1 ∈ T ∗
qM , and λ0 = e− ~H(λ1) is a regular point for Eq0 . The set of smooth points is denoted by Σ.

Notice that this definition does not involve directly the regularity of µ. Actually, the proof of
Theorem 10.11 is completed by the following

Proposition 10.15. Σ is an open set and µ is smooth at every point of Σ.

Proof. Let us start proving that Σ is open. It is sufficient to show that

∀ qn → q, ∃n0 ∈ N such that qn ∈ Σ, ∀n > n0.

Due to the existence of minimizers there exists a sequence of controls un, such that un is a minimizer
control that join q0 to qn. Moreover, by Proposition 10.9, the set of minimizers is strongly compact
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in L2. Then there exist v such that un → v. On the other hand the control v is forced to be a
minimizer joining q and q0, and by our assumption on uniqueness, we have v = u.

By smoothness of the end point map and un → u we get DunF → DuF . Since DuF has full
rank (u is strictly normal, hence is not a critical point for F ) we have that, for n big enough, un is
not a critical point of F . There exists a sequence λn1 ∈ T ∗

qnM such that

λn1DunF = un, DunF : L2
k → TqnM has full rank

Considering the dual map

(DunF )
∗λn1 = un, DunF

∗ : T ∗
qnM → L2

k is injective

From here we get that also λn1 → λ1 and λ1 must be the unique solution for q.

Remark 10.16. In other words we proved that ∀Vλ nieghborhood of λ in T ∗
q0M there exists a

neighborhood Oq of q such that every point of q′ ∈ Oq is joined to q0 by a minimal control u′,
whose corresponding covector is λ′ ∈ Vλ.

Now it remains to prove that the covector λ1 is unique and that µ is smooth at these points.
Since at λ the exponential map is regular we have that E

∣∣
Vλ

: λ′ 7→ E(λ′) is locally invertible. Hence

∀ q ∈ Oq ∃!λ′ ∈ Vλ s.t. q′ = E(λ′) and q′ 7→ λ′ is smooth.

The conclusion follows from the equality µ(q′) = H(λ′) we are done.

Now we continue proving Theorem 10.4.

Proof of Theorem 10.4. Our goal is to show that Σ is a dense set in B. We start by characterizing
some larger set than the set of smooth points2.

Definition 10.17. A point q ∈ B is said to be a

- fair point if there exists a unique normal minimizer joining q0 to q.

- good point if it is a fair point and the control is strictly normal.

We will denote by Σf and Σg the set of fair and good points respectively. Clearly Σ ⊂ Σg ⊂ Σf .

Notice that a smooth point is a good point which is also a regular point for the exponential map
3. We proceed into the following steps.

(i) Σf is a dense set,

(ii) Σg is a dense set,

(iii) µ is Lipschitz in a neighborhood of points of Σg,

(iv) Σ is a dense set.

2recall that we always work in the compact ball B
3i.e. not only for the endpoint map, but also for its restriction to the manifold of critical control
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Proof of (i). Let O ⊂ B an open set. We want to show that Σf ∩O 6= ∅.
Consider a smooth function a : O → R such that a−1([s,∞]) is compact for every s. Then

consider the function

Ψ : q ∈ O 7→ µ(q)− a(q)
Clearly Ψ attains its minimum at some point q1 ∈ O.

Now consider also the map

Ψ : u ∈ U 7→ J(u)− a(F (u))

Since J ≥ µ we get that Ψ attain its minimum at the control u1 that satisfy F (u1) = q1 and is a
minimizer. Then

Du1Φ = u1 − (dq1a)Du1F = 0

form which it follows that u1 is normal with λ1 = dq1a its covector.

Remark 10.18. In the Riemannian case Σf = Σg since there are no abnormal extremal.

Proof of (ii). We want to show that Σg ∩O 6= ∅ for any open subset O ⊂ B.
For any q ∈ Σf ∩ O (which is nonempty by (i)) define rank q = rankDuF , where u is the control
associated to the unique minimizer γ that join q0 to q. To prove (ii) it is sufficient to prove that
there exists a point q′ ∈ Σf ∩O such that rank q′ = n, i.e. Du′F is surjective, for the unique control
u′ associated to q′. Assume by contradiction that

kO := max
q∈Σf∩O

rank q < n,

and consider a point q̂ such that rank q̂ = kO.

Claim: all points sufficiently close to q̂ have the same rank.

Indeed, if it is not the case, there exists a sequence of points qn → q̂ such that qn ∈ Σf ∩
O, rank qn < kO. But this implies that the sequence of controls un associated to qn satisfies
un → û strongly in L2, by uniqueness and compactness (see also proof of (a) of Proposition 10.15).
By smoothness of F it follows that DunF → DûF which implies the contradiction rankDûF < kO.

Hence we can assume that rank q = kO < n for every q ∈ Σf ∩ O (maybe restricting our
neighborhood).

We introduce the following set

Πq = e−
~H{ξ ∈ T ∗

qM | ξDuF = λ1DuF} ⊂ T ∗
q0M

which is an affine subset of T ∗
q0M such that dimΠq = kO. Indeed, let Pt be the (local) nonau-

tonomous flow associated to the control u (which is the same for every ξ), then the the map e− ~H

acts linearly on the subspace of covectors associated to the same control u since we know that

λ(0) = e− ~H(λ1) = P ∗
t λ1, (see also Chapter 4).

Moreover, the map q 7→ Πq is continuous on Σf ∩ O. Indeed if we consider a sequence qn → q
we have that un → u strongly and DunF → DuF . Since rank DunF is constant the kernel also is
continuous.

Consider now B ⊂ T ∗
q0M a kO-dimensional ball that contains λ0 = e− ~H(λ1) and is transversal to

Πq. By continuity B is transversal also to Πq′ , for q
′ ∈ Σf ∩O close to q. In particular Πq′ ∩B 6= ∅.
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This implies, since E(Πq) = q, that Σf ∩ O ⊂ E(B). By (i) Σf ∩ O is a dense set, hence
E(B) is also dense. On the other hand, since E is a smooth map and B is a compact ball of
positive codimension (kO < n), by Sard Lemma it follows that E(B) has measure zero, that is a
contradiction.

Proof of (iii). We start with the following

Theorem 10.19. Let K ⊂ B a compact in our ball such that any minimizer connecting q0 to
q ∈ K is strictly normal. Then µ is Lipschitz on K.

Corollary 10.20. If q ∈ Σg, then µ is Lipschitz in a neighborhood of q.

Proof. It is sufficient to prove that in a neighborhood of good points there can be only points
reached by strictly normal minimizers (no uniqueness is required). Assume the contrary, then there
exists a sequence of points qn such that un is also abnormal. By compacness of minimizers there
exists u such that un → u and by uniqueness of the limit u is abnormal for the point q, that is a
contradiction.

Proof of Theorem 10.19. Consider some point q ∈ K and a minimizing control u (maybe is not
unique). By our assumptions DuF is surjective (u is strictly normal). Then, using inverse function
theorem, there is a smooth right inverse. In other words there exists ε > 0 and C > 0 such that

Bq(Cs) ⊂ F (Bu(s)), ∀ 0 < s < ε

where Bu(r) is the ball of radius r in L2. From this it follows that for every q and any minimizer
u which connect q0 to q:

µ(q′) ≤ µ(q) + C|q − q′| (10.3)

By compactness of minimizers and compactness of K it follows that we can find ε and C such that
10.3 is valid for all points and minimizers. Then we can exchange the role of q and q′ getting

|µ(q′)− µ(q)| ≤ C|q − q′| (10.4)

Proof of (iv). Since we know that µ is Lipschitz on O, µ is differentiable almost everywhere in
O. Moreover, every point of differentiability of µ is a fair point.

Indeed consider the functional

Ψ : u 7→ J(u)− µ(F (u))
As noticed in (i), Ψ attains minimum at minimizers of µ. Moreover, if µ is differentiable at the
point F (u) (where u is the minimizer) then Ψ is differentiable at u and

DuΨ = u− (dF (u)µ)DuF = 0

that implies that the point is fair. Hence the set of fair point has full measure in O. Moreover,
by Sard Lemma, the set of regular values of the exponential map is also a dense set. Since all fair
points are in the image of exponential map, for which thanks to Sard lemma almost all points are
regular. The intersection is still dense.

We end this section by proving the following

Theorem 10.21. For every ε > 0 there exists q0 ∈M and a normal extremal path γ starting from
q0 such that ℓ(γ) = ε and γ is not a minimizer.
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10.2 Lipschitz functions and maps

Recall that if ϕ :M → R is a Lipschitz function, the differential dqϕ is well defined for a.e. q ∈M ,
by Rademacher Theorem. Now we introduce a weaker definition of differentiability.

Definition 10.22. Let ϕ : M → R be locally Lipschitz function. The (Clarke) sub-differential of
φ at the point q ∈M is

∂qϕ := conv{ξ ∈ T ∗
qM | ξ = lim

qn→q
dqnϕ, qn diff. point} (10.5)

Notice that by definition the set ∂qϕ is bounded and closed, hence compact.

Note. In what follows if ϕ : M → R is a locally Lipschitz function the notation dqϕ means
that q ∈M is a differentiability point of ϕ.

Example 10.23. Let ϕ : R→ R defined by

(i) ϕ(x) = |x|, then ∂0ϕ = [−1, 1],

(ii) ϕ(x) = x, if x < 0 and ϕ(x) = 2x, if x ≥ 0, then ∂0ϕ = [1, 2].

In particular in the first example 0 is a minimum for ϕ and 0 ∈ ∂0ϕ. In the second case the function
is locally invertible near the origin and ∂0ϕ is separated from zero.

This notion permits to extend some classical properties of critical points of smooth functions.

Proposition 10.24. Let ϕ :M → R be locally Lipschitz and q be a minimum for ϕ. Then 0 ∈ ∂qϕ.
Proof. Assume by contradiction that 0 /∈ ∂qϕ. Then by compactness the set ∂qϕ is separated from
0. In particular from this follows that

∃ ε > 0, ∃ v ∈ TqM s.t. 〈ξ, v〉 ≤ −ε < 0, ∀ ξ ∈ ∂qϕ,
By continuity there exists a neighborhood Oq of q and Vv of v such that

〈
dq′ϕ, v

′〉 ≤ −ε/2 < 0, ∀ q′ ∈ Oq, ∀ v′ ∈ Vv,
where q′ is a differentiability point. Since for a.e. direction v′ the intersection of the set of differ-
entiable points with the line {q + tv′} has full measure, the function a(t) = ϕ(q + tv′) cannot have
a minimum in q. Indeed

a(t)− a(0) = ϕ(q + tv′)− ϕ(q) =
∫ t

0

〈
dqϕ, v

′〉 ≤ −εt/2.

The following lemma gives an estimate for the sub-differential of some special class of function.

Lemma 10.25. Let ϕω : M → R be a family of C1 functions, with ω ∈ Ω a compact set. Assume
that the following maps are continuous:

(ω, q) 7→ ϕω(q), (ω, q) 7→ dqϕω(q)

Then the function a(q) := min
ω∈Ω

ϕω(q) is locally Lipschitz and

∂qa ⊂ conv{dqϕω| ∀ω ∈ Ω s.t. ϕω(q) = a(q)}. (10.6)
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Proof. We divide the proof into two steps. First we prove that a is locally Lipschitz and then we
prove the estimate (10.6).

(i). It is enough to prove the statement for Lipschitz functions on a compact K ⊂ M . Since
every ϕω is Lipschitz on K and Ω is compact, there exists a constant C > 0 such that

ϕω(q)− ϕω(q′) ≤ C|q − q′|, ∀ q, q′ ∈ K, ω ∈ Ω,

Clearly
min
ω∈Ω

ϕω(q)− ϕω(q′) ≤ C|q − q′|

and passing to the min with respect to q′ we get

a(q)− a(q′) ≤ C|q − q′|, ∀ q, q′ ∈ K,

Since the constant C depends only on K we can exchange the role of q and q′, proving

|a(q)− a(q′)| ≤ C|q − q′|, ∀ q, q′ ∈ K,

(ii). To prove (10.6) it is sufficient to show that, at every differentiable point q ∈M

dqa ∈ D, D := conv{dqϕω| ∀ω ∈ Ω s.t. ϕω(q) = a(q)}.

Take ξ /∈ D. By separation theorem

∃ ε > 0, ∃ v ∈ TqM s.t. 〈dqϕω, v〉 > 〈ξ, v〉 + ε, ∀ω s.t. ϕω(q) = a(q),

By continuity there exists a neighborhood Oq of q and Vω of ω such that

〈
dq′ϕω′ , v

〉
> 〈ξ, v〉+ ε/2, ∀ q′ ∈ Oq, ∀ω′ ∈ Vω s.t. ϕω′(q′) = a(q′),

A similar argument let us to prove that

1

t
(ϕω(q + tv)− ϕω(q)) > 〈ξ, v〉+ ε/4

which implies, repeating the argument used in (i),

1

t
(a(q + tv)− a(q)) ≥ 〈ξ, v〉 + ε/4

and passing to the limit we get
〈dqa, v〉 ≥ 〈ξ, v〉 + ε/4 (10.7)

If dqa /∈ D we can replace ξ with dqa in (10.7) getting 〈dqa, v〉 ≥ 〈dqa, v〉+ ε/4.

For a Lipschitz map between manifolds f : M → N the (Clarke) sub-differential is defined in
analogous way to the scalar case

∂qf := conv{L ∈ Hom(TqM,Tf(q)N)|L = lim
qn→q

Dqnϕ, qn diff. point},

The following lemma shows how the standard chain rule extends to the Lipschitz case.

188



Lemma 10.26. Let M be a C1 manifold and f :M → N be a Lipschitz map.

(a) If φ :M →M is a diffeomorphism and q ∈M we have

∂q(f ◦ φ) = ∂ϕ(q)f ·Dqφ. (10.8)

(b) If ϕ : N →W is a C1 map, and q ∈M we have

∂q(ϕ ◦ f) = Df(q)ϕ · ∂qf. (10.9)

Moreover the sub-differential, as a set, is upper semicontinuous, i.e. for every neighborhood Ω ∈
Hom(TqM,Tf(q)N) of ∂qf there exisxt a neighborhood Oq of q such that ∂q′f ∈ Ω, for every q′ ∈ Oq.
Proof. (i). Since φ is a diffeomorphism, it sends every differentiability point q of f ◦ φ to a differ-
entiability point φ(q) for f . Then (10.8) is true at differentiability point and passing to the limit it
is also valid for sub-differential (you prove both inclusion using φ and φ−1).

With analogous reasoning one can prove (ii). The semicontinuity can be easily proved by
separation theorem or the Caratheodory Lemma.

Definition 10.27. Let f :M → N be a Lipschitz map. A point q ∈M is said critical for f if ∂qf
contains a non-surjective map. If q ∈M is not critical it is said regular.

Theorem 10.28. Let f : Rn → R
n be a Lipschitz map and q ∈ M be a regular point. Then there

exists neighborhood Of(q) and a Lipschitz map g : Of(q) ⊂ R
n → R

n such that f ◦ g = g ◦ f = Id.

Remark 10.29. The C1 version of inverse function theorem can be proved from Theorem 10.28 and
the chain rule. Indeed Theorem 10.28 implies that there exists a Lipschitz inverse g and using
the chain rule it is easy to show that the sub-differential of g contains only one element (hence is
differentiable at that point) and the differential is the inverse of the differential of f .

We start the proof of the Theorem 10.28 with two lemmas

Lemma 10.30. There exists a neighborhood Oq and ε > 0 such that

∀ v, |v| = 1, ∃ ξv, |ξv| = 1 s.t. 〈ξv, ∂xf(v)〉 > ε, ∀x ∈ Oq.
Proof. Since ∂qf(v) is a compact convex set that does not contain 0 (all matrix in ∂qf are invertibles)
by separation theorem we can find ξv such that 〈ξv, ∂xf(v)〉 > ε(v), ∀x ∈ Oq. By compactness of
the set of v, there exists ε > 0 that works for all |v| = 1.

Lemma 10.31. |f(x)− f(y)| ≥ ε|x− y|, for all x, y ∈ Oq.
Proof. Write y = x+sv, where s = |x−y| and v is a vector of norm 1. Consider a direction v′ close
to v such that almost every point in that direction is a point of differentiability, and let y′ = x+sv′.
Then we can write

f(y′)− f(x) =
∫ s

0
(Dx+tv′f)v

′dt

Hence

|f(y′)− f(x)| ≥
〈
ξv′ , f(y

′)− f(x)
〉

=

∫ s

0

〈
ξv′ , (Dx+tv′f)v

′〉 dt

≥ ε|y′ − x|
Then we can pass to the limit for v′ → v (i.e. y′ → y) since ε does not depend on v.
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Proof of Theorem 10.28. Lemma 10.31 shows that f is injective in a neighborhood Oq of the point
q and that the inverse function (which is well defined) is Lipschitz. It remains to show that f(Oq)
covers a neighborhood of the point f(q).

Without lack of generality we can assume that the estimate of the Lemma 10.31 holds also on
∂Oq (maybe considering some smaller neighborhood). Lemma 10.31 also says that

dist(f(q), ∂f(Oq)) ≥ εdist(q,Oq) > 0

Then consider W ⊂ f(Oq) such that |y − q| < dist(y, ∂f(Oq)), for every y ∈W .
Fix y ∈W and define the function

ϕ : Oq → R, ϕ(x) = |f(x)− y|2

By construction ϕ(q) < ϕ(z), for all z ∈ ∂f(Oq), hence by continuity ϕ attains the minimum on
some point x ∈ Oq. By Proposition 10.24 0 ∈ ∂xϕ. Moreover, using the chain rule

∂xϕ = (f(x)− y)T · ∂xf

and since x is a regular point of f , the set ∂xϕ contains zero if and only if f(x) = y.

Corollary 10.32. Let ϕ :M → R be Lipschitz and assume that y ∈ R is a regular value of a, i.e.
ϕ−1(y) 6= ∅ and every x ∈ ϕ−1(y) is regular). Then ϕ−1(y) is a Lipschitz submanifold of M of
codimension 1.

Proof. We show that in any neighborhood Ox of x ∈ ϕ−1(y) the set Ox ∩ ϕ−1(y) can be described
as the zero locus of a Lipschitz function. Since ∂xa does not contain 0 there exists v, of norm 1,
such that 〈∂xϕ, v〉 > 0 for every x in the compact neighborhood Ox ∩ ϕ−1(y).

Then complete v to a orthonormal basis (v, ξ2, . . . , ξn) of R
n and consider the map

f : Ox → R
n, f(x′) =




ϕ(x′)
〈ξ2, x′〉

...
〈ξn, x′〉




By construction f is Lipschitz and x is a regular value of f .. Hence there exists, by Theorem 10.28
a Lipschitz inverse g of f . In particular the inverse map transforms the hyperplane y1 = const into
the level of ϕ. Hence the level of ϕ is a Lipschitz submanifold.

10.2.1 A non-smooth version of Sard Lemma

In this section we prove a Sard Lemma-type result for some special class of Lipschitz functions.

Recall that the classical Sard Lemma says that, if

ϕ : Rn → R
m, ϕ ∈ Ck, k ≥ max{n−m+ 1, 1},

and X denotes the critical set of ϕ, i.e. the set of points x in R
n at which the Jacobian matrix of

ϕ has rank smaller than m, then ϕ(X) has Lebesgue measure 0 in R
m.

In particular, it does not apply even for C1 functions ϕ : Rn → R, when n ≥ 1.
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Theorem 10.33. Let M be a smooth manifold and ϕω : M → R a family of smooth functions,
with ω ∈ Ω. Assume that

(i) Ω =
⋃
α∈NNα is the union of smooth submanifold, and is compact,

(ii) the map (ω, q) 7→ ϕω(q) and (ω, q) 7→ dqϕω are continuous on Ω×M ,

(iii) the maps ψα : Nα ×M → R, (ω, q) 7→ ϕω(q) are smooth.

Then the set of regular values of the function a(q) = min
ω∈Ω

ϕω(q) has full measure in R.

Proof. It is enough to find a countable set of smooth functions such that any critical point of a is
a critical point of one of these fucntions with the same value. Then this result reduce to standard
Sard Lemma.

By Lemma 10.25 we already know that a is Lipschitz. Assume that q is a critical point of a,
then

0 ∈ ∂qa ⊂ conv{dqϕω| ∀ω ∈ Ω s.t. ϕω(q) = a(q)}.

In other words there exists finite number λ1, . . . , λℓ such that λi > 0,
∑ℓ

i=1 λi = 1 and

0 =
ℓ∑

i=1

λidqϕωi , ϕωi(q) = a(q), ∀ i = 1, . . . , ℓ.

Moreover, since ϕωi(q) = a(q) = minΩ ϕω(q), if ωi ∈ Nαi then ωi is critical for the restriction
function ω 7→ ϕω(q)

∣∣
Nαi

.

Then denote by Λℓ = {(λ1, . . . , λℓ)|λi > 0,
∑
λi = 1} and consider the map

Bℓ :
ℓ⋃

i=1

Nαi × Λℓ ×M → R

(ω0, . . . , ωℓ, λ0, . . . , λℓ, q) 7→
ℓ∑

i=0

λiϕωi(q) (10.10)

It is easy to see that

dzBℓ = 0⇐⇒





∂ϕωi

∂ωi
= 0, i = 1, . . . , ℓ

∑ℓ
i=1 λidqϕωi = 0

ϕω0(q) = . . . = ϕωℓ
(q)

(10.11)

Corollary 10.34. Let φ : N → M be a smooth map between finite dimensional manifolds and
ϕ : N → R be a smooth function. Assume that

(i) φ is a submersion

(ii) ∀ q ∈M the set Cq = {x ∈ N, ϕ(x) = min
φ−1(q)

ϕ(x)} 6= ∅ is compact.
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Then the function x 7→ min
φ−1(q)

ϕ(x) satisfies the Theorem 10.33.

Proof. It is sufficient to prove the statement locally, i.e. for the restriction of our function to every
element of a countable covering of M . Consider a point q ∈ M . From (i) we know that φ−1(q) is
a smooth submanifold in N . Let us consider now a function a : N → R and c > 0 such that the
following assumptions are satisfied

(a) Aα := a−1([0, α]) is compact for every α > 0.

(b) Cq ⊂ intAc,

(c) c is a regular level of a
∣∣
φ−1(q)

.

By continuity it follows that (a)-(c) are satisfied also for every q′ in some neighborhood Oq of the
point q. Noting that (c) is equivalent to the fact that level set of φ are transversal to level of a we
can conclude that φ−1(Oq) ∩ Ac has the structure of locally trivial bundle. Maybe restricting the
neighborhood of q then we can assume

φ−1(q) ∩Ac = Ω, φ−1(Oq) ∩Ac ≃ Oq × Ω,

where Ω is a smooth manifold with boundary. In other words in this neighborhood we can split
variables and our function is rewritten as minω∈Ω ϕ(ω, q). We can apply the previous theorem to
the function restricted to this domain (note that Ω is compact and is the union of its interior and
its boundary, which are smooth by (a)-(c)). Since we can cover M by a countable family of this
neighborhoods we are done.

Remark 10.35. Notice that we do not assume that N is compact. In that case the proof is easier
since every submersion φ : N →M with N compact automatically endows N with a locally trivial
bundle structure.

Now we apply the previous result to the sub-Riemannian distance.

Theorem 10.36. Assume that Bq0(r0) does not contain abnormal minimizers. Then µ is Lipschitz
and the sphere Sq0(r) is a Lipschitz submanifold, for a.e. r ≤ r0, .

Proof. Since there are no abnormal extremals every normal extremal is strongly normal.

Remark 10.37. Recall that for every strongly normal extremal λ(t) there exists t0 such that tλ(0)
is a regular point of the exponential map, for 0 < t ≤ t0. Moreover, given a compact

K ⊂ T ∗
q0M \ (H−1(0) ∩ T ∗

q0M)

this t0 can be chosen in a uniform way with respect to the initial condition λ(0) ∈ K. (see also
Corollary 7.35)

We want to construct a map from a finite dimensional manifold into M , to apply the previous
result and prove that almost every level set of the distance is a Lipschitz submanifold.

The idea is to find an appropriate modification of the exponential map. Remove a small ball
Bδ, with δ > 0 around the point q0 and consider the set Dδ = Br \Bδ

Claim: the set C = {λ0 ∈ T ∗
q0M, λ0 minimizer, E(λ0) ∈ Dδ} is precompact.
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Indeed assume that there exists a sequence λn of covectors (and the associate sequence un of
controls) such that |λn| → +∞. Since they are all normal extremals they satisfies

λnDunF = un =⇒ λn
|λn|

DunF =
un
|λn|

(10.12)

and using compactness of minimizers we can assume that λn → λ and un → u. Passing to the limit
in (10.12) we find λDuF = 0, that is not possible since only normal minimizer reach points of Dδ.
(the only abnormal is the zero control u ≡ 0, which is removed in our construction)

Hence the set C1 := C ⊂ T ∗
q0M is compact. Moreover define

C2 = {λ1 ∈ C1 ∩H−1(]0, ε[)}

where ε is chosen in such a way that Aλ0λ1 is a regular point of EEq0 (λ0) for every λ0, λ1.
4 where

Aλ0 : T ∗
q0M → T ∗

Eq0 (λ0)M

is the pullback of the flow defined by the control u0 associated to λ0.
Define the map

Ψ : C1 × C2 → Dδ ⊂M, Ψ(λ0, λ1) = EEq0 (λ0)(Aλ0λ1)

By construction Ψ is a submersion. Moreover, since Ψ(λ0, sλ0) = E((1 + s)λ0) for 0 < s < ε, it
follows that Ψ attains miminum exactly at the same points as the sub-Riemannian distance.

Since δ > 0 is arbitrary we are done.

4it is possible to find ε = ε(λ0) that works for every λ1 ∈ C2, once λ0 is fixed. Since C1 is compact it is possible
to find a unique ε that works for all.
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Chapter 11

Abnormal extremals and second

variation

In this chapter we are going to discuss in more details abnormal extremals and how the regularity
of the sub-Riemannian distance is affected by the presence of these extremals.

11.1 Second variation

We want to introduce the notion of Hessian (and second derivative) for smooth maps between
manifolds. We first discuss the case of the second differential of a map between linear spaces.

Let F : V →M be a smooth map from a linear space V on a smooth manifold M . As we know,
the first differential of F at a point x ∈ V

DxF : V → TF (x)M, DxF (v) =
d

dt

∣∣∣∣
t=0

F (x+ tv), v ∈ V,

and is a well defined linear map independent on the linear structure on V . This is not the case for
the second differential. Indeed it is easy to see that the second order derivative

D2
xF (v) =

d2

dt2

∣∣∣∣
t=0

F (x+ tv) (11.1)

has not geometric meaning if DxF (v) 6= 0. Indeed in this case the curve γ : t 7→ F (x + tv) is
a smooth curve in M with nonzero tangent vector. Then there exists some local coordinates on
M such that the curve γ is a straight line. Hence the second derivative D2

xF (v) vanish in these
coordinates.

In general, the linear structure on V let us to define the second differential of F as a quadratic
map

D2
xF : KerDxF → TF (x)M (11.2)

On the other hand the map (11.2) is not independent on the choice of the linear structure on
V and this construction cannot be used if the source of F is a smooth manifold.

Assume now that F : N → M is a map between smooth manifolds. The first differential is a
linear map between the tangent spaces

DxF : TxN → TF (x)M, x ∈ N.
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and the definition of second order derivative should be modified using smooth curves with fixed
tangent vector (that belong to the kernel of DxF ):

D2
xF (v) =

d2

dt2

∣∣∣∣
t=0

F (γ(t)), γ(0) = x, γ̇(0) = v ∈ KerDxF, (11.3)

Computing in coordinates we find that

d2

dt2

∣∣∣∣
t=0

F (γ(t)) =
d2F

dx2
(γ̇(0), γ̇(0)) +

dF

dx
γ̈(0) (11.4)

that shows that term (11.4) is defined only up to ImDxF .
Thus is intrinsically defined only a certain part of the second differential, which is called the

Hessian of F, i.e. the quadratic map

HessxF : KerDxF → TF (x)M/ ImDxF

11.2 Abnormal extremals and regularity of the distance

In the previuos chapter we proved that if we have abnormal minimizer that reach some point q,
then the sub-Riemannian distance is not smooth at q. If we also have that no normal minimizers
reach q we can say that it is not even Lipschitz.

Proposition 11.1. Assume that there are no normal minimizers that join q0 to q̂. Then µ is not
Lipschitz in a neighborhood of q̂. Moreover

lim
q→q̂
q∈Σ

|dqµ| = +∞. (11.5)

Proof. Consider a sequence of smooth points qn ∈ Σ such that qn → q̂. Since qn are smooth we
know that there exists unique controls un and covectors λn such that

λnDunF = un, λn = dqnµ.

Assume by contradiction that |dqnµ| ≤ M then, using compactness we find that un → u, λn → λ
with λDuF = u, that means that the associate geodesic reach q̂. In other words, there exists a
normal minimizer that goes at q̂, that is a contradiction.

Let us now consider the end-point map F : U → M . As we explained in the previous section,
its Hessian at a point u ∈ U is the quadratic vector function

HessuF : KerDuF → CokerDuF = TF (u)M/ImDuF.

Remark 11.2. Recall that λDuF = 0 if and only if λ ∈ (ImDuF )
⊥. In other words, for every

abnormal extremal there is a well defined scalar quadratic form

λHessuF : KerDuF → R

Notice that the dimension of the space ImDuF
⊥ of such covectors coincide with dimCokerDuF .
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Definition 11.3. Let Q : V → R be a quadratic form defined on a vector space V . The index of
Q is the maximal dimension of a negative subspace of Q:

indQ = sup{dimW | Q
∣∣
W\{0} < 0}. (11.6)

Recall that in the finite-dimensional case this number coincide with the number of negative eigen-
values in the diagonal form of Q.

The following notion of index of the map F will be also useful:

Definition 11.4. Let F : U →M and u ∈ U be a critical point for F . The index of F at u is

InduF = min
λ⊥ImDuF

ind (λHessuF )− codim ImDuF

Theorem 11.5. If InduF ≥ 1, then u is not a strictly abnormal minimizer.

We state without proof the following result (see Lemma 20.8 of [4])

Lemma 11.6. Let Q : RN → R
n be a vector valued quadratic form. Assume that Ind0Q ≥ 0. Then

there exists a regular point x ∈ R
n of Q such that Q(x) = 0.

Definition 11.7. Let Φ : E → R
n be a smooth map defined on a linear space E and r > 0. We

say that Φ is r-solid at a point x ∈ E if there exists a constant C > 0, ε̄ > 0 such that

∀ ε < ε̄, ∃ δ(ε) > 0, B
Φ̂(x)

(Cεr) ⊂ Φ̂(Bx(ε)), ∀ Φ̂ ∈ C0, ‖Φ̂− Φ‖C0 < δ. (11.7)

Exercise 11.8. Prove that if x is a regular point of Φ, then Φ is 1-solid at x.
(Use implicit function theorem to prove that Φ satisfies (11.7) and Brower theorem to show that
the same holds for some small perturbation)

We can assume that x = 0 and that Φ(0) = 0.

Proposition 11.9. Assume that Ind0Φ ≥ 0. Then Φ is 2-solid at x = 0.

Proof. We divide the proof in two steps: first we prove that there exists a finite dimensional
subspace E′ ⊂ E such that the restriction Φ

∣∣
E′ satisfies the assumptions of the theorem. Then we

prove the proposition under the assumption that dimE < +∞.
(i). Denote k := dimCokerD0Φ and consider the Hessian

Hess0Φ : KerD0Φ→ CokerD0Φ

We can rewrite the assumption on the index of Φ as follows

indλHess0Φ ≥ k, ∀λ ∈ ImD0Φ
⊥ \ {0}. (11.8)

Since property (11.8) is invariant by multiplication of the covector by a positive scalar we are
reduced to the sphere

λ ∈ Sk−1 = {λ ∈ ImD0Φ
⊥, |λ| = 1}.

By definition of index, for every λ ∈ Sk−1, there exists a subspace Eλ ⊂ E, dimEλ = k such that

λHessuΦ
∣∣
Eλ\{0} < 0
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By the continuity of the form with respect to λ, there exists a neighborhood Oλ of λ such that
Eλ′ = Eλ for every λ′ ∈ Oλ.

By compactness we can choose a finite covering of Sk−1 made by open subsets

Sk−1 = Oλ1 ∪ . . . ∪OλN
Then it is sufficient to consider the finitedimensional subspace

E′ =
N⊕

j=1

Eλj

(ii). Assume dimE <∞ and split

E = E1 ⊕ E2 E2 := KerD0Φ

The Hessian is a map
Hess0Φ : E2 → R

n/D0Φ(E1)

According to Lemma 11.6 there exists e2 ∈ E2, regular point of Hess0Φ, such that

Hess0Φ(e2) = 0 =⇒ D2
0Φ(e2) = D0Φ(e1), for some e1 ∈ E1.

Define the map Q : E → R
n by the formula

Q(v1 + v2) := D0Φ(v1) +
1

2
D2

0Φ(v2), v = v1 + v2 ∈ E = E1 ⊕ E2.

and the vector e := −e1/2+ e2. From our assumptions it follows that e is a regular point of Q and
Q(e) = 0. In particular there exists c > 0 such that

B0(c) ⊂ Q(B0(1))

and the same holds for some perturbation of the map Q. Consider then the map

Φε : v1 + v2 7→
1

ε2
Φ(ε2v1 + εv2) (11.9)

Using that v2 ∈ KerD0Φ we compute the Taylor expansion with respect to ε

Φε(v1 + v2) = Q(v1 + v2) +O(ε) (11.10)

hence for small ε the image of Φε contain a ball around 0 from which it follows that

Bφ(0)(cε
2) ⊂ Φ(B0(ε)) (11.11)

Moreover as soon as ε is fixed we can perturb the map Φ and still the estimate (11.11) holds.

Actually we proved the following statement, that is stronger than 2-solideness of Φ:

Lemma 11.10. Under the assumptions of the Theorem 11.9, there exists C > 0 such that for every
ε small enough

Bφ(0)(Cε
2) ⊂ Φ(B′

0(ε
2)×B′′

0 (ε)) (11.12)

where B′ and B′′ denotes the balls in E1 and E2 respectively.
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The key point is that, in the subspace where the differential of Φ vanish, the ball of radius ε is
mapped into a ball of radius ε2, while the restriction on the other subspace “preserves” the order,
as the estimates (11.9) and (11.10) show. 1

Proof of Theorem 11.5. We prove that if InduF ≥ 1, where u is a strictly abnormal geodesic, then
u cannot be a minimizer. It is sufficient to show that the “extended” endpoint map

Φ : U → R×M, u 7→
(
J(u)
F (u)

)

is locally open at u. Since u is strictly abnormal it means that

duJ
∣∣
KerDuF

6= 0

Indeed recall that duJ = λDuF , for some λ ∈ TF (u)M is equivalent to duJ
∣∣
KerDuF

= 0 (see
Proposition 7.6).

Moreover
KerDuΦ = Ker duJ ∩KerDuF, dim Im duJ = 1

and from this it follows that

HessuΦ = HessuF
∣∣
Ker duJ∩KerDuF

since differential of the first coordinate is independent from the other.
From here it follows that

InduΦ ≥ InduF − 1 ≥ 0

Applying Proposition 11.9 we find that Φ is locally open at u. Hence u cannot be a minimizer.

Now we prove that, under the same assumptions on the index of the endpoint map given in
Theorem 11.5, the sub-Riemannian is Lipschitz even if some abnormal minimizers are present.

Theorem 11.11. Let K ⊂ Bq0(r0) be a compact and assume that InduF ≥ 1 for every abnormal
minimizer u such that F (u) ∈ K. Then µ is Lipschitz on K.

Proof. Recall that if there are no abnormal minimizers, Theorem 10.36 ensures that µ is Lipschitz.
Then, using compactness of the set of all minimizers, it is sufficient to prove the estimate near a
point q = F (u), where u is abnormal.

Since InduF ≥ 1 by assumption, Theorem 11.5 implies that every abnormal minimizer is not
strictly abnormal. Then we can assume that every abnormal minimizer u is both normal and
abnormal. We have

HessuF : KerDuF → CokerDuF, with InduF ≥ 1.

and, since u is also normal, it follows that duJ = λDuF for some λ ∈ T ∗
F (u)M , hence KerDuF ⊂

Ker duJ .
The assumption of Lemma 11.10 are satisfied, hence splitting the the space of controls

L2
k([0, 1]) = E1 ⊕E2, E2 := KerDuF

1B0(c) ⊂ Φε(B(1)) ⇔ B0(cε
2) ⊂ Φ(ε2v1 + εv2), vi ∈ Bi(1) ⇔ B0(cε

2) ⊂ Φ(B′

ε2 ×B′′
ε )

199



we have that there exists C > 0 such that for ε small enough

Bq(Cε
2) ⊂ F (Bε), Bε := B′u(ε2)× B′′u(ε), q = F (u), (11.13)

where B′u(r) and B′′u(r) are the ball of radius r in E1 and E2 respectively.
Consider now coordinates on M and an element x ∈ K such that |x− q| = Cε2. Then (11.13)

implies that there exists v = (v1, v2) ∈ Bε such that F (v) = x. It follows that

µ(x)− µ(q) ≤ J(v)− µ(q) (by definition of µ)

= J(v)− J(u) (since u is a minimizer)

≤ C ′|v2|+ C ′′|v1 − u|2 (using duJ = 0 on E2) (11.14)

≤ C̃ε2 (by definition of Bε)

=
C̃

C
|x− q|

Notice that C̃ and C ′ does not depend on ε, hence by compactness of K we can find constants
C,C ′ > 0 that does not depend on q and exchange the role of x and q in the formulas above, getting

|µ(x)− µ(q)| ≤ c|x− q|

Now we present some necessary conditions for the index of the quadratic form along an abnormal
extremal to be finite.

Theorem 11.12. Let u be an abnormal minimizer and let λ1 ∈ T ∗
F (u)M satisfies λ1DuF = 0.

Assume that indλ1HessuF < +∞. Then the following condition are satisfied :

(i) 〈λ(t), [fi, fj](γ(t))〉 ≡ 0, for a.e. t, ∀ i, j = 1, . . . , k, (Goh condition)

(ii)
〈
λ(t), [[fu(t), fv], fv](γ(t))

〉
≥ 0, for a.e. t, ∀ v ∈ R

k, (Generalized Legendre condition)

where λ(t) and γ(t) = π(λ(t)) are respectively the extremal and the trajectory associated to λ1.

Notice that these condition are related to the properties of the distribution of the sub-Riemannian
structure and not to the metric. Indeed recall that the extremal λ(t) is abnormal if and only if it
satisfies

λ̇(t) =

k∑

i=1

ui(t)~hi(λ(t)), 〈λ(t), fi(γ(t))〉 = 0, ∀ i = 1, . . . , k,

i.e. λ(t) ∈ D⊥
γ(t). Goh condition are equivalent to require λ(t) ∈ (D2

γ(t))
⊥.

Corollary 11.13. Assume that the sub-Riemannian structure is 2-generating, i.e. D2
q = TqM for

all q ∈M . Then there are no strictly abnormal minimizers. In particular µ is globally Lipschitz.

Proof. Since D2
q = TqM implies (D2

γ(t))
⊥ = 0 for every q ∈M , no abnormal extremal can satisfy the

Goh condition. Hence by Theorem 11.12 it follows that InduF = +∞, for any abnormal minimizer
u.

In particular, from Theorem 11.5 it follows that the minimizer cannot be strictly abnormal
Hence µ is globally Lipschitz by Theorem 11.11.
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Remark 11.14. Notice that µ is globally Lipschitz if and only if the sub-Riemannian structure is
2-generating. Indeed if the structure is not 2-generating at a point q, then from Ball-Box Theorem
(Corollary 8.50) it follows that µ is not Lipschitz at q.

If Goh condition is satisfied, generalized Legendre condition can also be characterized as an
intrinsic property of the module. Indeed one can see that the quadratic map

Uγ(t) → R, v 7→
〈
λ(t), [[fu(t), fv], fv](γ(t))

〉

is well defined and does not depend on the extension of fv to a vector field fv(t) on U.
Notice that, using the notation hv(λ) = 〈λ, fv(q)〉 an abnormal extremal satisfies

hv(λt) ≡ 0, ∀ v ∈ R
k

Recalling that the Poisson bracket between linear functions on T ∗M is computed by the Lie bracket

{hv, hw}(λ) = 〈λ, [fv, fw](q)〉

we can rewrite the Goh condition as follows

{hv , hw}(λ(t)) ≡ 0, ∀ v,w ∈ R
k (11.15)

while strong Legendre conditions reads

{{hu(t), hv}, hv} ≥ 0, ∀ v ∈ R
k (11.16)

Taking derivative of (11.15) with respect to t we find

{hu(t), {hv , hw}}(λ(t)) ≡ 0, ∀ v,w ∈ R
k

and using Jacobi identity of the Poisson bracket we get that the bilinear form

(v,w) 7→ {{hu(t), hv}, hw}(λ) (11.17)

is symmetric. Hence the generalized Legendre condition says that the quadratic form associated to
(11.17) is nonnegative.

Proof of Theorem 11.12. Denote by u the abnormal control and by Pt =
−→exp

∫ t
0 fu(s)ds the nonau-

tonomous flow generated by u. Following the argument used in the proof of Proposition 7.2 we can
write the end-point map as the composition

F (u) = P1(G(u)), DuF = P1∗D0G,

and reduced the problem to the expansion of G, which is easier. Indeed denoting gti := P−1
t∗ fi, the

map G can be interpreted as the end-point map for the system

q̇(t) = gtv(t)(q(t)) =
k∑

i=1

vi(t)g
t
i(q(t))

and the Hessian of F can be computed easily starting from the Hessian of G at v = 0

HessuF = P1∗Hess0G
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from which we get, using that λ0 = P ∗
1 λ1,

λ1HessuF = λ1P1∗Hess0G = λ0Hess0G

Moreover computing

〈λ(t), [fi, fj](γ(t))〉 =
〈
λ0, P

−1
t∗ [fi, fj ](γ(t))

〉

=
〈
λ0, [g

t
i , g

t
j ](γ(0))

〉

the Goh and generalized Legendre conditions can also be rewritten as

〈
λ0, [g

t
i , g

t
j ]γ(0)

〉
≡ 0, for a.e. t ∈ [0, 1], ∀ i, j = 1, . . . , k, (G.1)

〈λ0, [[gtu(t), gti ], gti ]](γ(0))〉 ≥ 0, for a.e. t ∈ [0, 1], ∀ i = 1, . . . , k. (L.1)

Now we want to compute the Hessian of the map G. Using the Volterra expansion computed
in Chapter ?? we have

G(v(·)) ≃ q0 ◦


Id +

∫ 1

0
gtv(t)dt+

∫∫

0≤τ≤t≤1

gτv(τ) ◦ gtv(t)dτdt


+O(‖v‖3)

where we used that gtv is linear with respect to v to estimate the remainder.

This expansion let us to recover immediately the linear part, i.e. the expressions for the first
differential, which can be interpreted geometrically as the integral mean

D0G(v) =

∫ 1

0
gtv(t)(q0)dt,

On the other hand the expression for the quadratic part, i.e. the second differential

D2
0G(v) = 2 q0 ◦

∫∫

0≤τ≤t≤1

gτv(τ) ◦ gtv(t)dτdt.

has not an immediate geometrical interpretation.

Recall that the second differential D2
0G is defined on the set

KerD0G = {v ∈ L2
k[0, 1],

∫ 1

0
gtv(t)(q0)dt = 0} (11.18)

and, for such a v, D2
0G(v) belong to the tangent space Tq0M . Indeed, using Lemma 7.19, and that

v belong to the set (11.18), we can symmetrize the second derivative, getting the formula

D2
0G(v) =

∫∫

0≤τ≤t≤1

[gτv(τ), g
t
v(t)](q0)dτdt,

which shows that the second differential is computed by the integral mean of the commutator of
the vector field gtv(t) for different times.
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Now consider an element λ0 ∈ ImD0G
⊥, i.e. that satisfies

〈
λ0, g

t
v(q0)

〉
= 0, for a.e. t ∈ [0, 1],∀ v ∈ R

k.

Then we can compute the Hessian

λ0Hess0G(v) =

∫∫

0≤τ≤t≤1

〈λ0, [gτv(τ), gtv(t)](q0)〉dτdt (11.19)

Remark 11.15. Denoting by K the bilinear form

K(τ, t)(v,w) =
〈
λ0, [g

τ
v , g

t
w](q0)

〉
,

the Goh and generalized Legendre conditions are rewritten as follows

K(t, t)(v,w) = 0, ∀ v,w ∈ R
k, for a.e. t ∈ [0, 1], (G.2)

∂K

∂τ
(τ, t)

∣∣∣∣
τ=t

(v, v) ≥ 0, ∀ v ∈ R
k, for a.e. t ∈ [0, 1]. (L.2)

Indeed, the first one easily follows from (G.1). Moreover recall that gtv = P−1
t∗ fv, hence the map

t 7→ gtv is Lipschitz for every fixed v. By definition of Pt =
−→exp

∫ t
0 fu(t)dt it follows that

∂

∂t
gtv = [gtu(t), g

t
v]

which shows that (L.2) is equivalent to (L.1).

Finally we want to express the Hessian of G in Hamiltonian terms. To this end, consider the
family of functions on T ∗M which are linear on fibers, associated to the vector fields gtv :

htv(λ) :=
〈
λ, gtv(q)

〉
, λ ∈ T ∗M, q = π(λ).

and define, for a fixed element λ0 ∈ ImD0G
⊥:

ηtv :=
~htv(λ0) ∈ Tλ0T ∗M (11.20)

Using the identities

σλ(~h
t
v ,
~htw) = {htv, htw}(λ) =

〈
λ, [gtv , g

t
w](q)

〉
, q = π(λ)

and computing at the point λ0 ∈ T ∗
q0M we find

σλ0(η
t
v, η

t
w) =

〈
λ0, [g

t
v , g

t
w](q0)

〉

and we get the final expression for the Hessian

λ0Hess0G(v(·)) =
∫∫

0≤τ≤t≤1

σλ0(η
τ
v(τ), η

t
v(t))dtdτ. (11.21)
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where the control v ∈ KerD0G satisfies the relation (notice that π∗ηtv = gtv(q0))

π∗

∫ 1

0
ηtv(t)dt =

∫ 1

0
π∗ηtv(t)dt = 0

Moreover the “Hamiltonian” version of Goh and Legendre conditions is expressed as follows:

σλ0(η
t
v, η

t
w) = 0, ∀ v,w ∈ R

k, for a.e. t ∈ [0, 1], (G.3)

σλ0(η̇
t
v, η

t
v) ≥ 0, ∀ v ∈ R

k, for a.e. t ∈ [0, 1]. (L.3)

We are reduced to prove, under the assumption indλ0Hess0G < +∞, that (G.3) and (L.3) hold.
Actually we will prove that Goh and generalized Legendre conditions are necessary conditions for
the restriction of the quadratic form to the subspace of controls in D0G that are concentrated on
small segments [t, t+ s].

To do this we consider an arbitrary vector control function v : [0, 1]→ R
k such that its support

is concentrated on [0, 1] and we build, for every t ∈ [0, 1] and s small enough the control

vs(τ) = v

(
τ − t
s

)
, supp vs ⊂ [t, t+ s] (11.22)

Then we apply the Hessian to this particular control functions and we compute the asymptotics
for s→ 0.

Moreover, since the index of a quadratic form is finite if and only if the same holds for the
restriction of the quadratic form to a subspace of finite codimension, it is not restrictive to restrict
also to the subspace

Es := {vs ∈ KerD0G, vs defined by (11.22),

∫ 1

0
v(τ)dτ = 0}.

Notice in particular that codimEs does not depend on s.

Remark 11.16. We will use the following identities (writing σ for σλ0) , which holds for every control
function v : [0, 1]→ R

k

∫∫

α≤τ≤t≤β

σ(ητv(τ), η
t
v(t))dtdτ =

∫ β

α
σ(

∫ t

α
ητv(τ)dτ, η

t
v(t))dt =

∫ β

α
σ(ητv(τ),

∫ β

τ
ηtv(t)dt)dτ. (11.23)

Moreover we have the integration by parts formula, where w(t) =
∫ t
0 v(τ)dτ :

∫ β

α
ηtv(t)dt = ηβw(β) − η

α
w(α) −

∫ β

α
η̇tw(t)dt. (11.24)

Then we use equality (11.23) and we apply the Hessian to the function vs (since the control is
concentrated on the segment [t, t+ s] we can restrict the extrema of the integral)

λ0Hess0G(vs(·)) =
∫ t+s

t
σ(

∫ τ

t
ηθvs(θ)dθ, η

τ
vs(τ)

)dτ. (11.25)

204



The integration by parts, by our boundary conditions, gives
∫ τ

t
ηθvs(θ)dθ = ητws(τ)

−
∫ τ

t
η̇θws(θ)

dθ. (11.26)

where

ws(θ) =

∫ θ

t
vs(τ)dτ, θ ∈ [t, t+ s].

Using (11.26)

λ0Hess0G(vs(·)) =
∫ t+s

t
σ(ητws(τ)

, ητvs(τ))dτ −
∫ t+s

t
σ(

∫ τ

t
η̇θws(θ)

dθ, ητvs(τ))dτ

=

∫ t+s

t
σ(ητws(τ)

, ητvs(τ))dτ −
∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
ηθvs(θ)dθ)dτ (11.27)

where the second equality follows from (11.23).
Now consider the second term in (11.27) and apply again the integration by part formula (now

we use the assumption w(t+ s) = 0)

∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
ηθvs(θ)dθ)dτ = −

∫ t+s

t
σ(η̇τws(τ)

, ητws(τ)
)dτ

−
∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
η̇θws(θ)

dθ)dτ

Collecting together all the computations

λ0Hess0G(vs(·)) =
∫ t+s

t
σ(ητws(τ)

,ητvs(τ))dτ

+

∫ t+s

t
σ(η̇τws(τ)

, ητws(τ)
)dτ

+

∫ t+s

t
σ(η̇τws(τ)

,

∫ t+s

τ
η̇θws(θ)

dθ)dτ

Then using the identity

ws(θ) = sw

(
θ − t
s

)
,

and performing the change of variables

ζ =
τ − t
s

, τ ∈ [t, t+ s],

we come to the following expression for the Hessian:

λ0Hess0G(vs(·)) = s2
∫ 1

0
σ(ηt+sθw(θ) ,η

t+sθ
v(θ) )dθ

+s3
∫ 1

0
σ(η̇t+sθw(θ) , η

t+sθ
w(θ) )dθ (11.28)

+ s4
∫ 1

0
σ(η̇t+sθw(θ) ,

∫ 1

θ
η̇t+sζw(ζ)dζ)dθ
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from which we get

λ0Hess0G(v(·)) = s2
∫ 1

0
σ(ηtw(θ), η

t
v(θ))dθ +O(s3). (11.29)

Since we assume indλ0Hess0G < +∞, this implies that the quadratic form

w(·) 7→
∫ 1

0
σ(ηtw(θ), η

t
ẇ(θ))dθ (11.30)

has finite index, otherwise by continuity every sufficiently small perturbation of (11.30) would have
infinite index, contradicting our assumption on (11.29).

To prove that Goh conditions hold then it is sufficient to prove that if (11.30) has finite index
then the integrand is zero, which is guaranteed by the following

Lemma 11.17. Let A : Rk × R
k → R be a skew-symmetric bilinear form and define the qudratic

form

Q : U → R, Q(w(·)) =
∫ 1

0
A(w(t), ẇ(t))dt

where U := {w(·) ∈ Lip[0, 1], w(0) = w(1) = 0}. Then indQ < +∞ if and only if A ≡ 0.

Proof. Clearly if A = 0, then Q = 0 and indQ = 0. Assume then that A 6= 0 and we prove that
indQ = +∞. We divide the proof into steps

(i). The bilinear form B : U × U → R defined by

B(w1(·), w2(·)) =
∫ 1

0
A(w1(t), ẇ2(t))dt

is symmetric. Indeed, integrating by parts and using the boundary conditions we get

B(w1, w2) =

∫ 1

0
A(w1(t), ẇ2(t))dt

= −
∫ 1

0
A(ẇ1(t), w2(t))dt

=

∫ 1

0
A(w2(t), ẇ1(t))dt = B(w2, w1)

(ii). Q is not identically zero. Since Q is the quadratic form associated to B and from the
polarization formula

B(w1, w2) =
1

4
(Q(w1 + w2)−Q(w1 − w2))

it easily follows that Q ≡ 0 if and only if B ≡ 0. Then it is sufficient to prove that B is not zero.

Assume that there exists x, y ∈ R
k such that A(x, y) 6= 0, and consider a smooth nonconstant

function

α : R→ R, s.t. α(0) = α(1) = α̇(0) = α̇(1) = 0.
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Then α̇(t)z, α(t)z ∈ U for every z ∈ R
k and we can compute

B(α̇(·)x, α(·)y) =
∫ 1

0
A(α̇(t)x, α̇(t)y)dt

= A(x, y)

∫ 1

0
α̇(t)2dt 6= 0.

(iii). Q has the same number of positive and negative eigenvalues. Indeed it is easy to see that
Q satisfies the identity

Q(w(1− ·)) = −Q(w(·))
from which (iii) follows.

(iv). Q is non zero on a infinite dimensional subspace.
Consider some w ∈ U such that Q(w) = α 6= 0. For every x = (x1, . . . , xN ) ∈ R

N one can built
the function

wx(t) = xi w(Nt− i), t ∈ [
i

N
,
i+ 1

N
], i = 1, . . . , N.

An easy computations shows that

Q(wx) = α

N∑

i=1

x2i

In particular there exists a subspace of arbitrary large dimension where Q is nondegenerate.

Applying Lemma 11.17 for any t we prove that the s2 order term in (11.28) vanish and we get
to

λ0Hess0G(v(·)) = s3
∫ 1

0
σ(η̇t+sθw(θ) , η

t+sθ
w(θ) )dθ +O(s4)

= s3
∫ 1

0
σ(η̇t+sθw(θ) , η

t
w(θ))dθ +O(s4)

where the last equalily follows from the fact that ηtv is Lipschitz with respect to t (see also (11.20)),
i.e.

ηt+sθv = ηtv +O(s)

On the other hand η̇tv is only measurable bounded, but the Lebesgue points of u are the same of η̇.
In particular if t is a Lebesgue point of η̇, the quantity η̇tw(·) is well defined and we can write

λ0Hess0G(v(·)) = s3
∫ 1

0
σ(η̇tw(θ), η

t
w(θ))dθ

− s3
(∫ 1

0
σ(η̇t+sθw(θ) , η

t
w(θ))− σ(η̇tw(θ), ηtw(θ))dθ

)
+O(s4)

Using the linearity of σ and the boundedness of the vector fields we can estimate
∣∣∣∣
∫ 1

0
σ(η̇t+sθw(θ) , η

t
w(θ))− σ(η̇tw(θ), ηtw(θ))dθ

∣∣∣∣ ≤ C
∫ 1

0
|η̇t+sθw(θ) − η̇

t
w(θ)|dθ

≤ C sup
|v|≤1

1

s

∫ 1

0
|η̇t+τv − η̇tv|dτ −→

s→0
0
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where the last term tends to zero by definition of Lebesgue point. Hence we come to

λ0Hess0G(v(·)) = s3
∫ 1

0
σ(η̇tw(θ), η

t
w(θ))dθ + o(s3) (11.31)

Then to prove the generalized Legendre condition we have to prove that the integrand is a non
negative quadratic form. This follows from the following Lemma, which can be proved similarly to
Lemma 11.17.

Lemma 11.18. Let Q : Rk → R be a quadratic form on R
k and

U := {w(·) ∈ Lip[0, 1], w(0) = w(1) = 0}.

The quadratic form

Q : U → R, Q(w(·)) =
∫ 1

0
Q(w(t))dt

has finite index if and only if Q is non negative.

Now we want to characterize the trajectories that satisfy these conditions. Recall that, if λ(t)
is an abnormal geodesic, we have

λ̇(t) = ~hu(t)(λ(t)), hi(λ(t)) ≡ 0, 0 ≤ t ≤ 1. (11.32)

where ~hu(t) =
∑k

i=1 ui(t)
~hi(t). Moreover for any smooth function a : T ∗M → R

d

dt
a(λ(t)) = {hu(t), a}(λ(t)) =

k∑

i=1

ui(t){hi, a}(λ(t))

Notation. We will denote the iterated Poisson brackets

hi1...ik(λ) = {hi1 , . . . , {hik−1
, hik}}(λ) (11.33)

=
〈
λ, [fi1 , . . . , [fik−1

, fik ]](q)
〉
, q = π(λ) (11.34)

Differentiating the identities in (11.32), using (11.33), we get

hi(λ(t)) = 0 ⇒
k∑

j=1

uj(t)hji(λ(t)) = 0, ∀ t. (11.35)

If k is odd we always have a nontrivial solution of the system, if k is even is possible only for
those λ that satisfy det{hij(λ)} = 0. But we want to characterize only those controls that satisfy
Goh conditions, i.e. such that

hij(λ(t)) ≡ 0. (11.36)

Hence you cannot recover the control u from the linear system (11.35). We differentiate again
equations (11.36) and we find

k∑

l=1

ul(t)hlij(λ(t)) ≡ 0. (11.37)

For every fixed t, these are k(k − 1)/2 equations in k variables u1, . . . , uk. Hence
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(i) If k = 2, we have 1 equation in 2 variables and we can recover the control u1, u2 up to a scalar
mutilplier, if at least one of the coefficients does not vanish. Since we can always deal with
lengh-parametrized curve this uniquely determine the control u.

(ii) If k ≥ 3, we have that the system is overdetermined.

Remark 11.19. For generic system it is proved that, when k ≥ 3, Goh conditions are not satisfied.
On the other hand, in the case of Carnot groups, for big codimension of the distribution, abnormal
minimizers always appear.

11.3 Rank 2 distributions

Consider a rank 2 distribution, whose Hamiltonian equation for abnormal extremals is written as
follows

λ̇(t) = u1(t)~h1(λ(t)) + u2(t)~h2(λ(t)), h1(λ(t)) = h2(λ(t)) = 0. (11.38)

Lemma 11.20. Every abnormal extremal satisfy the Goh condition.

Proof. Indeed differentiating the identities above we get, (omit t in the notation for simplicity)

u2{h2, h1} = u2h21(λ) = 0,

u1{h1, h2} = −u1h21(λ) = 0,

Since u1 and u2 are arbitrary and at least one of them is nonzero, we have that h12(λ(t)) ≡ 0, that
is Goh condition.

The fact that, in the rank 2 case, every abnormal extremal satisfies Goh conditions can be
rewritten as

λ(t) ∈ (D2)⊥,

and the system (11.37) reads

u1h112(λ) = u2h221(λ). (11.39)

Assume now that λ ∈ (D2)⊥ \ (D3)⊥, then at least one coefficient in (11.39) is nonzero and we can
uniquely recover u up to a scalar. Under this assumption we find the control

u1(t) = h221(λ(t)), u2(t) = h112(λ(t)). (11.40)

If we plug this control into the original equation we find that λ(t) solve

λ̇ = h221(λ)~h1(λ) + h112(λ)~h2(λ).

In particular if we define the quadratic Hamitonian

H = h221h1 + h112h2 (11.41)

using that any abnormal extremal belong to the subset {h1(λ(t)) = h2(λ(t)) = 0}, we have that
λ(t) satisfies

λ̇(t) = ~H(λ(t)) (11.42)
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Remark 11.21. Notice that, as soon as n > 3, the set (D2
q)

⊥ \ (D3
q )

⊥ is nonempty for an open dense
set of q ∈ M . Indeed assume that we have D2

q = D3
q for any q in a open neighborhood Oq0 of a

point q0 in M . Then it follows that

D2
q0 = D3

q0 = D4
q0 = . . .

and the structure cannot be bracket generating, since dimDiq0 < dimM for every i > 1.

From now on we consider extremals associated with covectors λ0 ∈ (D2
q )

⊥ \ (D3
q)

⊥. This repre-
sents the less degenerate case. The case n = 3 will be treated separately.

Now we prove that the flow of the Hamiltonian H defined by (11.41) characterize exactly these
extremals

Theorem 11.22. Any abnormal extremal belong to (D2)⊥. Moreover we have that λ(t) ∈ (D2)⊥ \
(D3)⊥ for all t ∈ [0, 1] if and only if λ(t) satisfies (11.42) with initial condition λ0 ∈ (D2)⊥ \ (D3)⊥.

Proof. It remains to prove that a solution of the system

λ̇(t) = ~H(λ(t)), λ0 ∈ (D2)⊥ \ (D3)⊥, (11.43)

satisfies λ(t) ∈ (D2)⊥ \ (D3)⊥ for every t. First notice that the solution cannot intersect the set
(D3)⊥ since these are equilibrium points of the system (11.43) (since at these points the Hamiltonian
has a root of order two).

We are reduced to prove that (D2)⊥ is an invariant subset for ~H. Hence we prove that the
functions h1, h2, h12 are constantly zero when computed on the extremal.

To do this we find the differential equation satisfied by these Hamiltonians. Recall that, for any

smooth function a : T ∗M → R and any solution of the Hamiltonian system λ(t) = et
~Hλ0, we have

ȧ = {H, a}. Hence we get

ḣ12 = {h221h1 + h112h2, h12}
= {h221, h12}h1 + {h112, h12}h2 + h112h221 + h212h112︸ ︷︷ ︸

=0= c1h1 + c2h2

for some smooth coefficients c1 and c2. We see that there exists smooth functions a1, a2, a12 and
b1, b2, b12 such that 




ḣ1 = a1h1 + a2h2 + a12h12

ḣ2 = b1h1 + b2h2 + b12h12

ḣ12 = c1h1 + c2h2

(11.44)

If we plug the solution λ(t) into the equation of (11.43), i.e. if we consider it as a system of differen-
tial equations for the scalar functions hi(t) := hi(λ(t)), with variable coefficients ai(λ(t)), bi(λ(t)),
ci(λ(t)), we find that h1(t), h2(t), h12(t) satisfy a nonautonomous homogeneous linear system of
differential equation with zero initial condition, since λ0 ∈ (D2)⊥, i.e.

h1(λ0) = h2(λ0) = h12(λ0) = 0. (11.45)

Hence
h1(λ(t)) = h2(λ(t)) = h12(λ(t)) = 0, ∀ t.
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Definition 11.23. An abnormal extremal λ(t) is called nice abnormal if, for every t ∈ [0, 1], it
satisfies

λ(t) ∈ (D2)⊥ \ (D3)⊥.

Lemma 11.24. Let λ(t) be a nice abnormal. Then λ(t) or −λ(t) satisfy2 the generalized Legendre
condition.

Proof. It is sufficient to prove that the quadratic form

Qt : v 7→
〈
λ(t), [[fu(t), fv], fv]

〉
, v ∈ R

2 (11.46)

is semi-definite. We know that the bilinear form

Bt : (v,w) 7→
〈
λ(t), [[fu(t), fv], fw]

〉
, v, w ∈ R

2 (11.47)

is symmetric. From (11.47) it is easy to see that u(t) ∈ KerBt for every t. Hence Qt is degenerate
for every t. On the other hand if the quadratic form is identically zero we have λ(t) ∈ (D3)⊥, which
is a contradiction.

Hence the quadratic form has rank 1 and is semi-definite and we can choose ±λ0 in such a way
that (11.46) is positive at t = 0. Since the sign of the quadratic form does not change along the
curve (it is continuous and it cannot vanish) we have that it is positive for all t.

Up to now we proved that every nice abnormal extremal automatically satisfies the necessary
condition for optimality. Now we prove that actually they are strict local minimizers

Theorem 11.25. Let λ(t) be a nice abnormal extremal and let γ(t) be corresponding abnormal
trajectory. Then there exists s > 0 such that γ|[0,s] is a strict local length minimizer in the L2-
topology for the controls.3

Remark 11.26. Notice that this property of γ does not depend on the metric but only on the
distribution. In particular the value of s will be independent on the sub-Riemannian structure.

It follows that, as soon as the metric is fixed, small pieces of nice abnormal are also global
minimizers.

Before proving the Theorem we prove the following

Lemma 11.27. Let Φ : E → R
n be a smooth map defined on a Hilbert space E such that Φ(0) = 0,

where 0 is a critical point for Φ

λD0Φ = 0, λ ∈ R
n∗, λ 6= 0.

Assume that λHess0φ is positive definite quadratic form. Then for every v such that 〈λ, v〉 < 0,
there exists a neighborhood of zero O ⊂ E such that

Φ(x) /∈ R
+v, ∀x ∈ O,x 6= 0, R

+ = {α ∈ R, α > 0}.

In particular the map Φ is not locally open and 0 is an isolated point on the level set.

2Recall that if λ(t) is an abnormal extremal, −λ(t) is also an abnormal extremal.
3which is equivalent to H1-topology for trajectories.
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Proof. In the first part of the proof we build some particular set of coordinates that simplifies the
proof, exploiting the fact that the Hessian is well defined independently on the coordinates.

Split the domain and the range of the map as follows

E = E1 ⊕ E2, E2 = KerD0Φ, (11.48)

R
n = R

k1 ⊕ R
k2 , R

k1 = ImD0Φ, (11.49)

where we select the complement R
k2 in such a way that v ∈ R

k2 (notice that by our assumption
v /∈ R

k1). Accordingly to the notation introduced, write

Φ(x1, x2) = (Φ1(x1, x2),Φ2(x1, x2)), xi ∈ Ei, i = 1, 2.

Since Φ1 is a submersion by construction, by Implicit function theorem we can linearize Φ1 and
assume that Φ has the form

Φ(x1, x2) = (D0Φ(x1),Φ2(x1, x2)),

since x2 ∈ E2 = KerD0Φ. Notice that, by construction of the coordinate set, the function x2 7→
Φ2(0, x2) coincide with the restriction of Φ to the kernel of its differential, modulo its image.

Hence for every scalar function a : Rk2 → R such that d0a = λ we have the equality

λHess0Φ = Hess0(a ◦ Φ2(0, ·)) > 0

In particular the function a ◦ Φ2(0, y) is non negative in a neighborhood of 0.
Assume now that Φ(x1, x2) = sv for some s ≥ 0. Since v ∈ R

k2 it follows that

D0Φ(x1) = 0 =⇒ x1 = 0, and Φ2(0, x2) = sv.

In particular we have

d

ds

∣∣∣∣
s=0

a(Φ2(0, x2)) =
d

ds

∣∣∣∣
s=0

a(sv) = 〈λ, v〉 ≤ 0 ⇒ a(sv) ≤ 0 for s ≥ 0

which is a contradiction.

11.3.1 Optimality of nice abnormal

Let λ(t) be an abnormal extremal and let γ(t) be corresponding abnormal trajectory.

γ̇ = u1f1(γ) + u2f2(γ). (11.50)

In what follows we always assume that γ̄
.
= {γ(t) : t ∈ [0, 1]} is a smooth one-dimensional

submanifold of M , with or without border. Then either the curve γ has no self-intersection or γ̄ is
diffeomorfic to S1. In both cases we can chose a basis f1, f2 in a neighborhood of γ̄ in such a way
that γ is the integral curve of f1

γ̇ = f1(γ)

Then γ is the solution of (11.50) with associated control ũ = (1, 0). Notice that a change of the
frame on M corresponds to a smooth change of coordinates on the end-point map. With analogous
reasoning as in the previous section, we describe the end point map

F : (u1, u2) 7→ γ(1)
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as the composition
F = ef1 ◦G

where G is the end point map for the system

q̇ = (u1 − 1)e−tf1∗ f1 + u2e
−tf1∗ f2. (11.51)

Since e−tf1∗ f1 = f1, denoting gt := e−tf1∗ f2 and defining the primitives

w(t) =

∫ t

0
(1− u1(τ))dτ, v(t) =

∫ t

0
u2(τ)dτ, (11.52)

we can rewrite the system, whose endpoint map is G, as follows

q̇ = −ẇf1(q) + v̇gt(q).

The Hessian of G is computed

λ0Hess0G(u1, v̇) =

∫ 1

0
〈λ0, [

∫ t

0
−ẇ(τ)f1 + v̇(τ)gτdτ,−ẇ(t)f1 + v̇(t)gt](q0)〉dt. (11.53)

Recall that

D0G(u1, v̇) =

∫ 1

0
−ẇ(t)f1(q0) + v̇(t)gt(q0)dt

= −w(1)f1(q0) +
∫ 1

0
v̇(t)gt(q0)dt

and the condition λ0 ∈ ImD0G
⊥ is rewritten as

〈λ0, f1(q0)〉 = 〈λ0, gt(q0)〉 = 0, ∀ t. (11.54)

Notice that since equality (11.54) is valid for all t then we have that

〈λ0, ġt(q0)〉 = 〈λ0, [f1, gt](q0)〉 = 0, (11.55)

Then we can rewrite our quadratic form only as a function of v̇, since all terms containing ẇ
disappear

λ0Hess0G(v̇) =

∫ 1

0
〈λ0, [

∫ t

0
v̇(τ)gτdτ, v̇(t)gt](q0)〉dt (11.56)

with the extra condition ∫ 1

0
v̇(t)gt(q0)dt = w(1)f1(q0). (11.57)

Now we rearrange these formulas, using integration by parts, rewriting the Hessian as a quadratic
form on the space of primitives

v(t) =

∫ t

0
v̇(τ)dτ

Using the equality ∫ t

0
v̇(τ)gτdτ = v(t)gt −

∫ t

0
v(τ)ġτdτ (11.58)
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we have

λ0Hess0G(v̇) =

∫ 1

0
〈λ0, [v(t)gt, v̇(t)gt](q0)〉dt

−
∫ 1

0
〈λ0, [

∫ t

0
v(τ)ġτdτ, v̇(t)gt](q0)〉dt

The first addend is zero since [gt, gt] = 0. Exchanging the order of integration in the second term

∫ 1

0
〈λ0, [

∫ t

0
v(τ)ġτdτ, v̇(t)gt](q0)〉dt =

∫ 1

0
〈λ0, [v(t)ġt,

∫ 1

t
v̇(τ)gτdτ ](q0)〉dt

and then integrating by parts

∫ 1

t
v̇(τ)gτdτ = v(1)g1 − v(t)gt −

∫ 1

t
v(τ)ġτdτ

we get to

λHess0G(v̇) =

∫ 1

0
〈λ0, [ġt, gt](q0)〉v(t)2dt

+

∫ 1

0
〈λ0, [

∫ t

0
v(τ)ġτ , v(t)ġt − v(1)g1](q0)〉dt (11.59)

which can also be rewritten as follows

λHess0G(v̇) =

∫ 1

0
〈λ0, [ġt, gt](q0)〉v(t)2 dt

+

∫ 1

0
〈λ0, [

∫ t

1
v(τ)ġτ dτ + v(1)g1, v(t)ġt](q0) dt. (11.60)

Moreover, again integrating by parts the extra condition (11.57), we find

∫ 1

0
v(t)ġt(q0)dt = −w(1)f1(q0) + v(1)g1(q0) (11.61)

Remark 11.28. Notice that we cannot plug in the expression (11.61) directly into the formula since
this equality is valid only at the point q0, while in (11.59) we have to compute the bracket.

Notice that the vectors f1(q1) and f2(q1) are linearly independent, then also

f1(q0) = e−f1∗ (f1(q1)), and g1(q0) = e−f1∗ (f2(q1)),

are linearly independent. From (11.61) it follows that for every pair (w, v) in the kernel the following
estimates are valid

|w(1)| ≤ C‖v‖L2 , |v(1)| ≤ C‖v‖L2 . (11.62)

Theorem 11.29. Let γ : [0, 1]→M be an abnormal trajectory and assume that the quadratic form
(11.59) satisfies

λ0Hess0G(v̇) ≥ α‖v‖2L2 . (11.63)

Then the curve is locally minimizer in the L2 topology of controls.

214



Remark 11.30. Notice that the estimate (11.63) depends only on v, while the map G is a smooth
map of v̇ and ẇ. Hence Lemma 11.27 does not apply.

Moreover, the statement of Lemma 11.27 violates for the endpoint map, since it is locally open
as soon as the bracket generating condition is satisfied (this is equivalent to the Chow-Rashevsky
Theorem). Moreover the final point of the trajectory is never isolated in the level set.

What we are going to use is part of the proof of this Lemma, to show that the statements holds
for the restriction of the endpoint map to some subset of controls

Proof of Theorem 11.29. Our goal is to prove that there are no curves shorter than γ that join q0
to q1 = γ(1).

To this extent we consider the restriction of the endpoint map to the set of curves that are
shorter or have the same lenght than the original curve. Hence we need to fix some sub-Riemannian
structure on M .

We can then assume the orthonormal frame f1, f2 to be fixed and that the length of our curve
is exactly 1 (we can always dilate all the distances on our manifold and the local optimality of the
curve is not affected).

The set of curves of length less or equal than 1 can be parametrized, using Lemma 3.15, by the
set

{(u1, u2)|u21 + u22 ≤ 1}
Following the notation (11.52), notice that

{(u1, u2)|u21 + u22 ≤ 1} ⊂ {(w, v)| ẇ ≥ 0}.

We want to show that, for some function a ∈ C∞(M) such that dqa = λ ∈ ImD0F
⊥, we have

a ◦ F
∣∣
D
(ẇ, v̇) = λHess0F (ẇ, v̇) +R(w, v), where

R(w, v)

‖v‖2 −→
‖(ẇ,v̇)‖→0

0 (11.64)

in the domain
D = {(ẇ, v̇) ∈ KerD0F, ẇ ≥ 0}

Indeed if we prove (11.64) we have that the point (ẇ, v̇) = (0, 0) is locally optimal for F . This
means that the curve γ, i.e. the curve associated to controls u1 = 1, u2 = 0, is also locally optimal.

Using the identity

−→exp
∫ t

0
v̇(τ)f2dτ = ev(t)f2

and applying the variations formula (6.21) to the endpoint map F we get

F (ẇ, v̇) = q0 ◦ −→exp
∫ 1

0
(1− ẇ(t))f1 + v̇(t)f2 dt

= q0 ◦ −→exp
∫ 1

0
(1− ẇ(t))e−v(t)f2∗ f1 dt ◦ ev(1)f2

Hence we can express the endpoint map as a smooth function of the pair (ẇ, v).
Now, to compute (11.64), we can assume that the function a is constant on the trajectories of

f2 (since we only fix its differential at one point) so that

ev(1)f2 ◦ a = a
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which simplifies our estimates:

a ◦ F (ẇ, v̇) = q0 ◦ −→exp
∫ 1

0
(1− ẇ(t))e−v(t)f2∗ f1 dt a

Writing

(1− ẇ(t))e−v(t)f2∗ f1 = f1 +X0(v(t)) + ẇ(t)X1(v(t)) (11.65)

and using the variation formula (6.22), setting Y i
t = e

(t−1)f1
∗ Xi for i = 0, 1, we get (recall that

q1 = q0 ◦ ef1(q0))

a ◦ F (ẇ, v̇) = q1 ◦ −→exp
∫ 1

0
Y 0
t (v(t)) + ẇ(t)Y 1

t (v(t))dt a, Y 0
t (0) = Y 1

t (0) = 0,

Expanding the chronological exponential we find that

(a) the zero order term vanish since Y 0
t (0) = Y 1

t (0) = 0,

(b) all first order terms vanish since the vector fields f1 and [f1, f2] spans the image of the
differential (hence are orthogonal to λ = dqa)

(c) the second order terms are in the Hessian, since our domain D is contained in the kernel of
the differential

In other words it remains to show that every term in v,w of order greater or equal than 3 in the
expansion can be estimated with o(‖v‖2).4

Let us prove first the claim for monomial of order three:

∫ 1

0
ẇ(t)v2(t)dt = o(‖v‖2),

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)v(τ)dτdt = o(‖v‖2)

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)

∫ τ

0
ẇ(s)dsdτdt = o(‖v‖2)

Using that ẇ ≥ 0, which is the key assumption, and the fact that (ẇ, v̇) ∈ KerD0F , which gives
the estimates (11.62), we compute

∣∣∣∣
∫ 1

0
ẇ(t)v2(t)dt

∣∣∣∣ ≤
∫ 1

0
|ẇ(t)|v2(t)dt

=

∫ 1

0
ẇ(t)v2(t)dt

= w(1)v2(1)−
∫ 1

0
w(t)v(t)v̇(t)dt

≤ ‖v‖3 + ε‖v‖2,
4where o(‖v‖2) have the same meaning as in (11.64).
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where we estimate for the second term follows from
∣∣∣∣
∫ 1

0
w(t)v(t)v̇(t)dt

∣∣∣∣ ≤ maxw(t)

∣∣∣∣
∫ 1

0
v(t)v̇(t)dt

∣∣∣∣
≤ w(1)‖v‖‖v̇‖
≤ C‖v̇‖‖v‖2

The second integral can be rewritten

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)v(τ)dτdt = w(1)

∫ 1

0
ẇ(t)v(t)dt −

∫ 1

0
w(t)v(t)ẇ(t)dt

and then we estimate
∣∣∣∣
∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)v(τ)dτdt

∣∣∣∣ ≤ 2|w(1)|
∫ 1

0
v(t)ẇ(t)dt

≤ C‖ẇ‖‖v‖2

Finally, the last integral is very easy to estimate using the equality

∫ 1

0
ẇ(t)

∫ t

0
ẇ(τ)

∫ τ

0
ẇ(s)dsdτdt =

1

6

∫ 1

0
ẇ(t)3dt

≤ C‖ẇ‖‖v‖2

Starting from these estimate it is easy to show that any mixed monomial of order greater that three
satisfies these estimates as well.

Applying these results to a small piece of abnormal trajectory we can prove that small pieces
of nice abnormals are minimizers

Proof of Theorem 11.25 . If we apply the arguments above to a small piece γs = γ|[0,s] of the curve
γ it is easy to see that the Hessian rescale as follows,

λ0Hess0Gs(v) =

∫ s

0
〈λ0, [gt, ġt](q0)〉v(t)2dt

+

∫ s

0
〈λ0, [

∫ t

0
v(τ)ġτdτ, v(t)ġt − v(s)gs](q0)〉dt

Since the generalized Legendre condition ensures5 that (see also Lemma 11.24)

〈λ0, [gt, ġt](q0)〉 ≥ C > 0

then the norm

‖v‖g =
(∫ s

0
〈λ0, [gt, ġt](q0)〉v(t)2dt

)1/2

(11.66)

5it is semidefinite and we already know that f1 is in the kernel
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is equivalent to the standard L2-norm. Hence the Hessian can be rewritten as

λHess0Gs(v) = ‖v‖g + 〈Tv, v〉 (11.67)

where T is a compact operator in L2 of the form

(Tv)(t) =

∫ s

0
K(t, τ)v(τ)dτ

Since ‖T‖2 = ‖K‖2L2 → 0 for s → 0, it follows that the Hessian is positive definite for small
s > 0.

11.4 Conjugate points

In this section, we give an effective way to check the inequality (11.63) that implies local minimality
of the nice abnormal geodesic according to Theorem 11.29.

We set: Q1(v)
.
= λHess0G(v̇). Quadratic form Q1 is continuous in the topology defined by the

norm ‖v‖L2 . The closure of the domain of Q1 in this topology is the space

{
v ∈ L2[0, 1] :

∫ 1

0
v(t)ġt(q0) dt ∈ span{f1(q0), g1(q0)}

}
.

The extension of Q1 to this closure is denoted by the same symbol Q1. We set:

l(t) = 〈λ0, [ġt, gt](q0)〉, Xt = v1g1 +

∫ t

1
v(τ)ġτ dτ

and rewrite the form Q1 in these more compact notations:

Q1(v) =

∫ 1

0
l(t)v(t)2 dt+

∫ 1

0
〈λ0, [Xt, Ẋt](q0)〉 dt,

Ẋt = v(t)ġt, X1 ∧ g1 = 0, X0(q0) ∧ f1(q0) = 0. (1)

Moreover, we introduce a family of quadratic forms for 0 < s ≤ 1

Qs(v) :=

∫ s

0
l(t)v(t)2 dt+

∫ s

0
〈λ0, [Xt, Ẋt](q0)〉 dt,

Ẋt = v(t)ġt, Xs ∧ gs = 0, X0(q0) ∧ f1(q0) = 0. (1)

Recall that l(t) is a strictly positive continuous function. In particular,
∫ 1
0 l(t)v(t)

2 dt is the
square of a norm of v that is equivalent to the standard L2-norm. Next statement is proved by the
same arguments as Proposition 7.29. We leave details to the reader.

Proposition 11.31. The form Q1 is positive definite if and only if kerQs = 0, ∀s ∈ (0, 1].

A time moment s ∈ (0, 1] is called conjugate to 0 for the abnormal geodesic γ if kerQs 6= 0. We
are going to characterize conjugate times in terms of an appropriate “Jacobi equation”.
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Let ξ1 ∈ Tλ0(T ∗M) and ζt ∈ Tλ0(T ∗M) be the values at λ0 of the Hamiltonian lifts of the vector
fields f1 and gt. Recall that the Hamiltonian lift of a field f ∈ VecM is the Hamiltonian vector
field associated to the Hamiltonian function λ 7→ 〈λ, f(q)〉, λ ∈ T ∗

qM, q ∈M . We have:

Qs(v) =

∫ s

0
l(t)v(t)2 dt+

∫ s

0
σ(x(t), ẋ(t)) dt,

ẋ(t) = v(t)ζ̇t, x(s) ∧ ζs = 0, π∗x(0) ∧ π∗ξ1 = 0, (2)

where σ is the standard symplectic product on Tλ0(T
∗M) and π : T ∗M → M is the standard

projection. Moreover,
l(t) = σ(ζ̇t, ζt), 0 ≤ t ≤ 1. (11.68)

Let E = span{ξ1, ζt, 0 ≤ t ≤ 1}. We use only the restriction of σ to E in the expression of Qs
and we are going to get rid of unnecessary variables. Namely, we set: Σ

.
= E/(ker σ|E).

Lemma 11.32. dimΣ ≤ 2 (dim span{f1(q0), gt(q0), 0 ≤ t ≤ 1} − 1).

Proof. Dimension of Σ equals the double codimension of a maximal isotropic subspace of σ|E .
We have: σ(ξ1, ζt) = 〈λ0, [f1, gt](q0)]〉 = 0, ∀t ∈ [0, 1], hence ξ1 ∈ ker σ|E . Moreover, π∗(E) =
span{f1(q0), gt(q0), 0 ≤ t ≤ 1} and E ∩ kerπ∗ is an isotropic subspace of σ|E .

We denote by ζ
t
∈ Σ the projection of ζt to Σ and by Π ⊂ Σ the projection of E ∩ kerπ∗. Note

that the projection of ξ1 to Σ is 0; moreover, equality (11.68) implies that ζ
t
6= 0. ∀t ∈ [0, 1]. Final

expression of Qs is as follows:

Qs(v) =

∫ s

0
l(t)v(t)2 dt+

∫ s

0
σ(x(t), ẋ(t)) dt,

ẋ = v(t)ζ̇
t
, x(s) ∧ ζ

s
= 0, x(0) ∈ Π. (4)

We have: v ∈ kerQs if and only if
∫ s

0

(
l(t)v(t) + σ(x(t), ζ̇

t
)
)
w(t) dt = 0,

for any w(·) such that ∫ s

0
ζ̇
t
w(t) dt ∈ Π+ Rζ

s
. (5)

We obtain that v ∈ kerQs if and only if there exists ν ∈ Π∠ ∩ ζ∠
s
such that

l(t)v(t) + σ(x(t), ζ̇
t
) = σ(ν, ζ̇

t
), 0 ≤ t ≤ s.

We set y(t) = x(t)− ν and obtain the following:

Theorem 11.33. A time moment s ∈ (0, 1] is conjugate to 0 if and only if there exists a nontrivial
solution of the equation

l(t)ẏ = σ(ζ̇
t
, y)ζ̇

t
(11.69)

that satisfy the following boundary conditions:

∃ ν ∈ Π∠ ∩ ζ∠
s

such that (y(s) + ν) ∧ ζ
s
= 0, (y(0) + ν) ∈ Π. (11.70)
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Remark 11.34. Identity (11.68) implies that y(t) = ζ
t
0 ≤ t ≤ 1, is a solution to the equation

(11.69). However this solution may violate the boundary conditions.

Let us consider a special case: dim span{f1(q0), gt(q0), 0} = 2; this is what we automatically
have for abnormal geodesics in a 3-dimensional sub-Riemannian manifold. In this case, dimE =
2, dimΠ = 1; hence Π∠ = Π, ζ∠

s
= Rζ

s
and Π∠ ∩ ζ∠

s
= 0. Then ν in the boundary conditions

(11.70) must be 0 and y(s) = cζ
s
, where c is a nonzero constant. Hence y(t) = cζ

t
for 0 ≤ t ≤ 1

and y(0) = cζ
0
/∈ Π. We obtain:

Corollary 11.35. If dim span{f1(q0), gt(q0), 0 ≤ t ≤ 1} = 2, then the segment [0, 1] does not
contain conjugate time moments and assumption of Theorem 11.29 is satisfied.

We can apply this corollary to the isoperimetric problem studied in Section 4.5.2. Abnormal
geodesics correspond to connected components of the zero locus of the function b (see notations in
Sec. 4.5.2). All these abnormal geodesics are nice if and only if zero is a regular value of b. Take a
compact connected component of b−1(0); this is a smooth closed curve. Our corollary together with
Theorem 11.29 implies that this closed curve passed once, twice, three times or arbitrary number
of times is a locally optimal solution of the isoperimetric problem. Moreover, this is true for any
Riemannian metric on the surface M !

Now consider another important special case that is typical if dimension of the ambient manifold
is greater than 3. Namely, assume that, for some k ≥ 2, the vector fields

f1, f2, (adf1)f2, . . . , (adf1)
k−1f2 (11.71)

are linearly independent in any point of a neigborhood of our nice abnormal geodesic γ, while
(adf1)

kf2 is a linear combination of the vector fields (11.71) in any point of this neighborhood; in
other words,

(adf1)
kf2 =

k−1∑

i=0

ai(adf1)
if2 + αf1,

where ai, α are smooth functions. In this case, all closed to γ solutions of the equation q̇ = f1(q)
are abnormal geodesics.

A direct calculation based on the fact that 〈λt, (adf i1)f2)(γ(t)〉 = 0, 0 ≤ t ≤ 1, gives the identity:

ζ
(k)
t =

k−1∑

i=0

ai(γ(t))ζ
(i) + α(γ(t))ξ1. 0 ≤ t ≤ 1. (11.72)

Identity (11.72) implies that dimE = k and Π = 0. The boundary conditions (11.70) take the
form:

y(0) ∈ ζ∠
s
, (y(s)− y(0)) ∧ ζ

s
= 0. (11.73)

The caracterization of conjugate points is especially simple and geometrically clear if the ambient
manifold has dimension 4. Let ∆ be a rank 2 equiregular distribution in a 4-dimensional manifold
(the Engel distribution). Then abnormal geodesics form a 1-foliation of the manifold and condition
(11.71) is satisfied with k = 2. Moreover, dimE = 3, dimΣ = 2 and ζ∠

s
= Rζ

s
. Recall that

y(t) = ζ
t
, 0 ≤ t ≤ s, is a solution to (11.69). Hence boundary conditions (11.73) are equivalent to

the condition
ζ
s
∧ ζ

0
= 0. (11.74)
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It is easy to re-write relation (11.74) in the intrinsic way without special notations we used to
simplify calculations. We have:
a time moment t is conjugate to 0 for the abnormal geodesic γ if and only if

etf1∗ Dγ(0) = Dγ(t).

The flow etf1 preserves D2 and f1 but it does not preserve D. The plane etf1∗ D rotates around the
line Rf1 inside D2 with a nonvanishing angular velocity. Conjugate moment is a moment when the
plane makes a complete revolution. Collecting all the information we obtain:

Theorem 11.36. Let D be the Engel distribution, f1 be a horizontal vector field such that [f1,D2] =

D2 and γ̇ = f1(γ). Then γ is an abnormal geodesic. Moreover, if etf1∗ Dγ(0) 6= Dγ(t), ∀t ∈ (0, 1],

then γ is a local length minimizer for any sub-Riemannian structure on D. If etf1∗ Dγ(0) = Dγ(t) for
some t ∈ (0, 1) and γ is not a normal geodesic then γ is not a local length minimizer. �

11.5 Equivalence of local minimality

Now we prove that, under the assumption that our trajectory is smooth, it is equivalent to be
locally optimal in the H1 topology or in the uniform topology for the trajectories.

Notice that the Theorem holds for general structure and not only for rank 2 distributions.

Theorem 11.37. Assume that the sub-Riemannian structure is extendable to a Riemannian struc-
ture G on M . Let γ(t) be a (strict) local minimizer in the L2 topology for the controls, that has
no self-intersection. If γ ∈ C1, then it is a (strict) local minimizer in the C0 topology for the
trajectories.

Proof. Since γ has no self intersections, as before we can assume to choose coordinates x = (x1, y)
in the cylinder

M = Iε ×Bn−1 = {(x, y) ∈ R
n, x ∈]− ε, 1 + ε[, y ∈ R

n−1, |y| < ε},

where our curve γ is rectified, γ(t) = etf1(0). Moreover we can set ℓ(γ) = 1.

In these coordinates γ(t) = (ξ(t), η(t)) = (t, 0). Then we need the following

Lemma 11.38. There exists ε and a set of coordinates such that G(x, 0) = Id.

Proof of the Lemma. Our normalization of the curve γ implies that

g =

(
g11 G12

G21 G22

)
, with g11(x, 0) = 1

Now consider the orthogonal complement with respect to G, to our line at every point (x, 0), that
can be written

{(〈ax, y〉 , y), y ∈ R
n−1}

for some vector ax ∈ R
n−1. The change of coordinates

(x, y) 7→ (x− 〈ax, y〉 , y)
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is regular (choosing ε small enough) and normalize our metric in such a way that

g(x, 0) =

(
1 0
0 G

)
, with g11(x, 0) = 1

With a linear change of cooordinates in the y space

(x, y) 7→ (x,G(x, 0)1/2y)

we can then normalize all the matrix in such a way that G(x, 0) = Id

The action of a curve γ is defined as follows

J(γ) =

∫ 1

0

〈
Gγ(t)γ̇(t), γ̇(t)

〉
dt

Now notice that, in the Euclidean case G = Id, we have

Jeu(γ) =

∫ 1

0
ξ̇2(t) + η̇2(t)dt (11.75)

and by definition of H1 norm we get the equality

‖γ − γ0‖2H1 =

∫ 1

0
|ξ̇(t)− 1|2 + |η̇(t)|2dt

= Jeu(γ)− 1

= Jeu(γ)− Jeu(γ0)
Thus, our assumption can be rewritten as follows: there exists ε > 0 such that γ is admissible and

Jeu(γ) ≤ 1 + ε =⇒ J(γ) ≥ 1

Now take δ > 0 and a curve γ contained in our domain such that the curve γδ := Fδ(γ), image of
γ under the dilation

Fδ : (x, y) 7→ (x, δy)

is admissible. There are two possibilities:

(i) Jeu(γδ) ≤ 1 + ε. Then by our assumption J(γδ) > 1

(ii) Jeu(γδ) > 1 + ε. Then since G(x, 0) = Id and |y| < δ, by smoothness of G we have that in
this neighborhood

G(v) = |v|+O(δ) ⇒ J(γδ) = Jeu(γ) +O(δ)

from which it follows that J(γδ) ≥ 1 + ε+O(δ) > 1, choosing δ in an appropriate way.

Hence every curve γ that is contained in the δ-strip is longer that γ0.

Remark 11.39. Notice that this Theorem implies in particular the statement of Theorem 4.55, since
normal extremals are always smooth. On the other hand, the argument of Theorem 4.55 can be
adapted for any coercive functional (see [4]) while this proof use explicitly estimates that holds
only for our specific cost (distance).

Remark 11.40. Notice that nice abnormals are smooth. Hence we can apply this result and every
nice abnormal is also a C0 local minimizer.
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Chapter 12

Curves in the Lagrange Grassmannian

In this chapter we introduce the manifold of Lagrangian subspaces of a symplectic vector space.
After a description of its geometric properties, we discuss how to define the curvature for regular
curves in the Lagrange Grassmannian, that are curves with non-degenerate derivative. Then we
discuss the non-regular case, where a reduction procedure let us to reduce to a regular curve in a
reduced symplectic space.

12.1 The geometry of the Lagrange Grassmannian

In this section we recall some basic facts about Grassmanians of k-dimensional subspaces of an
n-dimensional vector space and then we consider, for a vector space endowed with a symplectic
structure, the submanifold of its Lagrangian subspaces.

Definition 12.1. Let V be an n-dimensional vector space. The Grassmanian of k-planes on V is
the set

Gk(V ) := {W | W ⊂ V is a subspace, dim(W ) = k}.

It is a standard fact that Gk(V ) is a compact manifold of dimension k(n − k).

Now we describe the tangent space to this manifold.

Proposition 12.2. Let W ∈ Gk(V ). We have a canonical isomorphism

TWGk(V ) ≃ Hom(W,V/W ).

Proof. Consider a smooth curve on Gk(V ) which starts from W , i.e. a smooth family of k-
dimensional subspaces defined by a moving frame

W (t) = span{e1(t), . . . , ek(t)}, W (0) =W.

We want to associate in a canonical way with the tangent vector Ẇ (0) a linear operator from W
to the quotient V/W . Fix w ∈W and consider any smooth extension w(t) ∈W (t), with w(0) = w.
Then define the map

W → V/W, w 7→ ẇ(0) (mod W ). (12.1)
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We are left to prove that the map (12.1) is well defined, i.e. independent on the choices of rep-
resentatives. Indeed if we consider another extension w1(t) of w satisfying w1(t) ∈ W (t) we can
write

w1(t) = w(t) +

k∑

i=1

αi(t)ei(t),

for some smooth coefficients αi(t) such that αi(0) = 0 for every i. It follows that

ẇ1(t) = ẇ(t) +
k∑

i=1

α̇i(t)ei(t) +
k∑

i=1

αi(t)ėi(t), (12.2)

and evaluating (12.2) at t = 0 one has

ẇ1(0) = ẇ(0) +

k∑

i=1

α̇i(0)ei(0).

This shows that ẇ1(0) = ẇ(0) (mod W ), hence the map (12.1) is well defined. In the same way one
can prove that the map does not depend on the moving frame defining W (t).

Finally, it is easy to show that the map that associates the tangent vector to the curve W (t)
with the linear operator W → V/W is surjective, hence it is an isomorphism since the two space
have the same dimension.

Let us now consider a symplectic vector space (Σ, σ), i.e. a 2n-dimensional vector space Σ
endowed with a non degenerate symplectic form σ ∈ Λ2(Σ).

Definition 12.3. A vector subspace Π ⊂ Σ of a symplectic space is called

(i) symplectic if σ|Π is nondegenerate,

(ii) isotropic if σ|Π ≡ 0,

(iii) Lagrangian if σ|Π ≡ 0 and dimΠ = n.

Notice that in general for every subspace Π ⊂ Σ, by nondegeneracy of the symplectic form σ, one
has

dimΠ+ dimΠ∠ = dimΣ. (12.3)

where as usual we denote the symplectic orthogonal by Π∠ = {x ∈ Σ |σ(x, y) = 0, ∀ y ∈ Π}.

Exercise 12.4. Prove the following properties for a vector subspace Π ⊂ Σ:

(i) Π is symplectic iff Π ∩Π∠ = {0},

(ii) Π is isotropic iff Π ⊂ Π∠,

(iii) Π is Lagrangian iff Π = Π∠.

Exercise 12.5. Prove that, given two subspaces A,B ⊂ Σ, one has the identities (A + B)∠ =
A∠ ∩B∠ and (A ∩B)∠ = A∠ +B∠.
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Example 12.6. Any symplectic vector space admits Lagrangian subspaces. Indeed fix any non-
zero element e1 := e 6= 0 in Σ. Choose iteratively

ei ∈ span{e1, . . . , ei−1}∠ \ span{e1, . . . , ei−1}, i = 2, . . . , n. (12.4)

Then Π := span{e1, . . . , en} is a Lagrangian subspace by construction. Notice that the choice (12.4)
is possible by (12.3)

Lemma 12.7. Let Π = span{e1, . . . , en} be a Lagrangian subspace of Σ. Then there exists vectors
f1, . . . , fn ∈ Σ such that

(i) Σ = Π⊕∆, ∆ := span{f1, . . . , fn},

(ii) σ(ei, fj) = δij , σ(ei, ej) = σ(fi, fj) = 0, ∀ i, j = 1, . . . , n.

Proof. We prove the lemma by induction. By nondegeneracy of σ there exists a non-zero x ∈ Σ
such that σ(en, x) 6= 0. Then we define the vector

fn :=
x

σ(en, x)
, =⇒ σ(en, fn) = 1.

The last equality implies that σ restricted to span{en, fn} is nondegerate, hence by (a) of Exercise
12.4

span{en, fn} ∩ span{en, fn}∠ = 0, (12.5)

And we can apply induction on the 2(n − 1) subspace Σ′ := span{en, fn}∠. Notice that (12.5)
implies that σ is non degenerate also on Σ′.

Remark 12.8. In particular the complementary subspace ∆ = span{f1, . . . , fn} defined in Lemma
12.7 is Lagrangian and transversal to Π

Σ = Π⊕∆.

Considering coordinates induced from the basis chosen for this splitting we can write Σ = R
n∗⊕Rn,

(denoting R
n∗ denotes the set of row vectors). More precisely x = (ζ, z) if

x =

n∑

i=1

ζ iei + zifi, ζ =
(
ζ1 · · · ζn

)
, z =



z1

...
zn


 ,

and using canonical form of σ on our basis (see Lemma 12.7) we find that in coordinates, if
x1 = (ζ1, z1), x2 = (ζ2, z2) we get

σ(x1, x2) = ζ1z2 − ζ2z1, (12.6)

where we denote with ζz the standard rows by columns product.

Lemma 12.7 shows that the group of symplectomorphisms acts transitively on pairs of transver-
sal Lagrangian subspaces. The next exercise, whose proof is an adaptation of the previous one,
describes all the orbits of the action of the group of symplectomorphisms on pairs of subspaces of
a symplectic vector spaces.

Exercise 12.9. Let Λ1,Λ2 be two subspaces in a symplectic vector space Σ, and assume that
dimΛ1 ∩ Λ2 = k. Show that there exists Darboux coordinates (p, q) in Σ such that

Λ1 = {(p, 0)}, Λ2 = {((p1, . . . , pk, 0, . . . , 0), (0, . . . , 0, qk+1, . . . , qn)}.
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12.1.1 The Lagrange Grassmannian

Definition 12.10. The Lagrange Grassmannian L(Σ) of a symplectic vector space Σ is the set of
its n-dimensional Lagrangian subspaces.

Proposition 12.11. L(Σ) is a compact submanifold of the Grassmannian Gn(Σ) of n-dimensional
subspaces. Moreover

dimL(Σ) =
n(n+ 1)

2
. (12.7)

Proof. Recall that Gn(Σ) is a n
2-dimensional compact manifold. Clearly L(Σ) ⊂ Gn(Σ) as a subset.

Consider the set of all Lagrangian subspaces that are transversal to a given one

∆⋔ = {Λ ∈ L(Σ) : Λ ∩∆ = 0}.

Clearly ∆⋔ ⊂ L(Σ) is an open subset and since by Lemma 12.7 every Lagrangian subspace admits
a Lagrangian complement

L(Σ) =
⋃

∆∈L(Σ)

∆⋔.

It is then sufficient to find some coordinates on these open subsets. Every n-dimensional subspace
Λ ⊂ Σ which is transversal to ∆ is the graph of a linear map from Π to ∆. More precisely there
exists a matrix SΛ such that

Λ ∩∆ = 0⇔ Λ = {(zT , SΛz), z ∈ R
n}.

(Here we used the coordinates induced by the splitting Σ = Π⊕∆.) Moreover it is easily seen that

Λ ∈ L(Σ)⇔ SΛ = (SΛ)
T .

Indeed we have that Λ ∈ L(Σ) if and only if σ|Λ = 0 and using (12.6) this is rewritten as

σ((zT1 , SΛz1), (z
T
2 , SΛz2)) = zT1 SΛz2 − zT2 SΛz1 = 0,

which means exactly SΛ symmetric. Hence the open set of all subspaces that are transversal to Λ
is parametrized by the set of symmetric matrices, that gives coordinates in this open set. This also
proves that the dimension of L(Σ) coincide with the dimension of the space of symmetric matrices,
hence (12.7). Notice also that, being L(Σ) a closed set in a compact manifold, it is compact.

Now we describe the tangent space to the Lagrange Grassmannian.

Proposition 12.12. Let Λ ∈ L(Σ). Then we have a canonical isomorphism

TΛL(Σ) ≃ Q(Λ),

where Q(Λ) denote the set of quadratic forms on Λ.

Proof. Consider a smooth curve Λ(t) in L(Σ) such that Λ(0) = Λ and Λ̇(0) ∈ TΛL(Σ) its tangent
vector. As before consider a point x ∈ Λ and a smooth extension x(t) ∈ Λ(t) and denote with
ẋ := ẋ(0). We define the map

Λ̇ : x 7→ σ(x, ẋ), (12.8)
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that is nothing else but the quadratic map associated to the self adjoint map x 7→ ẋ by the
symplectic structure. We show that in coordinates Λ̇ is a well defined quadratic map, independent
on all choices. Indeed

Λ(t) = {(zT , SΛ(t)z), z ∈ R
n},

and the curve x(t) can be written

x(t) = (z(t)T , SΛ(t)z(t)), x = x(0) = (zT , SΛz),

for some curve z(t) where z = z(0). Taking derivative we get

ẋ(t) = (ż(t)T , ṠΛ(t)z(t) + SΛ(t)ż(t)),

and evaluating at t = 0 (we simply omit t when we evaluate at t = 0) we have

x = (zT , SΛz), ẋ = (żT , ṠΛz + SΛż),

and finally get, using the simmetry of SΛ, that

σ(x, ẋ) = zT (ṠΛz + SΛż)− żTSΛz
= zT ṠΛz + zTSΛż − żTSΛz
= zT ṠΛz. (12.9)

Exercise 12.13. Let Λ(t) ∈ L(Σ) such that Λ = Λ(0) and σ be the symplectic form. Prove that
the map S : Λ × Λ → R defined by S(x, y) = σ(x, ẏ), where ẏ = ẏ(0) is the tangent vector to a
smooth extension y(t) ∈ Λ(t) of y, is a symmetric bilinear map.

Remark 12.14. We have the following natural interpretation of this result: since L(Σ) is a subman-
ifold of the Grassmanian Gn(Σ), its tangent space TΛL(Σ) is naturally identified by the inclusion
with a subspace of the Grassmannian

i : L(Σ) →֒ Gn(Σ), i∗ : TΛL(Σ) →֒ TΛGn(Σ) ≃ Hom(Λ,Σ/Λ),

where the last isomorphism is Proposition 12.2. Being Λ a Lagrangian subspace of Σ, the symplectic
structure identifies in a canonical way the factor space Σ/Λ with the dual space Λ∗ defining

Σ/Λ ≃ Λ∗, 〈[z]Λ, x〉 = σ(z, x). (12.10)

Hence the tangent space to the Lagrange Grassmanian consist of those linear maps in the space
Hom(Λ,Λ∗) that are self-adjoint, which are naturally identified with quadratic forms on Λ itself. 1

Remark 12.15. Given a curve Λ(t) in L(Σ), the above procedure associates to the tangent vector
Λ̇(t) a family of quadratic forms Λ̇(t), for every t.

We end this section by computing the tangent vector to a special class of curves that will play
a major role in the sequel, i.e. the curve on L(Σ) induced by the action on Λ by the flow of the
linear Hamiltonian vector field ~h associated with a quadratic Hamiltonian h ∈ C∞(Σ). (Recall that
a Hamiltonian vector field transform Lagrangian subspaces into Lagrangian subspaces.)

1any quadratic form on a vector space q ∈ Q(V ) can be identified with a self-adjoint linear map L : V → V ∗,
L(v) = B(v, ·) where B is the symmetric bilinear map such that q(v) = B(v, v).
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Proposition 12.16. Let Λ ∈ L(Σ) and define Λ(t) = et
~h(Λ). Then Λ̇ = 2h|Λ.

Proof. Consider x ∈ Λ and the smooth extension x(t) = et
~h(x). Then ẋ = ~h(x) and by definition

of Hamiltonian vector field we find

σ(x, ẋ) = σ(x,~h(x))

= 〈dxh, x〉
= 2h(x),

where in the last equality we used that h is quadratic on fibers.

12.2 Regular curves in Lagrange Grassmannian

The isomorphism between tangent vector to the Lagrange Grassmannian with quadratic forms
makes sense to the following definition (we denote by Λ̇ the tangent vector to the curve at the point
Λ as a quadratic map)

Definition 12.17. Let Λ(t) ∈ L(Σ) be a smooth curve in the Lagrange Grassmannian. We say
that the curve is

(i) monotone increasing (descreasing) if Λ̇(t) ≥ 0 (Λ̇(t) ≤ 0).

(ii) strictly monotone increasing (decreasing) if the inequality in (i) is strict.

(iii) regular if its derivative Λ̇(t) is a non degenerate quadratic form.

Remark 12.18. Notice that if Λ(t) = {(p, S(t)p), p ∈ R
n} in some coordinate set, then it follows

from the proof of Proposition 12.12 that the quadratic form Λ̇(t) is represented by the matrix ṠΛ(t)
(see also (12.9)). In particular the curve is regular if and only if det ṠΛ(t) 6= 0.

The main goal of this section is the construction of a canonical Lagrangian complement. (i.e.
another curve Λ◦(t) in the Lagrange Grassmannian defined by Λ(t) and such that Σ = Λ(t)⊕Λ◦(t).)

Consider an arbitrary Lagrangian splitting Σ = Λ(0) ⊕∆ defined by a complement ∆ to Λ(0)
(see Lemma 12.7) and fix coordinates in such a way that that

Σ = {(p, q), p, q ∈ R
n}, Λ(0) = {(p, 0), p ∈ R

n}, ∆ = {(0, q), q ∈ R
n}.

In these coordinates our regular curve is described by a one parametric family of symmetric matrices
S(t)

Λ(t) = {(p, S(t)p), p ∈ R
n},

such that S(0) = 0 and Ṡ(0) is invertible. All Lagrangian complement to Λ(0) are parametrized by
a symmetrix matrix B as follows

∆B = {(Bq, q), q ∈ R
n}, B = BT .

The following lemma shows how the coordinate expression of our curve Λ(t) change in the new
coordinate set defined by the splitting Σ = Λ(0) ⊕∆B .
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Lemma 12.19. Let SB(t) the one parametric family of symmetric matrices defining Λ(t) in coor-
dinates w.r.t. the splitting Λ(0)⊕∆B. Then the following identity holds

SB(t) = (S(t)−1 −B)−1. (12.11)

Proof. It is easy to show that, if (p, q) and (p′, q′) denotes coordinates with respect to the splitting
defined by the subspaces ∆ and ∆B we have

{
p′ = p−Bq
q′ = q

(12.12)

The matrix SB(t) by definition is the matrix that satisfies the identity q′ = SB(t)p
′. Using that

q = S(t)p by definition of Λ(t), from (12.12) we find

q′ = q = S(t)p = S(t)(p′ +Bq′),

and with straightforward computations we finally get

SB(t) = (I − S(t)B)−1S(t) = (S(t)−1 −B)−1.

Since Ṡ(t) represents the tangent vectors to the regular curve Λ(t), its properties are invariant
with respect to change of coordinates. Hence it is natural to look for a change of coordinates (i.e.
a choice of the matrix B) that simplifies the second derivative our curve.

Corollary 12.20. There exists a unique symmetric matrix B such that S̈B(0) = 0.

Proof. Recall that for a one parametric family of matrices X(t) we have

d

dt
X(t)−1 = −X(t)−1Ẋ(t)X(t)−1.

Applying twice this identity to (12.11) (we omit t to denote the value at t = 0) we get

d

dt

∣∣∣∣
t=0

SB(t) = −(S−1 −B)−1

(
d

dt

∣∣∣∣
t=0

S−1(t)

)
(S−1 −B)−1

= (S−1 −B)−1S−1ṠS−1(S−1 −B)−1

= (I − SB)−1Ṡ(I −BS)−1.

Hence for the second derivative evaluated at t = 0 (remember that in our coordinates S(0) = 0)
one gets

S̈B = S̈ + 2ṠBṠ,

and using that Ṡ is non degerate, we can choose B = −1
2 Ṡ

−1S̈Ṡ−1.

We set Λ◦(0) := ∆B, where B is determined by (12.13). Notice that by construction Λ◦(0) is
a Lagrangian subspace and it is transversal to Λ(0). The same argument can be applied to define
Λ◦(t) for every t.
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Definition 12.21. Let Λ(t) be a regular curve, the curve Λ◦(t) defined by the condition above is
called derivative curve of Λ(t).

Exercise 12.22. Prove that, if Λ(t) = {(p, S(t)p), p ∈ R
n} (without the condition S(0) = 0), then

the derivative curve Λ◦(t) = {(p, S◦(t)p), p ∈ R
n}, satisfies

S◦(t) = B(t)−1 + S(t), where B(t) := −1

2
Ṡ(t)−1S̈(t)Ṡ(t)−1, (12.13)

provided Λ◦(t) is transversal to the subspace ∆ = {(0, q), q ∈ R
n}. (Actually this condition is

equivalent to the invertibility of B(t).) Notice that if S(0) = 0 then S◦(0) = B(0)−1.

Remark 12.23. The set Λtr of all n-dimensional spaces transversal to a fixed subspace Λ is an affine
space over Hom(Σ/Λ,Λ). Indeed given two elements ∆1,∆2 ∈ Λtr we can associate with their
difference the operator

∆2 −∆1 7→ A ∈ Hom(Σ/Λ,Λ), A([z]Λ) = z2 − z1 ∈ Λ, (12.14)

where zi ∈ ∆i ∩ [z]Λ are uniquely identified.
If Λ is Lagrangian, we have identification Σ/Λ ≃ Λ∗ given by the symplectic structure (see

(12.10)) that Λ⋔, that coincide by definition with the intersection Λtr ∩L(Σ) is an affine space over
HomS(Λ∗,Λ), the space of selfadjoint maps between Λ∗ and Λ, that it isomorphic to Q(Λ∗).

Notice that if we fix a distinguished complement of Λ, i.e. Σ = Λ ⊕∆, then we have also the
identification Σ/Λ ≃ ∆ and Λ⋔ ≃ Q(Λ∗) ≃ Q(∆).

Exercise 12.24. Prove that the operator A defined by (12.14), in the case when Λ is Lagrangian,
is a self-adjoint operator.

Remark 12.25. Assume that the splitting Σ = Λ⊕∆ is fixed. Then our curve Λ(t) in L(Σ), such that
Λ(0) = Λ, is characterized by a family of symmetric matrices S(t) satisfying Λ(t) = {(p, S(t)p), p ∈
R
n}, with S(0) = 0.
By regularity of the curve, Λ(t) ∈ Λ⋔ for t > 0 small enough, hence we can consider its

coordinate presentation in the affine space on the vector space of quadratic forms defined on ∆ (see
Remark 12.23) that is given by S−1(t) and write the Laurent expansion of this curve in the affine
space

S(t)−1 =

(
tṠ +

t2

2
S̈ +O(t3)

)−1

=
1

t
Ṡ−1

(
I +

t

2
S̈Ṡ−1 +O(t2)

)−1

=
1

t
Ṡ−1−1

2
Ṡ−1S̈Ṡ−1

︸ ︷︷ ︸
B

+O(t).

It is not occasional that the matrix B coincides with the free term of this expansion. Indeed the
formula (12.11) for the change of coordinates can be rewritten as follows

SB(t)
−1 = S−1(t)−B, (12.15)

and the choice of B corresponds exactly to the choice of a coordinate set where the curve Λ(t) has
no free term in this expansion (i.e. SB(t)

−1 has no term of order zero). This is equivalent to say
that a regular curve let us to choose a privileged origin in the affine space of Lagrangian subspaces
that are transversal to the curve itself.
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12.3 Curvature of a regular curve

Now we want to define the curvature of a regular curve in the Lagrange Grassmannian. Let Λ(t)
be a regular curve and consider its derivative curve Λ◦(t).

The tangent vectors to Λ(t) and Λ◦(t), as explained in Section 12.1, can be interpreted in a a
canonical way as a quadratic form on the space Λ(t) and Λ◦(t) respectively

Λ̇(t) ∈ Q(Λ(t)), Λ̇
◦
(t) ∈ Q(Λ◦(t)).

Being Λ◦(t) a canonical Lagrangian complement to Λ(t) we have the identifications through the
symplectic form2

Λ(t)∗ ≃ Λ◦(t), Λ◦(t)∗ ≃ Λ(t),

and the quadratic forms Λ̇(t), Λ̇
◦
(t) can be treated as (self-adjoint) mappings:

Λ̇(t) : Λ(t)→ Λ◦(t), Λ̇
◦
(t) : Λ◦(t)→ Λ(t). (12.16)

Definition 12.26. The operator RΛ(t) := Λ̇
◦
(t)◦Λ̇(t) : Λ(t)→ Λ(t) is called the curvature operator

of the regular curve Λ(t).

Remark 12.27. In the monotonic case, when |Λ̇(t)| defines a scalar product on Λ(t), the operator
R(t) is, by definition, symmetric with respect to this scalar product. Moreover R(t), as quadratic
form, has the same signature and rank as Λ̇

◦
(t) sign(Λ̇

◦
(t)).

Definition 12.28. Let Λ1,Λ2 be two transversal Lagrangian subspaces of Σ. We denote

πΛ1Λ2 : Σ→ Λ2, (12.17)

the projection on Λ2 parallel to Λ1, i.e. the linear operator such that

πΛ1Λ2 |Λ1 = 0 πΛ1Λ2 |Λ2 = Id.

Exercise 12.29. Assume Λ1 and Λ2 be two Lagrangian subspaces in Σ and assume that, in some
coordinate set, Λi = {(x, Six),∈ R

n} for i = 1, 2 . Prove that Σ = Λ1 ⊕ Λ2 if and only if
ker(S1 − S2) = {0}. In this case show that the following matrix expression for πΛ1Λ2 :

πΛ1Λ2 =

(
S−1
12 S1 −S−1

12

S2S
−1
12 S1 −S2S−1

12

)
, S12 := S1 − S2. (12.18)

From the very definition of the derivative of our curve we can get the following geometric
characterization of the curvature of a curve.

Proposition 12.30. Let Λ(t) a regular curve in L(Σ) and Λ◦(t) its derivative curve. Then

Λ̇(t)(xt) = πΛ(t)Λ◦(t)(ẋt), Λ̇
◦
(t)(xt) = −πΛ◦(t)Λ(t)(ẋt).

In particular the curvature is the composition RΛ(t) = Λ̇
◦
(t) ◦ Λ̇(t).

2if Σ = Λ⊕∆ is a splitting of a vector space then Σ/Λ ≃ ∆. If moreover the splitting is Lagrangian in a symplectic
space, the symplectic form identifies Σ/Λ ≃ Λ∗, hence Λ∗ ≃ ∆.
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Proof. Recall that, by definition, the linear operator Λ̇ : Λ → Σ/Λ associated with the quadratic
form is the map x 7→ ẋ (mod Λ). Hence to build the map Λ → Λ◦ it is enough to compute the
projection of ẋ onto the complement Λ◦, that is exactly πΛΛ◦(ẋ). Notice that the minus sign in
equation (12.30) is a consequence of the skew symmetry of the symplectic product. More precisely,
the sign in the identification Λ◦ ≃ Λ∗ depends on the position of the argument.

The curvature RΛ(t) of the curve Λ(t) is a kind of relative velocity between the two curves Λ(t)
and Λ◦(t). In particular notice that if the two curves moves in the same direction we have RΛ(t) > 0.

Now we compute the expression of the curvature RΛ(t) in coordinates.

Proposition 12.31. Assume that Λ(t) = {(p, S(t)p)} is a regular curve in L(Σ). Then we have
the following coordinate expression for the curvature of Λ (we omit t in the formula)

RΛ = ((2Ṡ)−1S̈)̇− ((2Ṡ)−1S̈)2 (12.19)

=
1

2
Ṡ−1...

S − 3

4
(Ṡ−1S̈)2. (12.20)

Proof. Assume that both Λ(t) and Λ◦(t) are contained in the same coordinate chart with

Λ(t) = {(p, S(t)p)}, Λ◦(t) = {(p, S◦(t)p)}.

We start the proof by computing the expression of the linear operator associated with the derivative
Λ̇ : Λ → Λ◦ (we omit t when we compute at t = 0). For each element (p, Sp) ∈ Λ and any
extension (p(t), S(t)p(t)) one can apply the matrix representing the operator πΛΛ◦ (see (12.18)) to
the derivative at t = 0 and find

πΛΛ◦(p, Sp) = (p′, S◦p′), p′ = −(S − S◦)−1Ṡp.

Exchanging the role of Λ and Λ◦, and taking into account of the minus sign one finds that the
coordinate representation of R is given by

R = (S◦ − S)−1Ṡ◦(S◦ − S)−1Ṡ. (12.21)

We prove formula (12.20) under the extra assumption that S(0) = 0. Notice that this is
equivalent to the choice of a particular coordinate set in L(Σ) and, being the expression of R
coordinate independent by construction, this is not restrictive.

Under this extra assumption, it follows from (12.13) that

Λ(t) = {(p, S(t)p)}, Λ◦(t) = {(p, S◦(t)p)},

where S◦(t) = B(t)−1 + S(t) and we denote by B(t) := −1
2 Ṡ(t)

−1S̈(t)Ṡ(t)−1.
Hence we have, assuming S(0) = 0 and omitting t when t = 0

R = (S◦ − S)−1Ṡ◦(S◦ − S)−1Ṡ

= B

(
d

dt

∣∣∣∣
t=0

B(t)−1 + S(t)

)
BṠ

= (BṠ)2 − ḂṠ.

Plugging B = −1
2 Ṡ

−1S̈Ṡ−1 into the last formula, after some computations one gets to (12.20).
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Remark 12.32. The formula for the curvature RΛ(t) of a curve Λ(t) in L(Σ) takes a very simple
form in a particular coordinate set given by the splitting Σ = Λ(0)⊕ Λ◦(0), i.e. such that

Λ(0) = {(p, 0), p ∈ R
n}, Λ◦(0) = {(0, q), q ∈ R

n}.

Indeed using a symplectic change of coordinates in Σ that preserves both Λ and Λ◦ (i.e. of the kind
p′ = Ap, q′ = (A−1)∗q) we can choose the matrix A in such a way that Ṡ(0) = I. Moreover we
know from Proposition that the fact that Λ◦ = {(0, q), q ∈ R

n} is equivalent to S̈(0) = 0. Hence
one finds from (12.20) that

R =
1

2

...
S

When the curve Λ(t) is strictly monotone, the curvature R represents a well defined operator on
Λ(0), naturally endowed with the sign definite quadratic form Λ̇(0). Hence in these coordinates the
eigenvalues of

...
S (and not only the trace and the determinant) are invariants of the curve.

Exercise 12.33. Let f : R→ R be a smooth function. The Schwartzian derivative of f is defined
as

Sf :=

(
f ′′

2f ′

)′
−
(
f ′′

2f ′

)2

(12.22)

Prove that Sf = 0 if and only if f(t) =
at+ b

ct+ d
for some a, b, c, d ∈ R.

Remark 12.34. The previous proposition says that the curvature R is the matrix version of the
Schwartzian derivative of the matrix S (cfr. (12.19) and (12.22)).

Example 12.35. Let Σ be a 2-dimensional symplectic space. In this case L(Σ) ≃ P
1(R) is the real

projective line. Let us compute the curvature of a curve in L(Σ) with constant (angular) velocity
α > 0. We have

Λ(t) = {(p, S(t)p), p ∈ R}, S(t) = tan(αt) ∈ R.

From the explicit expression it easy to find the relation

Ṡ(t) = α(1 + S2(t)), ⇒ S̈(t)

2Ṡ(t)
= αS(t),

from which one gets that R(t) = αṠ(t)− α2S2(t) = α2, i.e. the curve has constant curvature.

We end this section with a useful formula on the curvature of a reparametrized curve.

Proposition 12.36. Let ϕ : R→ R a diffeomorphism and define the curve Λϕ(t) := Λ(ϕ(t)). Then

RΛϕ(t) = ϕ̇2(t)RΛ(ϕ(t)) +Rϕ(t)Id. (12.23)

Proof. It is a simple check that the Schwartzian derivative of the composition of two function f
and g satisfies

S(f ◦ g) = (Sf ◦ g)(g′)2 + Sg.
Notice that Rϕ(t) makes sense as the curvature of the regular curve ϕ : R→ R ⊂ P

1 in the Lagrange
Grassmannian L(R2).
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Exercise 12.37. (Another formula for the curvature). Let Λ0,Λ1 ∈ L(Σ) be such that Σ = Λ0⊕Λ1

and fix two tangent vectors ξ0 ∈ TΛ0L(Σ) and ξ1 ∈ TΛ1L(Σ). As in (12.16) we can treat each tangent
vector as a linear operator

ξ0 : Λ0 → Λ1, ξ1 : Λ1 → Λ0, (12.24)

and define the cross-ratio [ξ1, ξ0] = −ξ1 ◦ ξ0. If in some coordinates Λi = {(p, Sip)} for i = 0, 1 we
have3

[ξ1, ξ0] = (S1 − S0)−1Ṡ1(S1 − S0)−1Ṡ0.

Let now Λ(t) a regular curve in L(Σ). By regularity Σ = Λ(0)⊕Λ(t) for all t > 0 small enough,
hence the cross ratio

[Λ̇(t), Λ̇(0)] : Λ(0)→ Λ(0),

is well defined. Prove the following expansion for t→ 0

[Λ̇(t), Λ̇(0)] ≃ 1

t2
Id+

1

3
RΛ(0) +O(t). (12.25)

12.4 Reduction of non-regular curves in Lagrange Grassmannian

In this section we want to extend the notion of curvature to non-regular curves. As we will see
in the next chapter, it is always possible to associate with an extremal a family of Lagrangian
subspaces in a symplectic space, i.e. a curve in a Lagrangian Grassmannian. This curve turns
out to be regular if and only if the extremal is an extremal of a Riemannian structure. Hence, if
we want to apply this theory for a genuine sub-Riemannian case we need some tools to deal with
non-regular curves in the Lagrangian Grassmannian.

Let (Σ, σ) be a symplectic vector space and L(Σ) denote the Lagrange Grassmannian. We start
by describing a natural subspace of L(Σ) associated with an isotropic subspace Γ of Σ. This will
allow us to define a reduction procedure for a non regular curve.

Let Γ be a k-dimensional isotropic subspace of Σ, i.e. σ
∣∣
Γ
= 0. This means that Γ ⊂ Γ∠. In

particular Γ∠/Γ is a 2(n − k) dimensional symplectic space with the restriction of σ.

Lemma 12.38. There is a natural identification of L(Γ∠/Γ) as a subspace of L(Σ):

L(Γ∠/Γ) ≃ {Λ ∈ L(Σ),Γ ⊂ Λ} ⊂ L(Σ). (12.26)

Moroever we have a natural projection

πΓ : L(Σ)→ L(Γ∠/Γ), Λ 7→ ΛΓ,

where ΛΓ := (Λ ∩ Γ∠) + Γ = (Λ + Γ) ∩ Γ∠.

Proof. Assume that Λ ∈ L(Σ) and Γ ⊂ Λ. Then, since Λ is Lagrangian, Λ = Λ∠ ⊂ Γ∠, hence the
identification (12.26).

Assume now that Λ ∈ L(Γ∠/Γ) and let us show that πΓ(Λ) = Λ, i.e. πΓ is a projection. Indeed
from the inclusions Γ ⊂ Λ ⊂ Γ∠ one has πΓ(Λ) = ΛΓ = (Λ ∩ Γ∠) + Γ = Λ+ Γ = Λ.

3here Ṡi denotes the matrix associated with ξi.
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We are left to check that ΛΓ is Lagrangian, i.e. (ΛΓ)∠ = ΛΓ.

(ΛΓ)∠ = ((Λ ∩ Γ∠) + Γ)∠

= (Λ ∩ Γ∠)∠ ∩ Γ∠

= (Λ + Γ) ∩ Γ∠ = ΛΓ,

where we repeatedly used Exercise 12.5. (The identity (Λ ∩ Γ∠) + Γ = (Λ + Γ) ∩ Γ∠ is also a
consequence of the same exercise.)

Remark 12.39. Let Γ⋔ = {Λ ∈ L(Σ),Λ ∩ Γ = {0}}. The restriction πΓ
∣∣
Γ⋔ is smooth. Indeed it can

be shown that πΓ is defined by a rational function, since it is expressed via the solution of a linear
system.

The following example shows that the projection πΓ is not globally continous on L(Σ).

Example 12.40. Consider the symplectic structure σ on R
4, with Darboux basis {e1, e2, f1, f2},

i.e. σ(ei, fj) = δij . Let Γ = span{e1} be a one dimensional isotropic subspace and define

Λε = span{e1 + εf2, e2 + εf1}, ∀ ε > 0.

It is easy to see that Λε is Lagrangian for every ε and that

ΛΓ
ε = span{e1, f2}, ∀ ε > 0, (12.27)

ΛΓ
0 = span{e1, e2}.

Indeed f2 ∈ e∠1 , that implies e1 + εf2 ∈ Λε ∩ Γ∠, therefore f2 ∈ Λε ∩ Γ∠. By definition of reduced
curve f2 ∈ ΛΓ

ε and (12.27) holds. The case ε = 0 is trivial.

12.5 Ample curves

In this section we introduce ample curves.

Definition 12.41. Let Λ(t) ∈ L(Σ) be a smooth curve in the Lagrange Grassmannian. The curve
Λ(t) is ample at t = t0 if there exists N ∈ N such that

Σ = span{λ(i)(t0)| λ(t) ∈ Λ(t), λ(t) smooth, 0 ≤ i ≤ N}. (12.28)

In other words we require that all derivatives up to order N of all smooth sections of our curve in
L(Σ) span all the possible directions.

As usual, we can choose coordinates in such a way that, for some family of symmetric matrices
S(t), one has

Σ = {(p, q)| p, q ∈ R
n}, Λ(t) = {(p, S(t)p)| p ∈ R

n}.
Exercise 12.42. Assume that Λ(t) = {(p, S(t)p), p ∈ R

n} with S(0) = 0. Prove that the curve is
ample at t = 0 if and only if there exists N ∈ N such that all the columns of the derivative of S(t)
up to order N (and computed at t = 0) span a maximal subspace:

rank{Ṡ(0), S̈(0), . . . , S(N)(0)} = n. (12.29)

In particular, a curve Λ(t) is regular at t0 if and only if is ample at t0 with N = 1.
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An important property of ample and monotone curves is described in the following lemma.

Lemma 12.43. Let Λ(t) ∈ L(Σ) a monotone, ample curve at t0. Then, there exists ε > 0 such
that Λ(t) ∩ Λ(t0) = {0} for 0 < |t− t0| < ε.

Proof. Without loss of generality, assume t0 = 0. Choose a Lagrangian splitting Σ = Λ⊕ Π, with
Λ = J(0). For |t| < ε, the curve is contained in the chart defined by such a splitting. In coordinates,
Λ(t) = {(p, S(t)p)| p ∈ R

n}, with S(t) symmetric and S(0) = 0. The curve is monotone, then Ṡ(t)
is a semidefinite symmetric matrix. It follows that S(t) is semidefinite too.

Suppose that, for some t, Λ(t) ∩ Λ(0) 6= {0} (assume t > 0). This means that ∃ v ∈ R
n such

that S(t)v = 0. Indeed also v∗S(t)v = 0. The function τ 7→ v∗S(τ)v is monotone, vanishing at
τ = 0 and τ = t. Therefore v∗S(τ)v = 0 for all 0 ≤ τ ≤ t. Being a semidefinite, symmetric matrix,
v∗S(τ)v = 0 if and only if S(τ)v = 0. Therefore, we conclude that v ∈ kerS(τ) for 0 ≤ τ ≤ t. This
implies that, for any i ∈ N, v ∈ kerS(i)(0), which is a contradiction, since the curve is ample at
0.

Exercise 12.44. Prove that a monotone curve Λ(t) is ample at t0 if and only if one of the equivalent
conditions is satisfied

(i) the family of matrices S(t) − S(t0) is nondegenerate for t 6= t0 close enough, and the same
remains true if we replace S(t) by its N -th Taylor polynomial, for some N in N.

(ii) the map t 7→ det(S(t)− S(t0)) has a finite order root at t = t0.

Let us now consider an analytic monotone curve on L(Σ). Without loss of generality we can
assume the curve to be non increasing, i.e. Λ̇(t) ≥ 0. By monotonicity

Λ(0) ∩ Λ(t) =
⋂

0≤τ≤t
Λ(τ) =: Υt

Clearly Υt is a decreasing family of subspaces, i.e. Υt ⊂ Υτ if τ ≤ t. Hence the family Υt for t→ 0
stabilizes and the limit subspace Υ is well defined

Υ := lim
t→0

Υt

The symplectic reduction of the curve by the isotropic subspace Υ defines a new curve Λ̃(t) :=
Λ(t)Υ ∈ L(Υ∠/Υ).

Proposition 12.45. If Λ(t) is analytic and monotone in L(Σ), then Λ̃(t) is ample L(Υ∠/Υ).

Proof. By construction, in the reduced space Υ∠/Υ we removed the intersection of Λ(t) with Λ(0).
Hence

Λ̃(0) ∩ Λ̃(t) = {0}, in L(Υ∠/Υ) (12.30)

In particular, if S̃(t) denotes the symmetric matrix representing Λ̃(t) such that S̃(0) = Λ̃(t0), it
follows that S̃(t) is non degenerate for 0 < |t| < ε. The analyticity of the curve guarantees that
the Taylor polynomial (of a suitable order N) is also non degenerate.
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12.6 From ample to regular

In this section we prove the main result of this chapter, i.e. that any ample monotone curve can
be reduced to a regular one.

Theorem 12.46. Let Λ(t) be a smooth ample monotone curve and set Γ := Ker Λ̇(0). Then the

reduced curve t 7→ ΛΓ(t) is a smooth regular curve. In particular Λ̇
Γ
(0) > 0.

Before proving Theorem 12.46, let us discuss two useful lemmas.

Lemma 12.47. Let v1(t), . . . , vk(t) ∈ R
n and define V (t) as the n × k matrix whose columns are

the vectors vi(t). Define the matrix S(t) :=
∫ t
0 V (τ)V (τ)∗dτ . Then the following are equivalent:

(i) S(t) is invertible (and positive definite),

(ii) span{vi(τ)| i = 1, . . . , k; τ ∈ [0, t]} = R
n.

Proof. Fix t > 0 and let us assume S(t) is not invertible. Since S(t) is non negative then there
exists a nonzero x ∈ R

n such that 〈S(t)x, x〉 = 0. On the other hand

〈S(t)x, x〉 =
∫ t

0
〈V (τ)V (τ)∗x, x〉 dτ =

∫ t

0
‖V (τ)∗x‖2dτ

This implies that V (τ)∗x = 0 (or equivalently x∗V (τ) = 0) for τ ∈ [0, t], i.e. the nonzero vector x∗

is orthogonal to Im τ∈[0,t]V (τ) = span{vi(τ)| i = 1, . . . , k, τ ∈ [0, t]} = R
n, that is a contradiction.

The converse is similar.

Lemma 12.48. Let A,B two positive and symmetric matrices such that 0 < A < B. Then we
have also 0 < B−1 < A−1.

Proof. Assume first that A and B commute. Then A and B can be simultaneously diagonalized
and the statement is trivial for diagonal matrices.

In the general case, since A is symmetric and positive, we can consider its square root A1/2,
which is also symmetric and positive. We can write

0 < 〈Av, v〉 < 〈Bv, v〉

By setting w = A1/2v in the above inequality and using 〈Av, v〉 =
〈
A1/2v,A1/2v

〉
one gets

0 < 〈w,w〉 <
〈
A−1/2BA−1/2w,w

〉
,

which is equivalent to I < A−1/2BA−1/2. Since the identity matrix commutes with every other
matrix, we obtain

0 < A1/2B−1A1/2 = (A−1/2BA−1/2)−1 < I

which is equivalent to 0 < B−1 < A−1 reasoning as before.
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Proof of Theorem 12.46. By assumption the curve t 7→ Λ(t) is ample, hence Λ(t) ∩ Γ = {0} and
t 7→ ΛΓ(t) is smooth for t > 0 small enough. We divide the proof into three parts: (i) we compute
the coordinate presentation of the reduced curve. (ii) we show that the reduced curve, extended
by continuity at t = 0, is smooth. (iii) we prove that the reduced curve is regular.

(i). Let us consider Darboux coordinates in the symplectic space Σ such that

Σ = {(p, q) : p, q ∈ R
n}, Λ(t) = {(p, S(t)p)| p ∈ R

n}, S(0) = 0.

Morover we can assume also R
n = R

k ⊕ R
n−k, where Γ = {0} ⊕ R

n−k. According to this splitting
we have the decomposition p = (p1, p2) and q = (q1, q2). The subspaces Γ and Γ∠ are described by
the equations

Γ = {(p, q) : p1 = 0, q = 0}, Γ∠ = {(p, q) : q2 = 0}
and (p1, q1) are natural coordinates for the reduced space Γ∠/Γ. Up to a symplectic change of
coordinates preserving the splitting R

n = R
k ⊕ R

n−k we can assume that

S(t) =

(
S11(t) S12(t)
S∗
12(t) S22(t)

)
, with Ṡ(0) =

(
Ik 0
0 0

)
. (12.31)

where Ik is the k × k identity matrix. Finally, from the fact that S is monotone and ample, that
implies S(t) > 0 for each t > 0, it follows

S11(t) > 0, S22(t) > 0, ∀ t > 0. (12.32)

Then we can compute the coordinate expression of the reduced curve, i.e. the matrix SΓ(t) such
that

ΛΓ(t) = {(p1, SΓ(t)p1), p1 ∈ R
k}.

From the identity

Λ(t) ∩ Γ∠ = {(p, S(t)p), S(t)p ∈ R
k} =

{(
S−1(t)

(
q1
0

)
,

(
q1
0

))
, q1 ∈ R

k

}
(12.33)

one gets the key relation SΓ(t)−1 = (S(t)−1)11.
Thus the matrix expression of the reduced curve ΛΓ(t) in L(Γ∠/Γ) is recovered simply by

considering it as a map of (p1, q1) only, i.e.

S(t)p =

(
S11 S12
S∗
12 S22

)(
p1
p2

)
=

(
S11p1 + S12p2
S∗
12p1 + S22p2

)

from which we get S(t)p ∈ R
k if and only if S∗

12(t)p1 + S22(t)p2 = 0. Then

ΛΓ(t) = {(p1, S11p1 + S12p2) : S
∗
12(t)p1 + S22(t)p2 = 0}

= {(p1, (S11 − S12S−1
22 S

∗
12)p1)}

that means
SΓ = S11 − S12S−1

22 S
∗
12. (12.34)

(ii). By the coordinate presentation of SΓ(t) the only term that can give rise to singularities is
the inverse matrix S−1

22 (t). In particular, since by assumption t 7→ detS22(t) has a finite order zero
at t = 0, the a priori singularity can be only a finite order pole.
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To prove that the curve is smooth it is enough the to show that SΓ(t) → 0 for t → 0, i.e. the
curve remains bounded. This follows from the following

Claim I. As quadratic forms on R
k, we have the inequality 0 ≤ SΓ(t) ≤ S11(t).

Indeed S(t) symmetric and positive one has that its inverse S(t)−1 is symmetric and positive also.
This implies that SΓ(t)−1 = (S(t)−1)11 > 0 and so is SΓ(t). This proves the left inequality of the
Claim I.

Moreover using (12.34) and the fact that S22 is positive definite (and so S−1
22 ) one gets

〈
(S11 − SΓ)p1, p1

〉
=
〈
S12S

−1
22 S

∗
12p1, p1

〉
=
〈
S−1
22 (S

∗
12p1), (S

∗
12p1)

〉
≥ 0.

Since S(t)→ 0 for t→ 0, clearly S11(t)→ 0 when t→ 0, that proves that SΓ(t)→ 0 also.
(iii). We are reduced to show that the derivative of t 7→ SΓ(t) at 0 is non degenerate matrix,

which is equivalent to show that t 7→ SΓ(t)−1 has a simple pole at t = 0.
We need the following lemma, whose proof is postponed at the end of the proof of Theorem

12.46.

Lemma 12.49. Let A(t) be a smooth family of symmetric nonnegative n × n matrices. If the
condition rank(A, Ȧ, . . . , A(N))|t=0 = n is satisfied for some N , then there exists ε0 > 0 such that
εtA(0) <

∫ t
0 A(τ)dτ for all ε < ε0 and t > 0 small enough.

Applying the Lemma to the family A(t) = Ṡ(t) one obtains (see also (12.31))

〈S(t)p, p〉 > εt|p1|2

for all 0 < ε < ε0, any p ∈ R
n and any small time t > 0.

Now let p1 ∈ R
k be arbitrary and extend it to a vector p = (p1, p2) ∈ R

n such that (p, S(t)p) ∈
Λ(t) ∩ Γ∠ (i.e. S(t)p = (q1 0)T or equivalently S(t)−1(q1, 0) = (p1, p2)). This implies in particular
that SΓ(t)p1 = q1 and 〈

SΓ(t)p1, p1
〉
= 〈S(t)p, p〉 ≥ εt|p1|2,

This identity can be rewritten as SΓ(t) > εt Ik > 0 and implies by Lemma 12.48

0 < SΓ(t)−1 <
1

εt
Ik

which completes the proof.

Proof of Lemma 12.49. We reduce the proof of the Lemma to the following statement:

Claim II. There exists c, N̂ > 0 such that for any sufficiently small ε, t > 0

det

(∫ t

0
A(τ) − εA(0) dτ

)
> c tN̂ .

Moreover c, N̂ depends only on the 2N -th Taylor polynomial of A(t).

Indeed fix t0 > 0. Since A(t) ≥ 0 and A(t) is not the zero family, then
∫ t0
0 A(τ)dτ > 0. Hence, for

a fixed t0, there exists ε small enough such that
∫ t0
0 A(τ) − εA(0) dτ > 0. Assume now that the

matrix St =
∫ t
0 A(τ) − εA(0) dτ > 0 is not strictly positive for some 0 < t < t0, then detS(τ) = 0

for some τ ∈ [t, t0], that is a contradiction.
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We now prove Claim II. We may assume that t 7→ A(t) is analytic. Indeed, by continuity
of the determinant, the statement remains true if we substitute A(t) by its Taylor polynomial of
sufficiently big order.

An analytic one parameter family of symmetric matrices t 7→ A(t) can be simultaneously di-
agonalized (see ??), in the sense that there exists an analytic (with respect to t) family of vectors
vi(t), with i = 1, . . . , n, such that

〈A(t)x, x〉 =
n∑

i=1

〈vi(t), x〉2 .

In other words A(t) = V (t)V (t)∗, where V (t) is the n × n matrix whose columns are the vectors
vi(t). (Notice that some of these vector can vanish at 0 or even vanish identically.)

Let us now consider the flag E1 ⊂ E2 ⊂ . . . ⊂ EN = R
n defined as follows

Ei = span{v(l)j , 1 ≤ j ≤ n, 0 ≤ l ≤ i}.

Notice that this flag is finite by our assumption on the rank of the consecutive derivatives of A(t)
and N is the same as in the statement of the Lemma. We then choose coordinates in R

n adapted
to this flag (i.e. the spaces Ei are coordinate subspaces) and define the following integers (here
e1, . . . , en is the standard basis of Rn)

mi = min{j : ei ∈ Ej}, i = 1, . . . , n.

In other words, when written in this new coordinate set, mi is the order of the first nonzero term in
the Taylor expansion of the i-th row of the matrix V (t). Then we introduce a quasi-homogeneous
family of matrices V̂ (t): the i-th row of V̂ (t) is the mi-homogeneous part of the i-the row of V (t).
Then we define Â(t) := V̂ (t)V̂ (t)∗. The columns of the matrix Â(t) satisfies the assumption of
Lemma 12.47, then

∫ t
0 Â(τ)dτ > 0 for every t > 0.

If we denote the entries A(t) = {aij(t)}ni,j=1 and Â(t) = {âij(t)}ni,j=1 we obtain

âij(t) = cijt
mi+mj , aij(t) = âij(t) +O(tmi+mj+1),

for suitable constants cij (some of them may be zero).
Then we let Aε(t) := A(t)− εA(0) = {aεij(t)}ni,j=1. Of course aεij(t) = cεijt

mi+mj +O(tmi+mj+1)
where

cεij =

{
(1− ε)cij , if mi +mj = 0,

cij , if mi +mj > 0.

From the equality ∫ t

0
aεij(τ)dτ = tmi+mj+1

(
cεij

mi +mj + 1
+O(t)

)

one gets

det

(∫ t

0
Aε(τ)dτ

)
= tn+2

∑N
i=1mi

(
det

(
cεij

mi +mj + 1

)
+O(t)

)

On the other hand

det

(∫ t

0
Â(τ)dτ

)
= tn+2

∑N
i=1mi

(
det

(
cij

mi +mj + 1

)
+O(t)

)
> 0
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hence det
(

cεij
mi+mj+1

)
> 0 for small ε. The proof is completed by setting

c := det

(
cij

mi +mj + 1

)
, N̂ := n+ 2

N∑

i=1

mi

12.7 Conjugate points in L(Σ)

In this section we introduce the notion of conjugate point for a curve in the Lagrange Grassmannian.
In the next chapter we explain why this notion coincide with the one given for extremal paths in
sub-Riemannian geometry.

Definition 12.50. Let Λ(t) be a monotone curve in L(Σ). We say that Λ(t) is conjugate to Λ(0)
if Λ(t) ∩ Λ(0) 6= {0}.

As a consequence of Lemma 12.43, we have the following immediate corollary.

Corollary 12.51. Conjugate points on a monotone and ample curve in L(Σ) are isolated.

The following two results describe general properties of conjugate points

Theorem 12.52. Let Λ(t),∆(t) two ample monotone curves in L(Σ) defined on R such that

(i) Σ = Λ(t)⊕∆(t) for every t ≥ 0,

(ii) Λ̇(t) ≤ 0, ∆̇(t) ≥ 0, as quadratic forms.

Then there exists no τ > 0 such that Λ(τ) is conjugate to Λ(0). Moreover ∃ limt→+∞Λ(t) = Λ(∞).

Proof. Fix coordinates induced by some Lagrangian splitting of Σ in such a way that SΛ(0) = 0 and
S∆(0) = I. The monotonicity assumption implies that t 7→ SΛ(t) (resp. t 7→ S∆(t)) is a monotone
increasing (resp. decreasing) curve in the space of symmetric matrices. Moreover the tranversality
of Λ(t) and ∆(t) implies that S∆(t)− SΛ(t) is a non degenerate matrix for all t. Hence

0 < SΛ(t) < S∆(t) < I, for all t > 0.

In particular Λ(t) never leaves the coordinate neighborhood under consideration, the subspace Λ(t)
is always traversal to Λ(0) for t > 0 and has a limit Λ(∞) whose coordinate representation is
SΛ(∞) = limt→+∞ SΛ(t).

Theorem 12.53. Let Λs(t), for t, s ∈ [0, 1] be an homotopy of curves in L(Σ) such that Λs(0) = Λ
for s ∈ [0, 1]. Assume that

(i) Λs(·) is monotone and ample for every s ∈ [0, 1],

(ii) Λ0(·),Λ1(·) and Λs(1), for s ∈ [0, 1], contains no conjugate points to Λ.

Then no curve t 7→ Λs(t) contains conjugate points to Λ.
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Proof. Let us consider the open chart Λ⋔ defined by all the Lagrangian subspaces traversal to Λ.
The statement is equivalent to prove that Λs(t) ∈ Λ⋔ for all t > 0 and s ∈ [0, 1]. Let us fix
coordinates induced by some Lagrangian splitting Σ = Λ⊕∆ in such a way that Λ = {(p, 0)} and

Λs(t) = {(Bs(t)q, q)}

for all s and t > 0 (at least for t small enough, indeed by ampleness Λs(t) ∈ Λ⋔ for t small).
Moreover we can assume that Bs(t) is a monotone increasing family of symmetric matrices.

Notice that xTBs(τ)x→ −∞ for every x ∈ R
n when τ → 0+, due to the fact that Λs(0) = Λ is

out of the coordinate chart. Moreover, a necessary condition for Λs(t) to be conjugate to Λ is that
there exists a nonzero x such that xTBs(τ)x→∞ for τ → t.

It is then enough to show that, for all x ∈ R
n the function (t, s) 7→ xTBs(t)x is bounded.

Indeed by assumptions t 7→ xTB0(t)x and t 7→ xTB1(t)x are monotone increasing and bounded up
to t = 1. Hence the continuous family of values Ms := xTBs(1)x is weel defined and bounded for
all s. The monotonicity implies that actually xTBs(t)x < +∞ for all values of t, s ∈ [0, 1]. (See
also Figure 12.7).

−∞

+∞

xTB0(1)x
xTB1(1)x

xTBs(1)x

xTBs(t)x

s

b

Figure 12.1: Proof of Theorem 12.53

12.8 Comparison theorems for regular curves

In this last section we prove two comparison theorems for regular monotone curves in the Lagrange
Grassmannian.

Corollary 12.54. Let Λ(t) be a monotone and regular curve in the Lagrange Grassmannian such
that RΛ(t) ≤ 0. Then Λ(t) contains no conjugate points to Λ(0).

Proof. This is a direct consequence of Theorem 12.52
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Theorem 12.55. Let Λ(t) be a monotone and regular curve in the Lagrange Grassmannian. As-
sume that there exists k ≥ 0 such that for all t ≥ 0

(i) RΛ(t) ≤ k Id. Then, if Λ(t) is conjugate to Λ(0), we have t ≥ π√
k
.

(ii) 1
ntraceRΛ(t) ≥ k. Then for every t ≥ 0 there exists τ ∈ [t, t+ π√

k
] such that Λ(τ) is conjugate

to Λ(0).

We stress that assumption (i) means that all the eigenvalues of RΛ(t) are smaller or equal than
k, while (ii) requires only that the average of the eigenvalues is bigger or equal than k.

Remark 12.56. Notice that the estimates of Theorem 12.55 are sharp, as it is immediately seen by
considering the example of a 1-dimensional curve of constant velocity (see Example 12.35).

Proof. (i). Consider the real function

ϕ : R→]0,
π√
k
[, ϕ(t) =

1√
k
(arctan

√
kt+

π

2
)

Using that ϕ̇(t) = (1 + kt2)−1 it is easy to show that the Schwarzian derivative of ϕ is

Rϕ(t) = −
k

(1 + kt2)2
.

Thus using ϕ as a reparametrization we find, by Proposition 12.36

RΛϕ(t) = ϕ̇2RΛ(ϕ(t)) +Rϕ(t)Id

=
1

(1 + kt2)2
(RΛ(ϕ(t)) − kId) ≤ 0.

By Corollary 12.54 the curve Λ ◦ ϕ has no conjugate points, i.e. Λ has no conjugate points in the
interval ]0, π√

k
[.

(ii). We prove the claim by showing that the curve Λ(t), on every interval of length π/
√
k has

non trivial intersection with every subspace (hence in particular with Λ(0)). This is equivalent to
prove that Λ(t) is not contained in a single coordinate chart for a whole interval of length π/

√
k.

Assume by contradiction that Λ(t) is contained in one coordinate chart. Then there exists
coordinates such that Λ(t) = {(p, S(t)p)} and we can write the coordinate expression for the
curvature:

RΛ(t) = Ḃ(t)−B(t)2, where B(t) = (2S(t))−1S̈(t).

Let now b(t) := traceB(t). Computing the trace in both sides of equality

Ḃ(t) = B2(t) +RΛ(t),

we get
ḃ(t) = trace(B2(t)) + traceRΛ(t). (12.35)

Lemma 12.57. For every n× n symmetric matrix S the following inequality holds true

trace(S2) ≥ 1

n
(traceS)2. (12.36)
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Proof. For every symmetric matrix S there exists a matrix M such that MSM = D is diagonal.
Since trace(MAM−1) = trace(A) for every matrix A, it is enough to prove the inequality (12.36)
for a diagonal matrix D = diag(λ1, . . . , λn). In this case (12.36) reduces to the Cauchy-Schwartz
inequality

n∑

i=1

λ2i ≥
1

n

(
n∑

i=1

λi

)2

.

Applying Lemma 12.57 to (12.35) and using the assumption (ii) one gets

ḃ(t) ≥ 1

n
b2(t) + nk, (12.37)

By standard results in ODE theory we have b(t) ≥ ϕ(t) , where ϕ(t) is the solution of the differential
equation

ϕ̇(t) =
1

n
ϕ2(t) + nk (12.38)

The solution for (12.38), with initial datum ϕ(t0) = 0, is explicit and given by

ϕ(t) = n
√
k tan(

√
k(t− t0)).

This solution is defined on an interval of measure π/
√
k. Thus the inequality b(t) ≥ ϕ(t) completes

the proof.
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Chapter 13

Jacobi curves

Now we are ready to introduce the main object of this part of the book, i.e. the Jacobi curve
associated with a normal extremal. Heuristically, we would like to extract geometric properties of
the sub-Riemannian structure by studying the symplectic invariants of its geodesic flow, that is the
flow of ~H. The simplest idea is to look for invariants in its linearization.

As we explain in the next sections, this object is naturally related to geodesic variations, and
generalizes the notion of Jacobi fields in Riemannian geometry to more general geometric structures.

In this chapter we consider a sub-Riemannian structure (M,U, f) on a smooth n-dimensional
manifold M and we denote as usual by H : T ∗M → R its sub-Riemannian Hamiltonian.

13.1 From Jacobi fields to Jacobi curves

Fix a covector λ ∈ T ∗M , with π(λ) = q, and consider the normal extremal starting from q and
associated with λ, i.e.

λ(t) = et
~H(λ), γ(t) = π(λ(t)). (i.e. λ(t) ∈ T ∗

γ(t)M.)

For any ξ ∈ Tλ(T ∗M) we can define a vector field along the extremal λ(t) as follows

X(t) := et
~H

∗ ξ ∈ Tλ(t)(T ∗M)

The set of vector fields obtained in this way is a 2n-dimensional vector space which is the space of
Jacobi fields along the extremal. For an Hamiltonian H corresponding to a Riemannian structure,
the projection π∗ gives an isomorphisms between the space of Jacobi fields along the extremal and
the classical space of Jacobi fields along the geodesic γ(t) = π(λ(t)).

Notice that this definition, equivalent to the standard one in Riemannian geometry, does
not need curvature or connection, and can be extended naturally for any strongly normal sub-
Riemannian geodesic.

In Riemannian geometry, the study of one half of this vector space, namely the subspace of
classical Jacobi fields vanishing at zero, carries informations about conjugate points along the
given geodesic. By the aforementioned isomorphism, this corresponds to the subspace of Jacobi
fields along the extremal such that π∗X(0) = 0. This motivates the following construction: For
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any λ ∈ T ∗M , we denote Vλ := kerπ∗|λ the vertical subspace. We could study the whole family of
(classical) Jacobi fields (vanishing at zero) by means of the family of subspaces along the extremal

L(t) := et
~H

∗ Vλ ⊂ Tλ(t)(T ∗M).

Notice that actually, being et
~H

∗ a symplectic transformation and Vλ a Lagrangian subspace, the
subspace L(t) is a Lagrangian subspace of Tλ(t)(T

∗M).

13.1.1 Jacobi curves

The theory of curves in the Lagrange Grassmannian developed in Chapter ?? is an efficient tool
to study family of Lagrangian subspaces contained in a single symplectic vector space. It is then
convenient to modify the construction of the previous section in order to collect the informations
about the linearization of the Hamiltonian flow into a family of Lagrangian subspaces at a fixed
tangent space.

By definition, the pushforward of the flow of ~H maps the tangent space to T ∗M at the point
λ(t) back to the tangent space to T ∗M at λ:

e−t
~H

∗ : Tλ(t)(T
∗M)→ Tλ(T

∗M).

If we then restrict the action of the pushforward e−t ~H∗ to the vertical subspace at λ(t), i.e. the
tangent space Tλ(t)(T

∗
γ(t)M) at the point λ(t) to the fiber T ∗

γ(t)M , we define a one parameter family

of n-dimensional subspaces in the 2n-dimensional vector space Tλ(T
∗M). This family of subspaces

is a curve in the Lagrangian Grassmannian L(Tλ(T
∗M)).

Notation. In the following we use the notation Vλ := Tλ(T
∗
qM) for the vertical subspace at

the point λ ∈ T ∗M , i.e. the tangent space at λ to the fiber T ∗
qM , where q = π(λ). Being the

tangent space to a vector space, sometimes it will be useful to identify the vertical space Vλ with
the vector space itself, namely Vλ ≃ T ∗

qM .

Definition 13.1. Let λ ∈ T ∗M . The Jacobi curve at the point λ is defined as follows

Jλ(t) := e−t
~H

∗ Vλ(t), (13.1)

where λ(t) := et
~H(λ) and γ(t) = π(λ(t)). Notice that Jλ(t) ⊂ Tλ(T ∗M) and Jλ(0) = Vλ = Tλ(T

∗
qM)

is vertical.

As discussed in Chapter 12, the tangent vector to a curve in the Lagrange Gassmannian can be
interpreted as a quadratic form. In the case of a Jacobi curve Jλ(t) its tangent vector is a quadratic
form J̇λ(t) : Jλ(t)→ R.

Proposition 13.2. The Jacobi curve Jλ(t) satisfies the following properties:

(i) Jλ(t+ s) = e−t ~H∗ Jλ(t)(s), for all t, s ≥ 0,

(ii) J̇λ(0) = −2H|T ∗
qM as quadratic forms on Vλ ≃ T ∗

qM .

(iii) rank J̇λ(t) = rankH|T ∗

γ(t)
M
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Proof. Claim (i) is a consequence of the semigroup property of the family {e−t ~H∗ }t≥0.

To prove (ii), introduce canonical coordinates (p, x) in the cotangent bundle. Fix ξ ∈ Vλ. The

smooth family of vectors defined by ξ(t) = e−t ~H∗ ξ (considering ξ as a constant vertical vector field)
is a smooth extension of ξ, i.e. it satisfies ξ(0) = ξ and ξ(t) ∈ Jλ(t). Therefore, by (12.8)

J̇λ(0)ξ = σ(ξ, ξ̇) = σ

(
ξ,
d

dt

∣∣∣∣
t=0

e−t
~H

∗ ξ

)
= σ(ξ, [ ~H, ξ]). (13.2)

To compute the last quantity we use the following elementary, although very useful, property of
the symplectic form σ.

Lemma 13.3. Let ξ ∈ Vλ a vertical vector. Then, for any η ∈ Tλ(T ∗M)

σ(ξ, η) = 〈ξ, π∗η〉, (13.3)

where we used the canonical identification Vλ = T ∗
qM .

Proof. In any Darboux basis induced by canonical local coordinates (p, x) on T ∗M , we have σ =∑n
i=1 dpi ∧ dxi and ξ =

∑n
i=1 ξ

i∂pi . The result follows immediately.

To complete the proof of point (ii) it is enough to compute in coordinates

π∗[ ~H, ξ] = π∗

[
∂H

∂p

∂

∂x
− ∂H

∂x

∂

∂p
, ξ
∂

∂p

]
= −∂

2H

∂p2
ξ
∂

∂x
,

Hence by Lemma 13.3 and the fact that H is quadratic on fibers one gets

σ(ξ, [ ~H, ξ]) = −
〈
ξ,
∂2H

∂p2
ξ

〉
= −2H(ξ).

(iii). The statement for t = 0 is a direct consequence of (ii). Using property (i) it is easily seen that
the quadratic forms associated with the derivatives at different times are related by the formula

J̇λ(t) ◦ et
~H

∗ = J̇λ(t)(0). (13.4)

Since e−t ~H∗ is a symplectic transformation, it preserves the sign and the rank of the quadratic form.1

Remark 13.4. Notice that claim (iii) of Proposition 13.2 implies that rank of the derivative of the
Jacobi curve is equal to the rank of the sub-Riemannian structure. Hence the curve is regular if and
only if it is associated with a Riemannian structure. In this case of course it is strictly monotone,
namely J̇λ(t) < 0 for all t.

Corollary 13.5. The Jacobi curve Jλ(t) associated with a sub-Riemannian extremal is monotone
nonincreasing for every λ ∈ T ∗M .

1Notice that J̇λ(t), J̇λ(t)(0) are defined on Jλ(t), Jλ(t)(0) respectively, and Jλ(t) = e−t ~H
∗ Jλ(t)(0).
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13.2 Conjugate points and optimality

At this stage we have two possible definition for conjugate points along normal geodesics. On one
hand we have singular points of the exponential map along the extremal path, on the other hand
we can consider conjugate points of the associated Jacobi curve. The next result show that actually
the two definition coincide.

Proposition 13.6. Let γ(t) = Eq(tλ) be a normal geodesic starting from q with initial covector λ.
Denote by Jλ(t) its Jacobi curve. Then for s > 0

γ(s) is conjugate to γ(0) ⇐⇒ Jλ(s) is conjugate to Jλ(0).

Proof. By Definition 7.31, γ(s) is conjugate to γ(0) if sλ is a critical point of the exponential
map Eq. This is equivalent to say that the differential of the map from T ∗

qM to M defined by

λ 7→ π ◦es ~H (λ) is not surjective at the point λ, i.e. the image of the differential es
~H

∗ has a nontrivial
intersection with the kernel of the projection π∗

es
~H

∗ Jλ(0) ∩ Tλ(s)T ∗
γ(s)M 6= {0}. (13.5)

Applying the linear invertible transformation e−s ~H∗ to both subspaces one gets that (13.5) is equiv-
alent to

Jλ(0) ∩ Jλ(s) 6= {0}

which means by definition that Jλ(s) is conjugate to Jλ(0).

The next result shows that, as soon as we have a segment of points that are conjugate to the
initial one, the segment is also abnormal.

Theorem 13.7. Let γ : [0, 1]→M be a normal extremal path such that γ|[0,s] is not abnormal for
all 0 < s ≤ 1. Assume γ|[t0,t1] is a curve of conjugate points to γ(0). Then the restriction γ|[t0,t1]
is also abnormal.

Remark 13.8. Recall that if a curve γ : [0, T ] → M is a strictly normal trajectory, it can happen
that a piece of it is abnormal as well. If the trajectory is strongly normal, then if t0, t1 satisfy the
assumptions of Theorem 13.7 necessarily t0 > 0.

Proof. Let us denote by Jλ(t) the Jacobi curve associated with γ(t). From Proposition 13.6 it
follows that Jλ(t) ∩ Jλ(0) 6= {0} for each t ∈ [t0, t1]. We now show that actually this implies

Jλ(0) ∩
⋂

t∈[t0,t1]
Jλ(t) 6= {0}. (13.6)

We can assume that the whole piece of the Jacobi curve Jλ(t), with t0 ≤ t ≤ t1, is contained in a
single coordinate chart. Otherwise we can cover [t0, t1] with such intervals and repeat the argument
on each of them. Let us fix coordinates given by a Lagrangian splitting in such a way that

Jλ(t) = {(p, S(t)p), p ∈ R
n}, Jλ(0) = {(p, 0), p ∈ R

n}
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Moreover we can assume that S(t) ≤ 0 for every t0 ≤ t ≤ t1, i.e. is non positive definite and
monotone decreasing, 2 In particular Jλ(t1) ∩ Jλ(0) 6= {0} if and only if there exists a vector v
such that S(t1)v = 0. Since the map t 7→ vTS(t)v is nonpositive and decreasing this means that
S(t)v = 0 for all t ∈ [t0, t1], thus

Jλ(0) ∩ Jλ(t1) ⊂ Jλ(0) ∩
⋂

t∈[t0,t1]
Jλ(t) (13.7)

that implies that actually we have the equality in (13.7).
We are left to show that if a Jacobi curve Jλ(t) is such that every t is a conjugate point for

0 ≤ τ ≤ τ , then the corresponding extremal is also abnormal. Indeed let us fix an element ξ 6= 0
such that

ξ ∈
⋂

t∈[0,τ ]
Jλ(t)

which is non-empty by the above discussion. Then we consider the vertical vector field

ξ(t) = et
~H

∗ ξ ∈ Tλ(t)(T ∗
γ(t)M), 0 ≤ t ≤ τ.

By construction, the vector field ξ is preserved by the Hamiltonian field, i.e. et
~H

∗ ξ = ξ, that implies
[ ~H, ξ](λ(t)) = 0. Then the statement is proved by the following

Exercise 13.9. Define η(t) = ξ(λ(t)) ∈ T ∗
γ(t)M (by canonical identification Tλ(T

∗
qM) ≃ T ∗

qM).

Show that the identity [ ~H, ξ](λ(t)) = 0 rewrites in coordinates as follows

k∑

i=1

hi(η(t))
2 = 0, η̇(t) =

k∑

i=1

hi(λ(t))~hi(η(t)). (13.8)

Exercise 13.9 shows that η(t) is a family of covectors associated with the extremal path corre-
sponding to controls ui(t) = hi(λ(t)) and such that hi(η(t)) = 0, that means that it is abnormal.

Corollary 13.10. Let Jλ(t) be the Jacobi curve associated with λ ∈ T ∗M and γ(t) = π(λ(t)) the
associated sub-Riemannian extremal path. Then γ|[0,τ ] is not abnormal for all 0 ≤ τ ≤ t if and only
if Jλ(τ) ∩ Jλ(0) = {0} for all 0 ≤ τ ≤ t.

13.3 Reduction of the Jacobi curves by homogeneity

The Jacobi curve at point λ ∈ T ∗M parametrizes all the possible geodesic variations of the geodesic
associated with an initial covector λ. Since the variations in the direction of the motion are always
trivial, i.e. the trajectory remains the same up to parametrizations, one can reduce the space of
variation to an (n− 1)-dimensional one.

This idea is formalized by considering a reduction of the Jacobi curve in a smaller symplectic
space. As we show in the next section, this is a natural consequence of the homogeneity of the
sub-Riemannian Hamiltonian.

2Indeed it is proved that the only invariant of a pair of two Lagrangian subspaces in a symplectic space is the
dimension of the intersection, i.e. the rank of the difference rank(S(t)− S(0)). Add exercise
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Remark 13.11. This procedure was already exploited in Section 7.6, obtained by a direct argument
via Proposition 7.27. Indeed one can recognize that the procedure that reduced the equation for
conjugate points of one dimension corresponds exactly to the reduction by homogeneity of the
Jacobi curve associated to the problem.

We start with a technical lemma, whose proof is left as an exercise.

Lemma 13.12. Let Σ = Σ1 ⊕ Σ2 be a splitting of the symplectic space, with σ = σ1 ⊕ σ2. Let
Λi ∈ L(Σi) and define the curve Λ(t) := Λ1(t)⊕ Λ2(t) ∈ L(Σ). Then one has the splittings:

Λ̇(t) = Λ̇1(t)⊕ Λ̇2(t),

RΛ(t) = RΛ1(t)⊕RΛ2(t).

Consider now a Jacobi curve associated with λ ∈ T ∗M :

Jλ(t) = e−t
~H

∗ Vλ(t), Vλ = Tλ(T
∗
π(λ)M).

Denote by δα : T ∗M → T ∗M the fiberwise dilation δα(λ) = αλ, where α > 0 .

Definition 13.13. The Euler vector field ~E ∈ Vec(T ∗M) is the vertical vector field defined by

~E(λ) =
d

ds

∣∣∣∣
s=1

δs(λ), λ ∈ T ∗M.

It is easy to see that in canonical coordinates (x, ξ) it satisfies ~E =
∑n

i=1 ξi
∂
∂ξi

and the following
identity holds

et
~Eλ = etλ, i.e. et

~E(ξ, x) = (etξ, x).

Exercise 13.14. Prove that the Euler vector field is characterized by the identity

i ~E σ = s, s = Liouville 1-form in T ∗M.

Lemma 13.15. We have the identity e−t ~H∗ ~E = ~E − t ~H. In particular [ ~H, ~E] = − ~H.

Proof. The homogeneity property (7.31) of the Hamiltonian can be rewritten as follows

et
~H(δsλ) = δs(e

st ~H(λ)), ∀ s, t > 0.

Applying δ−s to both sides and changing t into −t one gets the identity

δ−s ◦ e−t ~H ◦ δs = e−st
~H . (13.9)

Computing the 2nd order mixed partial derivative at (t, s) = (0, 1) in (13.9) one gets, by (2.28),

that [ ~H, ~E] = − ~H. Thus, by (2.30) we have e−t ~H∗ ~E = ~E− t ~H, since every higher order commutator
vanishes.

Proposition 13.16. The subspace Σ̃ = span{~E, ~H} is invariant under the action of the Hamilto-
nian flow. Moreover {~E, ~H} is a Darboux basis on Σ̃ ∩H−1(1/2).
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Proof. The fact that Σ̃ is an invariant subspace is a consequence of the identities

e−t
~H

∗ ~E = ~E − t ~H, e−t
~H

∗ ~H = 0.

Moreover, on the level set H−1(1/2), we have by homogeneity of H w.r.t. p:

σ( ~E, ~H) = ~E(H) =
d

dt

∣∣∣∣
t=0

H(et
~E(p, x)) = p

∂H

∂p
= 2H = 1. (13.10)

It follows that {~E, ~H} is a Darboux basis for Σ̃.

In particular we can consider the the symplectic splitting Σ = Σ̃⊕ Σ̃∠.

Exercise 13.17. Prove the following intrinsic characterization of the skew-orthogonal to Σ̃:

Σ̃∠ = {ξ ∈ T ∗
λ (T

∗M) : 〈dλH, ξ〉 = 〈sλ, ξ〉 = 0}.

The assumptions of Lemma 13.12 are satisfied and we could split our Jacobi curve.

Definition 13.18. The reduced Jacobi curve is defined as follows

Ĵλ(t) := Jλ(t) ∩ Σ̃∠. (13.11)

Notice that, if we put V̂λ := Vλ ∩ TλH−1(1/2), we get

Ĵλ(0) = V̂λ, Ĵλ(t) = e−t
~H

∗ V̂λ.

Moreover we have the splitting

Jλ(t) = Ĵλ(t)⊕ R( ~E − t ~H).

We stress again that Ĵλ(t) is a curve of (n−1)-dimensional Lagrangian subspaces in the (2n−2)-
dimensional vector space Σ̃∠.

Exercise 13.19. With the notation above

(i) Show that the curvature of the curve Jλ(t) ∩ Σ̃ in Σ̃ is always zero.

(ii) Prove that Jλ(0) ∩ Jλ(s) 6= {0} if and only if Ĵλ(0) ∩ Ĵλ(s) 6= {0}.
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Chapter 14

Riemannian curvature

On a manifold, in general there is no canonical method for identifying tangent spaces at different
points, (or more generally fibers of a vector bundle at different points). Thus, we have to expect
that a notion of derivative for vector fields (or sections of a vector bundle), has to depend on certain
choices.

In our presentation we introduce the general notion of Ehresmann connection and we then we
discuss how this notion is related with the notion of parallel transport and covariant derivative
usually introduced in classical Riemannian geometry.

14.1 Ehresmann connection

Given a smooth fiber bundle E, with base M and canonical projection π : E → M , we denote by
Eq = π−1(q) the fiber at the point q ∈ M . The vertical distribution is by definition the collection
of subspaces in TE that are tangent to the fibers

V = {Vz}z∈E , Vz := kerπ∗,z = TzEπ(z) ⊂ TzE.

Definition 14.1. Let E be a smooth fiber bundle. An Ehresmann connection on E is a smooth
vector distribution H in E satisfying

H = {Hz}z∈E , TzE = Vz ⊕Hz.

Notice that V, being the kernel of the pushforward π∗, is canonically associated with the fibre
bundle. Defining a connection means exactly to define a canonical complement to this distribution.
For this reason H is also called horizontal distribution.

Definition 14.2. Let X ∈ Vec(M). The horizontal lift of X is the unique vector field∇X ∈ Vec(E)
such that

∇X(z) ∈ Hz, π∗∇X = X, ∀ z ∈ E. (14.1)

The uniqueness follows from the fact that π∗,z : TzE → Tπ(z)M is an isomorphism when restricted
to Hz. Indeed π∗,z is a surjective linear map with ker π∗,z = Vz.

Notation. In the following we will refer also at ∇ as the connection on E.
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Given a smooth curve γ : [0, T ] → M on the manifold M , the connection let us to define
the parallel transport along γ, i.e. a way to identify tangent vectors belonging to tangent spaces
at different points of the curve. Let Xt be a nonautonomous smooth vector field defined on a
neighborhood of γ, that is an extension of the velocity vector field of the curve1, i.e. such that

γ̇(t) = Xt(γ(t)), ∀ t ∈ [0, T ].

Then consider the non autonomous vector field ∇Xt ∈ Vec(E) obtained by its lift.

Definition 14.3. Let γ : [0, T ]→M be a smooth curve. The parallel transport along γ is the map
Φ defined by the flow of ∇Xt

Φt0,t1 := −→exp
∫ t1

t0

∇Xsds : Eγ(t0) → Eγ(t1), for 0 < t0 < t1 < T. (14.2)

In the general case we need some extra assumptions on the vector field to ensure that (14.2)
exists (even for small time t > 0) since the existence time of a solution also depend on the point
on the fiber. For instance if we the fibers are compact, then it is possible to find such t > 0.

Exercise 14.4. Show that the parallel transport map sends fibers to fibers and does not depend
on the extension of the vector field Xt. (Hint: consider two extensions and use the existence and
uniqueness of the flow.)

14.1.1 Curvature of an Ehresmann connection

Assume that π : E → M is a smooth fiber bundle and let ∇ be a connection on E, defining the
splitting E = V ⊕H. Given an element z ∈ E we will also denote by zhor (resp. zver) its projection
on the horizontal (resp. vertical) subspace at that point.

The commutator of two vertical vector field is always vertical. The curvature operator associated
with the connection computes if the same holds true for two horizontal vector fields.

Definition 14.5. Let E be a smooth fiber bundle and ∇ a connection on E. Let X,Y ∈ Vec(M)
and define

R(X,Y ) := [∇X ,∇Y ]ver (14.3)

The operator R is called the curvature of the connection.

Notice that, given a vector field on E, its horizontal part coincide, by definition, with the lift
of its projection. In particular

[∇X ,∇Y ]hor = ∇[X,Y ], (i.e. π∗[∇X ,∇Y ] = [X,Y ])

Hence R(X,Y ) computes the nontrivial part of the bracket between the lift of X and Y and R ≡ 0
if and only if the horizontal distribution H is involutive.

The curvature R(X,Y ) is also rewritten in the following more classical way

R(X,Y ) = [∇X ,∇Y ]−∇[X,Y ].

= ∇X∇Y −∇X∇Y −∇[X,Y ].

Next we show that R is actually a tensor on TqM , i.e. the value of R(X,Y ) at q depends only
on the value of X and Y at the point q.

1this is always possible with a (maybe non autonomous) vector field.
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Proposition 14.6. R is a skew symmetric tensor on M .

Proof. The skew-symmetry is immediate. To prove that the value of R(X,Y ) at q depends only
on the value of X and Y at the point q, it is sufficient to prove that R is linear on functions. By
skew-symmetry, we are reduced to prove that R is linear in the first argument, namely

R(aX, Y ) = aR(X,Y ), where a ∈ C∞(M).

Notice that the symbol a in the right hand side stands for the function π∗a = a ◦ π in C∞(E), that
is constant on fibers.

By definition of lift of a vector field it is easy to prove the identities ∇aX = a∇X and ∇Xa = Xa
for every a ∈ C∞(M). Applying the definition of ∇ and the Leibnitz rule for the Lie bracket one
gets

R(aX, Y ) = [∇aX ,∇Y ]−∇[aX,Y ]

= a[∇X ,∇Y ]− (∇Y a)∇X −∇a[X,Y ]−(Y a)X

= a[∇X ,∇Y ]− (Y a)∇X − a∇[X,Y ] + (Y a)∇X
= aR(X,Y ).

14.1.2 Linear Ehresmann connections

Assume now that E is a vector bundle on M (i.e. each fiber Eq = π−1(q) has a natural structure
of vector space). In this case it is natural to introduce a notion of linear Ehresmann connection ∇
on E.

Given a vector bundle π : E →M , we denote by C∞L (E) the set of smooth functions on E that
are linear on fibers.

Remark 14.7. For a vector bundle π : E → M , the base manifold M can be considered immersed
in E as the zero section (see also Example 2.40). The “dual” version of this identification is the
inclusion i : C∞(M)→ C∞(E). Indeed any function in C∞(M) can be considered as a functions in
C∞(E) which is constant on fibers, i.e. more precisely a ∈ C∞(M) 7→ π∗a ∈ C∞(E).

Exercise 14.8. Show that a vector field on E is the lift of a vector field on M if and only if, as a
differential operator on C∞(E), it maps the subspace C∞(M) into itself.

After this discussion it is natural to give the following definition.

Definition 14.9. A linear connection on a vector bundle E on the base M is an Ehresmann
connection ∇ such that the lift ∇X of a vector field X ∈ Vec(M) satisfies the following property:
for every a ∈ C∞L (E) it holds ∇Xa ∈ C∞L (E).

Remark 14.10. Given a local basis of vector fields X1, . . . ,Xn on M we can build dual coordinates
(u1, . . . , un) on the fibers of E defining the functions ui(z) = 〈z,Xi(q)〉 where q = π(z). In this way

E = {(u, q), q ∈M,u ∈ R
n},

255



and the tangent space to E is splitted in TzE ≃ TqM ⊕ TzEq. A connection on E is determined by
the lift of the vector fields Xi, i = 1, . . . , n on the base manifold (recall that π∗∇Xi = Xi)

∇Xi = Xi +

n∑

j=1

aij(u, q)∂uj , i = 1, . . . , n, (14.4)

where aij ∈ C∞(E) are suitable smooth functions. Then ∇ is linear if and only if for every i, j the
function aij(u, q) =

∑n
k=1 Γ

k
ij(q)uk is linear with respect to u .

The smooth functions Γkij are also called the Christoffel symbols of the linear connection.

Exercise 14.11. Let γ be a smooth curve on the manifold such that γ̇(t) =
∑n

i=1 vi(t)Xi(γ(t)).
Show that the differential equation ξ̇(t) = ∇γ̇(t)ξ(t) for the parallel transport along γ are written

as u̇j =
∑

i,k Γ
k
ijviuk where (u1, . . . , un) are the vertical coordinates of ξ.

Notice that, for a linear connection, the parallel transport is defined by a first order linear
(nonautonomous) ODE. The existence of the flow is then guaranteed from stantard results form
ODE theory. Moreover, when it exists, the map Φt0,t1 is a linear transformation between fibers.

14.1.3 Covariant derivative and torsion for linear connections

Once a connection on a linear vector bundle E is given, we have a well defined linear parallel
transport map

Φt0,t1 := −→exp
∫ t1

t0

∇Xsds : Eγ(t0) → Eγ(t1), for 0 < t0 < t1 < T. (14.5)

If we consider the dual map of the parallel transport one can naturally introduce a non autonomous
linear flow on the dual bundle (notice the exchange of t0, t1 in the integral)

Φ∗
t0,t1 :=

(
−→exp

∫ t0

t1

∇Xsds

)∗
: E∗

γ(t0)
→ E∗

γ(t1)
, for 0 < t0 < t1 < T. (14.6)

The infinitesimal generator of this “adjoint” flow defines a linear parallel transport, hence a linear
connection, on the dual bundle E∗.

In what follows we will restrict our attention to the case of the vector bundle E = T ∗M and
we assume that a linear connection ∇ on T ∗M is given. Notice that, by the above discussion, all
the constructions can be equivalently performed on the dual bundle E∗ = TM .

For every vector field Y ∈ Vec(M) let us denote with Y ∗ ∈ C∞(T ∗M) the function

Y ∗(λ) = 〈λ, Y (q)〉 , q = π(z),

namely the smooth function on E associated with Y that is linear on fibers. This identification
between vector fields onM and linear functions on T ∗M permits us to define the covariant derivative
of vector fields.

Definition 14.12. Let X,Y ∈ Vec(M). We define ∇XY = Z if and only if ∇XY ∗ = Z∗ with
Z ∈ Vec(M).
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Notice that the definition is well-posed since ∇ is linear, hence ∇XY ∗ is a linear function and
there exists Z ∈ Vec(M) such that ∇XY ∗ = Z∗.2

Lemma 14.13. Let {X1, . . . ,Xn} be a local frame on M . Then ∇XiXj = ΓkijXk, where Γkij are
the Christoffel symbols of the connection ∇.

Proof. Let us prove this in the coordinates dual to our frame. In these coordinates, the linear
connection is specified by the lifts

∇Xi = Xi + Γkijuk∂uj , where uj(λ) = 〈λ,Xj〉 .

Moreover X∗
j = uj . Hence it is immediate to show ∇XiX

∗
j = ΓkijX

∗
k , and the lemma is proved.

We now introduce the torsion tensor of a linear connection on T ∗M . As usual, σ denotes the
canonical symplectic structure on T ∗M .

Definition 14.14. The torsion of a linear connection ∇ is the map T : Vec(M)2 → Vec(M) defined
by the identity

T (X,Y )∗ := σ(∇X ,∇Y ), ∀X,Y ∈ Vec(M). (14.7)

It is easy to check that T is actually a tensor, i.e. the value of T (X,Y ) at a point q depends only
on the values of X,Y at the point. The torsion computes how much the horizontal distribution H
is far from being Lagrangian. In particular H is Lagrangian if and only if T ≡ 0.

The classical formula for the torsion tensor, in terms of the covariant derivative, is recovered in
the following lemma.

Lemma 14.15. The torsion tensor satisfies the identity

T (X,Y ) = ∇XY −∇YX − [X,Y ]. (14.8)

Proof. We have to prove that T (X,Y )∗ = ∇XY ∗ −∇YX∗ − [X,Y ]∗. Notice that by definition of
the Liouville 1-form s ∈ Λ1(T ∗M), sλ = λ ◦π∗ we have X∗(λ) = 〈λ,X〉 = 〈sλ,∇X〉. Then we have,
using that σ = ds and the Cartan formula (4.52)

T (X,Y )∗ = ds(∇X ,∇Y )
= ∇X 〈s,∇Y 〉 − ∇Y 〈s,∇X〉 − 〈s, [∇X ,∇Y ]〉
= ∇X 〈s,∇Y 〉 − ∇Y 〈s,∇X〉 −

〈
s,∇[X,Y ]

〉

= ∇XY ∗ −∇YX∗ − [X,Y ]∗,

where in the second equality we used that 〈s, [∇X ,∇Y ]〉 = 〈s, [∇X ,∇Y ]hor〉 =
〈
s,∇[X,Y ]

〉
since the

Liouville form by definition depends only on the horizontal part of the vector.

Exercise 14.16. Show that a linear connection ∇ on a vector bundle E satisfies the following
Leibnitz rule

∇X(aY ) = a∇XY + (Xa)Y, for each a ∈ C∞(M).

2There is no confusion in the notation above since, by definition, ∇X it is well defined when applied to smooth
functions on T ∗M . Whenever it is applied to a vector field we follow the aforementioned convention.
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14.2 Riemannian connection

In this section we want to introduce the Levi-Civita connection on a Riemannian manifold M by
defining an Ehresmann connection on T ∗M via the Jacobi curve approach.

Recall that every Jacobi curve associated with a trajectory on a Riemannian manifold is regular.
Moreover, as showed in Chapter 12, every regular curve in the Lagrangian Grassmannian admits
a derivative curve, which defines a canonical complement to the curve itself. Hence, following
this approach, it is natural to introduce the Riemannian connection at λ ∈ T ∗M as the canonical
complement to the Jacobi curve defined at λ.

Definition 14.17. The Levi-Civita connection on T ∗M is the Ehresmann connection H is defined
by

Hλ = J◦
λ(0), λ ∈ T ∗M,

where as usual Jλ(t) denotes the Jacobi curve defined at the point λ ∈ T ∗M and J◦
λ denotes its

derivative curve.

The next proposition characterizes the Levi-Civita connection as the unique linear connection
on T ∗M that is linear, metric preserving and torsion free.

Proposition 14.18. The Levi-Civita connection satisfies the following properties:

(i) is a linear connection,

(ii) is torsion free,

(iii) is metric preserving, i.e. ∇XH = 0 for each vector field X ∈ Vec(M).

Proof. (i). It is enough to prove that the connection Hλ is 1-homogeneous, i.e.

Hcλ = δc∗Hλ, ∀ c > 0. (14.9)

Indeed in this case the functions aij ∈ C∞(T ∗M) defining the connection (see (14.4)) are 1-
homogeneous, hence linear as a consequence of Exercise 14.19.

Let us prove (14.9). The differential of the dilation on the fibers δc : T
∗M → T ∗M satisfies the

property δc∗(Tλ(T ∗
qM)) = Tcλ(T

∗
qM). From this identity and differentiating the identity

et
~H ◦ δc = δc ◦ ect ~H , ∀ c > 0, (14.10)

one easily gets that

Jcλ(t) = δc∗Jλ(ct), ∀ t ≥ 0, λ ∈ T ∗M. (14.11)

Indeed one has the following chain of identities

Jcλ(t) = e−t
~H

∗ (Tcλ(T
∗
qM))

= e−t
~H

∗ ◦ δc∗(Tλ(T ∗
qM)) (by (14.10))

= δc∗ ◦ e−ct ~H∗ (Tλ(T
∗
qM))

= δc∗Jλ(ct).
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Now we show that the same relation holds true also for the derivative curve, i.e.

J◦
cλ(t) = δc∗J

◦
λ(ct), ∀ t ≥ 0, λ ∈ T ∗M. (14.12)

Indeed one can check in coordinates (we denote as usual Jλ(t) = {(p, Sλ(t)p), p ∈ R
n}) that the

identity (14.11) is written as Scλ(t) =
1
cSλ(ct) thus Scλ(t)

−1 = cSλ(ct)
−1. From here3 one also gets

Bcλ(t) = cBλ(ct) and (14.12) follows from the identity S◦(t) = B−1(t) + S(t). (See also Exercise
12.22). In particular at t = 0 the identity (14.12) says that Hcλ = δc∗Hλ.

(ii). It is a direct consequence of the fact that J◦
λ(0) is a Lagrangian subspace of Tλ(T

∗M) for
every λ ∈ T ∗M , hence the symplectic form vanishes when applied to two horizontal vectors.

(iii). Again, for every X ∈ Vec(M), both ∇X and ~H are horizontal vector field. Since the
horizontal space is Lagrangian

∇XH = σ(∇X , ~H) = 0.

Exercise 14.19. Let f : Rn → R be a smooth function that satisfies f(αx) = αf(x) for every
x ∈ R

n and α ≥ 0. Then f is linear.

The following theorem says that a connection satisfying the three properties above is unique.
Then it characterize the Levi-Civita connection in terms of the structure constants of the Lie algebra
defined by an orthonormal frame.

Theorem 14.20. There is a unique Ehresmann connection ∇ satisfying the properties (i), (ii), and
(iii) of Proposition 14.18, that is the Levi-Civita connection. Its Christoffel symbols are computed
by

Γkij =
1

2
(ckij − cijk + cjki), (14.13)

where ckij are the smooth functions defined by the identity [Xi,Xj ] =
∑n

k=1 c
k
ijXk.

Proof. Let X1, . . . ,Xn be a local orthonormal frame for the Riemannian structure and let us con-
sider coordinates (q, u) in T ∗M , where the fiberwise coordinates u = (u1, . . . , un) are dual to the
orthonormal frame. From the linearity of the connection it follows that there exist smooth functions
Γkij :M → R (depending on q only) such that

∇Xi = Xi +
n∑

j=1

Γkijuk∂uj , i = 1, . . . , n.

In particular ∇XiXj = ΓkijXk. In these coordinates the Hamiltonian vector field associated with

the Riemannian Hamiltonian H = 1
2

∑n
i=1 u

2
i reads (see also Exercise ??)

~H =

n∑

i,j,k=1

uiXi + ckijuiuk∂uj ,

while the symplectic form σ is written (ν1, . . . , νn denotes the dual basis to X1, . . . ,Xn)

σ =

n∑

i,j,k=1

duk ∧ νk − ckijukνi ∧ νk.

3recall that B is the zero order term of the expansion of S−1.
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Since the horizontal space is Lagrangian, one has the relations

0 = σ(∇Xi ,∇Xj ) =
n∑

k=1

(Γkij − Γkji − ckij)uk, ∀ i, j = 1, . . . , n,

hence ckij = Γkij − Γkji for all i, j, k. Moreover the connection is metric, i.e. it satisfies

0 = ∇XiH =
n∑

j,k=1

Γkijukuj , ∀ i = 1, . . . , n.

The last identity implies that Γkij is skew-symmetric with respect to the pair (j, k), i.e. Γkij = −Γjik.
Thus combining the two identities one gets

ckij − cijk + cjki = (Γkij − Γkji)− (Γijk + Γikj) + (Γjki − Γjik)

= Γkij − Γjik = 2Γkij .

Remark 14.21. Notice that in the classical approach one can recover formula (14.13) from the
following particular case of the Koszul formula

Γkij = g(∇XiXj ,Xk) =
1

2
(g([Xi,Xj ],Xk)− g([Xj ,Xk],Xi) + g([Xk,Xi],Xj)) ,

that holds for every orthonormal basis X1, . . . ,Xn. Notice also that the Hamiltonian vector field is
written in coordinates ~H =

∑n
i=1 ui∇Xi , which gives another proof of the fact that it is horizontal.

Let X,Y,Z,W ∈ Vec(M). We define R(X,Y )Z =W if R(X,Y )Z∗ =W ∗.

Proposition 14.22 (Bianchi identity). For every X,Y,Z ∈ Vec(M) the following identity holds

R(X,Y )Z +R(Y,Z)X +R(Z,X)Y = 0. (14.14)

Proof. We will show that (14.14) is a consequence of the Jacobi identity (2.31). Using that ∇ is a
torsion free connection we can write

[X, [Y,Z]] = ∇X [Y,Z]−∇[Y,Z]X

= ∇X∇Y Z −∇X∇ZY −∇[Y,Z]X,

[Z, [X,Y ]] = ∇Z∇XY −∇Z∇YX −∇[X,Y ]Z,

[Y, [Z,X]] = ∇Y∇ZX −∇Y∇XZ −∇[Z,X]Y,

Then

0 = [X, [Y,Z]] + [Y, [Z,X]] + [Z, [X,Y ]]

= ∇X∇Y Z −∇X∇ZY −∇[Y,Z]X

+∇Z∇XY −∇Z∇YX −∇[X,Y ]Z

+∇Y∇ZX −∇Y∇XZ −∇[Z,X]Y

= R(X,Y )Z +R(Y,Z)X +R(Z,X)Y.
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Exercise 14.23. Prove the second Bianchi identity

(∇XR)(Y,Z,W ) + (∇YR)(Z,X,W ) + (∇ZR)(X,Y,W ) = 0, ∀X,Y,Z,W ∈ Vec(M).

(Hint: Expand the identity ∇[X,[Y,Z]]+[Y,[Z,X]]+[Z,[X,Y ]]W = 0 .)

Let us denote (X,Y,Z,W ) := 〈R(X,Y )Z,W 〉. Following this notation, the first Bianchi identity
can be rewritten as follows:

(X,Y,Z,W ) + (Z,X, Y,W ) + (Y,Z,X,W ) = 0, ∀X,Y,Z,W ∈ Vec(M). (14.15)

Remark 14.24. The property of the Riemann tensor can be reformulated as follows

(X,Y,Z,W ) = −(Y,X,Z,W ), (X,Y,Z,W ) = −(X,Y,W,Z). (14.16)

Proposition 14.25. For every X,Y,Z,W ∈ Vec(M) we have (X,Y,Z,W ) = (Z,W,X, Y ).

Proof. Using (14.15) four times we can write the identities

(X,Y,Z,W ) + (Z,X, Y,W ) + (Y,Z,X,W ) = 0,

(Y,Z,W,X) + (W,Y,Z,X) + (Z,W, Y,X) = 0,

(Z,W,X, Y ) + (X,Z,W, Y ) + (W,X,Z, Y ) = 0,

(W,X, Y,Z) + (Y,W,X,Z) + (X,Y,W,Z) = 0.

Summing all together and using the skew symmetry (14.16), one gets (X,Z,W, Y ) = (W,Y,X,Z).

Proposition 14.26. Assume that (X,Y,X,W ) = 0 for every X,Y,W ∈ Vec(M). Then

(X,Y,Z,W ) = 0 ∀X,Y,Z,W ∈ Vec(M).

Proof. By assumptions and the skew-simmetry properties (14.16) of the Riemann tensor we have
that (X,Y,Z,W ) = 0 whenever any two of the vector fields coincide. In particular

0 = (X,Y +W,Z, Y +W ) = (X,Y,Z,W ) + (X,W,Z, Y ). (14.17)

since the two extra terms that should appear in the expansion vanish by assumptions. Then (14.17)
can be rewritten as

(X,Y,Z,W ) = (Z,X, Y,W ),

i.e. the quantity (X,Y,Z,W ) is invariant by ciclic permutations of X,Y,Z. But the cyclic sum of
terms is zero by (14.15), hence (X,Y,Z,W ) = 0.

We end this section by summarizing the symmetry property of the Riemann curvature as follows

Corollary 14.27. There is a well defined map

R : ∧2TqM → ∧2TqM, R(X ∧ Y ) := R(X,Y ).

Moreover R̄ is skew-adjoint with respect to the induced scalar product on ∧2TqM , that means

〈
R(X ∧ Y ), Z ∧W

〉
=
〈
X ∧ Y,R(Z ∧W )

〉
.
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14.3 Relation with Hamiltonian curvature

In this section we compute the curvature of the Jacobi curve associated with a Riemannian geodesic
and we describe the relation with the Riemann curvature discussed in the previous section. As we
show, the curvature associated to a geodesic is a kind of sectional curvature operator in the direction
of the geodesic itself.

Definition 14.28. The Hamiltonian curvature tensor at λ ∈ T ∗M is the operator

Rλ := RJλ(0) : Vλ → Vλ.

In other words Rλ is the curvature of the Jacobi curve associated with λ at t = 0.

Proposition 14.29. Let ξ ∈ Vλ and V be a smooth vertical vector field extending ξ. Then

Rλ(ξ) = −[ ~H, [ ~H, V ]hor]ver(λ)

Proof. This is a direct consequence of Proposition 12.30. Indeed recall that the curvature of the
Jacobi curve is expressed through the composition

Rλ = J̇
◦
λ(0) ◦ J̇λ(0).

Moreover, being Jλ(0) = Vλ and J◦
λ(0) = Hλ we have that

πJ(0)J◦(0)(ξ) = ξhor, πJ◦(0)J(0)(η) = ηver.

FInally we can extend vectors in Jλ(0) (resp. J◦
λ(0)) by applying the Hamiltonian vector field

since Jλ(t) = et
~H

∗ Jλ(0) (resp. J◦
λ(t) = et

~H
∗ J◦

λ(0)). From these remarks we obtain the following
formulas

J̇λ(0)ξ = [ ~H, V ]hor, J̇
◦
λ(0)η = −[ ~H,W ]ver

for some V vertical (resp. W horizontal) extension of the vector ξ ∈ Vλ (reps. η ∈ Hλ).

Another immediate property of the curvature tensor is the homogeneity with respect to the
rescaling of the covector (that corresponds to reparametrization of the trajectory). Indeed by
choosing ϕ(t) = ct, with c > 0, in Proposition 12.36 one gets

Corollary 14.30. For every c > 0 we have Rcλ = c2Rλ.

If we use the Riemannian product to identify the tangent and the cotangent space at a point,
we recognize that Rλ is nothing but the sectional curvature operator where one entry is the tangent
vector γ̇ of the geodesic.

Let us denote by I : TM → T ∗M the isomorphism defined by the Riemannian scalar product
〈·|·〉. In particular I(v) = λ for λ ∈ T ∗

qM and v ∈ TqM if 〈λ,w〉 = 〈v|w〉 for all w ∈ TqM .
Let denote Hq = H|T ∗

qM . Recall that the differential of Hq can be interpreted as a linear map
DHq : T ∗

qM → TqM that sends λ ∈ T ∗
qM into DλHq seen as a linear functional on T ∗

qM , i.e. a
tangent vector. This map is actually the inverse of the isomorphism I.

Lemma 14.31. DλHq = I−1(λ).

Proof. It is a simple consequence of the formula H(λ) = 1
2

〈
λ, I−1(λ)

〉
.
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Corollary 14.32. Assume I(v) = λ, then ~H(λ) = ∇v.

Proof. Indeed, since ~H is an horizontal vector field, it is sufficient to show that π∗ ~H(λ) = v, which
is a consequence of Lemma 14.31. Indeed for every vertical vector ξ ∈ Tλ(T ∗

qM) one has

〈ξ, v〉 =
〈
ξ, I−1(λ)

〉
= DλH(ξ) = σ(ξ, ~H(λ)) =

〈
ξ, π∗ ~H(λ)

〉
.

By arbitrary of ξ ∈ Tλ(T ∗
qM) one has the equality v = π∗ ~H(λ).

Theorem 14.33. We have the following identity

RI(X)(I(Y )) = R(X,Y )X, ∀X,Y ∈ TqM. (14.18)

Proof. We have to compute the quantity

RI(X)(I(Y )) = −[ ~H, [ ~H, IY ]hor]ver(I(X))

First notice that π∗[ ~H, I(Y )] = −Y hence [ ~H, I(Y )]hor = −∇Y . Then

−[ ~H, [ ~H, I(Y )]hor]ver(I(X)) = [∇X ,∇Y ]ver(I(X)) = R(X,Y )(X).

Definition 14.34. The Ricci tensor at λ is defined as the trace of the curvature operator at λ,
Ric(λ) := trace Rλ.

Exercise 14.35. Prove the following expression for the Ricci tensor, where X1, . . . ,Xn is a local
orthonormal frame and γ̇(0) = v = I−1(λ) is the tangent vector to the geodesic:

Ric(λ) =

n∑

i=1

〈R(v,Xi)v|Xi〉

=
n∑

i=1

σλ([ ~H,∇Xi ],∇Xi).

This shows that Ric(λ) = Ric(v) coincide with the classical Riemannian Ricci tensor.

14.4 Locally flat spaces

In this section we want to show that the Riemannian curvature is the only obstruction for a Rie-
mannian manifold to be locally Euclidean. Finally we show that the Riemannian curvature is also
completely recovered by the Hamiltonian curvature Rλ.

A Riemannian manifold M is called flat if R(X,Y ) = 0 for every X,Y ∈ Vec(M).

Theorem 14.36. M is flat if and only if M is locally isometric to R
n.
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Proof. If M is locally isometric to R
n, then its curvature tensor at every point in a neighborhood

is identically zero.

Then let us assume that the Riemann tensor R vanishes identically and prove that M is locally
Euclidean. We will do that by showing that there exists coordinate such that the Hamiltonian, in
these set of coordinates, is written as the Hamiltonian of the Euclidean R

n.

Since R is identically zero the horizontal distribution (defined by the Levi Civita connection)
is involutive. Hence, by Frobenius theorem, there exists a horizontal Lagrangian foliation of T ∗M ,
i.e. for each λ ∈ T ∗M , there exists a leaf Lλ of the foliation passing through this point that is
tangent to the horizontal space Hλ. In particular each leaf is transversal to the fiber T ∗

qM , where
q = π(λ).

Fix a point q0 ∈M and a neighborhood Oq0 where R is identically zero. Define the map

Ψ : π−1(Oq0)→ T ∗
q0M, λ ∈ π−1(Oq0) 7→ Lλ ∩ T ∗

q0M

that assigns to each λ the intersection of the leaf passing through this point and T ∗
q0M .

Exercise 14.37. Show that Ψ is a linear, orthogonal transformation, i.e. H(Ψ(λ)) = H(λ) for all
λ ∈ π−1(Oq0). (Hint: use the linearity of the connection and the fact that ~H is horizontal).

Fix now a basis {ν1, . . . , νn} in T ∗
q0M that is orthonormal (with respect to the dual metric).

Being Ψ linear on fibers, we can write

Ψ(λ) =

n∑

i=1

ψi(λ)νi, where ψi(λ) = 〈λ,Xi(q)〉

for a suitable basis of vector fields X1, . . . ,Xn in the neighborhood Oq0 . Moreover X1, . . . ,Xn is
an orthonormal basis since Ψ is an orthogonal map.

We want to show that {X1, . . . ,Xn} is an orthonormal basis of vector fields that commutes
everywhere.

Let us show that the fact that the foliation is Lagrangian implies [Xi,Xj ] = 0 for all i, j =
1, . . . , n.

Indeed the tautological 1-form is written in these coordinates as s =
∑n

i=1 ψi νi and

σ = ds =

n∑

i=1

dψi ∧ νi + ψidνi. (14.19)

Since on each leaf the function ψi is constant by definition (hence dψi|L = 0), we have that
σ|L =

∑
i ψi dνi. In particular each leaf is Lagrangian if and only if dνi = 0 for i = 1, . . . , n. Then,

from the Cartan formula, one gets

0 = dνi(Xj ,Xk) = −νi([Xj ,Xk]), ∀ i, j, k.

This proves that [Xi,Xj ] = 0 for each i, j = 1, . . . , n. Hence, in the coordinate set (ψ, q), we have
H(ψ, q) = 1

2 |ψ|2.

The next result shows that the Hamiltonian curvature can detect if a manifold is flat or not.

Corollary 14.38. M is flat if and only if Rλ = 0 for every λ ∈ T ∗M .
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Proof. Assume that M is flat. Then R is identically zero and a fortiori Rλ = 0 from (14.18).

Let us prove the converse. Recall that Rλ = 0 implies, again by (14.18), that

(X,Y,X,W ) = 0, ∀X,Y,W ∈ Vec(M).

Then the statement is a consequence of Proposition 14.26.

Exercise 14.39. Prove that actually the Riemann tensor R is completely determined by R.

14.5 Example: curvature of the 2D Riemannian case

In this section we apply the definition of curvature discussed in this chapter to a two dimensional
Riemannian surface. As we explain, we recover that the Riemannian curvature tensor is determined
by the Gauss curvature of the manifold.

Let M be a 2-dimensional surface and f1, f2 ∈ Vec(M) be a local orthonormal frame for the
Riemannian metric. The Riemannian Hamiltonian H is written as follows (we use canonical coor-
dinates λ = (p, x) on T ∗M)

H(p, x) =
1

2
(〈p, f1(x)〉2 + 〈p, f2(x)〉2) (14.20)

Here, for a covector λ = (p, x) ∈ T ∗M , the symplectic vector space Σλ = Tλ(T
∗M) is 4-dimensional.

Recall that, being M 2-dimensional, the level set H−1(1/2)∩T ∗
qM is a circle. Hence, there is a

well defined vector field that produces rotation on the reduced fiber. Let us define the angle θ on
the level H−1(1/2) ∩ T ∗

xM by setting

〈p, f1(x)〉 = cos θ, 〈p, f2(x)〉 = sin θ,

in such a way that θ = 0 corresponds to the direction of f1. Denote by ∂θ the rotation in the fiber
of the unit tangent bundle and by ~E, the Euler vector field. Denote finally by ~H ′ := [∂θ, ~H ].

Notice that Σλ = Vλ ⊕Hλ where Vλ = span{~E, ∂θ} and Hλ = span{ ~H, ~H ′}.

Lemma 14.40. The vector fields {~E, ∂θ, ~H, ~H ′} at λ form a Darboux basis for Σλ.

Proof. We want to compute the following symplectic products of the vector fields:

σ(∂θ, ~E) = 0, σ(∂θ, ~H) = 0, σ( ~E, ~H) = 1. (14.21)

σ(∂θ, ~H
′) = 1, σ( ~E, ~H ′) = 0, σ( ~H, ~H ′) = 0. (14.22)

Indeed, let us prove first (14.21). The first equality follows from the fact that both vectors belong
to the vertical subspace, that is Lagrangian. The second one is a consequence of the fact that, by
construction, ∂θ is tangent to the level set of H, i.e. σ(∂θ, ~H) = ∂θ( ~H) = 〈dH, ∂θ〉 = 0. The last
identity is (13.10).

As a preliminary step for the proof of (14.22) notice that, if s = i ~Eσ denotes the tautological
Liouville form, one has

〈s, ~H〉 = 1, 〈s, ~H ′〉 = 0. (14.23)
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These two identities follows from

〈s, ~H〉 = σ( ~E, ~H) = 1, (14.24)

〈s, ~H ′〉 = 〈s, [∂θ, ~H]〉 = ds(∂θ, ~H) = σ(∂θ, ~H) = 0, (14.25)

where in the second line we used the Cartan formula (4.52) and the fact that ∂θ is vertical.
Let us now prove (14.22). Being [∂θ, ~H

′] = [∂θ, [∂θ, ~H ]] = − ~H, we have again by Cartan formula
and (14.23)

σ(∂θ, ~H
′) = ds(∂θ, ~H

′) = −〈s, [∂θ, ~H ′]〉 = 〈s, ~H〉 = σ( ~E, ~H) = 1

Moreover by (14.23)

σ( ~E, ~H ′) = 〈s, ~H ′〉 = 0.

The last computation is similar. Let us write

σ( ~H, ~H ′) = 〈dH, ~H ′〉 = 〈dH, [∂θ, ~H ]〉,

and apply the Cartan formula to the last term (with dH as 1-form).

dH([∂θ, ~H ]) = d2H(∂θ, ~H)− ∂θ〈dH, ~H〉+ ~H 〈dH, ∂θ〉 = 0

since the three terms are all equal to zero.

Now we compute the curvature via the Jacobi curve, reduced by homogeneity. Notice that
by Lemma 14.40 we can remove the symplectic space spanned by {~E, ~H} and, being {~E, ~H}∠ =
{∂θ, ~H ′}, we have

Ĵλ(t) = span{e−t ~H∗ ∂θ}.
Then we define the generator of the Jacobi curve

Vt = e−t
~H

∗ ∂θ, V̇t = e−t
~H

∗ [ ~H, ∂θ] = −e−t ~H∗ ~H ′

Notice that

σ(Vt, V̇t) = −1, for every t ≥ 0. (14.26)

Indeed it is true for t = 0 and the equality is valid for all t since the transformation et
~H

∗ is symplectic.
To compute the curvature of the Jacobi curve let us write

Vt = α(t)V0 − β(t)V̇0 (14.27)

We claim that the matrix S(t) representing the 1-dimensional Jacobi curve (that actually is a
scalar), is given in these coordinates by

S(t) =
β(t)

α(t)
=
σ(V0, Vt)

σ(V̇0, Vt)
.

Indeed the identity

Vt = α(t)V0 − β(t)V̇0 = α(t)

(
V0 −

β(t)

α(t)
V̇0

)
, (14.28)
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tells us that the matrix representing the vector space spanned by Vt is the graph of the linear map
V0 7→ −β(t)

α(t) V̇0. Moreover, using that V0 and V̇0 is a Darboux basis, it is easy to compute

σ(V0, Vt) = α(t)σ(V0, V0)︸ ︷︷ ︸
=0

−β(t)σ(V0, V̇0)︸ ︷︷ ︸
=−1

= β(t), (14.29)

σ(V̇0, Vt) = α(t)σ(V̇0, V0)︸ ︷︷ ︸
=1

−β(t)σ(V̇0, V̇0)︸ ︷︷ ︸
=0

= α(t). (14.30)

Differentiating the identity (14.26) with respect to t one gets the relations

σ(Vt, V̈t) = 0, σ(Vt, V
(3)
t ) = −σ(V̇t, V̈t)

Notice that these quantities are constant with respect to t. Collecting the above results one can
compute the asymptotic expansion of S(t) with respect to t

S(t) =
−t+ t3

6
σ(V0,

...
V 0) +O(t5)

1 +
t2

2
σ(V̇0, V̈0) +O(t4)

(14.31)

=

(
−t+ t3

6
σ(V0,

...
V 0) +O(t5)

)(
1− t2

2
σ(V̇0, V̈0) +O(t4)

)
(14.32)

and one gets for the derivative of S(t) at t = 0

Ṡ(0) = −1, S̈(0) = 0,
...
S (0) = 2σ(V̇0, V̈0).

The formula for the curvature R is finally computed in terms of S(t) as follows:

R = −1

2

...
S (0) = σ(V̈0, V̇0) (14.33)

Using that Vt = e−t ~H∗ ∂θ we can expand Vt as follows

Vt = ∂θ + t[ ~H, ∂θ] +
t2

2
[ ~H, [ ~H, ∂θ]] +O(t3)

hence (14.33) is rewritten as

R = σ([ ~H, [ ~H, ∂θ]], [ ~H, ∂θ]) (14.34)

= σ([ ~H, ~H ′], ~H ′) (14.35)

To end this section, we compute the curvature R with respect to the orthonormal frame f1, f2.
Denote the Hamiltonians

hi(p, x) = 〈p, fi(x)〉 , i = 1, 2.

The PMP reads 



ẋ = h1f1(x) + h2f2(x)

ḣ1 = {H,h1} = {h2, h1}h2
ḣ2 = {H,h2} = −{h2, h1}h1

(14.36)
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Moreover {h2, h1}(p, x) = 〈p, [f2, f1](x)〉. Assume that

[f1, f2] = a1f1 + a2f2, ai ∈ C∞(M).

Then
{h2, h1} = −a1h1 − a2h2.

If we restrict to h1 = cos θ and h2 = sin θ equations (14.36) become

{
ẋ = cos θf1 + sin θf2

θ̇ = a1 cos θ + a2 sin θ

and it is easy to compute the following expression for ~H and commutators4

~H = h1f1 + h2f2 + (a1h1 + a2h2)∂θ,

~H ′ = −h2f1 + h1f2 + (−a1h2 + a2h1)∂θ,

[ ~H, ~H ′] = (f1a2 − f2a1 − a21 − a22)∂θ.

Recall that
κ = f1a2 − f2a1 − a21 − a22,

is the Gaussian curvature of the surface M (see also Chapter 4). Since σ(∂θ, ~H
′) = 1 one gets

R = σ([ ~H, ~H ′], ~H ′) = σ(κ∂θ, ~H
′) = κ.

Exercise 14.41. In this exercise we recover the previous computations introducing dual coordinates
to our frame. Let ν1, ν2 be the dual basis to f1, f2 and set

fθ := h1f1 + h2f2, νθ := h1ν1 + h2ν2.

Define the smooth function b := a1h1 + a2h2 on T ∗M . In these notation

~H = fθ + b∂θ, ~H ′ = fθ′ + b′∂θ,

where ′ denotes the derivative with respect to θ. Then, using that in these coordinates the tauto-
logical form is s = νθ, show that the symplectic form is written as

σ = ds = dθ ∧ νθ′ − b ν1 ∧ ν2,

and compute the following expressions

i ~H′σ = (b′ − b)νθ′ − dθ,
[ ~H, ~H ′] = (fθb

′ − fθ′b− b2 − b′2)∂θ,

showing that this gives an alternative proof of the above computation of the curvature.

4here we still use the notation h1, h2 as functions of θ satisfying ∂θh1 = −h2, ∂θh2 = h1
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Chapter 15

Curvature in 3D contact

sub-Riemannian geometry

The main goal of this chapter is to compute the curvature of the three dimensional contact sub-
Riemannian case. Then we will discuss some general features of the curvature in sub-Riemannian
geometry.

15.1 3D contact sub-Riemannian manifolds

In this section we consider a sub-Riemannian manifold M of dimension 3 whose distribution is
defined as the kernel of a contact 1-form ω ∈ Λ1(M), i.e. Dq = kerωq for all q ∈M . Let us also fix
a local orthonormal frame f1, f2 such that

Dq = kerωq = span{f1(q), f2(q)}

Recall that the 1-form ω ∈ Λ1(M) defines a contact distribution if and only if ω ∧ dω 6= 0 is never
vanishing.

Exercise 15.1. Let M be a 3D manifold, ω ∈ Λ1M and D = kerω. The following are equivalent:

(i) ω is a contact 1-form,

(ii) dω
∣∣
D 6= 0,

(iii) ∀ f1, f2 ∈ D linearly independent, then [f1, f2] /∈ D.
Remark 15.2. The contact form ω is defined up to a smooth function, i.e. if ω is a contact form,
aω is a contact form for every a ∈ C∞(M). This let us to normalize the contact form by requiring
that

dω
∣∣
D = ν1 ∧ ν2, (i.e. dω(f1, f2) = 1.)

where ν1, ν2 is the dual basis to f1, f2. This is equivalent to say that dω is equal to the area form
induced on the distribution by the sub-Riemannian scalar product.

Definition 15.3. The Reeb vector field of the contact structure is the unique vector field f0 ∈
Vec(M) that satisfies

dω(f0, ·) = 0, ω(f0) = 1
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In particular f0 is transversal to the distribution and the triple {f0, f1, f2} defines a basis of
TqM at every point q ∈M . Notice that ω, ν1, ν2 is the dual basis to this frame.

Remark 15.4. The flow generated by the Reeb vector field etf0 : M → M is a group of diffeomor-
phisms that satisfy (etf0)∗ω = ω. Indeed

Lf0ω = d(if0ω) + if0dω = 0

since if0ω = ω(f0) = 1 is constant and if0dω = dω(f0, ·) = 0.

In what follows, to simplify the notation, we will replace the contact form ω by ν0, as the dual
element to the vector field f0. We can write the structure equations of this basis of 1-forms





dν0 = ν1 ∧ ν2
dν1 = c101ν0 ∧ ν1 + c102ν0 ∧ ν2 + c112ν1 ∧ ν2
dν2 = c201ν0 ∧ ν1 + c202ν0 ∧ ν2 + c212ν1 ∧ ν2

(15.1)

The structure constants ckij are smooth functions on the manifold. Recall that the equation

dνk =
2∑

i,j=0

ckijνi ∧ νj if and only if [fj , fi] =
2∑

k=0

ckijfk.

Introduce the coordinates (h0, h1, h2) in each fiber of T ∗M induced by the dual frame

λ = h0ν0 + h1ν1 + h2ν2

where hi(λ) = 〈λ, fi(q)〉 are the Hamiltonians linear on fibers associated to fi, for i = 0, 1, 2. The
sub-Riemannian Hamiltonian is written as follows

H =
1

2
(h21 + h22).

We now compute the Poisson bracket {H,h0}, denoting with {H,h0}q its restriction to the fiber
T ∗
qM .

Proposition 15.5. The Poisson bracket {H,h0}q is a quadratic form. Moreover we have

{H,h0} = c101h
2
1 + (c201 + c102)h1h2 + c202h

2
2, (15.2)

c101 + c202 = 0. (15.3)

Notice that ∆⊥
q ⊂ ker {H,h0}q and {H,h0}q can be treated as a quadratic form on T ∗

qM/∆⊥
q = ∆∗

q.

Proof. Using the equality {hi, hj}(λ) = 〈λ, [fi, fj ](q)〉 we get

{H,h0} =
1

2
{h21 + h22, h0} = h1{h1, h0}+ h2{h2, h0}

= h1(c
1
01h1 + c201h2) + h2(c

1
02h1 + c202h2)

= c101h
2
1 + (c201 + c102)h1h2 + c202h

2
2.
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Differentiating the first equation in (15.1) one gets:

0 = d2ν0 = dν1 ∧ ν2 − ν1 ∧ ν2
= (c101ν0 ∧ ν1) ∧ ν2 − ν1 ∧ (c202ν0 ∧ ν2)
= (c101 + c202)ν0 ∧ ν1 ∧ ν2

which proves (15.3).

Remark 15.6. Being {H,h0}q a quadratic form on the Euclidean plane Dq (using the canonical
identification of the vector space Dq with its dual D∗

q given by the scalar product), it can be
interpreted as a symmetric operator on the plane itself. In particular its determinant and its trace
are well defined. From (15.3) we get

trace {h, h0}q = c101 + c202 = 0.

This identity is a consequence of the fact that the flow defined by the normalized Reeb f0 preserves
not only the distribution but also the area form on it.

It is natural then to define our first invariant as the positive eigenvalue of this operator, namely:

χ(q) =
√
−det{h, h0}q. (15.4)

Notice that the function χ measures an intrinsic quantity since both H and h0 are defined only
by the sub-Riemannian structure and are independent by the choice of the orthonormal frame.
Indeed the quantity {H,h0} compute the derivative of H along the flow of ~h0, i.e. the obstruction
to the fact that the flow of the Reeb field f0 (which preserves the distribution and the volume form
on it) to preserve the metric. Notice that, by definition χ ≥ 0.

Corollary 15.7. Assume that the vector field f0 is complete. Then {etf0}t∈R is a group of sub-
Riemannian isometries if and only if χ ≡ 0.

In the case when χ ≡ 0 one can consider (locally) the quotient of M with respect to the action
of this group, i.e. the space of trajectories described by f0. The two dimensional surface defined
by the quotient strucure is endowed with a well defined Riemannian metric.

The sub-Riemannian structure on M coincide with the isoperimetric Dido problem constructed
on this surface. The Heisenberg case corresponds with the case when the surface has zero Gaussian
curvature.

15.1.1 Curvature of a 3D contact structure

In this section we compute the sub-Riemannian curvature of a 3D contact structure with a technique
similar to that used in Section 14.5 for the 2D Riemannian case. Let us consider the level set
{H = 1/2} = {h21 + h22 = 1} and define the coordinate θ in such a way that

h1 = cos θ, h2 = sin θ.

On the bundle T ∗M ∩ H−1(1/2) we introduce coordinates (x, θ, h0). Notice that each fiber is
topologically a cylinder S1 × R.
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The sub-Riemannian Hamiltonian equation written in these coordinates are




ẋ = h1f1(x) + h2f2(x)

ḣ1 = {H,h1} = {h2, h1}h2
ḣ2 = {H,h2} = −{h2, h1}h1
ḣ0 = {H,h0}

(15.5)

Computing the Poisson bracket {h2, h1} = h0 + c112h1 + c212h2 and introducing the two functions
a, b : T ∗M → R given by

a = {H,h0} =
2∑

i,j=1

cj0ihihj , b := c112h1 + c212h2.

we can rewrite the system, when restricted to H−1(1/2), as follows




ẋ = cos θf1 + sin θf2

θ̇ = −h0 − b
ḣ0 = a

(15.6)

Notice that, while a is intrinsic, the function b depends on the choice of the orthonormal frame.
In particular we have for the Hamiltonian vector field in the coordinates (q, θ, h0) (where we

use h1, h2 as a shorthand for cos θ and sin θ):

~H = h1f1 + h2f2 − (h0 + b)∂θ + a∂h0 (15.7)

[∂θ, ~H ] = ~H ′ = −h2f1 + h1f2 + a′∂h0 − b′∂θ (15.8)

where we denoted by ′ the derivative with respect to θ, e.g. h′1 = −h2 and h′2 = h1.
Now consider the symplectic vector space Σλ = Tλ(T

∗M). The vertical subspace Vλ is generated
by the vectors ∂θ, ∂h0 ,

~E. Hence the Jacobi curve is

Jλ(t) = span{e−t ~H∗ ∂θ, e
−t ~H
∗ ∂h0 , e

−t ~H
∗ ~E}

The first reduction, by homogeneity, let us to split the space Σλ = span{~E, ~H}⊕ span{~E, ~H}∠ and
consider the reduced Jacobi curve Λ(t) := Ĵλ(t) in the 4-dimensional symplectic space

Λ(t) := e−t
~H

∗ V̂λ/R ~H = span{e−t ~H∗ ∂θ, e
−t ~H
∗ ∂h0}/R ~H

Next we describe the second reduction of the Jacobi curve, the one related with the fact that
the curve is non-regular. Indeed notice that the rank of Ĵλ(t) is 1. To find the new reduced curve,
we need to compute the kernel of the derivative of the curve at t = 0

Γ := Ker Λ̇(0)

From the definition of Λ̇ := Λ̇(0) it follows that

Λ̇(∂θ) = π∗[ ~H, ∂θ] = h2f1 − h1f2
Λ̇(∂h0) = π∗[ ~H, ∂h0 ] = π∗(∂θ) = 0

Hence Γ = R∂h0 and Γ∠ is 3-dimensional in V̂λ/R ~H.
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Proposition 15.8. We have the following characterizations:

(i) Γ∠ = span{∂h0 , ∂θ, ~H ′} in V̂λ/R ~H,

(ii) {∂θ, ~H ′} is a Darboux basis for Γ∠/Γ.

Proof. Since ∂h0 and ∂θ are vertical to prove (i) it is enough to show that ~H ′ is skew-orthongonal
to ∂h0 . It is easy to compute, by Cartan formula

σ(∂h0 ,
~H ′) = ∂h0〈s, ~H ′〉 − ~H ′ 〈s, ∂h0〉 − 〈s, [∂h0 , ~H ′]〉 = 0,

since all the three terms vanish. Indeed 〈s, ~H ′〉 = σ( ~E, ~H ′) = 0 and 〈s, ∂h0〉 = 〈s, [∂h0 , ~H ′]〉 = 0
since ∂h0 and [∂h0 ,

~H ′] are both vertical, as can be computed from (15.8).

To complete the proof of (ii) it is enough to show, using [∂θ, ~H
′] = − ~H, that

σ(∂θ, ~H
′) = ∂θ〈s, ~H ′〉 − ~H ′ 〈s, ∂θ〉 − 〈s, [∂θ, ~H ′]〉 = 〈s, ~H〉 = 1.

Next we compute the curvature in terms of the Hamiltonian vector field and its commutators.
For a vector field W we use the notations

Ẇ := [ ~H,W ], W ′ := [∂θ,W ].

Let us consider the vector field Vt = e−t ~H∗ ∂h0 . Notice that

V̇0 = ∂θ, V̈0 = − ~H ′.

The fact that ∂θ and ∂h0 are vertical implies that

σ(Vt, V̇t) = 0, ∀ t ≥ 0

Differentiating the above identity at t = 0 we get (from now on, we omit t when we evaluate at
t = 0)

σ(V̇ , V̇ ) + σ(V, V̈ ) = 0 =⇒ σ(V, V̈ ) = 0.

Differentiating once more the last identity and using σ(V̇ , V̈ ) = −σ(∂θ, ~H ′) = −1 one gets

σ(V̇ , V̈ ) + σ(V, V (3)) = 0 =⇒ σ(V, V (3)) = 1.

With similar computations one can show that σ(V̇ , V (3)) = σ(V, V (4)) = 0. Evaluating all deriva-
tives of order 4 one can see that

r := σ(V̈ , V (3)) = −σ(V̇ , V (4)) = σ(V, V (5)).

Proposition 15.9. The sub-Riemannian curvature is

R =
1

10
σ([ ~H, ~H ′], ~H ′) = − r

10
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Proof. The second equality follows from the definition of r and the fact that V̈ = − ~H ′ and V (3) =
[ ~H, ~H ′].

To prove the first identity we have to compute the Schwartzian derivative of the bi-reduced
curve, in the symplectic basis (V̇ ,−V̈ ) of the space Γ∠/Γ (notice the minus sign).

Recall that Λ(t) = span{Vt, V̇t}. To compute the 1-dimensional reduced curve ΛΓ(t) in the
symplectic space Γ∠/Γ we need to compute the intersection of Λ(t) with Γ∠ (for all t). In other
words we look for x(t) such that

σ(V̇t + x(t)Vt, V0) = 0 =⇒ x(t) = −σ(V̇t, V0)
σ(Vt, V0)

. (15.9)

Then we write this vector as a linear combination of the Darboux basis (cf. (14.28) for the 2D
Riemannian case)

V̇t + x(t)Vt = α(t)V̇0 − β(t)V̈0 + ξ(t)V0 (15.10)

To see it as a curve in the space Γ/Γ∠ we simply ignore the coefficient along V0. In these coordinates
the matrix S(t), which is a scalar, representing the curve is

S(t) =
β(t)

α(t)
(15.11)

Notice that this is a one-dimensional non-degenerate curve. These coefficients are computed by the
symplectic products

α(t) = −σ(V̇t + x(t)Vt, V̈0) (15.12)

β(t) = −σ(V̇t + x(t)Vt, V̇0) (15.13)

Combining (15.12),(15.13) with (15.11) and (15.9) one gets

S(t) =
σ(V̇t, V̇0)σ(Vt, V0)− σ(Vt, V̇0)σ(V̇t, V0)
σ(V̇t, V̈0)σ(V̇t, V̇0)− σ(V̇t, V̈0)σ(V̇t, V̇0)

(15.14)

After some computations, by Taylor expansion one gets

S(t) =
t

4
− t3

120
r +O(t4) (15.15)

Since S̈0 = 0 the curvature is computer by

R =

...
S 0

2Ṡ0
= − r

10

We end this section by computing the expression of the curvature in terms of the orthonormal
frame for the distribution and the Reeb vector filed. As usual we restrict to the level set H−1(1/2)
where

h21 + h22 = 1, h1 = cos θ, h2 = sin θ.

In the following we use the notation

fθ = h1f1 + h2f2, νθ = h1ν1 + h2ν2.
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If h = (h1, h2) = (cos θ, sin θ) we denote by h′ = (−h2, h1) = (− sin θ, cos θ) its derivative with
respect to θ and, more in general, we denote F ′ := ∂θF for a smooth function F on T ∗M .

To express the quantity r = σ([ ~H, ~H ′], ~H ′) we start by computing the commutator [ ~H, ~H ′].
From (15.7) and (15.8) one gets

[ ~H, ~H ′] = −f0 + h0fθ + (f2c
1
12 − f1c212 − (h0 + b)b− (b′)2 + a′)∂θ.

Next we write, following this notation, the symplectic form σ = ds. The Liouville form s is
expressed, in the dual basis ν0, ν1, ν2 to the basis of vector fields f1, f2, f0 as follows

s = h0ν0 + νθ

hence the symplectic form σ is written as follows

σ = dh0 ∧ ν0 + h0 νθ ∧ νθ′ + dθ ∧ νθ′ + dνθ

where we used that dν0 = ν1 ∧ ν2 = νθ ∧ νθ′ . Computing the symplectic product then one finds the
value of

10R = h20 +
3

2
a′ + κ

where

κ = f2c
1
12 − f1c212 − (c112)

2 − (c212)
2 +

c201 − c102
2

(15.16)

By homogeneity, the function R is defined on the whole T ∗M , and not only for λ ∈ H−1(1/2).
For every λ = (h0, h1, h2) ∈ T ∗

xM

10R = h20 +
3

2
a′ + κ(h21 + h22)

Remark 15.10. The restriction of R to the 1-dimensional subspace λ ∈ D⊥ (that corresponds to
λ = (h0, 0, 0)), is a strictly positive quadratic form. Moreover it is equal to 1/10 when evaluated on
the Reeb vector field. Hence the curvatureR encodes both the contact form ω and its normalization.

On the orthogonal complement (with respect to R) {h0 = 0} we have that R is treated as a
quadratic form

R =
3

2
a′ + κ(h21 + h22).

Remark 15.11. (i). If a 6= 0 there always exists a frame such that

a = 2χh1h2

and in this frame we can express R as a quadratic form on the whole T ∗M

R = h20 + (κ+ 3χ)h21 + (κ− 3χ)h22.

It is easily seen from this formulas that we can recover the two invariants χ, κ considering

trace(10R
∣∣
h0=0

) = 2κ, discr(10R
∣∣
h0=0

) = 36χ.

(ii). When a = 0 the eigenvalues of R coincide and χ = 0. In this case κ represents the Riemannian
curvature of the surface defined by the quotient of M with respect to the flow of the Reeb vector
field.
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Indeed the flow etf0∗ preserves the metric and it is easy to see that the identities

etf0∗ fi = fi, i = 1, 2.

implies [f0, f1] = [f0, f2] = 0. Hence c201, c
1
02 = 0 and the expression of κ reduces to the Riemannian

curvature of a surface whose orthonormal frame is f1, f2.

Exercise 15.12. Let f1, f2 be an orthonormal frame forM and denote by f̂1, f̂2 the frame obtained
rotating f1, f2 by an angle θ = θ(q). Show that the structure constants ĉkijof rotated frame satisfies

ĉ112 = cos θ(c112 − f1(θ))− sin θ(c212 − f2(θ)),
ĉ212 = sin θ(c112 − f1(θ)) + cos θ(c212 − f2(θ)).

Exercise 15.13. Show that the expression (15.16) for κ does not depend on the choice of an
orthonormal frame f1, f2 for the sub-Riemannian structure.
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Chapter 16

Asymptotic expansion of the 3D

contact exponential map

In this chapter we study the small time asymptotics of the exponential map in the three-dimensional
contact case and see how the structure of the cut and the conjugate locus is encoded in the curvature.

Let us consider the sub-Riemannian Hamiltonian of a 3D contact structure (cf. Section 15.1.1)

~H = h1f1 + h2f2 − (h0 + b)∂θ + a∂h0 (16.1)

written in the dual coordinates (h0, h1, h2) of a local frame f0, f1, f2, where ν0 is the normalized
contact form, f0 is the Reeb vector field and f1, f2 is a local orthonormal frame for the distribution.
As usual the coordinate θ on the level set H−1(1/2) is defined such a way that h1 = cos θ and
h2 = sin θ.

In this chapter it will be convenient to introduce the notation ρ := −h0 for the function linear
on fibers of T ∗M associated with the opposite of the Reeb vector field. The Hamiltonian system
(16.1) on the level set H−1(1/2) is rewritten in the following form:





q̇ = cos θf1 + sin θf2

θ̇ = ρ− b
ρ̇ = −a

(16.2)

The exponential map starting from the initial point q0 ∈ M is the map that to each time
t > 0 and every initial covector (θ0, ρ0) ∈ T ∗

q0M assigns the solution at time t of the system (16.2),
denoted by Eq0(t, θ0, ρ0), or simply E(t, θ0, ρ0).

Conjugate points are points where the differential of the exponential map is not surjective, i.e.
solutions to the equation

∂E
∂θ0
∧ ∂E
∂ρ0
∧ ∂E
∂t

= 0. (16.3)

The variation of the exponential map along time is always nonzero and independent with respect
to variations of the covectors in the set H−1(1/2) (see also Section 7.6 and Proposition 7.27). This
implies that (16.3) is equivalent to

∂E
∂θ0
∧ ∂E
∂ρ0

= 0. (16.4)
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16.1 Nilpotent case

The nilpotent case, i.e. the Heisenberg group, corresponds to the case when the functions a and b
vanish identically, i.e. the system





q̇ = cos θf1 + sin θf2

θ̇ = ρ

ρ̇ = 0

(16.5)

Let us first recover, in this notation, the conjugate locus in the case of the Heisenberg group.
Let us denote coordinates on the manifold R

3 as follows

q = (x, y), x = (x1, x2) ∈ R
2, y ∈ R. (16.6)

Notice moreover that in this case the Reeb vector field is proportional to ∂y and its dual coordinate
ρ is constant along trajectories. There are two possible cases:

(i) ρ = 0. Then the solution is a straight line contained in the plane y = 0 and is optimal for all
time.

(ii) ρ 6= 0. In this case we claim that the equation (16.4) is equivalent to the following

∂x

∂θ0
∧ ∂x

∂ρ0
= 0. (16.7)

By the Gauss’ Lemma (Proposition 7.27) the covector p = (px, ρ) at the final point annihilates
the differential of the exponential map restricted to the level set, i.e.

〈
p,
∂E
∂θ0

〉
=

〈
px,

∂x

∂θ0

〉
+ ρ

∂y

∂θ0
= 0 (16.8)

〈
p,
∂E
∂ρ0

〉
=

〈
px,

∂x

∂ρ0

〉
+ ρ

∂y

∂ρ0
= 0 (16.9)

and since ρ 6= 0 it follows that among the three vectors



∂x1
∂θ0

∂x1
∂ρ0







∂x2
∂θ0

∂x2
∂ρ0







∂y

∂θ0

∂y

∂ρ0


 (16.10)

the third one is always a linear combination of the first two.

Proposition 16.1. The first conjugate time is tc(θ0, ρ0) = 2π/|ρ0|.
Proof. In the standard coordinates (x1, x2, y) the two vector fields f1 and f2 defining the orthonor-
mal frame are

f1 = ∂x1 −
x2
2
∂y, f2 = ∂x2 +

x1
2
∂y

Thus, the first two coordinates of the horizontal part of the Hamiltonian system satisfy
{
ẋ1 = cos θ

ẋ2 = sin θ
(16.11)
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It is then easy to integrate the x-part of the exponential map being θ(t) = θ0 + ρt (recall that
ρ ≡ ρ0 and, without loss of generality we can assume ρ > 0)

x(t; θ0, ρ0) =

∫ t

0

(
cos(θ0 + ρs)
sin(θ0 + ρs)

)
ds =

∫ θ0+t

θ0

(
cos ρs
sin ρs

)
ds (16.12)

Due to the symmetry of the Heisenberg group, the determinant of the Jacobian map will not
depend on θ0. Hence to compute the determinant of the Jacobian it is enough to compute partial
derivatives at θ0 = 0

∂x

∂θ0
=

(
cos ρt− 1
sin ρt

)

∂x

∂ρ0
= − 1

ρ2

(
sin ρt

1− cos ρt

)
+
t

ρ

(
cos ρt
sin ρt

)

and denoting by τ := ρt one can compute

∂x

∂θ0
∧ ∂x

∂ρ0
=

1

ρ2
det

(
cos τ − 1 τ cos τ − sin τ
sin τ −1 + τ sin τ + cos τ

)
,

=
1

ρ2
(τ sin τ + 2cos τ − 2).

The fact that tc = 2π/|ρ| follows from Exercise 16.2.

Exercise 16.2. Prove that τc = 2π is the first positive root of the equation τ sin τ +2cos τ −2 = 0.
Moreover show that τc is a simple root.

16.2 General case: second order asymptotic expansion

Let us consider the Hamiltonian system for the general 3D contact case





q̇ = fθ := cos θf1 + sin θf2

θ̇ = ρ− b
ρ̇ = −a

(16.13)

We are going to study the asymptotic expansion for our system for the initial parameter ρ0 → ±∞.
To this aim, it is convenient to introduce the change of variables r := 1/ρ and denote by ν :=
r(0) = 1/ρ0 its initial value. Notice that ρ is no more constant in the general case and ρ0 → ∞
implies ν → 0.

The main result of this section says that the conjugate time for the perturbed system is a
perturbation of the conjugate time of the nilpotent case, where the perturbation has no term of
order 2.

Proposition 16.3. The conjugate time tc(θ0, ν) is a smooth function of the parameter ν. Moreover

tc(θ0, ν) = 2π|ν|+O(|ν|3).
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Proof. Let us introduce a new time variable τ such that dt
dτ = r. If we now denote by Ḟ the

derivative of a function F with respect to the new time τ , the system (16.13) is rewritten in the
new coordinate system (q, θ, r) (where we recall r = 1/ρ), as follows





q̇ = rfθ

θ̇ = 1− rb
ṙ = r3a

ṫ = r

(16.14)

To compute the asymptotic of the conjugate time, it is also convenient to consider a system of
coordinates, depending on a parameter ε, corresponding to the quasi-homogeneous blow up of the
sub-Riemannian structure at q0 and converging to the nilpotent approximation. In other words we
consider the change of coordinates Φε such that fθ 7→ 1

εf
ε
θ where

f εθ = f̂ + εf (0) + ε2f (1) + . . .

Accordingly to this change of coordinates we have the equalities

fi =
1

ε
f εi , f0 =

1

ε2
f ε0 , b =

1

ε
bε, a =

1

ε2
aε

where f ε0 is the Reeb vector field defined by the orthonormal frame f ε1 , . . . , f
ε
k (and analogously for

aε, bε).
Let us now define, for fixed ε, the variable w such that r = εw. The system (16.14) is finally

rewritten in the following form 



q̇ = wf εθ
θ̇ = 1− wbε
ẇ = εw3aε

ṫ = εw

(16.15)

Notice that the dynamical system is written in a coordinate system that depends on ε. Moreover
the initial asymptotic for ρ0 → ∞, corresponding to r → 0, is now reduced to fix an initial value
w(0) = w1 and send ε→ 0.

Consider some linearly adapted coordinates (x, y), with x ∈ R
2 and y ∈ R (cf. Definition 8.22).

If we denote by qε = (xε, yε) the solution of the horizontal part of the ε-system (16.15), conjugate
points are solutions of the equation

∂qε

∂θ0
∧ ∂qε

∂w0

∣∣∣∣
w0=1

= 0.

As in Section 16.1, one can check that this condition is equivalent to

∂xε

∂θ0
∧ ∂xε

∂w0

∣∣∣∣
w0=1

= 0.

Notice that the original parameters (t, θ0, ρ0) parametrizing the trajectories in the exponential map
correspond to a conjugate point if the corresponding parameters (τ, θ0, ε) satisfy

ϕ(τ, ε, θ0) :=
∂xε

∂θ0
∧ ∂xε

∂w0

∣∣∣∣
w0=1

= 0 (16.16)
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For ε = 0, i.e. the nilpotent approximation, the the first conjugate time is τc = 2π, and moreover
it is a simple root. Thus one gets

ϕ(2π, 0, θ0) = 0,
∂ϕ

∂τ
(2π, 0, θ0) 6= 0. (16.17)

Hence the implicit function theorem guarantees that there exists a smooth function τc(ε, θ0) such
that

ϕ(τc(ε, θ0), ε, θ0) = 0. (16.18)

In other words τc(ε, θ0) computes the conjugate time τ associated with parameters ε, θ0. By smooth-
ness of τc one immediately has the expansion for ε→ 0

τc(ε, θ0) = 2π +O(ε).

Now the statement of the proposition is rewritten in terms of the function τc as follows

τc(ε, θ0) = 2π +O(ε2). (16.19)

Differentiating the identity (16.18) with respect to ε one has

∂ϕ

∂τ

∂τc
∂ε

+
∂ϕ

∂ε
= 0,

hence, thanks to (16.17), the expansion (16.19) holds if and only if
∂ϕ

∂ε
(2π, 0, θ0) = 0.

Moreover differentiating the expression (16.16) with respect to ε one has

∂ϕ

∂ε
(2π, 0, θ0) =

∂2xε

∂ε∂θ0
∧ ∂xε

∂w0
+

∂2xε

∂ε∂w0
∧ ∂x

ε

∂θ0

∣∣∣∣
w0=1,ε=0,τ=2π

The second one vanish since at ε = 0 is the Heisenberg case, whose horizontal part at τ = 2π does
not depend on θ0. Hence we are reduced to prove that

∂2xε

∂ε∂θ0

∣∣∣∣
ε=0,τ=2π

= 0. (16.20)

which is a consequence of the following lemma.

Lemma 16.4. The quantity
∂xε

∂ε

∣∣∣∣
ε=0,τ=2π

does not depend on θ0.

Proof of Lemma. To prove the lemma it will be enough to find the first order expansion in ε of the
solution of the system (16.15).

Recall that when ε = 0 the system corresponds to the Heisenberg case, i.e. we have aε|ε=0 =
0, bε|ε=0 = 0. This gives the expansion of w (recall that w(0) = w0 = 1)

w(t) = w(0) +

∫ t

0
εaε(τ)w3(τ)dτ ⇒ w = 1 +O(ε2)

Analogously we have bε = ε 〈β, u〉+O(ε2), where 〈β, u〉 = β1u1+β2u2 and β denotes the (constant)
coefficient of weight zero in the expansion of b with respect to ε.
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Denoting u(θ) = (cos θ, sin θ), the equation for θ then is reduced to

θ̇ = 1− ε 〈β, u(θ)〉+O(ε2), θ(0) = θ0.

This equation can be integrated and one gets

∂θ

∂ε

∣∣∣∣
ε=0

= −
∫ t

0
〈β, u(θ(τ))〉 dτ =

〈
β, u′(θ0 + t)− u′(θ0)

〉
(16.21)

where u′(θ) = (− sin θ, cos θ).

Next we are going to use (16.21) to compute the derivative of xε wrt ε. The equation for the
horizontal part of (16.15) can be expanded in ε as follows

ẋε = u(θ) + εf
(0)
u(θ)(x) +O(ε2)

where the first term is Heisenberg, and f
(0)
u(θ) is the term of weight zero of fu, which is linear with

respect to x1 and x2 because of the weight.
1 To compute the derivative of the solution with respect

to parameter we use the following general fact

Lemma 16.5. Let φ(ε, t) denotes the solution of the differential equation ẏ = F (ε, y) with fixed
initial condition y(0) = y0. Then the derivative ∂φ

∂ε satisfies the following linear ODE

d

dt

∂φ

∂ε
(ε, t) =

∂F

∂y
(ε, φ(ε, t))

∂φ

∂ε
(ε, t) +

∂F

∂ε
(ε, φ(ε, t))

We apply the above lemma when y = (x, θ) and F = (F x, F θ) and we compute at ε = 0. In
particular we need the solution of the original system at ε = 0

φ(0, t) = (x̄(t), θ̄(t)), θ̄(t) = θ0 + t, x̄(t) = u′(θ0)− u′(θ0 + t).

Then by Lemma 16.5 we have

d

dt

∂x

∂ε
=
∂F x

∂x

∂x

∂ε
+
∂F x

∂θ

∂θ

∂ε
+
∂F x

∂ε

Computing the derivatives at ε = 0 gives

∂F x

∂x

∣∣∣∣
ε=0

= 0,
∂F x

∂θ

∣∣∣∣
ε=0

= u′(θ̄(t)),
∂F x

∂ε

∣∣∣∣
ε=0

= f
(0)

u(θ̄(t))
(x̄(t))

and we obtain the equation for ∂x
∂ε

d

dt

∂x

∂ε

∣∣∣∣
ε=0

=
∂θ

∂ε

∣∣∣∣
ε=0

u′(θ0 + t) + f
(0)
u(θ0+t)

(u′(θ0)− u′(θ0 + t))

1Recall that this is the zero order part of the vector field fu along ∂x, hence only x variables appear and have
order 1.
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If we set s = θ0 + t we can rewrite this equation

d

ds

∂x

∂ε

∣∣∣∣
ε=0

=
∂θ

∂ε
u′(s) + f

(0)
u(s)(u

′(θ0)− u′(s))

and integrating one has

∂x

∂ε

∣∣∣∣
(2π,0)

=

∫ θ0+2π

θ0

〈
β, u′(s)− u′(θ0)

〉
u′(s)ds

+

∫ θ0+2π

θ0

f
(0)
u(s)(u

′(θ0)− u′(s))ds

In the last expression it is easy to see that all terms where θ0 appear are zero, while the others
vanish since we compute integrals of periodic functions over a period (which does not dep on θ0).
This finishes the proof of Lemma 16.4, hence the proof of the Proposition 16.3.

16.3 General case: higher order asymptotic expansion

Next we continue our analysis about the structure of the conjugate locus for a 3D contact structure
by studying the higher order asymptotic. In this section we determine the coefficient of order 3 in
the asymptotic expansion of the conjugate locus. Namely we have the following result, whose proof
is postponed to Section 16.3.1.

Theorem 16.6. In a system of local coordinates around q0 ∈M one has the expansion

Conq0(θ0, ν) = q0 ± πf0|ν|2 ± π(a′fθ0 − afθ′0)|ν|
3 +O(|ν|4), ν → 0±. (16.22)

If we choose coordinates such that a = 2χu1u2 one gets

Conq0(θ0, ν) = q0 ± πf0|ν|2 ± 2πχ(q0)(cos
3 θf2 − sin3 θf1)|ν|3 +O(|ν|4), ν → 0±. (16.23)

Moreover for the conjugate length we have the expansion

ℓc(θ0, ν) = 2π|ν| − πκ|ν|3 +O(|ν|4), ν → 0±. (16.24)

Analogous formulas can be obtained for the asymptotics of the cut locus at a point q0 where
the invariant χ is non vanishing.

Theorem 16.7. Assume χ(q0) 6= 0. In a system of local coordinates around q0 ∈ M such that
a = 2χu1u2 one gets

Cutq0(θ, ν) = q0 ± πν2f0(q0)± 2πχ(q0) cos θf1(q0)ν
3 +O(ν4), ν → 0±

Moreover the cut length satisfies

ℓcut(θ, ν) = 2π|ν| − π(κ+ 2χ sin2 θ)|ν|3 +O(ν4), ν → 0± (16.25)
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q0

cut
conjugate

Figure 16.1: Asymptotic structure of cut and conjugate locus

We can collect the information given by the asymptotics of the conjugate and the cut locus in
Figure 16.1.

All geometrical information about the structure of this sets is encoded in a pair of quadratic
forms defined on the fiber at the base point q0, namely the curvature R and the sub-Riemannian
Hamiltonian H.

Recall that the sub-Riemannian Hamiltonian encodes the information about the distribution
and about the metric defined on it (see Exercise 4.29).

Let us consider the kernel of the sub-Riemannian Hamiltonian

kerH = {λ ∈ T ∗
qM : 〈λ, v〉 = 0, ∀ v ∈ Dq} = D⊥

q . (16.26)

The restriction of R to the 1-dimensional subspace D⊥
q for every q ∈ M , is a strictly positive

quadratic form. Moreover it is equal to 1/10 when evaluated on the Reeb vector field. Hence the
curvature R encodes both the contact form ω and its normalization.

If we denote by D∗
q the orthogonal complement of D⊥

q in the fiber with respect to R2, we have
that R is a quadratic form on D∗

q and, by using the Euclidean metric defined by H on Dq, as a
symmetric operator.

As we explained in the previous chapter, at each q0 where χ(q0) 6= 0 there always exists a frame
such that

{H,h0} = 2χh1h2

2this is indeed isomorphic to the space of linear functionals defined on Dq.
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and in this frame we can express the restriction of R to D∗
q (corresponding to the set {h0 = 0}) on

this subspace as follows (see Section 15.1.1)

10R = (κ+ 3χ)h21 + (κ− 3χ)h22.

From this formulae it is easy to recover the two invariants χ, κ considering

trace(10R
∣∣
h0=0

) = 2κ, discr(10R
∣∣
h0=0

) = 36χ2,

where the discriminant of an operatorQ, defined on a two-dimensional space, is defined as the square
of the difference of its eigenvalues, and can be compute by the formula discr(Q) = trace2(Q) −
4 det(Q).

The cubic term of the conjugate locus (for a fixed value of ν) parametrizes an astroid. The
cuspidal directions of the astroid are given by the eigenvectors of R, and the cut locus intersect the
conjugate locus exactly at the cuspidal points in the direction of the eigenvector of R corresponding
to the larger eigenvalue.

Finally the “size” of the cut locus increases for bigger values of χ, while κ is involved in the
length of curves arriving at cut/conjugate locus

Remark 16.8. The expression of the cut locus given in Theorem 16.7 gives the truncation up to
order 3 of the asymptotics of the cut locus of the exponential map. It is possible to show that this
is actually the exact cut locus corresponding to the truncated exponential map at order 3 (which
we compute in the next section).

As we show in the next section, the third order Taylor polynomial of the exponential map
corresponds to a stable map in the sense of singularity theory. More precisely it can be treated
as a one parameter family of maps between 2-dimensional manifolds that has only singular points
of “cusp” and “fold” type. As a consequence the original exponential map can be treated as a
perturbation of the (truncated) stable one. The classic Whitney theorem on the stability of maps
between 2-dimensional manifolds then implies that the structure of their singularity will be the
same, and actually the singular set of the perturbed one is the image under an omeomorphism of
the the singular set of the truncated map. This proves that the shape of the conjugate locus (and
the one of the cur locus) described in Figure 16.1 obtained via its third order approximation is
indeed a picture of the true shape. The full statement of this fact can be found in [3].

16.3.1 Proof of Theorem 16.6: asymptotics of the exponential map

The proof of Theorem 16.6 requires a careful analysis of the asymptotic of the exponential map.
Let us consider again our Hamiltonian system in the form (16.14)





q̇ = rfθ

θ̇ = 1− rb
ṙ = r3a

ṫ = r

(16.27)

where we recall that equations are written with respect to the time τ . In particular, since we restrict
on the level set H−1(1/2), the trajectories are parametrized by length and the time t coincides with
the length of the curve. Thus in what follows we replace the variable t by ℓ.
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Next, we consider a last change of the time variable. Namely we parametrize trajectories by
the coordinate θ. In other words we rewrite again the equations in such a way that θ̇ = 1 and the
dot will denote derivative with respect to θ. The equations are rewritten in the following form:





q̇ =
r

1− rbfθ
θ̇ = 1

ṙ =
r3

1− rba
ℓ̇ =

r

1− rb

(16.28)

where we recall that fθ = cos θf1 + sin θf2. Moreover we define F (t; θ0, ν) := q(t+ θ0; θ0, ν), where
q(θ0; θ0, ν) = q0. This means that the curve that corresponds to initial parameter θ0 start from q0
at time equal to θ0.

Notice that in (16.28) we can solve the equation for r = r(τ) and substitute it in the first
equation. In this way we can write the trajectory as an integral curve of the nonautonomous vector
field

F (t; θ0, ν) = q0 ◦Qθ0,νt , Qθ0,νt = −→exp
∫ θ0+t

θ0

r(τ)

1− r(τ)b(τ)fτdτ.

To simplify the notation in what follows we denote the flow Qθ0,νt simply by Qt and by Vt the non
autonomous vector field defined by this flow

Qt =
−→exp

∫ θ0+t

θ0

Vτdτ, Vτ :=
r(τ)

1− r(τ)b(τ)fτ . (16.29)

We start by analyzing the asymptotics of the end point map after time t = 2π.

Lemma 16.9. F (2π; θ0, ν) = −πf0(q0)ν2 +O(ν3)

Proof. From (16.28), recalling that r(0) = ν, it is easy to see that r satisfies the identity

r(t) = ν + r̃(t)ν3 = ν +O(ν3)

for some smooth function r̃(t). Thus, to find the second order term in ν of the endpoint map
F (2π; θ, ν), we can then assume that r is constantly equal to ν = r(0).

Using the Volterra expansion (cf. (6.9))

−→exp
∫ θ0+2π

θ0

Vτdτ =


Id +

∫ θ0+2π

θ0

Vτdτ +

∫∫

θ0≤τ2≤τ1≤θ0+2π

Vτ2 ◦ Vτ1dτ1dτ2 + . . .


 (16.30)

and substituting r(τ) ≡ ν we have the following expansion for the first term in (16.30):

∫ θ0+2π

θ0

Vτdτ =

∫ θ0+2π

θ0

ν

1− νb(τ)fτdτ =

∫ θ0+2π

θ0

ν(1 + νb(τ) +O(ν2))fτ dτ,

= ν

∫ θ0+2π

θ0

fτdτ + ν2
∫ θ0+2π

θ0

b(τ)fτdτ +O(ν3)

= ν2
∫ θ0+2π

θ0

b(τ)fτdτ +O(ν3)
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Notice that the first order term in ν vanishes since we integrate over a period and
∫ θ0+2π
θ0

fτdτ = 0.
The second term in (16.28) can be rewritten using Lemma 7.19

∫∫

0≤τ2≤τ1≤t

Vτ2 ◦ Vτ1dτ1dτ2 =
1

2

∫ θ0+2π

θ0

Vτdt ◦
∫ θ0+2π

θ0

Vτdt+

∫∫

θ0≤τ2≤τ1≤θ0+2π

[Vτ2 , Vτ1 ]dτ1dτ2

=
ν2

2



∫ θ0+2π

θ0

fτdτ ◦
∫ θ0+2π

θ0

fτdτ +

∫∫

θ0≤τ2≤τ1≤θ0+2π

[fτ2 , fτ1 ]dτ1dτ2




=
ν2

2

∫∫

θ0≤τ2≤τ1≤θ0+2π

[fτ2 , fτ1 ]dτ1dτ2

where we used again
∫ θ0+2π
θ0

fτdτ = 0. Notice that higher order terms in the Volterra expansions

are O(ν3). Collecting together the two expansions and recalling that

[f2, f1] = f0 + α1f1 + α2f2

one easily obtains

F (2π; θ0, ν) = ν2
(∫ θ0+2π

θ0

b(t)ft dt+
1

2

[∫ t

θ0

fτdτ, ft

]
dt

)
+O(ν3)

= −πν2f0(q0) +O(ν3) (16.31)

Notice that the factor π in (16.31) comes out from the evaluation of integrals of kind
∫ θ0+2π
θ0

cos2 τdτ

and
∫ θ0+2π
θ0

sin2 τdτ .

Next we prove a symmetry of the exponential map

Lemma 16.10. F (t; θ0, ν) = F (t; θ0 + π,−ν)

Proof. It is a direct consequence of our geodesic equation. Recall that F (t; θ0, ν) = q(t+ θ0; θ0, ν),
is the solution of the system, with initial condition q(θ0; θ0, ν) = q0.

Applying the transformation t 7→ t + π and ν → −ν we see that the right hand side of q̇ in
(16.28) is preserved while the right hand side of ṙ change sign (we use that ui(t + π) = −ui(t),
hence a(t + π) = a(t) and b(t + π) = −b(t)). Then, if (q(t), r(t)) is a solution of the system then
(q(t+ π),−r(t+ π)) is also a solution. The lemma follows.

The symmetry property just proved permits to characterize all odd terms in the expansion in
ν of the exponential map at t = 2π, as follows.

Corollary 16.11. Consider the expansion

F (2π; θ, ν) ≃
∞∑

n=0

qn(θ)ν
n.

We have the following identities

(i) qn(θ + π) = (−1)nqn(θ),
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(ii) q2n+1(θ) = −
1

2

∫ θ+π

θ

dq2n+1

dθ
(τ)dτ .

Proof. This is an immediate consequence of Lemma 16.10 and the identity

2q2n+1(θ) = q2n+1(θ)− q2n+1(θ + π) = −
∫ θ+π

θ

dq2n+1

dθ
(τ)dτ.

We already computed the terms q1(θ) and q2(θ). To find q3(θ) we start by computing the
derivative of the map F with respect to θ.

Lemma 16.12.
∂F

∂θ0
(2π; θ0, ν) = −π[f0, fθ0 ]q0ν3 +O(ν4)

Proof. We stress that, since we are now interested to third order term in ν, we can no more assume
that r(τ) is constant. Differentiating (3.55) with respect to θ gives two terms as follows:

∂F

∂θ0
=

∂

∂θ0
(q0 ◦Qt) = q0 ◦

∂

∂θ0

(
−→exp

∫ θ+2π

θ
Vτdτ

)

= q0◦ (Q2π ◦ Vθ0+2π − Vθ0 ◦Q2π) (16.32)

Next let us rewrite

Q2π ◦ Vθ0+2π = Q2π ◦ Vθ0+2π ◦Q−1
2π ◦Q2π

= AdQ2π ◦ Vθ0+2π

so that (16.32) can be rewritten as

∂F

∂θ0
= q0 ◦ (AdQ2π ◦ Vθ0+2π − Vθ0) ◦Q2π (16.33)

Thanks to Lemma 16.10 we can write

Q2π = Id− πν2f0 +O(ν3) (16.34)

that implies the following asymptotics for the action of its adjoint by (6.17)

AdQ2π = Id− πν2ad f0 +O(ν3)

We are left to compute the asymptotic expansion of (16.33). To this goal, recall that r = r(τ)
satisfies

ṙ =
r3

1− rba = r3a+O(r4)

hence we can compute its term of order 3 with respect to ν

r(t) = ν + ν3
∫ t

θ0

a(τ)dτ +O(ν4) (16.35)

This in particular implies that r(θ0 + 2π) = ν +O(ν4) since
∫ θ0+2π
θ0

a(t)dt = 0.
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This allows us to replace r(·) with ν in the term Vθ0+2π since r(θ+ 2π) = ν +O(ν4). Moreover
using that b(θ0 + 2π) = b(θ0) and fθ0+2π = fθ0 we gets

AdQ2π ◦ Vθ0+2π − Vθ0 = (Id− πν2ad f0 +O(ν3))

(
ν

1− νbfθ0
)
−
(

ν

1− νbfθ0
)
+O(ν4)

= −πν2ad f0(νfθ0) +O(ν4) (16.36)

and finally plugging (16.34) and (16.36) into (16.33) one obtains

∂F

∂θ
= q0 ◦

(
−πν2ad f0(νfθ0) +O(ν4)

)
◦ (Id +O(ν))

= q0 ◦ (−πν3[f0, fθ0 ] +O(ν4))

16.3.2 Asymptotics of the conjugate locus

In this section we finally prove Theorem 16.6, by computing the expansion of the conjugate time
tc(θ0, ν). We know that

tc(θ0, ν) = 2π + ν2s(θ0) +O(ν3)

By definition of conjugate point, the function s = s(θ0) is characterized as the solution of the
equation

∂F

∂s
∧ ∂F
∂θ
∧ ∂F
∂ν

∣∣∣∣
(2π+ν2s,θ,ν)

= 0, (16.37)

where s is considered as a parameter. Notice that the derivative with respect to s is computed by

∂F

∂s
=
∂F

∂t

∂t

∂s
= (νfθ +O(ν2))ν2 ≃ ν3fθ +O(ν4)

Moreover, from the expansion of F with respect to ν one has

∂F

∂ν
= −2πνf0 +O(ν2)

Thus
F (2π + ν2s; θ, ν) = F (2π, θ, ν) + ν3sfθ +O(ν4)

and differentiation with respect to θ0 together with Lemma 16.12 gives

∂F

∂θ
(2π + ν2s; θ, ν) = ν3(π[fθ, f0] + sfθ′) +O(ν4)

where as usual fθ′ denotes the derivative with respect to θ.
Then, collecting together all these computations, the equation for conjugate points (16.37) can

be rewritten as
fθ ∧ (sfθ′ + π[fθ, f0]) ∧ f0 = O(ν) (16.38)

Since fθ, fθ′ are an orthonormal frame on D and f0 is transversal to the distribution, (16.38) is
equivalent to

fθ ∧ (sfθ′ + π[fθ, f0]) = O(ν)
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that implies

s(θ) = π 〈[f0, fθ], fθ′〉+O(ν)

where 〈·, ·〉 denotes the the scalar product on the distribution. Hence

tc(θ, ν) = 2π + πν2 〈[f0, fθ], fθ′〉q0 +O(ν3)

To find the expression of conjugate locus, we evaluate the ecponential map at time tc(θ, ν).

We first consider the asymptotic of the conjugate locus. Using again that the first order term
with respect to ν of ∂tF is νfθ we have

F (2π + ν2s(θ0), θ0, ν) = F (2π; θ0, ν) + ν3s(θ0)fθ0 +O(ν4)

Hence, by Corollary 16.11 and Lemma one gets

Con(q0; θ0, ν) = −πν2f0(q0)−
ν3

2

∫ θ0+π

θ0

dq3
dτ

dτ + ν3s(θ0)fθ0 +O(ν4)

Moreover, since
∂F

∂θ0
(2π, ν, θ0) = ν3[fθ0 , f0] +O(ν4)

we have by definition that q3(θ) = [fθ, f0] and

Con(q0, θ0, ν) = −ν2f0(q0)−
ν3

2

∫ θ0+π

θ0

π[fθ0 , f0]dτ + ν3s(θ0)fθ0

= −ν2f0(q0)−
ν3

2

∫ θ0+π

θ0

π[fθ0 , f0] + s′(t)fθ0 + s(t)fθ′0dt (16.39)

where the last identify follows by writing fθ′′ = −fθ and integrating by parts. Using that

s(θ) = π 〈[f0, fθ], fθ′〉
s′(θ) = π 〈[f0, fθ′ ], fθ′〉 − π 〈[f0, fθ], fθ〉 = 2πa

we can rewrite (16.39) as follows

π[fθ0 , f0] + s′(t)fθ0 + s(t)fθ′0 = π[fθ0 , f0] + 2πafθ0 + π
〈
[f0, fθ0 ], fθ′0

〉
fθ′0

= π 〈[fθ0 , f0], fθ0〉 fθ0 + 2πafθ0

= 3πafθ0

Finally

Con(q0; θ0, ν) = −ν2f0(q0)−
3ν3

2
π

∫ θ0+π

θ0

a(τ)fτdτ +O(ν4)

= −ν2f0(q0) + ν3π(a′fθ0 − afθ′0) +O(ν4)
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16.3.3 Asymptotics of the conjugate lenght

Similarly, we consider conjugate lenght. Recall that

ℓc(θ0, ν) =

∫ θ0+tc(θ0,ν)

θ0

r(t)

1− r(t)Qθ0,νt b(t)
dt

where we replaced b(t) by its value along the flow Qθ0,νt b(t).
As a first step, notice that we can reduce to an integral over a period, up to higher order terms

with respect to ν. Namely

ℓc(θ0, ν) =

∫ θ0+2π

θ0

r(t)

1− r(t)Qθ0,νt b(t)
dt+ ν3s(θ0) +O(ν4) (16.40)

Indeed tc(θ0, ν) = 2π+ν2s(θ)+O(ν3) and the first order term w.r.t. ν in the integrand is exactly ν

by (16.35). In what follows we use again the notation Qt := Qθ0,νt , and we compute the expansion
in ν of the integral appearing in (16.40).

First notice that

r(t)

1− r(t)Qtb(t)
= r(t)

(
1 + r(t)Qtb(t) + r2(t)[Qtb(t) ◦Qtb(t)] +O(r(t)3)

)

Using that r(t) = ν +O(ν3) and (Qtb(t)) = b(t) +O(ν) we have that

r(t)

1− r(t)Qtb(t)
= r(t) + r2(t)Qtb(t) + r3(t)b(t)2 +O(ν4)

Now each addend of the sum expands as follows

r(t) = ν + ν3
∫ t

0
a(t)dt+O(ν4) (16.41)

r2(t)Qθt (ν)b(t) = (ν2 +O(ν4))

(
Id + ν

∫ t

0
fτdτ +O(ν)

)
b(t) (16.42)

= ν2b(t) + ν3
∫ t

0
fτdτb(t) +O(ν4) (16.43)

r3(t)b(t)2 = ν3b(t)2 +O(ν4) (16.44)

Integrating the sum over the interval [θ0, θ0 +2π] and considering terms only up to O(ν4) we have

ℓc(θ0, ν) = 2πν +

(∫ θ0+2π

θ0

[∫ t

0
a(τ)dτ +

∫ t

0
fτdτ

]
b(t) + b2(t)dt

)
ν3 +O(ν4)

where the coefficient in ν2 vanishes since
∫ θ0+2π
θ0

b(τ)dτ = 0. A straightforward computation of the
integrals ends the proof of the theorem.
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Chapter 17

The sub-Riemannian heat equation

In this chapter we derive the sub-Riemannian heat equation and we discuss the strictly related
question of how to define an intrinsic volume in sub-Riemannian geometry.

17.1 The heat equation

To write the heat equation in a sub-Riemannian manifold, let us recall how to write it in the Rie-
mannian context and let us see which mathematical structures are missing in the sub-Riemannian
one.

17.1.1 The heat equation in the Riemannian context

Let (M,g) be an oriented Riemannian manifold of dimension n and let ω be a volume form on M ,
i.e., a never-vanishing n-form on M .1 The most natural choice for ω is of course the Riemannian
volume defined by

ω(X1, . . . ,Xn) = 1, where {X1, . . . ,Xn} is a local orthonormal frame.

In coordinates if g is represented by a matrix (gij), we have

ω =
√

det(gij) dx1 ∧ . . . ∧ dxn.

However in the following we write the heat equation for a general volume form that not neces-
sarily coincides with the Riemannian one. This point of view is useful in sub-Riemannian geometry,
where a canonical volume exists only in certain cases.

Let φ be a quantity (depending on the position q and the time t) subjects to a diffusion process
e.g. the temperature of a body, the concentration of a chemical product, the noise etc..... Let F be
a time dependent vector field representing the flux of the quantity φ, i.e., how much of φ is flowing
through the unity of surface in unitary time.

Our purpose is to get a partial differential equation describing the evolution of φ. The Rieman-
nian heat equation is obtained by postulating the following two facts:

1For simplicity here we assume that M is orientable, but since this construction is essentially local, this hypothesis
it is not restrictive
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(R1) the flux is proportional to minus the gradient of φ i.e., normalizing the proportionality con-
stant to one, we assume that

F = −grad(φ); (17.1)

(R2) the quantity φ satisfies a conservation law, i.e. for every bounded open set V having a smooth
boundary ∂V we have the following: the rate of decreasing of φ inside V is equal to the rate
of flowing of φ via F, out of V , through ∂V . In formulas this is written as

− d

dt

∫

V
φ ω =

∫

∂V
F · ν dS. (17.2)

ν

∂V

V

Here ν is the external (Riemannian) normal to ∂V and dS is the element of area induced
by ω on M , thanks to the Riemannian structure, i.e., dS = ω(ν, ·). The quantity F · ν is a
notation for gq(F(q, t), ν(q)).

Applying the Riemannian divergence theorem to (17.2) and using (17.1) we have then

− d

dt

∫

V
φ ω =

∫

∂V
F · ν dS =

∫

V
divω(F)ω = −

∫

V
divω(grad(φ))ω.

By the arbitrarity of V and defining the Riemannian Laplace operator as

△φ = divω(grad(φ)) (17.3)

we get the heat equation
∂

∂t
φ(q, t) = △φ(q, t).

Useful expressions for the Riemannian Laplacian

In this section we get some useful expressions for △. To this purpose we have to recall what are
grad and divω in formula (17.13).

We recall that the gradient of a smooth function ϕ : M → R is a vector field pointing in the
direction of the greatest rate of increase of ϕ and its magnitude is the derivative of ϕ in that
direction. In formulas it is the unique vector field grad(ϕ) satisfying for every q ∈M ,

gq(grad(ϕ), v) = dϕ(v), for every v ∈ TqM. (17.4)

In coordinates, if g is represented by a matrix (gij), and calling (gij) its inverse, we have

grad(ϕ)i =

n∑

j=1

gij∂jϕ. (17.5)
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If {X1, . . . ,Xn} is a local orthonormal frame for g, we have the useful formula

grad(ϕ) =
n∑

i=1

Xi(ϕ)Xi. (17.6)

Exercise 17.1. Prove that if the Riemannian metric is defined globally via a generating frame
{X1, . . . ,Xk} with k ≥ n, in the sense of Section ....... then grad(ϕ) =

∑k
i=1Xi(ϕ)Xi.

Recall that the divergence of a smooth vector field X says how much the flow of X is increasing
or decreasing the volume. It is defined in the following way. The Lie derivative in the direction
of X of the volume form is still a n-form and hence point-wise proportional to the volume form
itself. The “point-wise” constant of proportionality is a smooth function that by definition is the
divergence of X. In formulas

LXω = divω(X)ω.

Now using dω = 0 and the Cartan formula we have that LXω = iXdω + d(iXω) = d(iXω). Hence
the divergence of a vector field X can be defined by

d(iXω) = divω(X)ω. (17.7)

In coordinates, if ω = h(x)dx1 ∧ . . . dxn we have

divω(X) =
1

h(x)

n∑

i=1

∂i(h(x)X
i). (17.8)

Remark 17.2. Notice that to define the divergence of a vector field it is not necessary a Riemannian
structure, but only a volume form.

If we put together formula 17.5 and formula 17.8, with X = grad(ϕ) we get the well known
expression

△(ϕ) = divω(grad(ϕ)) =
1

h(x)

n∑

i,j=1

∂i(h(x)g
ij∂jϕ). (17.9)

Combining formula 17.6 with the property div(aX) = adiv(X) +X(a) where X is a vector field
and a a function, we get

△(ϕ) =

n∑

i=1

(
X2
i ϕ+ divω(Xi)Xi(ϕ)

)
where {X1, . . . Xn} is a local orthonormal frame. (17.10)

Similarly, defining the Riemannian structure via a generating frame we get

△(ϕ) =

k∑

i=1

(
X2
i ϕ+ divω(Xi)Xi(ϕ)

)
where {X1, . . . Xk}, k ≥ n, is a generating frame (17.11)

Remark 17.3. Notice that the choice of the volume form does not affect the second order terms,
but only the first order ones.

When △ is built with respect to the Riemannian volume form, it is called the Laplace-Beltrami
operator.
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17.1.2 The heat equation in the sub-Riemannian context

Let M be a sub-Riemannian manifold of dimension n. Let D be the associated set of horizontal
vector fields and gq the corresponding metric on the distribution Dq.

As in the Riemannian case, we assume by simplicity that M is oriented and we assume that a
volume form ω has been assigned on M . In Section ?? we show that, in the equiregular case, the
sub-Riemannian structure induces, canonically, a volume form on M . For the moment we assume
that the volume form is assigned independently of the sub-Riemannian structure.

As in the previous section, we denote by φ the quantity subject to the diffusion process, by F
the corresponding flux, and we postulate that:

(SR1) the heat flows in the direction where φ is varying more but only among horizontal directions;

(SR2) the quantity φ satisfies a conservation law, i.e. for every bounded open set V having a smooth
and orientable boundary ∂V we have the following: the rate of decreasing of φ inside V is
equal to the rate of flowing of φ via F, out of V , through ∂V .

To derive the heat equation in the Riemannian case, we have used the following ingredients that
are not directly available in the sub-Riemannian context:

• the Riemannian gradient;

• the Riemannian normal to ∂V , and the inner product to define the conservation 17.2;

• the Riemannian divergence theorem.

Hence the standard Riemannian construction fails in the sub-Riemannian context and we have to
reason in a different way to derive the heat equation. Let us analyse one by one the ingredients
above and let us see how to generalise them in sub-Riemannian geometry.

The horizontal gradient

In sub-Riemannian geometry the gradient of a smooth function ϕ : M → R is a horizontal vector
field (called horizontal gradient) pointing in the horizontal direction of the greatest rate of increase
of ϕ and its magnitude is the derivative of ϕ in that direction. In formulas it is the unique vector
field gradH(ϕ) satisfying for every q ∈M ,

gq(gradH(ϕ), v) = dϕ(v), for every v ∈ DqM. (17.12)

If {X1, . . . ,Xk} is a generating frame then

gradH(ϕ) =

k∑

i=1

Xi(ϕ)Xi.

The postulate (SR1) is then written as

F = −gradH(φ).
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Ω

ΠF (t,Ω)

F

Figure 17.1:

The conservation of the heat

The next step is to express the conservation of the heat without a Riemannian structure. This can
be done thanks to the following Lemma, whose proof is left for exercise.

Lemma 17.4. Let M be a smooth manifold provided with a smooth volume form ω. Let Ω be an
embedded bounded sub-manifold (possible with boundary) of codimension 1. Let F be a (possible time
dependent) complete smooth vector field and P0,t be the corresponding flow. Consider the cylinder
formed by the images of Ω translated by the flow of F for times between 0 and t (see Figure 17.1):

ΠF (t,Ω) = {P0,t(Ω) | s ∈ [0, t]}.
Then

d

dt

∣∣∣∣
t=0

∫

ΠF (t,Ω)
ω =

∫

Ω
iF
∣∣
t=0

ω.

With the notation of this Lemma, the postulate (SR2) is written as

− d

dt

∫

V
φ ω =

d

dt

∫

ΠF(t,∂V )

ω =

∫

∂V
iF ω,

where in the last equality we have used the result of the lemma.
Now, using the Stokes theorem, the definition of divergence 17.7 and using that F = −gradHφ

we have ∫

∂V
iF ω =

∫

V
d(iF ω) =

∫

V
divω(F)ω = −

∫

V
div(gradH(φ))ω.

By the arbitrarity of V and defining

△Hφ = divω(gradH(φ)), (17.13)

we get the sub-Riemannian heat equation

∂

∂t
φ(q, t) = △Hφ(q, t).

Definition 17.5. Let M be a sub-Riemannian manifolds and let ω be a volume on M . The
operator △Hφ = divω(gradH(φ)) is called the sub-Riemannian Laplacian.

When it is possible to construct a volume from the sub-Riemannian structure, then the cor-
responding sub-Riemannian Laplacian is called the intrinsic sub-Laplacian. The construction of a
canonical volume form in a sub-Riemannian manifold is the purpose of Section ??. Here let us just
remark that in the case of left-invariant structures on Lie groups, a canonical volume can be built
naturally from the group structure. This will be done in Section 17.2 for the Heisenberg group.
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17.1.3 Few properties of the sub-Riemannian Laplacian: the Hörmander theo-

rem and the existence of the heat kernel

The same computation of the Riemannian case provides the following expression for the sub-
Riemannian Laplacian,

△H(φ) =

k∑

i=1

(
X2
i φ+ divω(Xi)Xi(φ)

)
where {X1, . . . Xk}, is a generating frame. (17.14)

In the Riemannian case, the operator ∆H is elliptic, i.e., in coordinates it has the expression

△H =
n∑

i,j=0

aij(x)∂i∂j + first order terms,

where the matrix (aij) is symmetric and positive definite for every x.
In the sub-Riemannian (and not-Riemannian) case, ∆H it is not elliptic since the matrix (aij)

can have several zero eigenvalues. However, a theorem of Hörmander says that thanks to the Lie
bracket generating condition ∆H is hypoelliptic. More precisely we have the following.

Theorem 17.6 (Hörmander). Let Y0, Y1 . . . Yk be a set of Lie bracket generating vector fields on a
smooth manifold M . Then the operator L = Y0 +

∑k
i=1 Y

2
i is hypoellptic which means that if ϕ is

a distribution defined on an open set Ω ⊂M , such that Lϕ is C∞, then ϕ is C∞ in Ω.

Remark 17.7. Notice that elliptic operators with C∞ coefficients are hypoelliptic. The heat operator
∂t−∆, where ∆ is the standard Laplacian in R

n is not elliptic (since the matrix of coefficients of the
second order derivatives in R

n+1 has one zero eigenvalue), but it is hypoelliptic since ∂x1 , . . . , ∂xn , ∂t
are Lie Bracket generating in R

n+1.

One of the most important consequences of the Hörmander theorem is that the heat evolution
smooths out immediately every initial condition. Indeed if one can guarantee that a solution of
(∂t −∆H)ϕ = 0 exists in distributional sense in an open set Ω of R ×M , then, being 0 ∈ C∞, it
follows that ϕ is C∞ in Ω.

A standard result for the existence of a solution in L2(M,ω) is given by the following theorem.
See for instance [?].

Theorem 17.8. Let M be a smooth manifold and ω a volume on M . If ∆ is a non negative and
essentially self-adjoint operator on L2(M,ω), then, there exists a unique solution to the Cauchy
problem

{
(∂t −△)φ = 0
φ(q, 0) = φ0(q) ∈ L2(M,ω),

(17.15)

on [0,∞[×M . Moreover for each t ∈ [0,∞[ this solution belongs to L2(M,ω).

It is immediate to prove that ∆H is non-negative and symmetric on L2(M,ω). If in addition
one can prove that ∆H is essentially self-adjoint, then thanks to the Hörmander theorem, one has
that the solution of (17.15) is indeed C∞ in ]0,∞[×M .

The discussion of the theory of self-adjoint operators is out of the purpose of this book. However
the essential self-adjointness of ∆H is guaranteed by the completeness of the sub-Riemannian man-
ifold as metric space. This condition guarantees also the existence of the solution to the Cauchy
problem in the form of a convolution kernel.
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Theorem 17.9 (Strichartz). Consider a sub-Riemannian manifold that is complete as metric space.
Let ω be a volume on M . Then ∆H is essentially self-adjoint on L2(M,ω). Moreover the unique
solution to the Cauchy problem

{
(∂t −△H)φ = 0
φ(q, 0) = φ0(q) ∈ L2(M,ω),

(17.16)

on [0,∞[×M can be written as

φ(q, t) =

∫

M
φ0(q̄)Kt(q, q̄)ω(q̄)

where Kt(q, q̄) is a positive function defined on ]0,∞[×M ×M which is smooth, symmetric for the
exchange of q and q̄ and such that for every fixed t, q, we have Kt(q, ·) ∈ L2(M,ω).

Typical cases in which the sub-Riemannian manifold is complete are let-invariant structure on
Lie groups, sub-Riemannian structures obtained as restriction of complete Riemannian structures,
sub-Riemannian structures defined in R

n having as generating frame a set of sublLinear vector
fields.

Let us just remark that if the sub-Riemannian structure is not Lie-bracket generated,2 then in
general the operator is not hypoelliptic and the heat evolution does not smooth the initial condition.

Consider for example the operator L = ∂2x + ∂2y on R
3. This operator is not obtained from Lie-

bracket generating vector fields. Consider the corresponding heat operator ∂t − L on [0,∞] × R
3.

Since the z direction is not appearing in this operator, any discontinuity in the z variable is not
smoothed by the evolution. For instance if ψ(x, y, t) is a solution of the heat equation ∂t − L = 0
on [0,∞] × R

2, then ψ(x, y, t)θ(z) is a solution of the heat equation in [0,∞] × R
3, where θ is the

Heaviside function.

17.2 The heat-kernel on the Heisenberg group

In this section we construct the heat kernel on the Heisenberg sub-Riemannian structure. To this
purpose it is convenient to see this structure as a left-invariant structure on a matrix representation
of the Heisenberg group. This point of view is useful to build in a canonical way a volume form and
hence the sub-Riemannian Laplacian. Moreover this point of view permits to look for a simplified
version of the heat kernel using the group law.

17.2.1 The Heisenberg group as a group of matrices

The Heisenberg group H2 can be seen as the 3-dimensional group of matrices

H2 =








1 x z + 1
2xy

0 1 y
0 0 1


 | x, y, z ∈ R





endowed with the standard matrix product. H2 is indeed R
3, endowed with the group law

(x1, y1, z1) · (x2, y2, z2) =
(
x1 + x2, y1 + y2, z1 + z2 +

1

2
(x1y2 − x2y1)

)
.

2i.e. a proto-sub-Riemannian structure
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This group law comes from the matrix product after making the identification

(x, y, z) ∼




1 x z + 1
2xy

0 1 y
0 0 1


 .

The identity of the group is the element (0, 0, 0) and the inverse element is given by the formula

(x, y, z)−1 = (−x,−y,−z)

A basis of its Lie algebra of H2 is {p1, p2, k} where

p1 =




0 1 0
0 0 0
0 0 0


 p2 =




0 0 0
0 0 1
0 0 0


 k =




0 0 1
0 0 0
0 0 0


 . (17.17)

They satisfy the following commutation rules: [p1, p2] = k, [p1, k] = [p2, k] = 0, hence H2 is a 2-step
nilpotent group.

Remark 17.10. Notice that if one write an element of the algebra as xp1 + yp2 + zk, one has that

exp(xp1 + yp2 + zk) =




1 x z + 1
2xy

0 1 y
0 0 1


 . (17.18)

Hence the coordinates (x, y, z) are the coordinates on the Lie algebra related to the basis {p1, p2, k},
transported on the group via the exponential map. They are called coordinates of the “first type”.
As we will see later, coordinate x, y, w = z + 1

2xy, that are more adapted to the group, are also
useful.

The standard sub-Riemannian structure on H2 is the one having as generating frame:

X1(g) = gp1, X2(g) = gp2.

With a straightforward computation one get the following coordinate expression for the generating
frame:

X1 = ∂x −
y

2
∂z, X2 = ∂y +

x

2
∂z,

that we already met several times in the previous chapters.

Let Lg (reap. Rg) be the left (resp. right) multiplication on H2:

Lg : H2 ∋ h 7→ gh (resp. Rg : H2 ∋ h 7→ hg).

Exercise Prove that, up to a multiplicative constant, there exist one and only one 3-form dhL
on H2 which is left-invariant, i.e. such that L∗

gdh = dh and that in coordinates coincide (up to
a constant) with the Lebesgue measure dx ∧ dy ∧ dz. Prove the same for a right-invariant 3-form
dhR,

The left- and right-invariant forms built in the exercise above are called the left and right Haar
measures. Since they coincide up to a constant the Heisenberg group is said to be “unimodular”.
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In the following we normalise the left and right Haar measures on the sub-Riemannian structure
in such a way that

dhL(X1,X2, [X1,X2]) = dhR(X1,X2, [X1,X2]) = 1. (17.19)

The 3-form obtained in this way coincide with the Lebesgue measure and in the following we call
it simply the “Haar measure”

dh = dx ∧ dy ∧ dz.
Exercise Prove that the two conditions (17.19) are invariant by change of the orthonormal frame.

17.2.2 The heat equation on the Heisenberg group

Given a volume form ω on R
3, the sub-Riemannian Laplacian for the Heisenberg sub-Riemannian

structure is given by the formula,

△H(φ) =
(
X2

1 +X2
2 + divω(X1)X1 + divω(X2)X2

)
φ. (17.20)

If we take as volume the Haar volume dh, and using the fact that X1 and X2 are divergence free
with respect to dh, we get for the sub-Riemannian Laplacian

△H(φ) = (X1)
2 + (X2)

2 = (∂x −
y

2
∂z)

2 + (∂y +
x

2
∂z)

2. (17.21)

The heat equation on the Heisenberg group is then

△H(φ) =
(
(∂x −

y

2
∂z)

2 + (∂y +
x

2
∂z)

2
)
φ(x, y, z, t) = ∂tφ(x, y, z, t).

For this equation, we are looking for the heat kernel, namely a function Kt(q, q̄) such that the
solution to the Cauchy problem

{
(∂t −△H)φ = 0
φ(q, 0) = φ0(q) ∈ L2(R3, dh)

(17.22)

can be expressed as

φ(q, t) =

∫

R3

Kt(q, q̄)φ0(q̄)dh(q̄). (17.23)

The existence of a heat kernel that is smooth, positive and symmetric is guaranteed by Theorem
17.9 since the Heisenberg group (as sub-Riemannian structure) is complete.

The construction of the explicit expression of the heat kernel on the Heisenberg group was an
important achievement of the end of the seventies. Here we propose an elementary direct method.
divided in the following step:

STEP 1. We look for a special form for Kt(q, q̄) using the group law.

STEP 2. We make a change of variables in such a way that the coefficients of the heat equation depend
only on one variable instead than two.
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STEP 3. By using the Fourier transform in two variables, we transform the heat equation (that was
a PDE in 3 variable plus the time) in a heat equation with an harmonic potential in one
variable plus the time.

STEP 4. We find the kernel for the heat equation with the harmonic potential, thanks to the Mehler
formula for Hermite polynomials.

STEP 5. We come back to the original variables.

Let us make these steps one by one.

STEP 1 Due to invariance under the group law, we have that for Kt(q, q̄) = Kt(p ·q, p · q̄) for every
p ∈ H2. Taking p = q−1 we have that Kt(q, q̄) = Kt(0, q

−1q̄) hence we can write

Kt(q, q̄) = pt(q
−1 · q̄) = pt(x̄− x, ȳ − y, z̄ − z) = pt(x− x̄, y − ȳ, z − z̄),

for a suitable function pt(·) called the fundamental solution. In the last equality we have used the
symmetry of the heat kernel.

STEP 2 Let us make the change the variable z → w, where

w = z +
1

2
xy

(cf. Remark 17.10). In the new variables we have that the Haar measure is dh = dx ∧ dy ∧ dw.
The generating frame and the sub-Riemannian Laplacian become

X1 =




1
0
0


 = ∂x (17.24)

X2 =




0
1
x


 = ∂y + x∂w (17.25)

△H(φ) = (X1)
2 + (X2)

2 = ∂2x + (∂y + x∂w)
2. (17.26)

The new coordinates are very useful since now the coefficients of the different terms in △H depend
only on one variable. We are then looking for the solution to the Cauchy problem

{
∂tϕ(x, y, w, t) = △H(ϕ(x, y, w, t)) =

(
∂2x + (∂y + x∂w)

2
)
ϕ(x, y, w, t)

ϕ(x, y, w, 0) = ϕ0(x, y, w) ∈ L2(R3, dh)
(17.27)

where ϕ(x, y, w, t) = φ(x, y, w − 1
2xy).

STEP 3 By making the Fourier transform in y and w, we have ∂y → iµ, ∂w → iν and the Cauchy
problem become {

∂tϕ̂(x, µ, ν, t) =
(
∂2x − (µ + νx)2

)
ϕ̂(x, µ, ν, t)

ϕ̂(x, µ, ν, 0) = ϕ̂0(x, µ, ν).
(17.28)

By making the change of variable x→ θ, where µ+ νx = νθ, i.e., θ = x+ µ
ν we get:

{
∂tϕ̄

µ,ν(θ, t) =
(
∂2θ − ν2θ2

)
ϕ̄µ,ν(θ, t)

ϕ̄µ,ν(θ, 0) = ϕ̄µ,ν0 (θ),
(17.29)

where we set ϕ̄µ,ν(θ, t) := ϕ̂(θ − µ
ν , µ, ν, t), and ϕ̄

µ,ν
0 (θ) = ϕ̂0(θ − µ

ν , µ, ν).

STEP 4. We have the following
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Theorem 17.11. The solution of the Cauchy problem for the evolution of the heat in an harmonic
potential, i.e. {

∂tψ(θ, t) =
(
∂2θ − ν2θ2

)
ψ(θ, t)

ψ(θ, 0) = ψ0(θ) ∈ L2(R, dθ)
(17.30)

can be written in the form of a convolution kernel

ψ(θ, t) =

∫

R

Qνt (θ, θ̄)ψ0(θ̄)dθ̄.

where

Qνt (θ, θ̄) :=

√
ν

2π sinh(2νt)
exp

(
−1

2

ν cosh(2νt)

sinh(2νt)
(θ2 + θ̄2) +

νθθ̄

sinh(2νt)

)
. (17.31)

Remark 17.12. In the case ν = 0 we interpret Q0
t (θ, θ̄) as

limν→0Q
ν
t (θ, θ̄) =

1√
4πt

exp[−(θ − θ̄)2
4t

]. (17.32)

Proof. For ν = 0, equation (17.30) is the standard heat equation on R and the heat kernel is given
by formula (17.32). See for instance [?]. In the following we assume ν 6= 0. The eigenvalues and
the eigenfunctions of the operator ∂2θ − ν2θ2 on R are (see Appendix ??)

Ej = −2ν(j + 1/2)

ϕνj (θ) =
1√
2jj!

(ν
π

) 1
4
exp(−νθ

2

2
)Hj(

√
ν θ) (17.33)

where Hj are the Hermite polynomials

Hj(θ) = (−1)j exp(θ2) d
j

dθj
exp(−θ2).

Being {ϕνj }j∈N an orthonormal frame of L2(R), we can write

ψ(θ, t) =
∑

j

Cj(t)ϕ
ν
j (θ).

Using equation (17.30), we obtain that

Cj(t) = Cj(0) exp(tEj)

where Cj(0) =
∫
R
ϕνj (θ̄)ψ0(θ̄) dθ̄. Hence

ψ(θ, t) =

∫

R

Qνt (θ, θ̄)ψ0(θ̄) dθ̄

where

Qνt (θ, θ̄) =
∑

j

ϕνj (θ)ϕ
ν
j (θ̄) exp(tEj).
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After some algebraic manipulations and using the Mehler formula for Hermite polynomials

∑

j

Hj(θ)Hj(θ̄)

2jj!
(w)j = (1− w2)−

1
2 exp

(
2θθ̄w − (θ2 + θ̄2)w2

1− w2

)
, ∀ w ∈ R

with θ → √νθ, θ̄ → √νθ̄, w → exp(−2νt), one get formula (17.31). �

Using Theorem 17.11 we can write the solution to 17.30 as

ϕ̄µ,ν(θ, t) =

∫

R

Qνt (θ, θ̄)ϕ̄
µ,ν
0 (θ̄)dθ̄.

STEP 5 We now come back to the original variables step by step. We have

ϕ̂(x, µ, ν, t) = ϕ̄µ,ν(x+
µ

ν
, t) =

∫

R

Qνt (x+
µ

ν
, θ̄)ϕ̄µ,ν0 (θ̄)dθ̄ =

∫

R

Qνt (x+
µ

ν
, x̄+

µ

ν
)ϕ̂0(x̄, µ, ν)dx̄.

In the last equality we made the change of integration variable θ̄ → x̄ with θ̄ = x̄+ µ
ν and we used

the fact that ϕ̂µ,ν0 (x̄+ µ
ν ) = ϕ̂0(x̄, µ, ν).

Now, using the fact that ϕ̂0(x̄, µ, ν) is the Fourier transform of the initial condition, i.e.

ϕ̂0(x̄, µ, ν) =

∫

R

∫

R

ϕ0(x̄, ȳ, w̄)e
−iµȳe−iνw̄dȳ dw̄,

and making the inverse Fourier transform we get

ϕ(x, y, w, t) =
1

(2π)2

∫

R

∫

R

ϕ̂(x, µ, ν, t)eiµyeiνwdµ dν

=

∫

R3

(
1

(2π)2

∫

R

∫

R

Qνt (x+
µ

ν
, x̄+

µ

ν
)eiµ(y−ȳ)eiν(w−w̄)dµ dν

)
ϕ0(x̄, ȳ, w̄)dx̄ dȳ dw̄.

Coming back to the variable x, y, z, we have

φ(x, y, z, t) = ϕ(x, y, z +
1

2
xy) =

∫

R3

Kt(x, y, z, x̄, ȳ, z̄)φ0(x̄, ȳ, z̄)dx̄ dȳ dz̄.

where

Kt(x, y, z, x̄, ȳ, z̄) =
1

(2π)2

∫

R

∫

R

Qνt (x+
µ

ν
, x̄+

µ

ν
)eiµ(y−ȳ)eiν(z−z̄+

1
2
(xy−x̄ȳ))dµ dν.

Setting x̄, ȳ, z̄ to zero and after some algebraic manipulations we get for the fundamental solution

pt(x, y, z) =
1

(2πt)2

∫

R

2τ

sinh(2τ)
exp

(
− τ(x

2 + y2)

2t tanh(2τ)

)
cos(2

zτ

t
)dτ. (17.34)

The integral representation (17.34) can be computed explicitly on the origin and on the z axis.
Indeed we have

Kt(0, 0, 0; 0, 0, 0) = pt(0, 0, 0) =
1

16t2
(17.35)

Kt(0, 0, 0; 0, 0, z) = pt(0, 0, z) =
1

8t2
(
1 + cosh

(
πz
t

)) =
1

4t2
exp

(
−d

2(0, 0, 0; 0, 0, z)

4t

)
f(t) (17.36)
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In the last equality we have used the fact that for the Heisenberg group d(0, 0, 0; 0, 0, z) =
√
4πz.

Here f(t) is a smooth function of t such that f(0) = 1 (here z 6= 0 is fixed). A more detailed
analysis permits to get for every fixed (x, y, z) such that x2 + y2 6= 0

Kt(0, 0, 0;x, y, z) = pt(x, y, z) =
C +O(t)

t3/2
exp

(
−d

2(0, 0, 0;x, y, z)

4t

)
. (17.37)

Notice that the asymptotics (17.35), (17.36), (17.37) are deeply different with respect to those
in the Euclidean case. Indeed the heat kernel for the standard heat equation in R

n is given by the
formula

Kt(0, 0, 0;x, y, z) =
1

(4πt)n/2
exp

(
−x

2 + y2 + z2

4t

)
. (17.38)

Comparing (17.38) with (17.35), (17.36), (17.37), one has the impression that the heat diffusion
on the Heisenberg group at the origin and on the points on the z axis, is similar to the one in
an Euclidean space of dimension 4. While on all the other points it is similar to to the one in
an Euclidean space of dimension 3. Indeed the difference of asymptotics between the Heisenberg
and the Euclidean case at the origin is related to the fact that the Hausdorff dimension of the
Heisenberg group is 4, while its topological dimension is 3 (See Chapter ??). While the difference
of asymptotics on the z axis (without the origin) is related to the fact that these are points reached
a one parameter family of optimal geodesics starting from the origin and hence they are at the
same time cut and conjugate points. For more details see [?]. It is interesting to remark that on a
Riemannian manifold of dimension n the asymptotics are similar to the Euclidean ones for points

close enough. Indeed for every q̄ close enough to q we have Kt(q, q̄) =
1+O(t)

(4πt)n/2 exp
(
−d2(q,q̄)

4t

)
.
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