

Общероссийский математический портал

А. А. Аграчев, Инвариантные лагранжевы подмногообразия диссипативных систем, УМH, 2010, том 65, выпуск 5(395), 185–186

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением http://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 95.129.140.250

17 ноября 2015 г., 16:01:44

УСПЕХИ МАТЕМАТИЧЕСКИХ НАУК

В МОСКОВСКОМ МАТЕМАТИЧЕСКОМ ОБЩЕСТВЕ

СООБЩЕНИЯ МОСКОВСКОГО МАТЕМАТИЧЕСКОГО ОБЩЕСТВА

Инвариантные лагранжевы подмногообразия диссипативных систем А. А. Аграчёв

Пусть M — компактное риманово многообразие класса C^k , $k\geqslant 2$, с римановой структурой $(\xi,\eta)\mapsto \langle I_q^{-1}\xi,\eta\rangle,\ \xi,\eta\in T_qM,\ q\in M,$ где $I_q\colon T_q^*M\to T_qM$ — самосопряженное линейное отображение, определяющее положительно определенную квадратичную форму $z\mapsto \langle z,I_qz\rangle,\ z\in T_q^*M.$

Пусть $V \in C^k(M)$ и ω – такая замкнутая дифференциальная 1-форма на M класса C^k , что $\nabla \omega = 0$, где $\nabla \omega$ – ковариантная производная формы ω . Рассмотрим гамильтониан $H \in C^k(T^*M)$, заданный формулой

$$H(z) = \frac{1}{2} \langle I_q(z + \omega_q), z + \omega_q \rangle + V(q), \qquad z \in T_q^* M.$$

Пусть \vec{H} — гамильтоново векторное поле на T^*M , отвечающее гамильтониану H, а ℓ — "вертикальное" эйлерово векторное поле векторного расслоения $T^*M \to M$. В локальных координатах $z=(p,q),\ p,q\in\mathbb{R}^n,\ T_q^*M=(\mathbb{R}^n,q),$ эти объекты имеют вид: $H(p,q)=\frac{1}{2}\,(p+\omega(q))^*I_q(p+\omega(q))+V(q),\ \vec{H}(p,q)=\sum_i\left(\frac{\partial H}{\partial p^i}\,\frac{\partial}{\partial q^i}-\frac{\partial H}{\partial q^i}\,\frac{\partial}{\partial p^i}\right),$ $\ell(p,q)=\sum_i p^i\,\frac{\partial}{\partial p^i}\,.$

Рассмотрим диссипативную систему $\dot{z}=\vec{H}(z)-\alpha\ell(z)$, где α – положительная константа. Нетрудно видеть, что любая ограниченная траектория этой системы лежит в множестве

$$B_H \stackrel{\text{def}}{=} \Big\{ z \in T^*M : H(z - \omega_{\pi(z)}) \leqslant \max_{q \in M} H(0_q) \Big\},\,$$

где 0_q – начало координат векторного пространства T_q^*M и $\pi\colon T^*M\to M,\ \pi(T_q^*M)=q$. Для всякого $z\in T^*M$ обозначим через $\rho(z)$ максимальное собственное значение симметричного оператора $\xi\mapsto \Re(\xi,I_qz)I_qz+\nabla_\xi(\nabla V),\ \xi\in T_qM,$ где \Re – риманова кривизна. Наконец, положим $r=\max\{\rho(z):z\in B_H\}.$

Обозначим Ω^{α} множество всех таких абсолютно непрерывных кривых $\gamma\colon\mathbb{R}_+\to M,$ что интеграл $\int_0^{+\infty}e^{-\alpha t}\langle I_{\gamma(t)}^{-1}\dot{\gamma}(t),\dot{\gamma}(t)\rangle\,dt$ сходится. Введем функционал дисконтного действия

$$\mathfrak{I}_{\alpha}(\gamma) = \int_{0}^{+\infty} e^{-\alpha t} \left(\frac{1}{2} \left\langle I_{\gamma(t)}^{-1} \dot{\gamma}(t), \dot{\gamma}(t) \right\rangle - V(\gamma(t)) + \left\langle \omega_{\gamma(t)}, \dot{\gamma}(t) \right\rangle \right) dt, \qquad \gamma \in \Omega_{\alpha}.$$

ТЕОРЕМА 1. Пусть $u(q) = -\inf \{ \Im_{\alpha}(\gamma) : \gamma \in \Omega_{\alpha}, \ \gamma(0) = q \}, \ q \in M$. Если $r \leqslant 0$ или $0 < r < \alpha^2/4$ и $k < 2/(1 - 2\sqrt{r}/\alpha)$, то:

1) $u \in C^k(M)$ и отображение $(H,\alpha) \mapsto u$ непрерывно в топологии C^2 ;

- 2) функция и удовлетворяет модифицированному уравнению Гамильтона-Якоби $H(du) + \alpha u = 0$, а $\{d_q u : q \in M\} \subset T^*M$ инвариантное подмногообразие системы $\dot{z} = \vec{H}(z) \alpha \ell(z)$;
- 3) существует такая содержащая 0 окрестность \mathcal{O} функции и в $C^2(M)$, что для любого $v_0 \in \mathcal{O}$ классическое решение v_t задачи Коши

$$\frac{\partial u_t}{\partial t} + H(du_t) + \alpha u_t = 0, \qquad u_0 = v_0,$$

определено для всех $t\geqslant 0$ и $\|dv_t-du\|_{C^1}\to 0$ с экспоненциальной скоростью при $t\to +\infty$.

Замечание. Теорема 1 справедлива для гамильтонианов на $\mathbb{R}^n \times \mathbb{R}^n$ вида $H(p,q) = |p+a|^2/2 + V(q)$, где $a \in \mathbb{R}^n$ – постоянный вектор и V – гладкий периодический потенциал. Здесь r – максимум собственных чисел матриц d^2V/dq^2 , $q \in \mathbb{R}^n$. Если $r < \alpha^2/4$, то уравнение

$$\frac{1}{2} \left| \frac{du}{dq} + a \right|^2 + V(q) + \alpha u = 0$$

имеет периодическое решение u класса C^k , где k – максимальное целое число, строго меньшее, чем $2/(1-\sqrt{1-4r/\alpha^2})$. При этом $\{(du/dq,q):q\in\mathbb{R}^n\}$ – инвариантное подмногообразие системы

$$\dot{q} = p + a, \qquad \dot{p} = -\frac{dV}{dq} - \alpha p.$$

Доказательство теоремы 1 основано на результатах работ [1] и [2]. В самом деле, теорема 1 есть некоторое усиление результатов работы [1]. А именно, рассматривается более широкий класс гамильтонианов (допускаются ненулевые формы ω), улучшается гладкость функции u и формулируются свойства устойчивости полученного решения. В действительности, форма ω не влияет на каноническую связность и операторы кривизны, так что рассмотрение более общих гамильтонианов не требует существенного изменения доказательства.

Улучшение гладкости и устойчивость опираются на работу [2]. В самом деле, предложение 1 из [1] влечет, что $\{d_qu:q\in M\}$ – нормально гиперболическое инвариантное подмногообразие (см. определение в [2]) потока, порожденного векторным полем $\vec{H}(z)-\alpha\ell(z)$. Более того, это нормально гиперболическое инвариантное подмногообразие имеет нулевое неустойчивое подрасслоение и, в действительности, может быть названо "нормально устойчивым" инвариантным подмногообразием. Теорема 4.1 из [2] содержит оценки степени гладкости нормально гиперболического инвариантного подмногообразия в терминах показателей Ляпунова, а анализ доказательства предложения 1 из [1] дает явные оценки показателей Ляпунова через константы r и α .

Список литературы

[1] А. А. Аграчев, Дифференциальные уравнения и топология. I, Тр. МИАН, 268, МАИК, М., 2010, 24–39; англ. пер.: А. А. Agrachev, Proc. Steklov Inst. Math., 268 (2010), 17–31. [2] М. W. Hirsch, С. С. Pugh, M. Shub, Invariant manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin, 1977.

A. A. Aграчёв (A. A. Agrachev)

Mатематический институт им. В. А. Стеклова РАН; International School for Advanced Studies (SISSA) E-mail: agrachev@mi.ras.ru, agrachev@sissa.it Представлено В. М. Закалюкиным Принято редколлегией 08.07.2010