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ASYMPTOTICS OF MAXWELL TIME IN THE PLATE-BALL PROBLEM

A.P. Mashtakov, A.Yu. Popov UDC 517.977

Abstract. The problem on rolling of a sphere on a plane without slipping or twisting is considered.

One should roll the sphere from one contact configuration to another so that the length of the curve

traced by the contact point in the plane was the shortest possible. Asymptotics of Maxwell time for

rolling of the sphere along small amplitude sinusoids is studied. Two-sided estimate for this asymptotics

is obtained.

1. Introduction

For the problem on rolling of a sphere on a plane without slipping or twisting, an optimal control
problem is studied. State of the system is described by the contact point of the sphere and the plane

and orientation of the sphere in three-dimensional space. One should roll the sphere from one contact
configuration to another so that the length of the curve traced by the contact point in the plane was the
shortest possible. The problem has application in robotics: rotation of a solid body in robot’s hand.

In this work we obtain two-sided estimate of Maxwell time in the plate-ball problem in asymptotic
case.

The problem was stated in [1] by Hammersley. Then Arthur and Walsh [2] proved integrability

of Hamiltonian system of PMP in elliptic functions. Jurdjevic in [3, 4] showed that projections of
extremal curves (x(t), y(t)) are Euler elasticae (see the papers [5, 6])). He gave a description of
different qualitative types of extremal trajectories, and obtained differential equations for evolution

of Euler angles along extremal trajectories. Explicit formulas for the extremals were obtained in the
paper [7].

Optimality of extremals is still an open problem nowadays. Short arcs of extremal trajectories are

optimal but long arcs, in general, are not optimal. A point at which an extremal trajectory loses global
optimality is called a cut point. A cut point is a conjugate point or a Maxwell point. A Maxwell point
is a point in the state space, where an extremal trajectory crosses another one with the same value of

cost functional. Yu. Sachkov began to study cut points in the plate-ball problem (see the paper [8]). He
found continuous and discrete symmetries of the exponential mapping. Then he obtained equations,
which define Maxwell points as fixed points of the discrete symmetries, and formulated necessary

optimality conditions in terms of Maxwell time (see Theorems A, B in Section 2). But the problem
of optimality of extremal trajectories is steel open because the equations, which define the Maxwell
points, are not solved.

The papers [7, 9] present the asymptotics of extremal trajectories in a neighborhood of the stable
equilibrium of a mathematical pendulum (see (6)), which appears in the adjoint subsystem of the
Hamiltonian system of the Maximum Principle. In this case, the extremal curves on the plane are

close to sinusoids of small amplitude.
This work continues to study the problem of optimality of extremal trajectories. It studies the

problem in an asymptotic case, where the formulas defining the extremal trajectories and the Maxwell
points are expressed via trigonometric functions. They are simpler than in the general case where

the formulas are expressed in elliptic functions. We study the behavior of Maxwell points MAX1

,.
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and MAX2 in this case and obtain two-sided estimates for the first Maxwell times t1 and t2, which

correspond to the fixed points of the discrete symmetries ε1 and ε2 of the exponential mapping.

2. Statement of the problem and known results

In this section we formulate the plate-ball problem and recall some known results. Let (x, y) ∈ R
2

be the contact point of the sphere and the plane. By q = (q0, q1, q2, q3) ∈ S3 denote the unit quaternion
(see the paper [10]) representing the rotation of three-dimensional space, which translates the current
orientation of the sphere to the initial orientation. The problem on optimal rolling of a unit sphere

on a plane is stated as follows:

Q̇ = u1X1(Q) + u2X2(Q), (1)

X1(Q) = (1, 0, q2, q3,−q0,−q1)
T , X2(Q) = (0, 1,−q1, q0, q3,−q2)

T , (2)

Q = (x, y, q0, q1, q2, q3) ∈ M = R
2 × S3, u = (u1, u2) ∈ R

2, (3)

Q(0) = Q0 = (0, 0, 1, 0, 0, 0), Q(t1) = Q1, (4)

l =

t1∫

0

√
u21 + u22 dt → min . (5)

Admissible controls are measurable and essentially bounded. Admissible trajectories are Lipschitz.
Problem (1)–(5) is a left-invariant sub-Riemannian problem on the Lie groupM = R

2×S3. The control
system is completely controllable by the Rashevsky–Chow theorem (see the paper [11]). Existence

of optimal controls follows from Filippov’s theorem (see [11]). The Maximum Principle is applied to
study the optimal controls. In the abnormal case, the sphere rolls along a straight line in the plane
(x, y). In the normal case, the subsystem of the Hamiltonian system for the adjoint variables (θ, c, r, α)

satisfies the equations of a mathematical pendulum as follows:

θ̇ = c, ċ = −r sin θ, α̇ = ṙ = 0. (6)

Projections of extremal trajectories to the plane (x, y) are Euler elasticae, i.e. stationary configurations
of an elastic rod on a plane with fixed end points and fixed tangents at these points (see the paper [3]).

In the paper [8] the author describes continuous and discrete symmetries of the exponential mapping

in the plate-ball problem

Exp : (λ, t) 7→ Qt, (λ, t) ∈ N = C × R+, Qt ∈ M = R
2 × SO(3),

C = {λ ∈ T ∗
Q0

M | H(λ) = 1/2} = {(θ, c, α, r) | θ ∈ S1, c ∈ R, r > 0, α ∈ S1}.
The continuous symmetries {Φβ | β ∈ S1} are rotations by the angle β in the plane (x, y). The discrete
symmetries ε1, ε2, ε3 are reflections of the trajectories of pendulum (6) in the coordinate axes {c = 0},
{θ = 0}, and in the origin (θ, c) = (0, 0) respectively. The action of the symmetries in the preimage
N and in the image M of the exponential mapping is defined in [8]. Also, there is a description of the
Maxwell sets corresponding to the symmetries εi, i = 1, 2, 3:

MAXi = {(λ, t) ∈ N | ∃ β ∈ S1 : (λ̃, t) = εi◦Φβ(λ, t), Exp(λ, s) 6≡ Exp(λ̃, s), Exp(λ, t) = Exp(λ̃, t)}.
In particular, there is proved the following theorem for the symmetry ε1.

Theorem A ([8]). Suppose t > 0 and Qs = (xs, ys, Rs) = Exp(λ, s) is an extremal trajectory such

that the elastica {(xs, ys) | s ∈ [0, t]} is nondegenerate, is not centered at an inflection point, and
satisfies the following equation:

q3(t) = 0. (7)

Then (λ, t) ∈ MAX1. Therefore the trajectory Qs, s ∈ [0, t̃] is not optimal for any t̃ > t.
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There is a similar theorem for the symmetry ε2.

Theorem B ([8]). Suppose t > 0 and Qs = (xs, ys, Rs) = Exp(λ, s) is an extremal trajectory such
that the elastica {(xs, ys) | s ∈ [0, t]} is nondegenerate, is not centered at a vertex, and satisfies the
following equation:

(xq1 + yq2)(t) = 0. (8)

Then (λ, t) ∈ MAX2. Therefore the trajectory Qs, s ∈ [0, t̃] is not optimal for any t̃ > t.

In Sections 4–7 we study asymptotics of the first Maxwell times t1 and t2 corresponding to the

Maxwell points (λ, t) ∈ MAX1 and (λ, t) ∈ MAX2, near stable equilibrium of mathematical pendu-
lum (6). Note that there is a similar theorem for the the symmetry ε3 in [8], but we do not consider
the Maxwell set MAX3 since it has lesser dimension than MAX1 and MAX2.

3. Asymptotics of extremal trajectories and
limit behavior of Maxwell sets MAX1 and MAX2

We study optimality of extremal trajectories in the plate-ball problem. Due to complexity of
parametric equations of these trajectories it is very difficult to study this problem in the general case.

Therefore we study the asymptotic case, corresponding to small oscillations of pendulum (6). In this
case, the sphere rolls along the curves close to small-amplitude sinusoids.

We consider the Hamiltonian system of the Maximum Principle near the stable equilibrium θ = c = 0

of mathematical pendulum (6). The asymptotics as ρ20 = θ20 + c20 → 0 of the solutions x(t), y(t), q0(t),
q1(t), q2(t), q3(t) of this system is presented in [9]. It is well known that mathematical pendulum (6)
is a harmonic oscillator in the asymptotic case. The Hamiltonian system is simplified by change of

variables corresponding to the symmetry of the system ”rotation by angle α”, which is defined as
follows:

(t, θ, c, α, r, x, y, u1 , u2, q0, q1, q2, q3) → (s, θ, d, α,m, x̄, ȳ, ū1, ū2, q̄0, q̄1, q̄2, q̄3),

s = mt, d = c/m, m =
√
r,

(
u1
u2

)
= A(α)

(
ū1
ū2

)
, where A(α) =

(
cosα − sinα
sinα cosα

)
.

(
x

y

)
= A(α)

(
x̄

ȳ

)
,

(
q1
q2

)
= A(α)

(
q̄1
q̄2

)
,

{
q0 = q̄0,

q3 = q̄3.
(9)

Asymptotics for the elastica x̄, ȳ and the components q̄i of the quaternion q̄ are the following:

x̄(s) =
s

m
+O(ρ20), ȳ(s) =

1

m
(θ0 sin s+ d0(1− cos s)) +O(ρ20) (10)

q̄0(s) = cos
s

2m
+O(ρ20), q̄2(s) = − sin

s

2m
+O(ρ20), (11)

q̄1(s) =
1

2(m2 − 1)
(m cos

s

2m
sin s− (1 + cos s) sin

s

2m
)θ0+

+
1

2(m2 − 1)
(m(1− cos s) cos

s

2m
− sin s sin

s

2m
)d0 +O(ρ20), (12)

q̄3(s) =
1

2(m2 − 1)
((−1 + cos s) cos

s

2m
+m sin s sin

s

2m
)θ0+

+
1

2(m2 − 1)
(sin s cos

s

2m
−m(1 + cos s) sin

s

2m
)d0 +O(ρ20). (13)
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These expansions have a removable singularity at m = 1. Up to O(ρ20) the curve (x, y) is a sinusoid

of small amplitude ρ0
m
. Complexity of the formulas for the asymptotics of the quaternion is related

to different frequencies of trigonometric functions. This implies existence of ”resonance” instants.
At such instants plots of the asymptotics of the first Maxwell times t1 and t2, corresponding to the
symmetries ε1 and ε2 respectively, have vertical tangent lines, see below. In the following sections we

use (10)–(13) to study asymptotics of Maxwell points as ρ0 → 0.
To examine optimality of extremal trajectories in asymptotic case we study the first Maxwell times

t1 and t2. They are first values of time, when extremal trajectory arrives at the Maxwell sets MAX1

and MAX2 respectively.
By Theorem A the equation q3 = 0 implies existence of a Maxwell point for the elasticae that are

nondegenerate and not centered at an inflection point. In view of (9)–(13), the leading term of the

function q3(t) has a root if there holds the following equality:

d0 cos p− θ0 sin p

m2 − 1
(cos

p

m
sin p−m cos p sin

p

m
) = 0, p =

s

2
.

Roots of the factor d0 cos p− θ0 sin p has a simple geometric meaning for the sinusoid (x̄0(s), ȳ0(s)) =
(s/m, (θ0 sin s + d0(1 − cos s))/m) (the leading term of the asymptotics for the elastica (x̄(s), ȳ(s))),
and therefore for the sinusoid (x0(s), y0(s)) = (cosα x̄0(s)+sinα ȳ0(s),− sinα x̄0(s)+cosα ȳ0(s)) (the
leading term of the asymptotics for the elastica (x(s), y(s)) as ρ0 → 0). It can easily be checked that the

sinusoid {(x0(σ), y0(σ)) | σ ∈ [0, s]} is centered at the inflection point if and only if d0 cos p−θ0 sin p =
0.

Thus we study roots of the factor (cos p
m
sin p −m cos p sin p

m
)/(m2 − 1). This factor has an unre-

movable singularity if m = 0, and it does not vanish for any p 6= 0 if m = 1. Therefore we consider
the function

g1(p,m) = cos
p

m
sin p−m cos p sin

p

m
, m ∈ (0, 1) ∪ (1,+∞), p > 0, (14)

and study its minimal positive root

p1(m) = min{p > 0|g1(p,m) = 0}. (15)

In Section 4 we study the function p1(m). We obtain two-sided estimate of p1(m) and prove that
p1(m) is monotone and differentiable for m > 0, m 6= 1.

Similarly, we examine the first Maxwell time t2 (the first instant of time when an extremal trajectory
rich the Maxwell set MAX2). By Theorem B the equation xq1+yq2 = 0 implies existence of a Maxwell
point for the elasticae that are nondegenerate and not centered at the top. In view of (9)–(12), the

function xq1 + yq2 is equal to zero up to O(ρ20) if there holds the following equality

d0 sin p+ θ0 cos p

m(m2 − 1)
g2(p,m) = 0, p =

s

2
,

where

g2(p,m) = mp cos
( p

m

)
sin p− (p cos p+ (m2 − 1) sin p) sin(

p

m
). (16)

If an elastica is not centered in the vertex, then the factor d0 sin p + θ0 cos p is bounded away from

zero. Therefore, we are interested in a minimal positive root of the function g2(p,m) = 0:

p2(m) = min{p > 0|g2(p,m) = 0}. (17)

In Section 5 we study the function p2(m). We obtain two-sided estimate of p2(m) and prove that

p2(m) is a continuous function for m > 0, m 6= 1.
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4. Study of the function p1(m)

In this section we prove a two-sided estimate of a minimal positive root of the equation g1(p,m) = 0

(see (14)). Our aim is to find or estimate as accurately as possible for any m ∈ (0, 1) ∪ (1,+∞) the
value of p1(m) defined in (15). The main results on this problem are summarized in Theorem 4.1.

Theorem 4.1. For any m ∈ (0, 1)∪ (1,+∞) the function g1(p,m) has a minimal positive root p1(m)

satisfying the following properties:

a) The function p1(m) is continuous and increasing for m ∈ (0, 1), coincides with πm
1−m

at the

points {m = k
k+2 |k ∈ N}; is continuous and decreasing for m ∈ (1,+∞), coincides with πm

m−1 at

the points {m = k+2
k

|k ∈ N}.
b) The function p1(m) is continuously differentiable at all points of the interval (0, 1), except for

the set {m = k
k+1 |k ∈ N}, where its derivative is equal to +∞; is continuously differentiable at

all points of the interval (1,+∞), except for the set {m = k+1
k

|k ∈ N}, where its derivative is
equal to −∞.

c) For m ∈ (13 , 1) the plot of p = p1(m) ”wraps” the hyperbole p = πm
1−m

as follows:



p1(m) < πm

1−m
for m ∈

(
2k−1
2k+1 ,

k
k+1

)
,

πm
1−m

< p1(m) for m ∈
(

k
k+1 ,

2k+1
2k+3

)
, k ∈ N.

(18)

For m ∈ (1, 3) the plot of p = p1(m) ”wraps” the hyperbole p = πm
m−1 as follows:





πm
m−1 < p1(m) for m ∈

(
2k+3
2k+1 ,

k+1
k

)
,

p1(m) < πm
m−1 for m ∈

(
k+1
k

, 2k+1
2k−1

)
, k ∈ N.

(19)

d) Estimates (18),(19) are supplemented by estimates from the other side. For ∀k ∈ N define

h1(m) = min
(

1+m
2(1−m) − k, 3

√
2k + 1− 1+m

1−m
, 1+m
π(1−m) arcsin

1−m
1+m

)
,m ∈

(
2k−1
2k+1 ,

k
k+1

)
,

h2(m) = min
(

3

√
1+m
1−m

− (2k + 1), k + 1− 1+m
2(1−m) ,

1+m
π(1−m) arcsin

1−m
1+m

)
,m ∈

(
k

k+1 ,
2k+1
2k+3

)
.

The following inequalities are valid for m ∈
(
1
3 , 1
)
:





πm
1−m

− πm
1+m

h1(m) < p1(m) for m ∈
(
2k−1
2k+1 ,

k
k+1

)
,

p1(m) < πm
1−m

+ πm
1+m

h2(m) for m ∈
(

k
k+1 ,

2k+1
2k+3

)
, k ∈ N.

(20)

The following inequalities are valid for 1 < m < 3:



p1(m) < πm

m−1 + πm
1+m

h2(
1
m
) for m ∈

(
2k+3
2k+1 ,

k+1
k

)
,

πm
m−1 − πm

1+m
h1(

1
m
) < p1(m) for m ∈

(
k+1
k

, 2k+1
2k−1

)
, k ∈ N.

(21)

e) For 0 < m < 1
3 the function p1(m) has the following estimates:

max{ρm,
πm

1−m
} < p1(m) <

3πm

2
, (22)

where ρ = 4.493409 . . . is the root of the equation tan x = x that lies in the range π < x < 3π
2 .

For m > 3 the function p1(m) has the following estimates:

max{ρ, πm

m− 1
} < p1(m) <

3π

2
. (23)

f) At the point p = p1(m) the function p 7→ g1(p,m) changes its sign.
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Fig. 1. Plot of the function p1(m) with two-sided estimates

Figure 1 shows the plot of p1(m) with two-sided estimates (dashed lines).

Remark 4.1. If m ∈ [2k−1
2k+1 ,

k
k+1 ], then the values of s(m) = 1+m

1−m
range over the interval [2k, 2k + 1],

s
(
2k−1
2k+1

)
= 2k, s

(
k

k+1

)
= 2k + 1. Consequently,

0 6 h1(m) < 0.3264, lim
m→

2k−1

2k+1
+0

h1(m) = 0, lim
m→

k
k+1

−0
h1(m) = 0.

If m ∈ [ k
k+1 ,

2k+1
2k+3 ], then the values of s(m) range over the interval [2k+1, 2k+2], s

(
2k+1
2k+3

)
= 2k+2.

Consequently,

0 6 h2(m) < 0.3244, lim
m→

k
k+1

+0
h2(m) = 0, lim

m→
2k+1

2k+3
−0

h2(m) = 0.

Remark 4.2. From (18)–(21) it follows that p1(m) tends to +∞ as m → 1± 0.

4.1. Estimation of p1(m) for 0 < m < 1
3 . Let us prove that equation (14) has a root in the interval

0 < p < 3πm
2 < π

2 . In this interval the function sin p does not vanish. The function sin
(
p
m

)
vanishes

only at p = πm but this point is not a root of equation (14), since g1(πm,m) = − sin(πm) 6= 0.
Therefore, dividing the equation g1(p,m) = 0 by their product we obtain in the interval 0 < p < π

2
equivalent equation

cot
( p

m

)
= m cot p ⇔ f

( p

m

)
= f(p), where f(x) = x cot(x). (24)
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Put y = p
m
. Then equation (24) has the form f(y) = f(my). The function f decreases over the

intervals (0, π), (π, 2π) and satisfies the following equalities:

lim
y→0+

f(y) = 1, lim
y→π−0

f(y) = −∞, lim
y→π+0

f(y) = +∞, f(
3π

2
) = 0.

It follows from decrease of f(y) over the interval 0 < y < π that the equation f(y) = f(my) has no

roots for 0 < m < 1 in this interval. But a root exists in the interval π < y < 3π
2 since the difference

f(y)− f(my) is continuous and tends to +∞ as y → π+0 and is negative at 3π
2 (because of condition

m < 1
3 we have f

(
3πm
2

)
> 0). Denote this root by y0. Since f(my) < 1 for 0 < y < π

m
, it is clear

that y0(m) exceeds the number ρ defined by the equation f(ρ) = 1, π < ρ < 3π
2 . Consequently,

ρ < y0(m) < 3π
2 . Thus for 0 < m < 1

3 we obtain the inequality:

ρm < p1(m) <
3πm

2
, (25)

where ρ = 4.493409 . . . is the root of the equation tan x = x that lies in the interval π < x < 3π
2 .

From (25) it follows immediately that for 0 < m < 1
3 the root p1(m) lies in the interval 0 < p < π

2 ,
as it was claimed at the beginning of this section. The lower estimate in (25) needs to be improved
as m → 1

3 − 0. This improvement will be done below in Section 4.3.

4.2. Reducing the problem to finding (estimation) of the minimal positive root of a

simpler equation g̃(x, s) = 0, s > 1, g̃(x, s) = s sinx− sin(sx). It can easily be checked that

g1(p,m) = m+1
2

(
sin p cos p

m
− cos p sin p

m

)
− m−1

2

(
sin p cos p

m
+ cos p sin p

m

)
.

Since sin p cos p
m

± cos p sin p
m

= sin
(
p± p

m

)
, we see that the function g1 admits the following repre-

sentation:

g1(p,m) = m+1
2 sin

(
p
(
1− 1

m

))
− m−1

2 sin
(
p
(
1 + 1

m

))
= 1−m

2 sin
(
pm+1

m

)
− 1+m

2 sin
(
p1−m

m

)
.

Let us introduce a parameter s = 1+m
1−m

and a new variable x = p1−m
m

. Now express g1(p,m):

g1(p,m) =
1−m

2
sin(sx)− 1 +m

2
sinx =

1−m

2
(sin(sx)− s sinx) =

m− 1

2
g̃(x, s).

Thus, we study the function

x1(s) = min{x > 0|g̃(x, s) = 0} for s > 1.

4.3. Absence of roots of g̃(x, s) in the half-interval 0 < x 6 π for s ∈ (1, 2). Improvement

of estimate (25). Since g̃(0, s) = 0 and g̃(π, s) = − sin(πs) > 0, we see that from existence of a root
in the interval (0, π) (at π there is no root) it follows that g̃(x, s) in [0, π] has a minimum at some point
in the interval (0, π). Derivative of g̃ at this point is equal to zero and the value of g̃ is nonpositive.

Thus, existence of a root g̃(x, s) in the interval 0 < x < π for s ∈ (1, 2) implies existence of a critical
point in (0, π), where the value of the function g̃ is nonpositive.

Let us find critical points (roots of the derivative by x) of the function g̃(x, s) for any s. We have
g̃′x(x, s) = s(cos x− cos(sx)). Consequently,

g̃′x(x, s) = 0 ⇔ cos x = cos sx ⇔
{
x = sx− 2πn1, n1 ∈ Z

−x = sx− 2πn2, n2 ∈ Z
⇔

⇔ x ∈ {2πn1

s− 1
|n1 ∈ Z}, x ∈ {2πn2

s + 1
|n2 ∈ Z}. (26)
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Since s ∈ (1, 2), we see that the interval (0, π) contains only one point of form (26). Namely,

x = 2π
s+1 . Compute the value of g̃ at this point:

g̃

(
2π

s+ 1
, s

)
= s sin

(
2π

s+ 1

)
− sin

(
2πs

s+ 1

)
= s sin

(
2π

s+ 1

)
+

+sin

(
2π − 2πs

s+ 1

)
= s sin

(
2π

s+ 1

)
+ sin

(
2π

s+ 1

)
=

= (s+ 1) sin

(
2π

s+ 1

)
> 0.

This inequality contradicts the conclusion (presented above) from the assumption of existence of a

root g̃ in (0, π). Hence, g̃(x, s) has no root in (0, π] for s ∈ (1, 2) and we obtain the following inequality:

x1(s) > π for s ∈ (1, 2) ⇒ p1 >
πm

1−m
, m ∈ (0,

1

3
).

So, we improve estimates (25) as follows:

max

(
ρm,

πm

1−m

)
< p1(m) <

3πm

2
, 0 < m <

1

3
. (27)

It is important that the functions in lower and upper bound (27) have the same limits as m → 0+
and as m → 1

3 − 0. Also it is easy to study the case m = 1
3 (i.e. s = 2):

p1

(
1

3

)
=

π

2
.

4.4. Preliminary two-sided estimate of x1(s), s > 2. First we prove that

π − arcsin

(
1

s

)
6 x1(s) 6 π + arcsin

(
1

s

)
∀s > 2. (28)

Existence of a root on the interval π − arcsin
(
1
s

)
6 x 6 π + arcsin

(
1
s

)
immediately follows from the

relations

g̃

(
π ± arcsin

(
1

s

)
, s

)
= ±1− sin

(
πs∓ s arcsin

(
1

s

))
⇒

g̃

(
π − arcsin

(
1

s

)
, s

)
> 0, g̃

(
π + arcsin

(
1

s

)
, s

)
6 0. (29)

Therefore x1(s) 6 π + arcsin
(
1
s

)
. To prove estimate (28) it remains to check that for any s > 2

the function g̃(x, s) has no roots for 0 < x < π − arcsin
(
1
s

)
. It is clear that s sinx > 1 when

arcsin
(
1
s

)
< x < π − arcsin

(
1
s

)
. Hence, g̃(x, s) > 0. In the half-interval 0 < x 6 arcsin

(
1
s

)
the

function g̃(x, s) increases (due to decrease of cos t on 0 6 t 6 π we have cos(sx) < cos x for 0 < x <
arcsin

(
1
s

)
⇒ g̃′x(x, s) = s(cos x − cos(sx)) > 0). Since g̃(0, s) = 0, we see that the function g̃(x, s) is

positive for 0 < x 6 arcsin
(
1
s

)
. So, two-sided inequality (28) is proved. Now we improve it.

Lemma 4.1. If s ∈ (2k, 2k+1), k ∈ N, then the function g̃(x, s) has a unique root in the half-interval
π − arcsin

(
1
s

)
6 x < π. If s ∈ (2k + 1, 2k + 2), k ∈ N, then the function g̃(x, s) has no roots on the

interval π − arcsin
(
1
s

)
6 x 6 π and has a unique root in the half-interval π < x 6 π + arcsin

(
1
s

)
.

Corollary 4.1. The function x1(s) has the following estimates
{
π − arcsin

(
1
s

)
6 x1(s) < π, s ∈ (2k, 2k + 1),

π < x1(s) 6 π + arcsin
(
1
s

)
, s ∈ (2k + 1, 2k + 2), k ∈ N.

(30)
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Proof of Lemma 4.1. Assume that s ∈ (2k, 2k + 1), where k ∈ N. Then, since g̃(π, s) = − sin(πs) < 0

and g̃
(
π − arcsin

(
1
s

)
, s
)
> 0, it follows that there exists a root of g̃(x, s) in the half-interval π −

arcsin
(
1
s

)
6 x < π. Uniqueness of the root follows from the constant sign of the derivative g̃′x(x, s)

that is equivalent to absence of its roots. Let us show that for all s > 2 and x ∈ Is =
[
π − π

2s , π
]
we

have g̃′x(x, s) 6= 0. Notice that Is contains the interval [π − arcsin
(
1
s

)
, π], since for any s > 1 we have

s arcsin
(
1
s

)
< π

2 . For all 2k < s < 2k + 1 we see that Is does not contain any critical point (root of
g̃′x) presented in (26), since

2π(k − 1)

s− 1
< π − π

2s
,

2πk

s− 1
> π,

2πk

s+ 1
< π − π

2s
,

2π(k + 1)

s+ 1
> π.

The second and the fourth inequalities are absolutely obvious. Let us check the first and the third
inequalities. We have

2π(k − 1)

s− 1
< π − π

2s
⇔ 2k − 2

s− 1
< 1− 1

2s
⇔ 2k − 2 < s− 1− s− 1

2s
⇔ 2k < s+

1

2
+

1

2s
,

that is true, since even s > 2k. Further

2πk

s+ 1
< π − π

2s
⇔ 2k

s+ 1
< 1− 1

2s
⇔ 2k < s+ 1− s+ 1

2s
⇔ 2k < s+

1

2
− 1

2s
.

The last inequality is also true, since s > 2k and 1
2 − 1

2s > 0.

Now, assume that s ∈ (2k + 1, 2k + 2), where k ∈ N. Let us prove that g̃(x, s) has no roots on Is.
We have

g̃
(
π − π

2s
, s
)
= s sin

( π

2s

)
− sin

(
πs− π

2

)
= s sin

( π

2s

)
+ cos(πs) > 1 + cos(πs) > 0,

g̃(π, s) = − sin(πs) > 0.

Thus, existence of a root on Is would imply existence of a critical point x̃ ∈ Is such that g̃(x̃, s) 6 0.

It is easy to prove that Is contains only two critical points (26), namely

2πk

s− 1
,

2π(k + 1)

s+ 1
.

Let us calculate the values g̃
(

2πk
s−1 , s

)
, g̃
(
2π(k+1)

s+1 , s
)
. We have

g̃

(
2πk

s− 1
, s

)
= s sin

(
2πk

s− 1

)
− sin

(
2πks

s− 1

)
=

= s sin

(
2πk

s− 1

)
− sin

(
2πk +

2πk

s− 1

)
= (s− 1) sin

(
2πk

s− 1

)
> 0,

g̃

(
2π(k + 1)

s+ 1
, s

)
= s sin

(
2π(k + 1)

s+ 1

)
− sin

(
2π(k + 1)s

s+ 1

)
=

= s sin

(
2π(k + 1)

s+ 1

)
− sin

(
2π(k + 1)− 2π(k + 1)

s+ 1

)
= (s + 1) sin

(
2π(k + 1)

s+ 1

)
> 0.

Thus we see that g̃(x, s) has no roots in Is. Then, since g̃(π, s) = − sin(πs) > 0 and g̃(π+arcsin 1
s
) 6 0,

it follows that there exists a root of g̃(x, s) in the half-interval π < x 6 π + arcsin
(
1
s

)
. Uniqueness of

the root follows from the inequality g̃′x(x, s) 6= 0 for all s > 2 and x ∈ Îs =
[
π, π + π

2s

]
. Note that Îs

contains the interval π 6 x1(s) 6 π + arcsin
(
1
s

)
. For all 2k + 1 < s < 2k + 2 we see that Îs does not

contain any critical point presented in (26), since

2πk

s− 1
< π,

2π(k + 1)

s− 1
> π +

π

2s
,

2π(k + 1)

s+ 1
< π,

2π(k + 2)

s+ 1
> π +

π

2s
.
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The first and the third inequalities are absolutely obvious. Let us check the second and the fourth

inequalities. We have

2π(k + 1)

s− 1
> π +

π

2s
⇔ 2k + 2

s− 1
> 1 +

1

2s
⇔ 2k + 2 > s− 1 +

s− 1

2s
⇔ 2k + 2 > s− s+ 1

2s
,

that is true, since s+1
2s > 0 and even s < 2k + 2. Further

2π(k + 2)

s+ 1
> π +

π

2s
⇔ 2k + 4 > s+ 1 +

s+ 1

2s
⇔ 2k + 2 > s− 1 +

s+ 1

2s
⇔ 2k + 2 > s+

1− s

2s
.

The last inequality is also true, since s < 2k+2 and 1−s
2s < 0. This completes the proof of Lemma 4.1.

Proposition 4.1. There holds the equality

x1(s) = π, ∀s ∈ N, s > 2. (31)

Proof. Let us prove (31). Since s ∈ N it can easily be checked that π is a root of g̃(x, s). In view of

(28), it remains to prove that g̃(x, s) has no roots in the half-interval π − arcsin
(
1
s

)
6 x < π. Put

y = π − x. Thus we have

g̃(x, s) = g̃(π − y, s) = s sin(π − y)− sin(πs− ys) = s sin y −
−(−1)s sin(−ys) = s sin y + (−1)s sin ys > s sin y − sin ys = g̃(y, s).

It was proved above that g̃(y, s) > 0 for y ∈
(
0, arcsin 1

s

]
. So, g̃(x, s) > 0 for π − arcsin

(
1
s

)
6 x < π.

This completes the proof of Proposition 4.1.

Remark 4.3. Note that inequalities (30) turn into equalities in an infinite set of values of the param-
eter s. In fact for any k ∈ N there exist s1,k ∈

(
2k + 1

2 , 2k + 1
)
and s2,k ∈

(
2k + 1, 2k + 3

2

)
such that

x1(s1,k) = π − arcsin
(

1
s1,k

)
and x1(s2,k) = π + arcsin

(
1

s2,k

)
.

4.5. More accurate estimate of x1(s). Let ρ(z), z ∈ R be the distance from z to the closest

integer number. For any s > 2 define a function a(s) as follows:

a(s) =




min

(
π
s
ρ
(
s
2

)
, arcsin

(
1
s

))
for 0 6 ρ

(
s
2

)
< 7

16 ,

min
(
π
s

(
1− 2ρ

(
s
2

)) 1

3 , arcsin
(
1
s

))
for 7

16 6 ρ
(
s
2

)
6

1
2 .

Note that a(s) is nonnegative, is equal to zero for all integers s, and tends to zero as s → +∞.
Absolute value of derivative a′(s) is equal to π

2s when s is odd number and is equal to ∞ when s is
even number.

Proposition 4.2. x1(s) admits the following estimates:

π − a(s) 6 x1(s) < π, 2k < s < 2k + 1,

π < x1(s) 6 π + a(s), 2k + 1 < s < 2k + 2, k ∈ N.

Proof. First assume that s ∈ (2k, 2k + 1), where k ∈ N. In view of (30) and (28) it remains to prove
that

{
π − π

s
ρ
(
s
2

)
< x1(s), s ∈ (2k, 2k + 7

8),

π − π
s
t
1

3 < x1(s), s ∈ (2k + 7
8 , 2k + 1),

(32)

where t = 1− 2ρ
(s
2

)
= 1− 2

(s
2
− k
)
= 2k + 1− s. (33)
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It follows from Lemma 4.1 that g̃(x, s) has a unique root in the interval 0 < x < π. Since g̃(π, s) < 0

we see that to prove (32) we must prove that

g̃
(
π − π

s
ρ
(s
2

)
, s
)
> 0, s ∈

(
2k, 2k +

7

8

)
, (34)

g̃

(
π − πt

1

3

s
, s

)
> 0, s ∈

[
2k +

7

8
, 2k + 1

)
. (35)

We have

g̃
(
π − π

s
ρ
(s
2

)
, s
)
= s sin

(
π − π

s
ρ
(s
2

))
− sin

(
πs− πρ

(s
2

))
.

Note that s = 2k + 2ρ
(
s
2

)
for s ∈ (2k, 2k + 1). Therefore, we have

g̃
(
π − π

s
ρ
(s
2

)
, s
)
= s sin

(π
s
ρ
(s
2

))
−sin

(
2πk + πρ

(s
2

))
= s sin

(π
s
ρ
(s
2

))
−sin

(
πρ
(s
2

))
> 0.

(We already noticed that sinα < n sin
(
α
n

)
for α ∈ (0, π), n > 1.) Thus inequality (34) is proved. Let

us prove (35). We have

g̃

(
π − πt

1

3

s
, s

)
= s sin

(
π − πt

1

3

s

)
− sin

(
πs− πt

1

3

)
.

Using (33), we get

g̃

(
π − πt

1

3

s
, s

)
= s sin

(
πt

1

3

s

)
− sin

(
π (2k + 1− t)− πt

1

3

)
=

= s sin

(
πt

1

3

s

)
− sin

(
2πk + π − πt− πt

1

3

)
= s sin

(
πt

1

3

s

)
− sin

(
πt+ πt

1

3

)
.

Therefore, we must prove the following inequality:

sin
(
πt+ πt

1

3

)
< s sin

(
πt

1

3

s

)
for 0 < t 6

1

8
, s > 3− 1

8
.

Note that πt+πt
1

3 6 π
(
1
8 +

1
2

)
= 5π

8 < 2 and if 0 < α < 2, then sinα < α− α3

6 + α5

120 < α− α3

6 + 4α3

120 =

α− 2α3

15 . On the other hand, sinα > α− α3

6 for any α > 0. Hence, we need prove that

πt + πt
1

3 − 2

15

(
πt+ πt

1

3

)3
< s

(
πt

1

3

s
− π3t

6s2

)
⇔ πt +

π3t

6s2
<

2

15

(
πt+ πt

1

3

)3
.

The right-hand side of this inequality exceeds 2
15π

3t. Therefore, the required inequality will be proved
if we verify that

1 +
π2

6s2
<

2

15
π2 ⇔ 15 < π2

(
2− 2.5

s2

)
.

Since s > 2.5, we have

π2

(
2− 2.5

s2

)
> π2

(
2− 1

2.5

)
=

π2 · 8
5

> 15.
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Now consider s ∈ (2k + 1, 2k + 2), where k ∈ N. It is sufficient to prove that g̃(π + a(s), s) 6 0.

According to the definition of a(s) this follows from the two inequalities

g̃
(
π +

π

s
t
1

3 , s
)
< 0, s ∈

(
2k + 1, 2k +

9

8

]
, t = s− (2k + 1), (36)

g̃
(
π +

π

s
ρ
(s
2

)
, s
)
< 0, s ∈

(
2k +

9

8
, 2k + 2

)
. (37)

(The inequality g̃
(
π + arcsin

(
1
s

)
, s
)
6 0 was proved above.)

In fact, inequalities (36), (37) are in some sense ”symmetric reflections” of inequalities (34), (35)

and follows from them. To verify this we prove the following implication (with account of the following
lemma, the proof of Proposition 4.2 is complete).

Lemma 4.2. Let δ ∈
(
0, π2

]
, s−, s+ ∈ R, 1 < s− < s+, s− + s+ = 2ν, where ν ∈ N. If

g̃
(
π − δ

s−
, s−

)
> 0, then g̃

(
π + δ

s+
, s+

)
< 0.

It is easy to show that inequalities (34), (37) and (35), (36) form exactly such pairs, as in Lemma 4.2.

According to this we have that (34) implies (37), and (35) implies (36).

Proof of Lemma 4.2. It is sufficient to prove that the sum g̃
(
π − δ

s−
, s−

)
+ g̃
(
π + δ

s+
, s+

)
is negative.

We have

s− sin

(
π − δ

s−

)
− sin (πs− − δ) + s+ sin

(
π +

δ

s+

)
− sin (πs+ + δ) =

=

(
s− sin

(
δ

s−

)
− s+ sin

(
δ

s+

))
− (sin (πs− − δ) + sin (πs+ + δ)) . (38)

If δ ∈
(
0, π2

]
, then the function s sin

(
δ
s

)
increases for 1 6 s < +∞ and

(
s− sin

(
δ
s−

)
− s+ sin

(
δ
s+

))
<

0. Since sin
(
π(s−+s+)

2

)
= sin (πν), ν ∈ N, we have (sin (πs− − δ) + sin (πs+ + δ)) = 0. This completes

the proof of Lemma 4.2.

Figure 2 shows the plot of x1(m) and obtained two-sided estimates (dashed lines). Since the function
sin t
t

decreases in the interval 0 < t < π, we have arcsin
(
1
s

)
< π

3s for s > 2. Therefore

πρ

s
> arcsin

(
1

s

)
, if ρ >

1

3
,

π

s
3
√
1− 2ρ > arcsin

(
1

s

)
, if 3

√
1− 2ρ >

1

3
⇔ ρ 6

13

27
.

So if ρ ∈ [13 ,
13
27 ], then arcsin

(
1
s

)
is the best estimate. Therefore in Theorem 4.1 the minimum is a

well-posed operation. Returning to the original variables p = x s−1
2 , m = s−1

s+1 we obtain the statement
of Theorem 4.1.

4.6. Study of p1(m) for m > 1. We use the change of variables p̄ = p
m
, m̄ = 1

m
∈ (0, 1) to study

p1(m) in the case m > 1. We have g1(p̄, m̄) = − 1
m
g1(p,m). Therefore, we have g1(p̄, m̄) = 0 iff

g1(p,m) = 0. In such a way we get the following functional equation:

p1(m) = mp1(
1

m
). (39)

Hence, the properties a)—f) (see Theorem 4.1) of p1(m) for m > 1 follow from the similar properties

of p1(m) for m ∈ (0, 1).
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Fig. 2. Plot of x1(s) with two-sided estimates (dashed lines)

4.7. Differentiability of p1(m). In this subsection we prove that the function p1(m) is a continuous
and decreasing function for all m > 1 and p1(m) is continuously differentiable at all points of the

interval m ∈ (1,+∞) except for the set {m = k+1
k

|k ∈ N} where its derivative is equal to −∞. From
functional equation (39) it immediately follows that the function p1(m) is a continuous and increasing
function for all m ∈ (0, 1) and p1(m) is continuously differentiable at all points of the interval m ∈ (0, 1)

except for the set {m = k
k+1 |k ∈ N} where its derivative is equal to +∞.

Let m > 1. From (31) and (39) it follows that

p1(
k + 1

k
) = π(k + 1) for any k ∈ N.

Consider the partial derivatives

∂g1(p,m)

∂p
=

m2 − 1

m
sin p sin

p

m
, (40)

∂g1(p,m)

∂m
=

mp cos(p) cos
(
p
m

)
+
(
p sin(p)−m2 cos(p)

)
sin
(
p
m

)

m2
. (41)

We have ∂g1
∂p

(π(k + 1), k+1
k

) = 0 and ∂g1
∂m

(π(k + 1), k+1
k

) = −πk < 0. Hence the plot of p1(m) has a

vertical tangent line. We claim that p1(m) is smooth for m > 1, m /∈ {k+1
k

|k ∈ N}. Indeed, this follows
from the implicit function theorem and the inequality ∂g1

∂p
|p=p1(m) 6= 0. Let us prove the last inequality.

The equation ∂g1
∂p

= 0 has two series of positive roots, namely p1(k1) = πk1 and p2(k2) = πk2m where

k1, k2 ∈ N. At these points we have

g1(p
1(k1),m) = (−1)k1+1m sin(

k1π

m
), g1(p

2(k2),m) = (−1)k2m sin(k2mπ).
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It can easily be checked that g1(p
i(ki),m) 6= 0 for m ∈ (k+2

k+1 ,
k+1
k

) =: I(k), ∀k ∈ N. This implies

that ∂g1
∂p

|p=p1(m) 6= 0. From the implicit function theorem it follows that p1(m) is a continuously

differentiable function on I(k) and

p′1(m) = −∂g1(p,m)

∂m
/
∂g1(p,m)

∂p
|p=p1(m) = −p+m cot p(−m+ p cot p

m
)

m(m2 − 1)
|p=p1(m).

Now we claim that p1(m) monotonically decreases for m ∈ (1, 2), m /∈ {k+1
k

|k ∈ N}. Indeed, this
follows from the inequality p′1(m) < 0. Let us prove this inequality. Since g1(p,m)|p=p1(m) = 0,

we get m cot p|p=p1(m) = cot p
m
|p=p1(m). Then sign(p′1(m)) = −sign(f(p1(m),m)) where f(p,m) =

p − m cot p
m

+ p cot2 p
m
. Consider the function f as a polynomial of second degree with respect to

cot p
m
. Since m < 2 and p1(m) > ρ > 1 (see Theorem 4.1 e)), we see that the discriminant of the

polynomial is negative, indeed D(f) = m2 − 4p2 < 0. Thus f(p1(m),m) > 0 and p′1(m) < 0.

Now we claim that the function p1(m) is continuous at the points m = k+1
k

for any k ∈ N. Indeed,

this means existence of limits of p1(m) at the considered points and lim
m→

k+1

k
±0

p1(m) = p1(
k+1
k

) =

π(k + 1). Since p1(m) is monotonic and bounded for m 6= k+1
k

it follows that there exists finite
limits p±(k) = lim

m→
k+1

k
±0

p1(m). Inequalities p+(k) < π(k + 1), p−(k) < π(k + 1) contradict to

p1(
k+1
k

) = π(k + 1) because if they are satisfied, then there exists a positive root p̃ < p1(m) of the

function g1(p,m), but by definition p1(m) is the minimal positive root. In such a way we proved that
p+(k) > π(k + 1), p−(k) > π(k + 1). Further, the inequalities p+(k) > π(k + 1), p−(k) > π(k + 1)
contradict to continuity of the curve {(p,m)|g1(p,m) = 0} in a neighborhood of (π(k + 1), k+1

k
), but

from the implicit function theorem this curve is continuous because ∂g1
∂m

(π(k+1), k+1
k

) = −mk+1
k

6= 0.
Thus we proved that p+(k) = π(k + 1), p−(k) = π(k + 1). So p1(m) is a continuous function for any

m ∈ (1, 2].
Now we show that p′1(

k+1
k

) = −∞ for any k ∈ N. For any m∗ = k+1
k

we know the explicit value

p∗ = p1(m
∗) = π(k + 1). We have ∂g1(p∗,m∗)

∂m
= −πk and ∂g1(p∗,m∗)

∂p
= 0. This implies existence of the

limit lim
m→m∗

p′1(m) = − lim
m→m∗

∂g1
∂m

/∂g1,m)
∂p

(p1(m),m) = −∞. Therefore there exists p′1(m
∗) = −∞.

Thus we proved that p1(m) is continuous for any m ∈ (1, 2] and p1 ∈ C1(Ω) where Ω := {m ∈
(1, 2)|m 6= k+1

k
, k ∈ N}. Now let m > 2. We have ∂g1

∂p
|p=p1(m) 6= 0. We claim that p′1(m) < 0. Indeed,

this means that f(p,m) > 0 for p = p1(m). In fact, if D(f) < 0, then f(p,m) > 0; if D(f) 6 0, then
m > 2p and we get cot p

m
> q2 where q2 is the greatest root of the function f as a polynomial of second

degree with respect to cot p
m
. Thus, we proved that f(p1(m),m) > 0. It follows that p′1(m) < 0. So

p1(m) is a continuously differentiable decreasing function for m ∈ (2,+∞)
Finally we show that the function p 7→ g1(p,m) changes sign at the point p = p1(m). Ifm /∈ {k+1

k
|k ∈

N} this follows from the inequality ∂g1
∂p

|p=p1(m) 6= 0. If m = m∗ = k+1
k

we have ∂g1
∂p

|p=p1(m) = 0,
∂2 g1
∂ p2

|p=p1(m) = 0, ∂3 g1
∂ p3

|p=p1(m) = −2(1+2k)
(k+1)2

< 0. It follows that g1(p,m
∗) changes sign at the point

p∗ = p1(m
∗).

5. Study of the function p2(m)

In this section we prove a two-sided estimate of a minimal positive root of the equation g2(p,m) = 0,
where

g2(p,m) = mp cos
( p

m

)
sin p− (p cos p+ (m2 − 1) sin p) sin

( p

m

)
. (42)

Our aim is to find or estimate as accurately as possible for any m ∈ (0, 1)∪ (1,+∞) the value of p2(m)

defined in (17). The main results on this problem are summarized in Theorem 5.1.
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Theorem 5.1. For any m ∈ (0, 1)∪ (1,+∞) the function g2(p,m) has a minimal positive root p2(m)

satisfying the following properties:

a) The function p2(m) is continuous for m ∈ (0, 1), coincides with πm
1−m

at the points {m = k
k+1 |k ∈

N} and at points m = m∗
1,k, where

1+2k
3+2k − 2

15+40k+32k2+8k3
< m∗

1,k < 1+2k
3+2k ; is continuous for

m ∈ (1,+∞), coincides with πm
m−1 at the points {m = k+1

k
|k ∈ N} and at points m = m∗

2,k,

where 3+2k
1+2k < m∗

2,k < 3+2k
1+2k + 2

1+8k(1+k2)
.

b) The function p2(m) is continuously differentiable at all points of the set (1, 12) ∪ (2,+∞) and
the following sets:

m ∈
[

k

1 + k
,
1 + 2k

3 + 2k
− 2

15 + 40k + 32k2 + 8k3

]
∪
[
1 + 2k

3 + 2k
,
1 + k

2 + k

]
∪

∪
[
k + 2

k + 1
,
3 + 2k

1 + 2k

]
∪
[
3 + 2k

1 + 2k
+

2

1 + 8k(1 + k2)
,
k + 1

k

]

for all k ∈ N. Out of these sets there exist values m = m̄1,k,
1+2k
3+2k − 2

15+40k+32k2+8k3
< m∗

1,k <

m̄1,k < 1+2k
3+2k , and m = m̄2,k,

3+2k
1+2k < m̄2,k < m∗

2,k < 3+2k
1+2k + 2

1+8k(1+k2) , where the derivative

p′2(m) is equal to +∞ and −∞ respectively.

c) For m ∈ (0, 1) the function p2(m) has the following lower and upper bounds:

{
5.7m < p2(m) < 2πm for m < 1

2 ,
πm
1−m

− m
1−m

arcsin
(
1−m
1+m

)
< p2(m) < πm

1−m
+ m

3m−1 for m > 1
2 .

(43)

For m > 1 the function p2(m) has the following lower and upper bounds:

{
πm
m−1 − m

m−1 arcsin
(
m−1
m+1

)
< p2(m) < πm

m−1 +
m

3−m
for m 6 2,

5.7 < p2(m) < 2π for m > 2.
(44)

d) For m ∈ (12 , 1) the plot of p = p2(m) ”wraps” the hyperbole p = πm
1−m

as follows:




p2(m) < πm

1−m
for m ∈

(
k

1+k
, 1+2k
3+2k − 2

15+40k+32k2+8k3

]
,

p2(m) > πm
1−m

for m ∈
[
1+2k
3+2k ,

1+k
2+k

)
, k ∈ N.

(45)

For m ∈ (1, 2) the plot of p = p1(m) ”wraps” the hyperbole p = πm
m−1 as follows:




p2(m) > πm

m−1 for m ∈
(
k+2
k+1 ,

3+2k
1+2k

]
,

p2(m) < πm
m−1 for m ∈

[
3+2k
1+2k + 2

1+8k(1+k2) ,
k+1
k

)
, ∀k ∈ N.

(46)

e) At the point p = p2(m) the function p 7→ g2(p,m) changes its sign.

Figure 3 shows the plot of p2(m) with two-sided estimates (dashed lines).

Remark 5.1. From (43) and (44) it follows that p2(m) tends to +∞ as m → 1± 0.

5.1. Two-sided estimate of p2(m) for 0 < m < 1
2 . Let us prove that for m ∈ (0, 12) the equation

g2(p,m) = 0 (see (42)) has a root in the interval 0 < p < 2πm. First write the equation g2(p,m) = 0

in the equivalent form

mp cos
( p

m

)
sin p = (p cos p+ (m2 − 1) sin p) sin

( p

m

)
. (47)
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Fig. 3. Plot of the function p2(m) with two-sided estimates

Since 0 < m < 1
2 , we see that in the interval 0 < p < 2πm the product sin p sin

(
p
m

)
vanishes only at

p = πm but it can easily be checked that this point is not a root of equation (47). Therefore, dividing
both sides of (47) by the product sin p sin( p

m
), we get the equivalent equation

mp cot(
p

m
) = p cot p+m2 − 1 ⇔ mp cot(

p

m
)−m2 = p cot p− 1 ⇔

⇔ mp cot( p
m
)−m2

p2
=

p cot p− 1

p2
⇔

p
m
cot( p

m
)− 1

( p
m
)2

=
p cot p− 1

p2
.

Let G(x) = 1−x cot x
x2 . We have

g2(p,m) = 0 ⇔ G(
p

m
) = G(p) for 0 < p < 2πm.

Put x = p
m
. Rewrite the last equation as

G(x) = G(mx), 0 < x < 2π. (48)

Since the function G(x) decreases over the intervals 0 < x < π and π < x < 2π, we see that equation

(48) has no roots in the interval 0 < x < π. Moreover, since limx→0G(x) = 1
3 , it has no roots in the

interval π < x < ρ2, where ρ2 is the root of the equation G(x) = 1
3 (ρ2 = 5.7634 . . . ). On the other

hand, from the same reasons related to monotonicity of G it follows that for any x ∈ (ρ2, 2π) there

exists a unique value m = m(x) ∈ (0, 12) such that there holds equality (48).
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We claim that this dependence m(x) is differentiable and has a positive derivative. Indeed, we must

prove that

m′(x) =
G′(x)−m(x)G′(m(x)x)

xG′(m(x)x)
> 0. (49)

Inequality (49) follows from the following inequality:

G′(x)−mG′(mx) > 0 for G(mx)−G(x) = 0.

Let us prove it. We have

G′(x) =

(
1

x2
− cot x

x

)′

=
1 + cot2 x

x
− 1

x3
− G(x)

x
,

mG′(mx) = m

(
1 + cot2(mx)

mx
− 1

(mx)3
− G(mx)

mx

)
=

1 + cot2(mx)

x
− 1

m2x3
− G(mx)

x
,

where G′(mx) is the derivative G′(x) taken at mx. Since G(mx)
x

= G(x)
x

we must prove the following
inequality:

cot2(mx)

x
− cot2(x)

x
<

1

m2x3
− 1

x3
⇔ cot2(mx) − cot2(x) <

1

m2x2
− 1

x2
.

Since cot t < 1
t
for any t ∈ (0, π), we have cot2(mx) < (mx)−2. Further, since for any x ∈ (ρ2, 2π) we

have cot x < −1, it follows that cot2 x− x−2 > 1− ρ−2
2 > 0. Thus, we proved the required inequality.

Now, since the dependencem(x) is differentiable and has a positive derivative we can use the inverse
function theorem and conclude that for any m ∈ (0, 12) there exists the differentiable and increasing

function x(m) ∈ (ρ2, 2π) such that x(m) is a root of equation (48). Thus, we see that p2(m) = mx(m)
is a differentiable increasing function for m ∈ (0, 12 ), which admits the following estimate:

ρ2m < p2(m) < 2πm, 0 < m <
1

2
. (50)

In addition, we claim that for any m ∈ (0, 12) the function p2(m) exceeds both p0(m) = πm
1−m

and

p1(m) (see Theorem 4.1). Indeed, for 0 < m 6
1
3 this follows from the inequalities πm

1−m
6 p1(m) 6 3πm

2

and p2(m) > ρ2m > 3πm
2 . For 1

3 < m < 1
2 we have p1(m) 6 πm

1−m
and it remains to prove that

πm

1−m
< p2(m),

1

3
< m <

1

2
. (51)

In fact, it can easily be checked that for any m 6= 1 there holds the equality cot( π
1−m

) = cot( πm
1−m

) and

for any m ∈ (13 ,
1
2 ) there holds the inequality cot( π

1−m
) < 0. By definition, put A = − cot( π

1−m
) =

− cot( πm
1−m

) and G1(x) = G(x) −G(mx). The function G1(x) increases over the interval π < x < 2π.

It follows from definition of p2(m) that G1(
p2(m)
m

) = 0. Since G1(x) increases, we have

(51) ⇔ G1(
π

1−m
) < 0 ⇔ G(

π

1−m
) < G(

πm

1 −m
) ⇔

⇔
1− π

1−m
cot( π

1−m
)

( π
1−m

)2
<

1− πm
1−m

cot( πm
1−m

)

( πm
1−m

)2
⇔

⇔ 1 +
πA

1−m
<

1 + πm
1−m

A

m2
⇔ 1 +

πA

1−m
<

1

m2
+

πA

1−m

1

m
.

The last inequality is obvious since 1 < 1
m2 ,

πA
1−m

< πA
1−m

1
m
. Thus, inequality (51) is proved.
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5.2. Reduction of g2(p,m) = 0 to a simpler form. In this subsection we reduce the problem of

finding (estimation) of p2(m) for m ∈ [12 , 1) to finding (estimation) of the minimal positive root x2(s)

of a simpler equation g̃2(x, s) = 0 for s > 3, where g̃2(x, s) = 4s(cos x− cos(sx))− x(s2 − 1)(s sin x+
sin(sx)).

It can easily be checked that

g2(p,m) = −(m2 − 1) sin p sin(
p

m
) + p(

m+ 1

2
(sin p cos(

p

m
)−

− cos p sin(
p

m
)) +

m− 1

2
(sin p cos(

p

m
) + cos p sin(

p

m
))).

Transform the first summand:
(
m2 − 1

)
sin p sin

(
p
m

)
= m2−1

2

(
cos p cos

(
p
m

)
+ sin p sin

(
p
m

)
− cos p cos

(
p
m

)
+ sin p sin

(
p
m

))
=

= (m−1)(m+1)
2

(
cos
(
p
(
1− 1

m

))
− cos

(
p
(
1 + 1

m

)))
=

= −1
2

(
1 + 1+m

1−m

)−2
4(1+m)
1−m

(
cos
(
p(1−m)

m

)
− cos

(
1+m
1−m

p(1−m)
m

))
.

Further, transform the second summand:

p
(
m+1
2 sin

(
p− p

m

)
+ m−1

2 sin
(
p+ p

m

))
= p

2 (m− 1)
(
m+1
m−1 sin

(
p− p

m

)
+ sin

(
1+m
1−m

p(1−m)
m

))
=

= 1
2

(
1 + 1+m

1−m

)−2
(
−1 +

(
1+m
1−m

)2)(
−p(1−m)

m

)(
1+m
1−m

sin
(
p(1−m)

m

)
+ sin

(
1+m
1−m

p(1−m)
m

))
.

Let us introduce a parameter s = 1+m
1−m

and a new variable x = p1−m
m

. Now express g2(p,m):

g2(p,m) = 1
2(1+s)2

g̃2(x, s), where g̃2(x, s) = 4s (cos x− cos (sx))− x
(
s2 − 1

)
(s sinx+ sin (sx)) .

Thus, we reduce the problem of finding (estimation) of p2(m) for m ∈ (12 , 1) to finding (estimation)
of the following function:

x2(s) = min{x > 0|g̃2(x, s) = 0} for s > 3.

In Subsections 5.3 – 5.4 we obtain a two-sided estimate of x2(s). Returning to the original variables

p = x s−1
2 , m = s−1

s+1 we obtain the statement of Theorem 5.1.

5.3. Two-sided estimate of x2(s) for s > 3. In this subsection we prove that x2(s) admits the

following lower and upper bounds:

π − arcsin
1

s
< x2(s) < π +

1

s− 2
for s > 3, (52)

and x2(s) is a unique root of g̃2(x, s) on the interval (π − arcsin 1
s
, π + 1

s−2).

Proposition 5.1. There holds the inequality

x2(s) <
3π

2
. (53)

Proof. Indeed, (53) follows from the fact that g̃2(x, s) has zero derivatives up to the fifth order at the

point x = 0 and the sixth derivative is negative. In fact, ∂6 g̃2(x,s)
∂ x6 |x=0 = −2s(s2−1)3 < 0 for all s > 1.

It means that the function g̃2(x, s) is negative in some right half-neighborhood of the point x = 0.
But at the point x = 3π

2 this function is positive, since

g̃2(
3π

2
, s) = −4s cos

(
3πs

2

)
− 3π

2

(
s2 − 1

)(
sin

(
3πs

2

)
− s

)
> −4s− 3π

2

(
s2 − 1

)
(1− s) =

=
3π

2

(
s3 − s2 − s

(
1 +

8

3π

)
+ 1

)
> s2 − s− 2 > 0 for any s > 3.
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Hence, we see that the continuous function g̃2(x, s) changes its sign over the interval (0, 3π2 ]. This

implies that g̃2(x, s) has a root in the interval (0, 3π2 ). Thus, inequality (53) is proved.

Now we rewrite g̃2(x, s) in the following form:

g̃2(x, s) = 4s (cos x− cos (sx)) + xH(x, s),

where H(x, s) = −(s2 − 1)h(x, s) and h(x, s) = s sinx+ sin (sx).

Let J(x, s) = g̃2(x,s)
H(x,s) . It can easily be shown that

∂ J(x, s)

∂ x
=

g̃(x, s)2

h(x, s)2
> 0, where g̃(x, s) was defined in 4.2.

Thus we can see that if g̃(x, s) and h(x, s) do not vanish at the same time (this case is considered

separately in Remark 5.2), then J(x, s) increases at all points, where h(x, s) 6= 0, and has vertical
asymptotes at the points x̃(s) = {x|h(x, s) = 0}. The function J(x, s) has the following properties:
1) limx→0 J(x, s) = 0, 2)limx→x̃k(s)−0 J(x, s) = +∞, 3)limx→x̃k(s)+0 J(x, s) = −∞, where x̃k(s) is the

k-th positive root of h(x, s). Thus, we conclude that the function J(x, s) (and hence the function
g̃2(x, s)) has no roots in the interval (0, x̃1(s)) but it has a unique root in the interval (x̃1(s), x̃2(s)).
Hence, we arrive to the problem of finding (estimation) of x̃1(s) and x̃2(s). We study this problem

in Proposition 5.2 (see below). Combining the estimations x2(s) ∈ (0, 3π2 ) and x̃1(s) < x2(s) < x̃2(s)
with Proposition 5.2 we get the following two-sided estimation of x2(s):

π − arcsin
1

s
< x2(s) <

3π

2
. (54)

Remark 5.2. Consider the case when g̃2(x, s) and H(x, s) have a common root for 0 < x < 3π
2 . This

holds if and only if h(x, s) = 0 and cos x− cos sx = 0. In Subsection 4.3 (see (26)) we found the roots

of the second equation, namely x ∈ {2πn
s±1 |n ∈ N}. Let us find the values of s, for which these roots

are the roots of h(x, s) simultaneously, in other words s sin 2πn
s±1 + sin

(
s 2πn
s±1

)
= 0. The last equation is

equivalent to (s ∓ 1) sin 2πn
s±1 = 0 ⇔ 2n

s±1 = k, k ∈ N. Thus, s = 2n
k

∓ 1. So, we got that g̃2(x, s) and

H(x, s) vanish simultaneously if and only if x = πk and s = 2n
k
∓ 1, where k, n ∈ N. It is clear that

only for k = 1 and s = 2n + 1 this solution satisfies the limitations x ∈ (0, 3π2 ) and s > 3. Thus, we
get

g̃2(x, s) = H(x, s) = 0 ⇔ x = π, s = 2n+ 1, n ∈ N.

Since J(0, s) = 0, J(x, s) increases over the interval x ∈ (0, π), and h(x, s) > 0 for s = 2n+ 1 in this
interval (see Proposition 5.2), we see that J(x, s) > 0 in this interval. This implies that for s = 2n+1

the function g̃2(x, s) has no roots for x ∈ (0, π) and x = π is the minimal positive root. Thus, we get

x2(s) = π for s = 2n+ 1, n ∈ N. (55)

In the following proposition we estimate the first and the second positive roots of the function
h(x, s) = s sinx+ sin (sx).

Proposition 5.2. The functions

x̃1(s) = min {x > 0|h(x, s) = 0}
and

x̃2(s) = min {x > x̃1(s)|h(x, s) = 0}
have the following two-sided estimates for s > 3:

x̃1(s) ∈
[
π − arcsin

1

s
;π + arcsin

1

s

]
= I1s ,
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x̃2(s) ∈
[
2π − arcsin

1

s
; 2π + arcsin

1

s

]
= I2s .

This estimate for x̃1(s) can be improved as follows:




x̃1(s) = π, for s ∈ N,

x̃1(s) ∈
[
π − arcsin 1

s
;π
)
, s ∈ (2k + 1, 2k + 2),

x̃1(s) ∈
(
π;π + arcsin 1

s

]
, s ∈ (2k + 2, 2k + 3), k ∈ N.

Proof. First, we show that there exist roots of h(x, s) in I1s and I2s

h

(
π ∓ arcsin

1

s
, s

)
= ±1 + sin

(
π ∓ s arcsin

1

s

)
⇒

h

(
π − arcsin

1

s
, s

)
> 0, h

(
π + arcsin

1

s
, s

)
6 0, (56)

h

(
2π ∓ arcsin

1

s
, s

)
= ∓1 + sin

(
2πs∓ s arcsin

1

s

)
⇒

h

(
2π − arcsin

1

s
, s

)
6 0, h

(
2π + arcsin

1

s
, s

)
> 0. (57)

Further, if arcsin
(
1
s

)
< x < π− arcsin 1

s
, then h(x, s) > 0 because in this interval we have s sinx > 1.

Now we claim that h(x, s) > 0 for 0 < x 6 arcsin 1
s
. Indeed, this follows since h(x, s) is increasing

over this half-interval and from equality h(0, s) = 0. The last equality can easily be checked by direct
calculation. Let us prove that h(x, s) increases over the half-interval x ∈

(
0, arcsin 1

s

]
. To prove this

we consider the derivative h′s(x, s) = s(cos x+ cos sx) and find all positive critical points

h′x(x, s) = 0 ⇔ cos x = − cos sx ⇔
{
x = sx+ π − 2πn1, n1 ∈ N

−x = sx+ π − 2πn2, n2 ∈ N
⇔

⇔ x ∈ {2n−1
s±1 π|n ∈ N}. (58)

Since for any s > 3 we have min
{

2n−1
s±1 π

}
= π

s±1 > π
2s > arcsin 1

s
, we see that the half-interval

x ∈
(
0, arcsin 1

s

]
does not contain any point of form (58). Moreover, h′x(0, s) = 2s > 0 and we proved

that h(x, s) is increasing.
So we proved that h(x, s) > 0 for 0 < x < π − arcsin 1

s
. Now we claim that there exists a unique

root, denoted by x̃1(s), of the function h(x, s) in the interval π−arcsin 1
s
6 x 6 π+arcsin 1

s
. To prove

this we divide the set s > 3 into the three subsets s = k+2, s ∈ (2k+1, 2k+2), and s ∈ (2k+2, 2k+3),
where k ∈ N.

(1) Let s = k+2, k ∈ N. We have h(π, s) = 0. Uniqueness of the root x̃1(s) = π for π− arcsin 1
s
6

x 6 π + arcsin 1
s
follows from monotonicity of h(x, s) w.r.t. x in the intervals π − π

2s < x < π
and π < x < π+ π

2s . Indeed, if the first interval contained a critical point (58) then there would

exist n ∈ N such that (k + 2) ± 1 −
(
1
2 ± 1

2(k+2)

)
< 2n − 1 < (k + 2) ± 1, but this contradicts

to the following obvious inequality:

∀k ∈ N : 0 <

(
1

2
± 1

2(k + 2)

)
< 1. (59)

If the interval
(
π;π + π

2s

)
contained a critical point (58) then there would exist n ∈ N such that

(k + 2)± 1 < 2n− 1 < (k + 2)± 1 +
(
1
2 ± 1

2(k+2)

)
, but this contradicts (59).
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(2) Let s ∈ (2k + 1, 2k + 2), k ∈ N. We have h(π, s) = sinπs < 0. Combining this with (56) we see

that the function h(x, s) has a root in the half-interval π−arcsin
(
1
s

)
6 x < π. Uniqueness of the

root x̃1(s) follows from the constant sign of the derivative h′x(x, s) that is equivalent to absence
of its roots. Indeed, let us show that the interval

(
π − π

2s , π
)
⊃
[
π − arcsin 1

s
, π
)
does not contain

any critical point (58). Assume the converse, then there exists n ∈ N such that 1− 1
2s < 2n−1

s±1 < 1.

Since 2k+1 < s < 2k+2 we have (2k+1±1)
(
1− 1

2(2k+1)

)
< 2n−1 < 2k+2±1. Further, since

0 < 2k+1±1
2(2k+1) =

1
2± 1

2(2k+1) < 1, 2n−1 ∈ N and 2k+1±1 ∈ N we have 2n−1 = 2k+1±1. Now we

see that no number n satisfies the last equality, since 2n− 1 is odd and 2k+1± 1 is even. This
contradiction proves that the function h(x, s) has a unique root for π−arcsin 1

s
6 x < π. Further,

we show that h(π, s) < 0 for π 6 x 6 π + arcsin
(
1
s

)
. It is sufficient to show that h(x, s) < 0 at

the end points of the considered segment and at all critical points inside it. At the left end we
have h(π, s) < 0. At the right end we have h

(
π + arcsin 1

s
, s
)
= −1 + sin

(
πs+ s arcsin 1

s

)
< 0,

since from (2k + 1)π < sπ + s arcsin 1
s
< (2k + 2)π + π

2 it follows that sin
(
sπ + s arcsin 1

s

)
< 1.

Now find critical points (58) lying on the interval
(
π, π + π

2s

)
⊃
(
π, π + arcsin 1

s

)
. It is easy to

check that the inequalities

(2k + 1± 1) < 2n − 1 < (2k + 2± 1)

(
1 +

1

2(2k + 1)

)
, n, k ∈ N

are satisfied only for the value n = k + 2 if we select the sign ”plus”, and for n = k + 1 if we
select the sign ”minus”. Hence the considered interval contains only two critical points, namely
2k+3
s+1 π and 2k+1

s−1 π. We can estimate the value of h at these points as follows:

h

(
2k + 3

s+ 1
π, s

)
= s sin

(
2k + 3

s+ 1

)
+ sin

(
2k + 3

s+ 1
πs

)
=

= s sin

(
2k + 3

s+ 1
π

)
+ sin

(
(2k + 3) π − 2k + 3

s+ 1
π

)
=

= (s+ 1) sin
2k + 3

s+ 1
π < 0, since π <

2k + 3

s+ 1
< π +

π

2s
< 2π,

h

(
2k + 1

s− 1
π, s

)
= s sin

(
2k + 1

s− 1
π

)
+ sin

(
2k + 1

s− 1
πs

)
=

= s sin

(
2k + 1

s− 1
π

)
+ sin

(
(2k + 1) π +

2k + 1

s− 1
π

)
=

= (s− 1) sin
2k + 1

s− 1
π < 0, since π <

2k + 1

s− 1
< π +

π

2s
< 2π.

Thus we proved that h(x, s) < 0 for π 6 x 6 π + arcsin 1
s
, therefore h has no roots in this

interval.

(3) Let s ∈ (2k + 2, 2k + 3), k ∈ N. We claim that h(x, s) > 0 if π − arcsin
(
1
s

)
6 x 6 π. It is

sufficient to show that h(x, s) > 0 at the end points of the considered segment and at all critical
points inside it. At the left end we have h

(
π − arcsin 1

s
, s
)
= 1+ sin

(
πs− s arcsin 1

s

)
> 0, since

from (2k + 2)π − π
2 < πs− s arcsin 1

s
< (2k + 3)π it follows that sin

(
πs− s arcsin 1

s

)
> −1. At

the right end we have h(π, s) = sinπs > 0. It is easy to check that the inequalities

(2k + 2± 1)

(
1− 1

2(2k + 2)

)
< 2n− 1 < 2k + 3± 1, n, k ∈ N

are satisfied only for the value n = k + 2 if we select the sign ”plus”, and for n = k + 1 if we

select the sign ”minus”. Hence the interval
(
π − π

2s , π
)
⊃
[
π − arcsin 1

s
;π
)
contains only two
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critical points (58), namely 2k+3
s+1 π and 2k+1

s−1 π. We can estimate the value of h at these points

as follows:

h

(
2k + 3

s+ 1
π, s

)
= (s+ 1) sin

2k + 3

s+ 1
π > 0, since 0 < π − π

2s
<

2k + 3

s+ 1
π,

h

(
2k + 1

s− 1
π, s

)
= (s − 1) sin

2k + 1

s− 1
π > 0, since 0 < π − π

2s
<

2k + 1

s− 1
π < π.

Thus we proved that h(x, s) > 0 for π 6 x 6 π + arcsin 1
s
, therefore h(x, s) has no roots in this

interval. On the other hand in view of (56) we see that h(x, s) has a root in the half-interval

π < x 6 π + arcsin
(
1
s

)
.

Uniqueness of the root x̃1(s) follows from the constant sign of the derivative h′x(x, s) that
is equivalent to absence of its roots. Indeed, let us show that the interval

(
π;π + π

2s

)
⊃(

π, π + arcsin 1
s

]
does not contain any critical point (58). Assume the converse, then there

exists n ∈ N such that 1 < 2n−1
s±1 < 1 + 1

2s . Since 2k + 2 < s < 2k + 3 we have

2k + 2± 1 < 2n− 1 < (2k + 3± 1)

(
1 +

1

2(2k + 2)

)
, 2n − 1 ∈ N , k ∈ N.

Thus we have 2n − 1 = 2k + 3 ± 1. But the last equality is satisfied for no numbers n and

k. Therefore such n does not exist. This contradiction proves that the function h(x, s) has a
unique root for π < x 6 π + arcsin 1

s
.

Thus we proved that for any s > 3 the function h(x, s) has a unique root on the interval π−arcsin 1
s
6

x 6 π + arcsin 1
s
. To conclude the proof, it remains to check that h(x, s) has no roots in the interval

π + arcsin 1
s
< x < 2π − arcsin 1

s
. Indeed, we see that h(x, s) < 0 since in this interval we have

s sinx < −1.

Now we improve the upper bound in estimation (54).

Proposition 5.3. There holds the inequality

x2(s) < π +
1

s− 2
. (60)

Proof. Indeed, (60) follows from the inequality g̃2(π + 1
s−2 , s) > 0 that we prove now. Denote by x

the value π + 1
s−2 . We have

g̃2

(
π +

1

s− 2
, s

)
= 4s (cos x− cos (sx))− x

(
s2 − 1

)(
s sin

(
π +

1

s− 2

)
+ sin (xs)

)
>

> −4s− 4s cos (sx)− x
(
s2 − 1

)
sin (sx) + xs

(
s2 − 1

)
sin

(
1

s− 2

)
. (61)

Combining this with the following inequalities:

4s cos (sx) + x
(
s2 − 1

)
sin (sx) 6

√
16s2 + x2(s2 − 1)2,

s sin

(
1

s− 2

)
> s

(
1

s− 2
− 1

6(s − 2)3

)
= 1 +

2

s− 2
− s

6(s− 2)3
,

we obtain

g̃2

(
π +

1

s− 2
, s

)
> x

(
s2 − 1

) (
1 +

2

s− 2
− s

6(s − 2)3

)
− 4s−

√
16s2 + x2(s2 − 1)2.

Consequently it remains to prove that

4s +
√

16s2 + x2(s2 − 1)2 < x
(
s2 − 1

)(
1 +

2

s− 2
− s

6(s− 2)3

)
. (62)
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Dividing both sides of (62) by x
(
s2 − 1

)
, we get the equivalent inequality

4s

x (s2 − 1)
+

√
1 +

16s2

x2 (s2 − 1)2
< 1 +

2

s− 2
− s

6(s − 2)3
. (63)

Now use the fact that
√
1 + 2t < 1 + t (∀t > 0). This allows us to replace the inequality (63) by the

following stronger inequality:

4s

x (s2 − 1)
+

8s2

x2 (s2 − 1)2
+

s

6(s− 2)3
<

2

s− 2
. (64)

Multiplying both sides of (64) by s−2
2 , we obtain

2s (s− 2)

x (s2 − 1)
+

4s2 (s− 2)

x2 (s2 − 1)2
+

s

12(s − 2)2
< 1.

We strengthen this inequality by replacing the left-hand side of the product s (s− 2) with the greater

value (s− 1)2. Thus we must prove that

2 (s− 1)

x (s+ 1)
+

4s

x2 (s+ 1)2
+

s

12(s − 2)2
< 1, s > 3. (65)

If 3 6 s 6 4, then s−1
s+1 6 3

5 ,
s

(s−2)2
6 3, s

(s+1)2
6 3

16 , and the left-hand side of (65) is not greater than

6

5x
+

12

16x2
+

3

12
<

2

5
+

1

12
+

3

12
=

2

5
+

1

3
=

11

15
.

If s > 4, then s

(s−2)2
< 1, s

(s+1)2
< 4

25 , and the left-hand side of (65) is less than

2

x
+

16

25x2
+

1

12
<

2

3
+

16

225
+

1

12
=

3

4
+

16

225
< 0.83.

Thus we proved inequality (65). Hence inequality (60) is proved.

5.4. More accurate estimate of x2(s), s > 3. In this subsection we improve the two-sided
estimate obtained in the previous subsection π − arcsin

(
1
s

)
< x2(s) < π + 1

s−2 .

Proposition 5.4. There hold the inequalities

x2(s) > π for s ∈ [2k + 2, 2k + 3), k ∈ N, (66)

x2(s) < π for s ∈ (2k + 1, 2k + 2− 1

2k + 2
], k ∈ N. (67)

Proof. To prove (66) it is sufficient to check that g̃2(π, s) < 0. First let us calculate the values of the
function

g̃2(π, s) = −4s (1 + cos (πs))− π
(
s2 − 1

)
sin (πs)

at the end points of the intervals s ∈ [2k + 2, 2k + 3) for all k ∈ N

g̃2(π, 2k + 2) = −8s < 0, g̃2(π, 2k + 3) = 0.

Further, using the inequality

cos (πs) > −1, sin (πs) > 0, ∀s ∈ (2k + 2, 2k + 3),

we get that g̃2(π, s) < 0 inside the considered intervals and thus (66) is proved.

To prove (67) it is sufficient to check that g̃2(π, s) > 0. Let d = s − (2k + 1) ∈ (0, 1 − 1
2k+2). We

must prove that for all k ∈ N there holds the inequality

g̃2(π, 2k + 1 + d) = 4s(cos(πd)− 1) + (s2 − 1)π sin(πd) > 0. (68)
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Let t = πd ∈ (0, π − π
2k+2). Since

π
2 < π − π

2k+2 < π, we have

sin t > t sin(π − π

2k + 2
) = t sin(

π

2k + 2
).

Using the inequality ∀α ∈ (0, π2 ) : sinα > π
2α, we get

t sin(
π

2k + 2
) > t

π

2

π

2k + 2
>

t

2k + 2
>

t

s+ 1
.

Therefore we have sin t > t
s+1 . Combining this with ∀t ∈ R : cos t > 1− t2

2 , we obtain

g̃2(π, 2k + 1 + d) > −2st2 + π(s2 − 1)
t

s + 1
= t(−2st+ π(s − 1)).

Note that t > 0 and thus we must prove that −2st+ π(s − 1) > 0. Since t < 1 and s > 3 we have

−2st+ π(s − 1) > (π − 2)s − π > 1.14s − π > 3.42− π > 0.

Thus (67) is proved.

5.5. Differentiability of p2(m), 0 < m < 1. Differentiability and monotonic increase of the

function p2(m) for m ∈ (0, 12) is proved in Subsection 5.1. Let us prove differentiability of p2(m)
for

m ∈
[

k

1 + k
,
1 + 2k

3 + 2k
− 2

15 + 40k + 32k2 + 8k3

]
∪
[
1 + 2k

3 + 2k
,
1 + k

2 + k

]
=: M.

Since p2(m) = m
1−m

x2(
1+m
1−m

) (see Subsection 5.2), this follows from differentiability of x2(s) for

s ∈
[
2k + 1, 2k + 2− 1

2k + 2

]
∪ [2k + 2, 2k + 3] =: S.

Let Ŝ = S \{2k+1}, k ∈ N. Recall that x2(s) is the minimal positive root of g̃2(x, s) = 0. Also, x2(s)

is the minimal positive root of J(x, s) = g̃2(x,s)
H(x,s) (see Subsection 5.3) if s ∈ Ŝ. By estimate (54), we

study differentiability of x2(s) in the interval x ∈ (π − arcsin
(
1
s

)
, π + 1

s−2) =: X. Using the implicit

function theorem, we get x′2(s) = −∂ J(x,s)
∂ s

/∂ J(x,s)
∂ x

|x=x2(s) =
4w(x,s)(1−s2)−2

g̃2(x,s) |x=x2(s), where w(x, s) is a

smooth function without singularities

w(x, s) = x sin(x) sin(sx)s4 + (− cos(x) cos(sx)x+ x+ 2(cos(sx)− cos(x)) sin(x))s3+

+((cos(sx)−cos(x)) sin(sx)−x sin(x) sin(sx))s2+(x cos(x) cos(sx)−x)s+(cos(sx)−cos(x)) sin(sx),

and g̃(x, s) = sin(sx) − s sin(x) (we studied this function in Subsection 5.2). In Lemma 4.1 we
proved that the equation g̃(x, s) = 0 has a unique root, denoted by x1(s), in the interval x ∈[
π − arcsin(1

s
), π + arcsin(1

s
)
]
. It was also proved that g̃(x, s) 6= 0 in the interval x ∈ (π+arcsin(1

s
), 2π−

arcsin(1
s
)). Hence x1(s) is a unique root of g̃(x, s) for x ∈ X. Thus the function x2(s) is differentiable

at all points, where x2(s) 6= x1(s). We claim that x2(s) 6= x1(s) for any s ∈ S (see Figure 4). Indeed,

combining (66), (67) and (30), we get
{
x2(s) > π > x1(s) for s ∈ [2k + 2, 2k + 3),

x2(s) < π < x1(s) for s ∈ (2k + 1, 2k + 2− 1
2k+2 ], k ∈ N.

Now consider the value s = 2k+1, k ∈ N. In this case we have x1(s) = x2(s) = π (see (31) and (55)).
Notice that in this case we can not consider x2(s) as a root of the equation J(x, s) = 0 (see Remark

5.2 in Subsection 5.3). Therefore, let us return to the original function g̃2(x, s). Using the implicit

24



function theorem, we get x′2(s) = −∂ g̃2(x,s)
∂ s

/∂ g̃2(x,s)
∂ x

|x=x2(s). According to this formula, we calculate
x′2(2k + 1) for x = π:

x′2(2k + 1) =
sec(kπ)

(
−2
(
kπ2(k + 1) + 1

)
cos(2kπ) + (2k + 1)π sin(2kπ) + 2

)

4k(k + 1)(2k + 1)π cos(kπ)− 4(3k(k + 1) + 1) sin(kπ)
= − π

4k + 2
.

Note also that

∂ g̃2(x, s)

∂ x
= sin(sx)− s(

(
s2 − 1

)
x cos(x) +

(
s2 − 1

)
x cos(sx) +

(
s2 + 3

)
sin(x)− 3s sin(sx)),

∂ g̃2(x, s)

∂ s
= 4cos(x) +

(
−
(
s2 − 1

)
x2 − 4

)
cos(sx) + x

(
−3 sin(x)s2 + 2 sin(sx)s+ sin(x)

)

are smooth functions and

∂ g̃2(x, 2k + 1)

∂ x
|x=π = 8k(1 + k)(1 + 2k)π,

∂ g̃2(π, s)

∂ s
|s=2k+1 = 4k(1 + k)π2.

Thus x2(s) is continuously differentiable at s = 2k + 1. So we proved that x2(s) is a continuously

differentiable function for ∀s ∈ S. Hence p2(m) is a continuously differentiable function for ∀m ∈ M .
Continuity of the function x2(s) for s ∈ (2k + 2 − 1

2k+2 , 2k + 2) follows from the implicit function

theorem (see [13] p. 449). Indeed, the function J(x, s) is strictly monotone, thus x2(s) is a continuous
function.

Now we claim that there exist values s∗, s̄ ∈ S̃ such that x2(s
∗) = π, x2(s̄) = x1(s̄), and s∗ < s̄.

Indeed,

x2

(
2k + 2− 1

2k + 2

)
< π < x1

(
2k + 2− 1

2k + 2

)
, x1(2k + 2) = π < x2(2k + 2),

and x1(s) > π ∀s ∈ S̃. From continuity of x2(s) and x1(s), it follows that there exist s∗ and s̄ as
claimed. Therefore there exist the values m∗ and m̄ as claimed by Theorem 5.1.

Finally note that at the point p = p2(m) the function p 7→ g2(p,m) changes its sign. Indeed, for
m ∈ (0, 12 ) this follows since the function G1(x) is increasing (see Subsection 5.1). For 1

2 6 m < 1

this follows, for example, from the fact that g̃2(x, s) changes its sign over the interval (0, 3π2 ) (see

Proposition 5.1).

5.6. Study of p2(m) for m > 1. We use the change of variables p̄ = p
m
, m̄ = 1

m
∈ (0, 1) to study

p1(m) in the case m > 1. We have g2(p̄, m̄) = − 1
m2 g2(p,m). Therefore, we have g2(p̄, m̄) = 0 iff

g2(p,m) = 0. In such a way we get the following functional equation:

p2(m) = mp2(
1

m
). (69)

Hence, the properties a)—e) (see Theorem 5.1) of p2(m) for m > 1 follow from the similar properties
of p2(m) for m ∈ (0, 1).

6. Relative position of plots of p1(m) and p2(m)

In this section we discuss the mutual behavior of the functions p1(m) and p2(m) and prove the
following theorem:

Theorem 6.1. The functions p1(m) and p2(m) have the following properties:

a) p1(m) and p2(m) are continuous functions for m ∈ (0, 1) ∪ (1,+∞).
b) For m ∈ (0, 12) ∪ (2,+∞) there holds the inequality

p1(m) < p2(m). (70)
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Fig. 4. Plots of the functions x1(s) and x2(s) (dashed line)

c) For m ∈ [12 , 1) there hold the following inequalities:



p1(m) > p2(m) for m ∈

(
k

1+k
, 1+2k
3+2k − 2

15+40k+32k2+8k3

]
,

p1(m) < p2(m) for m ∈
[
1+2k
3+2k ,

1+k
2+k

)
, ∀k ∈ N.

(71)

Plots of the functions p1(m) and p2(m) cross each other at the points m = k
k+1 and at points

m = m̄k, where m̄k ∈
(
1+2k
3+2k − 2

15+40k+32k2+8k3
, 1+2k
3+2k

)
, as follows:

p1(m̄k) = p2(m̄k), p1

(
k

k + 1

)
= p2

(
k

k + 1

)
=

πm

1−m
= πk, ∀k ∈ N,

For m ∈ (1, 2] there hold the following inequalities:



p1(m) < p2(m) for m ∈

(
k+2
k+1 ,

3+2k
1+2k

]
,

p1(m) > p2(m) for m ∈
[
3+2k
1+2k + 2

1+8k(1+k2) ,
k+1
k

)
, ∀k ∈ N.

(72)

Plots of the functions p1(m) and p2(m) cross each other at the points m = k+1
k

and at points

m = m̄k, where m̄k ∈
(
3+2k
1+2k ,

3+2k
1+2k + 2

1+8k(1+k2)

)
, as follows:

p1(m̄k) = p2(m̄k), p1

(
k + 1

k

)
= p2

(
k + 1

k

)
= π(k + 1), ∀k ∈ N.

d) Both functions p1(m) and p2(m) tend to infinity as m → 1.
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e) At the points m ∈ { k
k+1 , k ∈ N} ∪ {k+1

k
|k ∈ N} plots of the functions p1(m) and p2(m) cross

one another at an acute angle, since

0 < p′2(
k

k + 1
) < p′1(

k

k + 1
) = +∞, −∞ = p′1(

k + 1

k
) < p′2(

k + 1

k
) < 0.

Proof. Items a)–d) of Theorem 6.1 follow from Theorem 4.1 and Theorem 5.1. First notice that proof
of the case m > 1 is reduced to proof of the case m ∈ (0, 1), since the functions p1(m) and p2(m)

satisfy the functional equations p1(m) = mp1(
1
m
) and p2(m) = mp2(

1
m
). Further, if m ∈ (0, 13 ), then

p1(m) < 3πm
2 < 5.7m < p2(m). If m ∈ [13 ,

1
2), then p1(m) 6 πm

1−m
< p2(m) (see (51)). If m ∈ [12 , 1)

then we have the following inequalities:



p2(m) < πm

1−m
< p1(m) for m ∈

(
k

1+k
, 1+2k
3+2k − 2

15+40k+32k2+8k3

]
,

p2(m) > πm
1−m

> p1(m) for m ∈
[
1+2k
3+2k ,

1+k
2+k

)
, k ∈ N.

Since p1(m) and p2(m) are continuous functions, then these inequalities imply existence of values

m̄k ∈
(
1 + 2k

3 + 2k
− 2

15 + 40k + 32k2 + 8k3
,
1 + 2k

3 + 2k

)

such that p1(m̄k) = p2(m̄k) for any k ∈ N. It follows immediately from Theorems 4.1 and 5.1 that

p1(
k

k+1) = p2(
k

k+1) =
πm
1−m

, ∀k ∈ N.

Finally, item e) is checked by direct calculations. This completes the proof of Theorem 6.1.

Figure 5 shows the plots of the functions p1(m) and p2(m). Note that these plots have an infinite
number of intersection points.

7. Limit behavior of Maxwell sets and cut time

Consider a sequence of extremal trajectories Qt as ρ → 0, m → m̄. The instants of time t =
t1(m) = 2p1(m)/m and t = t2(m) = 2p2(m)/m define asymptotics of the first Maxwell time for Qt,

corresponding to the reflections ε1 and ε2 of mathematical pendulum (6). We obtained two-sided
estimates of t1(m) and t2(m) for m ∈ (0, 1)∪ (1,+∞) and discussed continuity and differentiability of
these functions. Note that the functions t1(m) and t2(m) are characterized by very complex behavior:

their plots have vertical tangents at a countable number of points and lim
m→1

t1(m) = lim
m→1

t2(m) = +∞.

Then we showed that plots of t1(m) and t2(m) have an infinite number of intersection points.

Denote by λ the vector of adjoint variables. In the paper [7] limit behavior of the Maxwell set
MAX1 is studied. Then upper bound on cut time

tcut(λ) = sup{t > 0 | Qs = Exp(λ, s) is optimal for s ∈ [0, t]}
as (θ, d) → (0, 0) was obtained. Namely there is the following estimate for the cut time:

lim
ρ→0,m→m̄

tcut(λ) 6 t1(m̄) for m̄ > 0, m̄ 6= 1.

Fix any compact set K ⊂ {m ∈ R | m > 0, m 6= 1}. In [7] the following upper bound for cut time is
proved:

lim
ρ→0,m∈K

tcut(λ) 6 max
m∈K

t1(m).

Similar estimates for the cut time tcut, based on the limiting behavior of the Maxwell set MAX2, will
be obtained in later studies.

Recall that plots of t1(m) and t2(m) have an infinite number of intersection points. This means
that even in asymptotic case the behavior of the first Maxwell times for the plate-ball problem is much
more complicated than for the related invariant optimal control problems (nilpotent sub-Riemannian

problem with the growth vector (2,3,5) [15], the problem on Euler elasticae [16], sub-Riemannian
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Fig. 5. Plots of the functions p1(m) and p2(m) (dashed line)

problem on the group of motions of a plane [17], sub-Riemannian problem in Martinet case [14]). The
first three problems were studied by Yu. Sachkov. He showed that in these problems the plots of
Maxwell times have not more than two intersection points globally. While in the plate-ball problem

this number is infinite even in the simple asymptotic case. This shows the new level of complexity
of the plate-ball problem not encountered in control theory before. Taking into account complexity
of parameterization of extremal trajectories in this problem, it is difficult to obtain the exact solu-

tion. However, on the basis of these results it is possible to develop algorithms and software for the
approximate solution of the plate-ball problem. This will be the subject of future work.
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