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CONJUGATE POINTS
IN THE EULER ELASTIC PROBLEM

YU. L. SACHKOV

Abstract. For the classical Euler elastic problem, conjugate points
are described. Inflexional elasticas admit the first conjugate point
between the first and third inflexion points. All other elasticas do not
have conjugate points. As a result, the problem of stability of Euler
elasticas is solved.

1. Introduction

This work is devoted to the study of the following problem considered
by L. Euler [7]. Given an elastic rod in the plane with fixed endpoints and
tangents at the endpoints, one should determine possible profiles of the rod
under the given boundary conditions. The Euler problem can be stated as
the following optimal control problem:

ẋ = cos θ, (1.1)

ẏ = sin θ, (1.2)

θ̇ = u, (1.3)

q = (x, y, θ) ∈M = R
2
x,y × S1

θ , u ∈ R, (1.4)

q(0) = q0 = (x0, y0, θ0), q(t1) = q1 = (x1, y1, θ1), t1 is fixed, (1.5)

J =
1
2

t1∫

0

u2(t) dt→ min, (1.6)

where the integral J evaluates the elastic energy of the rod.
This paper is an immediate continuation of our previous work [11], which

contained the following material: history of the problem, description of
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attainable set, proof of existence and boundedness of optimal controls,
parametrization of extremals by the Jacobi functions, description of dis-
crete symmetries and the corresponding Maxwell points. In this work we
widely use the notation, definitions, and results of work [11].

Euler described extremal trajectories of problem (1.1)–(1.6), their projec-
tions to the plane (x, y) being called Euler elasticas. However, the question
of optimality of elasticas remained open. Our aim is to characterize global
and local optimality of Euler elasticas. Short segments of elasticas are op-
timal. The main result of the previous work [11] in this direction was an
upper bound on cut points, i.e., points where elasticas lose their global opti-
mality. In this work, we describe conjugate points along elasticas; we obtain
precise bounds for the first conjugate point, where the elasticas lose their
local optimality.

Each inflexional elastica contains an infinite number of conjugate points.
The first conjugate point occurs between Maxwell points; visually, the first
conjugate point is located between the first and third inflexion points of the
elastica.

All other elasticas do not contain conjugate points.
Note that Max Born proved in his thesis [5] that if an elastic arc is free

of inflexion points, then it does not contain conjugate points; therefore, in
this part we repeated Max Born’s result. However, our method of proving is
more flexible, and we believe that it will be useful for the study of conjugate
points in other optimal control problems.

This work has the following structure. In Sec. 2, we recall some basic facts
of the theory of conjugate points along regular extremals of optimal control
problems. These facts are rather well known, but are scattered through the
literature. The main facts of this theory necessary for us are as follows:
(1) an instant t > 0 is a conjugate point iff the exponential mapping for
the time t is degenerate; (2) the Morse index of the second variation of the
endpoint mapping along an extremal is equal to the number of conjugate
points taking into account their multiplicity; (3) the Morse index is equal
to the Maslov index of the curve in a Lagrange Grassmanian obtained by
the linearization of the flow of the Hamiltonian system of the Pontryagin
maximum principle; (4) the Maslov index is invariant with respect to ho-
motopies of extremals provided that their endpoints are not conjugate. We
apply this theory for description of conjugate points in the Euler problem.
In Sec. 3, we obtain estimates for the first conjugate point on inflexional
elasticas. Moreover, we improve our result of work [11] on the upper bound
of the cut time on inflexional elasticas. In Sec. 4 we show that all other
elasticas do not contain conjugate points. In Sec. 5, we summarize results
obtained in this paper and [11], and discuss their possible consequences for
future work.
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In this work, we use extensively the Jacobi functions (see [8, 14]). We
apply the system “Mathematica” [15] to carry out complicated calculations
and to produce illustrations.

2. Conjugate points, Morse index, and Maslov index

In this section, we recall some basic facts from the theory of conjugate
points in optimal control problems (see [1–4,13]).

2.1. The optimal control problem and Hamiltonians. We consider
an optimal control problem of the form

q̇ = f(q, u), q ∈M, u ∈ U ⊂ R
m, (2.1)

q(0) = q0, q(t1) = q1, t1 is fixed, (2.2)

J t1 [u] =

t1∫

0

ϕ(q(t), u(t)) dt→ min, (2.3)

where M is a finite-dimensional analytic manifold, f(q, u) and ϕ(q, u) are
analytic in (q, u) families of vector fields and functions on M depending
on the control parameter u ∈ U , and U is an open subset of R

m. Ad-
missible controls are u(·) ∈ L∞[0, t1], and admissible trajectories q(·) are
Lipschitzian. Let

hu(λ) = 〈λ, f(q, u)〉 − ϕ(q, u), λ ∈ T ∗M, q = π(λ) ∈M, u ∈ U,

be the normal Hamiltonian of the PMP for problem (2.1)–(2.3). Fix a triple
(ũ(t), λt, q(t)) consisting of a normal extremal control ũ(t), the correspond-
ing extremal λt, and the extremal trajectory q(t) for problem (2.1)–(2.3).

In the sequel, we suppose that the following hypothesis holds:

(H1) for all λ ∈ T ∗M and u ∈ U , the quadratic form
∂2hu

∂ u2
(λ) is negative

definite.
Note that condition (H1) implies the strong Legendre condition along

an extremal pair (ũ(t), λt):

∂2hu

∂ u2

∣∣∣∣
u=ũ(t)

(λt)(v, v) < −α|v|2, t ∈ [0, t1], v ∈ R
m, α > 0,

i.e., the extremal λt is regular [2].
Moreover, we also assume that the following condition is satisfied:

(H2) for any λ ∈ T ∗M , the function u �→ hu(λ), u ∈ U , has a maximum
point ū(λ) ∈ U :

hū(λ)(λ) = max
u∈U

hu(λ), λ ∈ T ∗M.
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In terms of work [1], condition (H2) means that T ∗M is a regular domain
of the Hamiltonian hu(λ). Condition (H1) means that the function u �→
hu(λ) has no maximum points in addition to ū(λ). At the maximum point
∂ h

∂ u

∣∣∣∣
u=ū(λ)

(λ) = 0 for all λ ∈ T ∗M . By the implicit-function theorem,

the mapping λ �→ ū(λ) is analytic. The maximized Hamiltonian H(λ) =
hū(λ)(λ), λ ∈ T ∗M , is also analytic. The extremal λt is a trajectory of
the corresponding Hamiltonian vector field: λ̇t = �H(λt), and the extremal
control is ũ(t) = ū(λt).

2.2. The second variation and its Morse index. Consider the endpoint
mapping for problem (2.1)–(2.3):

Ft : U = L∞([0, t], U) →M, u(·) �→ (qu(t), J t[u]), (2.4)

where qu(·) is the trajectory of the control system (2.1) with the initial
condition qu(0) = q0 corresponding to the control u = u(·). Since ũ ∈ U
is an extremal control, it follows that the differential (first variation) Dũ :
TũU → Tqũ(t)M is degenerate, i.e., not surjective, for all t ∈ (0, t1] (see [2]).

Introduce one more important hypothesis:
(H3) the extremal control ũ(·) is a corank one critical point of the endpoint

mapping Ft, i.e.,

codim ImDũFt = 1, t ∈ (0, t1].

Condition (H3) means that there exists a unique, up to a nonzero factor,
extremal λt corresponding to the extremal control ũ(t).

For any extremal control u ∈ U , there exists a well-defined Hessian (sec-
ond variation; see [2]) of the endpoint mapping — a quadratic mapping

Hessu Ft : KerDuFt → CokerDuFt = Tqu(t)M/ ImDuFt.

Condition (H3) means that dim
(
Tqũ(t)M/ ImDũFt

)
= 1 for all t ∈ (0, t1]

and, therefore, the quadratic form

Qt = λt Hessũ Ft : KerDũFt → R, t ∈ (0, t1], (2.5)

the projection of the second variation to the extremal λt, is defined uniquely
up to a positive factor.

The Morse index of a quadratic form Q defined in a Banach space L is
the maximal dimension of the negative space of the form Q:

indQ = max{dimL | L ⊂ L, Q|L\{0} < 0}.
The kernel of the quadratic form Q(x) is the space

KerQ = {x ∈ L | Q(x, y) = 0 ∀y ∈ L},
where Q(x, y) is the symmetric bilinear form corresponding to the quadratic
form Q(x). A quadratic form is said to be degenerate if it has a nonzero
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kernel. The multiplicity of degeneration of the form Q is equal to the
dimension of its kernel: dgnQ = dim KerQ.

Now we return to the quadratic form Qt given by (2.5) — the second
variation of the endpoint mapping for the extremal pair ũ(t), λt of the op-
timal control problem (2.1)–(2.3). We continue the quadratic form Qt from
the space L∞ to the space L2 by continuity, and denote by Kt the closure
of the space KerDũFt in L2[0, t].

Proposition 2.1 (see [2, Proposition 20.2], [13, Theorem 1]). Under
hypotheses (H1) and (H3), the quadratic form Qt|Kt

is positive for small
t > 0. In particular, ind Qt|Kt

= 0 for small t > 0.

An instant t∗ ∈ (0, t1] is called a conjugate time (for the initial instant
t = 0) along the extremal λt if the quadratic form Qt∗ |Kt∗

is degenerate.
In this case the point qu(t∗) = π(λt∗) is said to be conjugate for the initial
point q0 along the extremal trajectory qu(·).

Proposition 2.2 (see [13, Theorem 1]). Under hypotheses (H1) and
(H3):

(1) conjugate points along the extremal λt are isolated : 0 < t1∗ < · · · <
tN∗ ≤ t1;

(2) the Morse index of the second variation is expressed by the formula

ind Qt|Kt
=

∑
{dgnQti∗ | 0 < ti∗ < t}.

The local optimality of extremal trajectories is characterized in terms of
conjugate points. Speaking about local optimality of extremal trajectories
in the calculus of variations and optimal control, one distinguishes the strong
optimality (in the norm of the space C([0, t1],M)) and the weak optimality
(in the norm of the space C1([0, t1],M)). Under hypotheses (H1)–(H3),
normal extremal trajectories lose their local optimality (both strong and
weak) at the first conjugate point [2]. Thus, in the sequel, when speaking
about local optimality, we mean both strong and weak optimality.

Proposition 2.3 (see [2, Proposition 21.2, Theorem 21.3]). Let condi-
tions (H1)–(H3) be satisfied.

(1) If the interval (0, t1] does not contain conjugate points, then the ex-
tremal trajectory q(t), t ∈ [0, t1], is locally optimal.

(2) If the interval (0, t1) contains a conjugate point, then the extremal
trajectory q(t), t ∈ [0, t1], is not locally optimal.

2.3. The exponential mapping. We will add to hypotheses (H1)–(H3)
one more condition:

(H4) All trajectories of the Hamiltonian vector field �H(λ), λ ∈ T ∗M , are
continued to the segment t ∈ [0, t1].
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Consider the exponential mapping for the time t:

Expt : N = T ∗
q0
M →M, Expt(λ) = π ◦ et �H(λ) = q(t), t ∈ [0, t1].

One can construct a theory of conjugate points in terms of the family of the
subspaces

Λ(t) = e−t �H
∗ Tλt

(T ∗
q(t)M) ⊂ Tλ0(N),

via the linearization of the flow of the Hamiltonian vector field �H along the
extremal λt.

2.4. The Maslov index of a curve in the Lagrange Grassmanian.
First, we recall some basic facts of the symplectic geometry (see details
in [1, 4]). Let (Σ, σ) be a symplectic space, i.e., Σ is a 2n-dimensional
linear space and σ is a nondegenerate skew-symmetric bilinear form on Σ.
The skew-orthogonal complement to a subspace Γ ⊂ Σ is the subspace
Γ∠ = {x ∈ Σ | σ(x,Γ) = 0}. Since σ is nondegenerate, it follows that
dim Γ∠ = 2n−dim Γ. A subspace Γ ⊂ Σ is said to be Lagrangian if Γ = Γ∠;
in this case dim Γ = n. The set of all Lagrangian subspaces in Σ is called
the Lagrange Grassmanian and is denoted by L(Σ); it is a smooth manifold
of dimension n(n + 1)/2 in the Grassmanian Gn(Σ) of all n-dimensional
subspaces in Σ.

Fix an element Π ∈ L(Σ). Define an open set

Π� = {Λ ∈ L(Σ) | Λ ∩ Π = 0}.
The subset

MΠ = L(Σ) \ Π� = {Λ ∈ L(Σ) | Λ ∩ Π �= 0}
is called the train for Π. The set MΠ is not a smooth submanifold in L(Σ),
but it is represented by the union of smooth strata:

MΠ =
⋃
k≥1

M(k)
Π ,

where
M(k)

Π = {Λ ∈ L(Σ) | dim(Λ ∩ Π) = k}
is a smooth submanifold of L(Σ) of codimension k(k + 1)/2.

Consider a smooth curve Λ(t) ∈ L(Σ), t ∈ [t0, t1], i.e., a family
of Lagrangian subspaces in Σ smoothly depending on t. Assume that
Λ(t0),Λ(t1) ∈ Π�. The Maslov index μΠ(Λ(·)) of the curve Λ(·) is the
intersection index of this curve with the set MΠ.

In more detail, let the curve Λ(·) do not intersect MΠ \M(1)
Π ; this can

always be achieved by a small perturbation of this curve. For the smooth
hypersurface M(1)

Π ⊂ L(Σ), one can define its coorientation in an invariant
way as follows. Any tangent vector to L(Σ) at a point Λ ∈ L(Σ) can
naturally be identified with a certain quadratic form on Λ. Take a tangent
vector Λ̇(t) ∈ TΛ(t)L(Σ) to a smooth curve Λ(t) ∈ L(Σ). Choose a point
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x ∈ Λ(t) of the n-dimensional space Λ(t) ⊂ Σ. Choose any smooth curve
τ �→ x(τ) in Σ such that x(τ) ∈ Λ(τ) for all τ , and x(τ) = x. Then
the quadratic form Λ̇(t)(x), x ∈ Λ(t), is defined by the formula Λ̇(t)(x) =
σ(x, ẋ(t)). One can show that σ(x, ẋ(t)) does not depend on the choice of
the curve x(τ), i.e., one obtains a well-defined quadratic form Λ̇(t) on the
space Λ(t). Moreover, the correspondence Λ̇ �→ Λ̇, Λ̇ ∈ TΛL(Σ), defines an
isomorphism of the tangent space TΛL(Σ) and the linear space of quadratic
forms on Λ, see [1].

The Maslov index μΠ(Λ(·)) is defined as the number of transitions of the
curve Λ(·) from the negative side of the manifold M(1)

Π (i.e., with Λ̇(t) > 0)
minus the number of reverse transitions (with Λ̇(t) < 0), taking into account
multiplicity.

The fundamental property of the Maslov index is its homotopy in-
variance [3]: for any homotopy Λs(t), t ∈ [ts0, t

s
1], s ∈ [0, 1], such that

Λs(ts0),Λ
s(ts1) ∈ Π� for all s ∈ [0, 1], we have μΠ(Λ0(·)) = μΠ(Λ1(·)). This

fact is proved in the same way as the homotopy invariance of the usual
intersection index of a curve with a smooth cooriented surface.

For monotone curves in Lagrange Grassmanian L(Σ), the following way
of evaluation of the Maslov index can be used.

Proposition 2.4 (see [1, Corollary I.1]). Let Λ̇(t) ≤ 0, t ∈ [t0, t1], and
let {t ∈ [t0, t1] | Λ(t)∩Π �= 0} be a finite subset of the open interval (t0, t1).
Then

μΠ(Λ(·)) = −
∑

t∈(t0,t1)

dim(Λ(t) ∩ Π). (2.6)

In fact, in [1, Corollary I.1], a statement for a nondecreasing curve (Λ̇(t) ≥
0) is given and, therefore, in the right-hand side of formula (2.6) the minus
sign is absent. As was pointed out in the remark after Corollary I.1 in [1],
the passage from nondecreasing curves to nonincreasing ones is obtained by
the inversion of the direction of time t �→ t0 + t1 − t.

The theory of the Maslov index can be used for the computation of the
Morse index for regular extremals in optimal control problems.

2.5. The Morse index and the Maslov index. Let λt, t ∈ [0, t1], be
a normal extremal of the optimal control problem (2.1)–(2.3), and let hy-
potheses (H1)–(H4) be satisfied. Consider the family of quadratic forms
Qt given by (2.5).

The extremal λt determines a smooth curve

Λ(t) = e−t �H
∗ Tλt

(T ∗
q(t)M) ∈ L(Σ), t ∈ [0, t1],

in the Lagrange Grassmanian L(Σ), where Σ = Tλ0(T
∗M). The initial point

of this curve is the tangent space to the fiber Λ(0) = Π = Tλ0(T
∗
q0
M). The

strong Legendre condition (see (H1)) implies the monotone decreasing of
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the curve Λ(t): the quadratic forms Λ̇(t) < 0, t ∈ [0, t1] (see [1, Lemma I.4])
and, therefore, its Maslov index can be computed via Proposition 2.4.

On the other hand, the following important statement establishes a rela-
tion between the Morse index of the second variation Qt and Maslov index
of the curve Λ(t).

Proposition 2.5 (see [1, Theorem I.3, Corollary I.2]). Let hypotheses
(H1)–(H4) be satisfied. Then:

(1) An instant t ∈ (0, t1] is a conjugate time iff Λ(t) ∩ Π �= 0.
(2) If Λ(t1) ∩ Π = 0, then there exists t̄ > 0 such that

ind Qt1 |Kt1
= −μΠ(Λ(·)|[t0,t1]

) ∀t0 ∈ (0, t̄).

(3) If {t ∈ (0, t1] | Λ(t) ∩ Π �= 0} is a finite subset of the open interval
(0, t1), then

ind Qt1 |Kt1
=

∑
t∈(0,t1)

dim(Λ(t) ∩ Λ(0)).

Item (1) of Proposition 2.5 obviously implies the following statement.

Corollary 2.1. Let hypotheses (H1)–(H4) hold. An instant t ∈ (0, t1)
is a conjugate time iff the mapping Expt is degenerate.

Proof. The condition Λ(t) ∩ Π �= 0 means that et �H
∗ (Π) ∩ Tλt

(T ∗
q(t)M) �= 0,

which is equivalent to degeneracy of the mapping Expt = π ◦ et �H .

Due to Proposition 2.5, we obtain a statement on homotopy invariance
of the Maslov index of the second variation.

Proposition 2.6. Let (us(t), λs
t ), t ∈ [0, ts1], s ∈ [0, 1], be a continu-

ous in parameter s family of normal extremal pairs in the optimal control
problem (2.1)–(2.3) satisfying conditions (H1)–(H4). Assume that, for any
s ∈ [0, 1], the terminal instant t = ts1 is not a conjugate time along the
extremal λs

t . Then

ind Qt11

∣∣∣
K

t11

= ind Qt01

∣∣∣
K

t01

. (2.7)

Proof. It follows from the continuity and strict monotonicity of the curves
Λs(t) = e−t �H

∗ Tλs
t
(T ∗

qs(t)M), qs(t) = π(λs
t ) that there exists t̄ > 0 such that

t̄ < ts for all s ∈ [0, 1] and any instant t ∈ (0, t̄) is not a conjugate time
along the extremal λs

t .
According to item (2) of Proposition 2.5, we have

ind Qts
1

∣∣
Kts

1

= −μΠ(Λs(·)|[t0,ts
1]

) ∀t0 ∈ (0, t̄) ∀s ∈ [0, 1]. (2.8)

For all s ∈ [0, 1], we have Λs(t0)∩Π = Λs(ts1)∩Π = 0. Then the homotopy
invariance of the Maslov index implies that the function s �→ μΠ(Λs(·)|[t0,ts

1]
)
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is constant on the segment s ∈ [0, 1]. Thus, Eq. (2.8) implies the required
equality (2.7).

The following statements can be useful for the proof of absence of con-
jugate points under homotopy or limit passage.

Corollary 2.2. Let all hypotheses of Proposition 2.6 be satisfied. If an
extremal trajectory q0(t) = π(λ0

t ), t ∈ (0, t01], does not contain conjugate
points, then the extremal trajectory q1(t) = π(λ1

t ), t ∈ (0, t11], also does not
contain conjugate points.

Proof. A regular extremal does not contain conjugate points iff its Maslov
index is zero and, therefore, the statement follows from Proposition 2.6.

Corollary 2.3. Let (us(t), λs
t ), t ∈ [0,+∞), s ∈ [0, 1], be a continuous

in parameter s family of normal extremal pairs in the optimal control prob-
lem (2.1)–(2.3) satisfying hypotheses (H1)–(H4). Let for any s ∈ [0, 1] and
T > 0 the extremal λs

t have no conjugate points for t ∈ (0, T ]. Then for any
T > 0, the extremal λ1

t also has no conjugate points for t ∈ (0, T ].

Proof. Fix any T > 0. By Proposition 2.2, conjugate points along the
extremal λ1

t are isolated and, therefore, there exists an instant t1 > T that
is not a conjugate time along λ1

t . Consider the family of extremals λs
t ,

t ∈ [0, t1], s ∈ [0, 1]. Corollary 2.2 implies that the extremal λ1
t has no

conjugate points for t ∈ (0, t1] and, therefore, also for t ∈ (0, T ].

2.6. Preliminary remarks on the Euler problem. In this section we
show that the Euler elastic problem satisfies all hypotheses required for the
general theory of conjugate points described in Secs. 2.1–2.5.

Recall (see [11]) that the Euler problem is stated as follows:

q̇ = X1(q) + uX2(q), q ∈M = R
2 × S1, u ∈ R, (2.9)

q(0) = q0, q(t1) = q1, t1 is fixed, (2.10)

J =
1
2

t1∫

0

u2dt→ min, (2.11)

where

X1 = cos θ
∂

∂ x
+ sin θ

∂

∂ y
, X2 =

∂

∂ θ
,

[X1,X2] = X3 = sin θ
∂

∂ x
− cos θ

∂

∂ y
.

This problem has the form (2.1)–(2.3), and the regularity conditions for M ,
f , and ϕ are satisfied.
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In terms of the Hamiltonians hi(λ) = 〈λ,Xi〉, λ ∈ T ∗M , i = 1, 2, 3, the
normal Hamiltonian of the PMP for the Euler problem is

hu(λ) = h1(λ) + uh2(λ) − 1
2
u2.

We have
∂2hu

∂ u2
= −1 < 0, i.e., hypothesis (H1) holds.

Condition (H2) obviously holds.
Let u(t) be a normal extremal control in the Euler problem. The corank

of the control u(t) is equal to the dimension of the space of solutions of the
linear Hamiltonian system of the PMP λ̇t = �h1(λt) + u(t)�h2(λt), i.e., to
the number of distinct nonzero solutions of the Hamiltonian system corre-
sponding to the maximized Hamiltonian H = h1 + h2

2/2:

λ̇t = �h1(λt) + h2
�h2(λt), u(t) = h2(λt). (2.12)

We are interested in the number of distinct nonzero solutions of the vertical
subsystem of system (2.12):⎧⎪⎨

⎪⎩
ḣ1 = −h2h3,

ḣ2 = h3,

ḣ3 = h1h2

⇔

⎧⎪⎨
⎪⎩
β̇ = c,

ċ = −r sinβ,
ṙ = 0,

(2.13)

where h1 = −r cosβ, h2 = c, and h3 = −r sinβ (see [11]).
To the extremal control u(t) ≡ 0, there correspond two distinct nonzero

extremals (h1, h2, h3)(λt) = (±r, 0, 0), r �= 0; therefore, in this case
coranku = 2.

If u(t) �≡ 0, then ct = u(t) �≡ 0. Then the function ct uniquely determines
the functions r sinβt = −ċt and r cosβt = −c̈t/ct via system (2.13). There-
fore, the curve (h1, h2, h3)(λt) �≡ 0 is uniquely determined. Consequently,
coranku = 1 in the case u(t) �≡ 0.

Note that the control u(t) ≡ 0 is optimal and, therefore, in the sequel,
we can assume in the study of optimality of extremal controls that their
corank is equal to 1, i.e., hypothesis (H3) is satisfied.

Finally, hypothesis (H4) is also satisfied since the Hamiltonian field �H
is complete (its trajectories are parametrized by the Jacobi functions deter-
mined for all t ∈ R).

Summing up, all hypotheses (H1)–(H4) are satisfied for the Euler elastic
problem and, therefore, the theory of conjugate points stated in this section
is applicable.

3. Conjugate points on inflexional elasticas

In this section, we describe conjugate points on inflexional elasticas in
the Euler problem. We perform explicit computations and estimates on the
basis of parametrization of extremal trajectories obtained in [11].
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The consideration is based on the decomposition of the preimage of the

exponential mapping T ∗
q0
M = N =

7⋃
i=1

Ni introduced in [11]. In this section,

we consider the case λ ∈ N1. In [11, Sec. 8.2], a parametrization of the
exponential mapping in the Euler problem Expt : (ϕ, k, r) �→ (xt, yt, θt)
was obtained in terms of elliptic coordinates in the domain N1. By virtue
of Corollary 2.1, an instant t is a conjugate time iff the mapping Expt

is degenerate, i.e., iff its Jacobian J =
∂(xt, yt, θt)
∂(ϕ, k, r)

vanishes. A direct

computation using the parametrization of the exponential mapping obtained
in [11, Sec. 8.2] yields the following:

J =
∂(xt, yt, θt)
∂(ϕ, k, r)

=
1√

r cos(θt/2)
∂(xt, yt, sin(θt/2))

∂(ϕ, k,
√
r)

= − 32k
(1 − k2)r3/2Δ2

J1,

(3.1)

J1 = a0 + a1z + a2z
2, z = sn2 τ ∈ [0, 1], (3.2)

a2 = −k2 sn p x1, (3.3)

a2 + a1 + a0 = (1 − k2) sn p x1, (3.4)

a0 = f1(p, k)x2, (3.5)

x1 = −dn p(2 sn pdn pE3(p) + ((4k2 − 5) p sn pdn p

+ cn p(3 − 6k2 sn2 p )) E2(p) + ((4k2 − 5) cn p(1 − 2k2 sn2 p ) p

+ sn pdn p(4p2 − 1 + k2(6 sn2 p − 4 − 4p2))) E(p)

+ p sn pdn p(1 − (1 − k2)p2 + k2(4k2 − 5) sn2 p )

+ 2 cn p(k2 sn2 p dn2 p + (1 − k2)(1 − 2k2 sn2 p )p2)), (3.6)

x2 = cn p(2(1 − k2)pE(p) − E2(p) − (1 − k2)p2)

+ sn pdn p(E(p) − (1 − k2)p), (3.7)

f1(p, k) = sn pdn p− (2E(p) − p) cn p, (3.8)

p =
√
rt/2, τ =

√
r(ϕ+ t/2), Δ = 1 − k2 sn2 p sn2 τ .

Here cn, sn, dn, and E are the Jacobi functions (see details in [11]).

3.1. Preliminary lemmas. In this section, we describe roots and signs of
the functions a0 and a2 + a1 + a0 that essentially evaluate the numerator
of the Jacobian J at the extreme points z = 0 and 1 respectively (see (3.1),
(3.2)).

3.1.1. Roots of the function a0. Roots of the function f1(p) defined in (3.8)
were described in [10]. For completeness, we cite the statements we will
need in the sequel.
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Proposition 3.1 (see [10, Lemma 2.1]). The equation 2E(k) −K(k) =
0, k ∈ [0, 1), has a unique root k0 ∈ (0, 1). Moreover,

k ∈ [0, k0) ⇒ 2E −K > 0,

k ∈ (k0, 1) ⇒ 2E −K < 0.

Here and below, K(k) and E(k) are complete elliptic integrals of the
first and second kinds (see [8, 11, 14]). Numerical computations yield the
approximate value k0 ≈ 0.909.

Proposition 3.2 (see [10, Proposition 2.1]). For any k ∈ [0, 1), the
function f1(p, k) has a countable number of roots p1

n, n ∈ Z, localized as
follows: p1

0 = 0 and

p1
n ∈ (−K + 2Kn, K + 2Kn), n ∈ Z.

Moreover, for n ∈ N

k ∈ [0, k0) ⇒ p1
n ∈ (2Kn,K + 2Kn),

k = k0 ⇒ p1
n = 2Kn,

k ∈ (k0, 1) ⇒ p1
n ∈ (−K + 2Kn, 2Kn),

where k0 is the unique root of the equation 2E(k)−K(k) = 0 (see Proposi-
tion 3.1).

Now we establish the signs of the function f1(p) between its zeros p1
n.

Lemma 3.1. For any m = 0, 1, 2, . . . , we have:

p ∈ (p1
2m, p

1
2m+1) ⇒ f1(p) > 0,

p ∈ (p1
2m+1, p

1
2m+2) ⇒ f1(p) < 0.

Proof. By virtue of the equality(
f1(p)
cn p

)′
=

sn2 p dn2 p

cn2 p
,

the function f1(p)/ cn p increases on the segments of the form [−K +
2Kn,K + 2Kn], n ∈ Z. Therefore, the function f1(p)/ cn p, as well as
f1(p), changes its sign at the points p1

n ∈ (−K + 2Kn,K + 2Kn). It re-
mains to verify that f1(p) is positive on the first interval (p1

0, p
1
1) = (0, p1

1).
We have f1(p) = p3/3 + o(p3) > 0, p→ 0, and the statement follows.

Now we describe zeros of the function x2 that enters factorization (3.5)
of the function a0.

Lemma 3.2. The function x2(p) given by (3.7) has a countable number
of roots p = px2

n ≥ 0. We have px2
0 = 0 and px2

n ∈ (2Kn,K + 2Kn) for
n ∈ N, and, moreover,

k < k0 ⇒ px2
n ∈ (p1

n,K + 2Kn). (3.9)
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Further,

p ∈ (px2
2m, p

x2
2m+1) ⇒ x2(p) > 0, (3.10)

p ∈ (px2
2m+1, p

x2
2m+2) ⇒ x2(p) < 0, m = 0, 1, 2, . . . . (3.11)

Proof. First, we show that the function

x2(p)
sn pdn p

increases when p ∈ (2Kn, 2K + 2Kn). (3.12)

A direct computation yields
(

x2(p)
sn pdn p

)′
=

x3(p)
sn2 p dn2 p

, (3.13)

x3 = k2( cn2 p E(p) + α)2 + (1 − k2)(E(p) + β)2, (3.14)

α = (1 − k2)p sn2 p − cn p sn pdn p, β = −pdn2 p .

Since

E(p) + β =
2
3
k2p3 + o(p3), cn2 p E(p) + α =

2
3
(1 − k2)p3 + o(p3),

we have E(p) + β �≡ 0, cn2 p E(p) + α �≡ 0. Therefore, the function x3(p)
given by (3.14) is nonnegative and vanishes only at isolated points. By
virtue of Eq. (3.13), assertion (3.12) follows.

Further, we have

x2|p=2Kn = cn p x4(p),

x4 = −((1 − k2)(E(p) − p)2 + k2 E2(p)) < 0 for all p �= 0.

Therefore,

p = 2K + 4Kn ⇒ cn p < 0, x2 > 0,
p = 4Kn ⇒ cn p > 0, x2 < 0.

Consequently, x2/(sn pdn p) → ±∞ as p → 2Kn ∓ 0, n ∈ N. Moreover, it
follows from the asymptotics

x2 = (4/45) k2(1 − k2)p6 + o(p6), p→ 0, (3.15)

that x2/(sn pdn p) → +0 as p→ +0.
Thus,

p ∈ (0, 2K) ⇒ x2

sn pdn p
> 0,

p ∈ (2Kn, 2K + 2Kn) ⇒ x2

sn pdn p
increases from −∞ to + ∞.

Therefore, there exists a unique root of x2(p)/(sn pdn p) and hence of x2(p)
at the interval (2Kn, 2K + 2Kn). We denote it by px2

n .
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Now we localize px2
n with respect to the point K + 2Kn. We have

x2|p=K+2Kn = dn p sn p(E(p) − (1 − k2)p),

E(p) − (1 − k2)p = k2

p∫

0

cn2 t dt > 0, p > 0.

Now

p = K + 4Kn ⇒ sn p = 1, x2 > 0 ⇒ x2

sn p
> 0,

p = 3K + 4Kn ⇒ sn p = −1, x2 < 0 ⇒ x2

sn p
> 0.

Consequently, px2
n ∈ (2Kn,K + 2Kn) for all n ∈ N.

Let k < k0; then p1
n ∈ (2Kn,K + 2Kn). Now we clarify the mutual

disposition of the points p1
n and px2

n in this case. By virtue of (3.8),

f1(p) = 0 ⇔ E(p) = (dn p sn p/ cn p+ p)/2.

A direct computation yields

x2|E(p)=(dn p sn p/ cn p+p)/2 = 8 cn2 p (sn pdn p− p cn p) E(p).

Since for p = p1
n we have cn p �= 0, it follows that for p = p1

n, the functions
x2 and sn pdn p − p cn p have the same sign. Then both for p = p1

2l−1 ∈
(4Kl−2K, 4Kl−K) and for p = p1

2l ∈ (4Kl, 4Kl+K) we obtain x2/ sn p < 0.
Consequently, p1

n < px5
n for all n ∈ N, i.e., inclusion (3.9) is proved. The

roots px2
n are localized as required.

For p > 0, the functions x2 and sn p have distinct roots and, therefore, it
follows from (3.12) that x2 changes its sign at the points px2

n , n ∈ N. The
distribution of signs (3.10), (3.11) follows from the fact that the function x2

is positive on the first interval (px2
0 , px2

1 ) = (0, px2
1 ) (see (3.15)).

For p > 0, the function a0 vanishes at the points p = p1
n and p = px2

n

defined and localized in Proposition 3.2 and Lemma 3.2. Now decompo-
sition (3.5) and Lemmas 3.1, 3.2 imply the following statement about the
distribution of signs of the function a0.

Lemma 3.3. Let k ∈ (0, 1). If p ∈ (0, p1
1), then a0 > 0. For any n ∈ N,

if p ∈ (p1
n, p

x2
n ), then a0 < 0, and if p ∈ (px2

n , p1
n+1), then a0 > 0.

3.1.2. Roots of the function a0 + a1 + a2. In order to obtain a similar de-
scription for the function a0 + a1 + a2, we have to describe roots of the
function x1 (see decomposition (3.4)).

Lemma 3.4. For p ≥ 0, the function x1(p) defined by (3.6) has a count-
able number of roots p0 = 0, px1

n ∈ (p1
n, p

1
n+1), n ∈ N. Moreover,

p ∈ (px1
2m, p

x1
2m+1) ⇒ x1(p) > 0, (3.16)

p ∈ (px1
2m+1, p

x1
2m+2) ⇒ x1(p) < 0. (3.17)
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Proof. A direct computation yields
(

x1(p)
dn pf1(p)

)′
=

x5(p)
4f2

1 (p)
, (3.18)

x5 = k2(cn pE4 p+ α)2 + (1 − k2)(pE2 + β)2 ≥ 0,

E2 = 2E(p) − p, E4 = cn p(2E(p) − p) − 2 sn pdn p,

α = (1 + sn2 p − 2k2 sn2 p )E2
2 + 4 cn p sn pdn p(1 − 2k2)E2

+ 4(2k2 − 1) sn2 p dn2 p ,

β = (2k2 sn2 p − 1)E2
2 + 8k2 cn p sn pdn pE2 − 8k2 sn2 p dn2 p .

Since

cn pE4 p+ α =
4
45

(1 − k2)p6 + o(p6) �≡ 0,

pE2 + β = − 4
45
k2p6 + o(p6) �≡ 0,

the function x5(p) is nonnegative and vanishes at isolated points. In view of
Eq. (3.18), the function x1(p)/(dn pf1(p)) increases on the intervals where
f1(p) �= 0.

Now we find the sign of x1 at the points p1
n. We have

x1|E(p)=(dn p sn p/ cn p+p)/2 =
x6(p)
4 cn3 p

,

x6(p) = x0
6 + x1

6 p+ x2
6 p

2,

x2
6(p) = − cn2 p dn p(1 − k2 sn2 p (2 − sn2 p )),

x1
6(p) = 2 cn p sn p(1 − 2k6 sn6 p− k2 sn2 p (3 + sn2 p )

+ k4 sn4 p (4 + sn2 p )),

x0
6(p) = −dn3 p sn2 p (1 − k2 sn2 p (2 − sn2 p )).

Note that 1− k2 sn2 p (2− sn2 p ) = dn4 p + k2(1− k2) sn4 p > 0. Consider
the discriminant

x6d = (x1
6)

2 − 4x0
6 x

2
6 = −16k2(1 − k2) cn2 p sn6 pdn8 p

of the quadratic polynomial x6(p). If k �= k0, then for p = p1
n we have

cn p �= 0 and sn p �= 0 and, therefore, x2
6, x

0
6, x6d < 0 and x6 < 0. If k = k0,

then for p = p1
n we have cn p �= 0 and sn p �= 0 and, therefore, x0

6 = 0,
x2

6 < 0, x6d = 0, x1
6 = 0, and x6 = x2

6p
2 < 0.

Thus, for all k ∈ (0, 1), if p = p1
n > 0, then sgnx1 = − sgn cn p. If

p = p1
2l−1 ∈ (4Kl − 2K, 4Kl − K), then cn p < 0 and, therefore, x1 > 0.

Similarly, if p = p1
2l ∈ (4Kl, 4Kl +K), then cn p > 0 and x1 < 0.
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Consequently,

p ∈ (0, p1
1) ⇒ x1(p)

dn pf1(p)
increases from 0 to +∞ ⇒ x1(p) > 0, (3.19)

p ∈ (p1
n, p

1
n+1), n ∈ N ⇒ x1(p)

dn pf1(p)
increases from −∞ to + ∞

and, therefore, x1 has a unique root px1
n ∈ (p1

n, p
1
n+1).

The required signs of the function x1(p) on the intervals (3.16) and (3.17)
follow from the inequality on the first interval (3.19), and from the fact that
x1(p)/(dn pf1(p)) and x1(p) changes its sign at the points px1

n , n ∈ N.

Remark. By virtue of decomposition (3.4), we have the equality

{p > 0 | a0 + a1 + a2 = 0} = {p > 0 | sn p = 0} ∪ {p > 0 | x1 = 0}
= {2Km | m ∈ N} ∪ {px1

n | n ∈ N}. (3.20)

In order to obtain a complete description of roots of the function a0 +
a1 + a2, one should describe mutual disposition of the points 2Km and
px1

n . Numerical computations show that some of these points may coincide
one with another. For example, numerical computations yield the following
relations between the first roots in families (3.20): if k ∈ (0, k̄), then px1

1 >
2K; if k = k̄, then px1

1 = 2K; if k ∈ (k̄, 1), then px1
1 < 2K for a number

k̄ ≈ 0.998. We do not go into details of this analysis, but in the sequel, we
allow different possibilities of mutual disposition of the roots px1

n and 2Km.

3.2. Bounds of the conjugate time. In this section, we estimate the
first conjugate time in the Euler problem along inflexional elasticas.

We obtain from Eqs. (3.3) and (3.4) that a2 = −k2/(1−k2)(a0 +a1 +a2)
and, therefore, the Jacobian appearing in (3.1), (3.2) can be represented as

J1(p, k, z) = (1 − z)a0 + z(1 − k2z)/(1 − k2)(a0 + a1 + a2). (3.21)

Note that (1 − k2z)/(1 − k2) > 0. In order to describe the first conjugate
point along an extremal trajectory q(t) = π ◦ et �H(λ), λ ∈ N1, it suffices to
describe the first positive root of the function J1 for fixed k and z:

pconj
1 (k, z) = min{p > 0 | J1(p, k, z) = 0}.

This minimum exists since, by virtue of the regularity of normal extremals,
small intervals p ∈ (0, ε) do not contain conjugate points. Below, in the
proof of Theorem 3.1, we prove this independently on the basis of an explicit
expression for the function J1.

Theorem 3.1. Let λ ∈ N1. For all k ∈ (0, 1) and z ∈ [0, 1], the number
pconj
1 (k, z) belongs to the segment bounded by the points 2K(k) and p1

1(k),
namely :

(1) k ∈ (0, k0) ⇒ pconj
1 ∈ [2K, p1

1];
(2) k = k0 ⇒ pconj

1 = 2K = p1
1;
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(3) k ∈ (k0, 1) ⇒ pconj
1 ∈ [p1

1, 2K].
Moreover, for any k ∈ (0, 1), there exists ε = ε(k) > 0 such that :
(1′) if k ∈ (0, k0), then

p ∈ (0, 2K) ⇒ J1 > 0, (3.22)

p ∈ (p1
1, p

1
1 + ε) ⇒ J1 < 0; (3.23)

(2′) if k = k0, then

p ∈ (0, 2K) ⇒ J1 > 0, (3.24)

p ∈ (2K, 2K + ε) ⇒ J1 < 0; (3.25)

(3′) if k ∈ (k0, 1), then

p ∈ (0, p1
1) ⇒ J1 > 0; (3.26)

moreover,
(3′a) in the case px1

1 ∈ (p1
1, 2K):

p ∈ (px1
1 , px1

1 + ε) ⇒ J1 < 0; (3.27)

(3′b) in the case px1
1 = 2K:

p = 2K = px1
1 ⇒ J1 ≤ 0, (3.28)

(3′c) in the case px1
1 ∈ (2K, p2

1):

p ∈ (2K, 2K + ε) ⇒ J1 < 0. (3.29)

Proof. It is easy to see that, by virtue of the continuity of the function
J1(p), items (1′)–(3′) imply items (1)–(3), respectively, and, therefore, we
prove statements (1′)–(3′).

(1′) Fix any k ∈ (0, k0), then 2K < p1
1 (see Proposition 3.2).

If p ∈ (0, 2K), then Lemmas 3.1, 3.2, and 3.4 and decompositions (3.5)
and (3.4) imply the following:

f1 > 0 and x2 > 0 ⇒ a0 > 0,
sn p > 0 and x1 > 0 ⇒ a0 + a1 + a2 > 0.

Then representation (3.21) yields the inequality J1(p, z) > 0 for all z ∈ [0, 1]
and all p ∈ (0, 2K). Implication (3.22) follows.

Lemmas 3.2 and 3.4 imply that px2
1 ∈ (p1

1, 3K) and px1
1 ∈ (p1

1, p
1
2), respec-

tively. Denote p̂1 = min(px2
1 , px1

1 ) > p1
1.

If p ∈ (p1
1, p̂1), then we obtain from Lemmas 3.1, 3.2, and 3.4 and decom-

positions (3.5) and (3.4) the following:

f1 > 0 and x2 > 0 ⇒ a0 < 0,
sn p < 0 and x1 > 0 ⇒ a0 + a1 + a2 < 0.

Representation (3.21) implies that J1(p, z) < 0 for all z ∈ [0, 1] and all
p ∈ (p1

1, p̂1), i.e., implication (3.23) is proved for ε = p̂1 − p1
1 > 0.
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(2′) Let k = k0. Similarly to item (1′),

p ∈ (0, 2K) ⇒ a0 > 0 and a0 + a1 + a2 > 0 ⇒ J1 > 0,

p ∈ (2K, p̂1) ⇒ a0 < 0 and a0 + a1 + a2 < 0 ⇒ J1 < 0,

where p̂1 = min(px1
1 , px2

1 ) > 2K. Thus, implications (3.24) and (3.25) follow
for ε = p̂1 − px2

1 > 0.
(3′) Let k ∈ (k0, 1), then p1

1(k) < 2K(k).
Let p ∈ (0, p1

1). Then we have the following:

f1 > 0 and x2 > 0 ⇒ a0 > 0,
sn p > 0 and x1 > 0 ⇒ a0 + a1 + a2 = 0.

Thus, J1 > 0, and implication (3.26) is proved.
(3′a) Consider the case px1

1 ∈ (p1
1, 2K). Let p ∈ (px1

1 , 2K); then, since
f1 < 0 and x2 > 0, we have a0 < 0; since sn p > 0 and x1 < 0, we
have a0 + a1 + a2 < 0. Thus, J1 < 0, and implication (3.27) follows for
ε = 2K − px1

1 > 0. In this case,

pconj
1 (z) ∈ [p1

1, p
x1
1 ] ⊂ [p1

1, 2K) ∀z ∈ [0, 1]. (3.30)

(3′b) Consider the case px1
1 = 2K. Let p = 2K; then, since f1 < 0 and

x2 > 0, we have a0 < 0; since sn p = x1 = 0, we have a0 + a1 + a2 = 0.
Consequently, J1 ≤ 0, and implication (3.28) follows.

(3′c) Finally, consider the case px1
1 ∈ (2K, p2

1). Let p ∈
(2K,min(px1

1 , px2
1 )); then, since f1 < 0 and x2 > 0, we have a0 < 0; since

sn p < 0 and x1 > 0, we have a0 + a1 + a2 < 0. Thus, J1 < 0, and
implication (3.29) is proved for ε = min(px1

1 , px2
1 ) − 2K > 0.

Remark. As one can see from inclusion (3.30), for px1
1 ∈ (p1

1, 2K) the
range of the function pconj

1 (z) is strictly less than the segment [p1
1, 2K].

Judging by plots of the function pconj
1 (z), z = sn2 τ , this function is smooth

and strictly monotone on the segment τ ∈ [0,K] (see Figs. 1–4).

From decompositions (3.5) and (3.4) and Lemmas 3.2 and 3.4 we obtain
the following description of all (not only the first) conjugate points for the
cases z = sn2 τ = 0 or 1 (i.e., for elasticas centered at its vertex or inflexion
point, respectively).

Corollary 3.1. Let λ ∈ N1 and k ∈ (0, 1).
(1) If z = 0, then {p > 0 | J1(p, z) = 0} = {p1

n | n ∈ N} ∪ {px2
m | m ∈ N}.

(2) If z = 1, then {p > 0 | J1(p, z) = 0} = {2Kn | n ∈ N}∪{px1
m | m ∈ N}.

Remark. According to Lemma 3.2 and Proposition 3.2, in item (1) of
Corollary 3.1 all roots p1

n and px2
m are pairwise distinct. However, in item (2)

some of roots 2Kn and px1
m may coincide one with another, see the remark

at the end of Sec. 3.1.
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2K

p1
1

p = pconj
1 (τ)

p

τ
0 K

Fig. 1. p = pconj
1 (k, τ), k ∈ (0, k0).

p1
1 = 2K

p = pconj
1 (τ)

p

τ

0 K

Fig. 2. p = pconj
1 (k, τ), k = k0.

Now we apply preceding results in order to bound the first conjugate
time along normal extremal trajectories in the case λ ∈ N1:

tconj
1 (λ) = min{t > 0 | t is the conjugate time

along the trajectory q(s) = Exps(λ)}.

Theorem 3.2. Let λ = (k, ϕ, r) ∈ N1. Then the number tconj
1 (λ) belongs

to the segment with the endpoints
4K(k)√

r
,

2p1
1(k)√
r

, namely :
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p1
1

2K

p = pconj
1 (τ)

p

τ
0 K

Fig. 3. p = pconj
1 (k, τ), k ∈ (k0, 1), 2K ≤ px1

1 .

p1
1

2K

p = pconj
1 (τ)

p

τ
0 K

Fig. 4. p = pconj
1 (k, τ), k ∈ (k0, 1), 2K > px1

1 .

(1) k ∈ (0, k0) ⇒ tconj
1 ∈

[
4K(k)√

r
,
2p1

1(k)√
r

]
;

(2) k = k0 ⇒ tconj
1 =

4K(k)√
r

=
2p1

1(k)√
r

;

(3) k ∈ (k0, 1) ⇒ tconj
1 ∈

[
2p1

1(k)√
r

,
4K(k)√

r

]
.
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Proof. By Corollary 2.1, an instant t > 0 is a conjugate time iff

J(t, k, ϕ, r) =
∂(xt, yt, θt)
∂(ϕ, k, r)

= − 32k
(1 − k2)r3/2Δ2

J1(p, k, z) = 0,

p =
√
rt/2, τ =

√
r(ϕ+ t/2), z = sn2 τ , Δ = 1 − k2 sn2 p sn2 τ

(see (3.1)).

(1) Let k ∈ (0, k0); then
4K(k)√

r
<

2p1
1(k)√
r

. According to item (1′) of

Theorem 3.1, for some ε = ε(k) > 0, we obtain the chains:

t ∈
(

0,
4K√
r

)
⇒ p ∈ (0, 2K) ⇒ J(t, k, ϕ, r) < 0 ∀ϕ, r,

t ∈
(

2p1
1(k)√
r

,
2(p1

1(k) + ε)√
r

)
⇒ p ∈ (p1

1(k), p
1
1(k) + ε)

⇒ J(t, k, ϕ, r) > 0 ∀ ϕ, r.
By virtue of the continuity of the function J with respect to t, we obtain

the required inclusion tconj
1 ∈

[
4K(k)√

r
,
2p2

1(k)√
r

]
.

Statements (2) and (3) of this theorem follow similarly from items (2′)
and (3′) of Theorem 3.1.

In [11, Sec. 12], a function t : N → (0,+∞] was defined that provides
an upper bound for the cut time in the Euler elastic problem (see [11,
Theorem 12.1]). It follows from [11, formula (12.2)] that

t(λ) = min
(

4K(k)√
r

,
2p1

1(k)√
r

)
, λ ∈ N1.

Comparing this equality with Theorem 3.2, we obtain the following state-
ment.

Corollary 3.2. If λ ∈ N1, then tconj
1 (λ) ≥ t(λ).

A natural measure of time along extremal trajectories in the Euler prob-
lem is the period of the pendulum T (k) = 4K(k)/

√
r. In terms of this

measure, the bounds from Theorem 3.2 are rewritten as follows.

Corollary 3.3. Let λ ∈ N1. Then:
(1) k ∈ (0, k0) ⇒ tconj

1 ∈ [T, t11] ⊂ [T, 3T/2), t11 = 2p1
1/
√
r ∈ (T, 3T/2);

(2) k = k0 ⇒ tconj
1 = T ;

(3) k ∈ (k0, 1) ⇒ tconj
1 ∈ [t11, T ] ⊂ (T/2, T ], t11 = 2p1

1/
√
r ∈ (T/2, T ).

It is instructive to state the conditions of local optimality for elasticas in
terms of their inflexion points.

Corollary 3.4. Let λ ∈ N1, and let Γ = {γs = (xs, ys) | s ∈ [0, t]},
q(s) = (xs, ys, θs) = Exp(λs), be the corresponding elastica.
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(1) If the arc Γ does not contain inflexion points, then it is locally optimal.
(2) If k ∈ (0, k0] and the arc Γ contains exactly one inflexion point, then

it is locally optimal.
(3) If the arc Γ contains not less than three inflexion points in its interior,

then it is not locally optimal.

Proof. (1) If the elastic arc Γ does not contain inflexion points, then its
curvature cs = 2k

√
r cn(

√
r(ϕ + s)) does not vanish for s ∈ [0, t]. But the

Jacobi function cn(
√
r(ϕ + s)) vanishes at any segment of length not less

than half of its period and, therefore, t < T/2. By Corollary 3.3, we have
T/2 < tconj

1 , consequently, t < tconj
1 . Thus, the interval (0, t] does not contain

conjugate points and, therefore, the corresponding extremal trajectory q(s)
is locally optimal (see Proposition 2.3).

(2) Let k ∈ (0, k0], and let the arc Γ contain exactly one inflexion point.
Then the function cs has exactly one root on the segment s ∈ [0, t] and
t < T . By Corollary 3.3, we have T ≤ tconj

1 and, therefore, t < tconj
1 , and

the elastica Γ is locally optimal.
(3) Let the arc Γ contain in its interior not less than three inflexion points.

Then its curvature cs has not less than three roots on the interval s ∈ (0, t).
Consequently, the interval (0, t) contains a complete period [t̃0, t̃1] of the
curvature cs such that cs = 0 at the endpoints s = t̃0 and s = t̃1 and,
therefore, (0, t) contains a greater segment with the same center:

∃ [t̃0 − ε, t̃1 + ε] ⊂ (0, t), ε > 0,
√
r(ϕ+ t̃0) = K + 2Kn,

√
r(ϕ+ t̃1) = 5K + 2Kn, n ∈ Z.

Thus, the arc Γ contains inside itself the elastica Γ̃ = {γs | s ∈ [t̃0−ε, t̃1+ε]}.
Now we show that the arc Γ̃ is not locally optimal, this means that the arc Γ
containing Γ̃ is also not locally optimal (indeed, if a trajectory q(s), s ∈ [0, t],
is locally optimal, then any its part q(s), s ∈ [t10, t

1
1] ⊂ [0, t] is also locally

optimal).
For the arc Γ̃, we have the following:

(t̃1 + ε) − (t̃0 − ε) = 4K/
√
r + 2ε = T + 2ε,

τ = ((
√
r(ϕ+ t̃0 − ε) +

√
r(ϕ+ t̃1 + ε))/2 = 3K + 2Kn,

z = sn2 τ = 1, J1 = a0 + a1 + a2

(see (3.21)). By Corollary 3.1, we have pconj
1 = min(2K, px1

1 ) ≤ 2K and,
therefore, tconj

1 ≤ 4K/
√
r = T . Consequently, (t̃1 + ε)− (t̃0 − ε) = T + 2ε >

tconj
1 , and the interval (t̃0 − ε, t̃1 + ε) contains a point tconj

1 conjugate to the
instant t̃0 − ε. Thus, the arc Γ̃ is not locally optimal, the more so is the arc
Γ not locally optimal.
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Fig. 5. Locally optimal elastica with
1 inflexion point

Fig. 6. Locally non-optimal elastica
with 1 inflexion point

The mathematical notion of local optimality of an extremal trajectory
q(s) = (xs, ys, θs) with respect to the functional of elastic energy corre-
sponds to the stability of the corresponding elastica (xs, ys). Item (3) of
Corollary 3.4 has a simple visual meaning: one cannot keep in hands an
elastica having three inflexion points inside since such an elastica is unsta-
ble.

Remark. In the cases not considered in items (1)–(3) of Corollary 3.4,
one can find examples both of locally optimal and non-optimal elasticas.

Let k > k0. If z = sn2 τ = 1 (i.e., the elastica is centered at its inflexion
point), then, by Corollary 3.1, we have

pconj
1 = min(2K, px1

1 ), px1
1 ∈ (p1

1, p
2
1) ⊂ (K, 4K).

For p < K, we obtain p < pconj
1 , the corresponding elastica contains one

inflexion point and is locally optimal (see Fig. 5). For px1
1 < 2K (i.e., for

k ∈ (k̄, 1), k̄ ≈ 0.998) and p ∈ (px1
1 , 2K), we obtain p > pconj

1 = px1
1 , the

corresponding elastica contains one inflexion point and is not locally optimal
(see Fig. 6).

Let k < k0 and z = sn2 τ = 0 (the elastica is centered at its vertex).
Then pconj

1 = p1
1 ∈ (2K, 3K). If p ∈ (K, 2K), then p < p1

1, and then the
corresponding elastica is locally optimal and contains 2 inflexion points (see
Fig. 7).

Let k > k0 and z = sn2 τ = 0, then pconj
1 = p1

1 ∈ (K, 2K). If p > p1
1,

then p > pconj
1 , and then the corresponding elastica is not locally optimal

and contains 2 inflexion points (see Fig. 8).

Corollary 3.1 provides the following description of an elastica centered at
inflexion points or vertices and terminating at conjugate points.

Corollary 3.5. Let λ ∈ N1, and let q(s) = Exps(λ), s ∈ [0, t], be the
corresponding inflexional elastica.

(1) If the elastica q(s) is centered at its vertex (i.e., sn τ = 0), then the
terminal instant t is a conjugate time iff

p =
√
rt

2
∈ {p1

n | n ∈ N} ∪ {px2
m | m ∈ N}.
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Fig. 7. Locally optimal elastica with
2 inflexion points

Fig. 8. Locally non-optimal elastica
with 2 inflexion points

Fig. 9. Conjugate point, sn τ = 0,
p = pconj

1 (k, τ) = p1
1(k)

Fig. 10. Conjugate point, cn τ = 0,
p = pconj

1 (k, τ) = 2K

(2) If the elastica q(s) is centered at its inflexion point (i.e., cn τ = 0),
then the terminal instant t is a conjugate time iff

p =
√
rt

2
∈ {2Kn | n ∈ N} ∪ {px1

m | m ∈ N}.
Figures 9 and 10 illustrate cases (1) and (2) of Corollary 3.5, respectively.

3.3. The upper bound of the cut time. On the basis of results about
the local optimality obtained in this section, we can improve the statement
on the upper bound of the time where elasticas lose their global optimality
(i.e., on the cut time tcut(λ); see [11, Theorem 12.1]). The argument uses
the obvious inequality

tcut(λ) ≤ tconj
1 (λ),

which holds since if a trajectory is not locally optimal, the more it is not
globally optimal.
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Theorem 3.3. Let λ ∈ N1. Then tcut(λ) ≤ t(λ).

Proof. We must prove that the extremal trajectory q(s) = Exps(λ) is not
optimal on any segment of the form s ∈ [0, t(λ) + ε], ε > 0. Compute the
number τ =

√
r(2ϕ+ t(λ))/2 for the covector λ = (k, ϕ, r).

First, consider the case k ∈ (0, k0]; then t(λ) = 4K/
√
r. If cn τ sn τ �= 0,

then the inequality tcut(λ) ≤ t(λ) was proved in item (1) of [11, Theo-
rem 12.1]. If cn τ = 0, then the instant t(λ) is a conjugate time by Corol-
lary 3.5 and, therefore, the trajectory q(s) is not locally optimal after this
instant. Finally, if sn τ = 0, then the instant t(λ) is a Maxwell time by
item (1.1) of [11, Theorem 11.1].

In the case k ∈ (k0, 1), we have t(λ) = 2p1
1/
√
r, and the argument is

similar. If cn τ sn τ �= 0, then the statement was proved in item (1) of [11,
Theorem 12.1]. If sn τ = 0, then the instant t(λ) is a conjugate time by
Corollary 3.5. And if cn τ = 0, then the instant t(λ) is a Maxwell time by
item (1.2) of [11, Theorem 11.1].

4. Conjugate points on non-inflexional elasticas

In this section, we prove that inflexional elasticas (λ ∈ N2), critical elas-
ticas (λ ∈ N3), and circles (λ ∈ N6) do not contain conjugate points.

Let λ ∈ N+
2 . Similarly to Sec. 3, we first explicitly compute the Jacobian

of the exponential mapping using the parametrization of extremals obtained
in [11]:

J =
∂(xt, yt, θt)
∂(ψ, k, r)

=
1√

r cos(θt/2)
∂(xt, yt, sin(θt/2))

∂(ψ, k,
√
r)

= − 32
(1 − k2)k2r3/2Δ2

J2, (4.1)

J2 = c2z
2 + c1z + c0, z = sn2 τ ∈ [0, 1], (4.2)

p =
√
rt/(2k), τ =

√
r(2ψ + t/k)/2, Δ = 1 − k2 sn2 p sn2 τ , (4.3)

c2 = k4 sn p cn px1, (4.4)

x1 = 2 cn p sn pE3(p) + (dn p(3 − 6 sn2 p ) − (2 − k2)p cn p sn p) E2(p)

+ (dn p(k2 − 2)p(1 − 2 sn2 p ) + cn p sn p(k2(2p2 − 1 + 6 sn2 p )

− 2(2 + p2))) E(p) + dn p(2k2 cn2 p sn2 p + (1 − k2)p2(2 sn2 p − 1))

+ p cn p sn p(2(2 + p2) − k2(3 + (3 − k2)p2 + (2 − k2) sn2 p )),

c0 = −kf2(p, k)x2, (4.5)

x2 = dn pE2(p) − k2 cn p sn pE(p) − (1 − k2)p2 dn p,

f2(p, k) = 2(dn p(2 − k2)p− 2E(p)) + k2 sn p cn p)/k,

c2 + c1 + c0 = (1 − k2)c0. (4.6)
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4.1. Preliminary lemmas.

Lemma 4.1. For any p > 0 and k ∈ (0, 1), we have c0 < 0 and c0 +
c1 + c2 < 0.

Proof. In view of decomposition (4.5) and Eq. (4.6), it suffices to show that

f2(p, k) > 0, x2 > 0 ∀p > 0 ∀k ∈ (0, 1). (4.7)

We have (
f2(p)
dn p

)′
= k4 cn2 p sn2 p

dn2 p
;

this identity means that f2(p)/dn p increases with respect to the variable
p. But f2(0) = 0 and, therefore, f2(p) > 0 for all p > 0 and k ∈ (0, 1).

Further, from the equalities
(

x2(p)
dn pE(p)

)′
=

(1 − k2)(E(p) − pdn2 p )2

dn2 p E2(p)
,

E(p) − pdn2 p =
2
3
k2p3 + o(p3) �≡ 0

it follows that x2(p)/(dn pE(p)) increases with respect to p. Then the
asymptotics

x2(p) =
4
45

(1 − k2)p6 + o(p6) > 0, p→ 0,

implies that x2 > 0 for all p > 0 and k ∈ (0, 1).
Inequalities (4.7) are proved, and the statement of this lemma follows.

Lemma 4.2. For any n ∈ N, k ∈ (0, 1), z ∈ [0, 1], we have
J2(Kn, z, k) < 0.

Proof. Fix any n, k, and p = Kn according to the assumption of this lemma.
It follows from decomposition (4.4) that c2 = 0. Thus, the function J2(z)
becomes linear: J2(z) = c1z + c0, z ∈ [0, 1]. By virtue of Lemma 4.1, this
linear function is negative at the endpoints of the segment z ∈ [0, 1]:

J2(0) = c0 < 0, J2(1) = c1 + c0 = c2 + c1 + c0 < 0

and, therefore, it is also negative on the whole segment [0, 1].

Lemma 4.3. For any p1 > 0 there exists k̂ = k̂(p1) > 0 such that for all
k ∈ (0, k̂), p ∈ (0, p1), z ∈ [0, 1] we have J2(p, z, k) < 0.



CONJUGATE POINTS IN THE EULER ELASTIC PROBLEM 435

Proof. In order to estimate the function J2 for small k, we need the corre-
sponding asymptotics as k → 0:

c0 = k8c00 + o(k8), c1 = k10c10 + o(k10), c2 = k12c20 + o(k12), (4.8)

c00 = −c10 = − 1
1024

(4p− sin 4p) c01(p), (4.9)

c01 = 4p2 − 1 + cos 4p+ p sin 4p,

c20 =
1

8192
cos p sin p c21(p),

c21 = −3 cos 2p− 48p2 cos 2p+ 3 cos 6p

+ 42p sin 2p− 64p3 sin 2p+ 2p sin 6p,

and the asymptotics as (p, k) → (0, 0):

c0 = − 4
135

k8p9 + o(k8p9), c2 =
4

4725
k12p11 + o(k12p11); (4.10)

all these asymptotic expansions are obtained via Taylor expansions of the
Jacobi functions (see [10]).

(1) The equalities(
c01
p

)′
=

2(sin 2p− 2p cos 2p)2

p2
, c01 =

128
45

p6 + o(p6)

imply that c01(p) > 0 for p > 0, whence, in view of decomposition (4.9), we
obtain that c00(p) < 0 for all p > 0.

Fix an arbitrary number p1 > 0.
(2) Choose any p0 ∈ (0, p1). We show that there exists k01 = k01(p0, p1) ∈

(0, 1) such that

J2(p, z, k) < 0 ∀p ∈ [p0, p1] ∀z ∈ [0, 1] ∀k ∈ (0, k01). (4.11)

Taking into account Eqs. (4.8), we obtain a Taylor expansion as k → 0:

J2(p, z, k) = k8c00(p) +
k10

10!
∂10J2

∂k10
(p, z, k̃),

p ∈ [p0, p1], z ∈ [0, 1], k̃ ∈ (0, k).
By the continuity of the corresponding functions, we conclude that

c00(p) < −m, m = m(p0, p1) > 0,

1
10!

∂10J2

∂k10
(p, z, k̃) < m1, m1 = m1(p0, p1) > 0,

whence J2 < k8(−m + k2m1) < 0 for k2 < k2
01 = m/m1 > 0. Inequal-

ity (4.11) follows.
(3) From asymptotics (4.10) and Eq. (4.6) we conclude that

J2 = − 4
135

k8p9 + o(k8p9), (p, k) → 0.
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Thus,

∃p′0 > 0 ∃k′0 > 0 ∀p ∈ (0, p′0] ∀k ∈ (0, k′0) ∀z ∈ [0, 1] J2(p, z, k) < 0.

(4) Take p′0 ∈ (0, p1) and k′0 ∈ (0, 1) according to item (3) of this proof.
Find k01 = k01(p′0, p1) according to item (2). We set k̂(p1) = min(k′0, k01) >
0. Then for any k ∈ (0, k̂(p1)), we obtain the following: if p ∈ (0, p0], then
J2 < 0 by item (3), and if p ∈ [p0, p1], then J2 < 0 by item (2). Therefore,
the number k̂(p1) satisfies conditions of this lemma.

4.2. Absence of conjugate points on non-inflexional elasticas.

Theorem 4.1. If λ ∈ N2, then the normal extremal trajectory q(t) =
Expt(λ) does not contain conjugate points for t > 0.

Proof. In view of the symmetry i : N+
2 → N−

2 (see [11]), it suffices to
consider the case λ ∈ N+

2 .
Denote λ1 = λ. Fix any n ∈ N and prove that the trajectory

q1(t) = Expt(λ
1), λ1 = (ϕ, k1, r) ∈ N+

2 ,

does not contain conjugate points t ∈ (0, t11], t
1
1 = 2k1K(k1)n/

√
r.

Consider the family of extremal trajectories

γs = {qs(t) = Expt(λ
s) | t ∈ [0, ts1]},

λs = (ϕ, ks, r) ∈ N+
2 , ts1 = 2ksK(ks)n/

√
r, s ∈ [0, 1],

where the covector λ1 = (ϕ, k1, r) is equal to λ given in the statement of
this theorem and the covector λ0 = (ϕ, k0, r) will be chosen below so that
the parameter k0 is sufficiently small.

According to Lemma 4.3, we choose a number k̂(p1) ∈ (0, 1) correspond-
ing to the number p1 = K(k1)n. We choose any k0 ∈ (0, k̂(p1)) and set
λ0 = (ϕ, k0, r) ∈ N+

2 .
By Lemma 4.3, for any p ∈ (0, p1] and any z ∈ [0, 1], we have

J2(p, z, k0) < 0. By Lemma 4.2, for any z ∈ [0, 1] and any k ∈ [k0, k1],
we have J2(K(k)n, z, k) < 0.

Taking into account Eq. (4.1) and relations (4.2) and (4.3), we conclude
that the trajectory γ0 does not have conjugate points on the segment t ∈
(0, t01], and for any trajectory γs, s ∈ [0, 1], the endpoint t = ts1 is not
conjugate. Now the statement of this theorem follows from Corollary 2.2.

4.3. Absence of conjugate points for special cases. The absence of
conjugate points on extremals λt ∈ N2 implies a similar fact for λt ∈ N3∪N6.

Theorem 4.2. If λ ∈ N3 ∪ N6, then the extremal trajectory q(t) =
Expt(λ) does not contain conjugate points for t > 0.
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Proof. Let λ ∈ N3 ∪N6. Since the set N3 ∪N6 belongs to the boundary of
the domain N2, one can construct a continuous curve λs : [0, 1] → N such
that λs ∈ N2 for s ∈ [0, 1) and λ1 = λ.

Consider the family of extremal trajectories qs(t) = Expt(λs), t > 0,
s ∈ [0, 1]. It follows from Theorem 4.1 that for s ∈ [0, 1) the trajectory
qs(t) does not contain conjugate points t > 0. Then we conclude from
Corollary 2.3 that the trajectory q1(t) = Expt(λ) does not contain conjugate
points for t > 0.

5. Final remarks

Here we sum up our results of this work and [11] on cut points and
conjugate points in the Euler elastic problem.

Given an extremal trajectory q(t) = Expt(λ) corresponding to a covector

λ ∈ T ∗
q0
M = N =

7⋃
i=1

Ni, we obtained the following bounds on the cut time

tcut(λ) and the first conjugate time tconj
1 (λ) along this trajectory.

Theorem 5.1. (1) For any λ ∈ N , we have tcut(λ) ≤ t(λ).
(2) If λ ∈ N2 ∪N3 ∪N6, then tconj

1 (λ) = +∞.
(3) If λ ∈ N1, then:

(3.1) tconj
1 (λ) belongs to the segment bounded by

4K√
r

and
2p1

1√
r

;

(3.2) tconj
1 (λ) ≥ t(λ);

(3.3) tconj
1 (λ) ∈

(
T

2
,
3T
2

)
;

(3.4) if the corresponding elastica does not contain inflection points,
then it is locally optimal ;

(3.5) if the corresponding elastica contains at least three inflection
points in its interior, then it is not locally optimal.

Recall that the function t(λ) is defined as follows [11]:

t : N → (0,+∞], λ �→ t(λ),

λ ∈ N1 ⇒ t =
2√
r
p1(k),

p1(k) = min(2K(k), p1
1(k)) =

{
2K(k), k ∈ (0, k0],
p1
1(k), k ∈ [k0, 1),

(5.1)

λ ∈ N2 ⇒ t =
2k√
r
p1(k), p1(k) = K(k),

λ ∈ N6 ⇒ t =
2π
|c| ,

λ ∈ N3 ∪N4 ∪N5 ∪N7 ⇒ t = +∞,
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K(k) is the complete elliptic integral of the first kind, p1
1(k) ∈ (K, 3K)

is the first root of an equation in the Jacobi functions described in [11,
Proposition 11.6], and T is the period of oscillation of the pendulum that
parametrizes the vertical subsystem (2.13) of the normal Hamiltonian sys-
tem.

Theorem 5.1 is a compilation of the following results: [11, Theorem 12.1],
Theorems 3.3, 4.1, 4.2, and 3.2, and Corollaries 3.2, 3.3, and 3.4 of this
work.

Note that the absence of conjugate points on elastic arcs without inflexion
points (items (2) and (3.4) of Theorem 5.1) was known already to Max
Born [5]; all other results are new.

On the basis of this information about conjugate points and description
of Maxwell points obtained in [11], one can study the global structure of
the exponential mapping in the Euler elastic problem: describe the do-
mains where the exponential mapping is diffeomorphic and find a precise
characterization of cut points. This will be the subject of our forthcoming
work [12].
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