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CONJUGATE AND CUT TIME IN THE SUB-RIEMANNIAN PROBLEM
ON THE GROUP OF MOTIONS OF A PLANE ∗
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Abstract. The left-invariant sub-Riemannian problem on the group of motions (rototranslations) of
a plane SE(2) is studied. Local and global optimality of extremal trajectories is characterized. Lower
and upper bounds on the first conjugate time are proved. The cut time is shown to be equal to the first
Maxwell time corresponding to the group of discrete symmetries of the exponential mapping. Optimal
synthesis on an open dense subset of the state space is described.
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1. Introduction

This work is devoted to the study of the left-invariant sub-Riemannian problem on the group of motions of
a plane. This problem can be stated as follows: given two unit vectors v0 = (cos θ0, sin θ0), v1 = (cos θ1, sin θ1)
attached respectively at two given points (x0, y0), (x1, y1) in the plane, one should find an optimal motion in
the plane that transfers the vector v0 to the vector v1, see Figure 1. The vector can move forward or backward
and rotate simultaneously. The required motion should be optimal in the sense of minimal length in the space
(x, y, θ), where θ is the slope of the moving vector.

The corresponding optimal control problem reads as follows:

ẋ = u1 cos θ, ẏ = u1 sin θ, θ̇ = u2, (1.1)

q = (x, y, θ) ∈M ∼= R
2
x,y × S1

θ , u = (u1, u2) ∈ R
2, (1.2)

q(0) = q0 = (0, 0, 0), q(t1) = q1 = (x1, y1, θ1), (1.3)

l =
∫ t1

0

√
u2

1 + u2
2 dt → min, (1.4)
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Figure 1. Problem statement.

or, equivalently,

J =
1
2

∫ t1

0

(u2
1 + u2

2) dt→ min. (1.5)

Problem (1.1)–(1.8) is a left-invariant sub-Riemannian problem on the group of motions of a plane SE(2) =
R

2
� SO(2). This problem is closely connected to models of vision [5,10,11] and robotics [8]. On the other

hand, this problem is important for understanding properties of the heat kernel of the diffusion equation on the
group SE(2), see [4]. We expect that results of this work can be applied to these domains. On the other hand,
problem (1.1)–(1.5) is the first completely studied sub-Riemannian problem without rotational symmetry; this
problem has the local structure of generic contact sub-Riemannian problems as described in works [1,6].

This is an immediate continuation of the previous work [9]. We use extensively the results obtained in that
paper, and now we recall the most important of them.

The normal Hamiltonian system of Pontryagin Maximum Principle [12] becomes triangular in appropriate
coordinates on cotangent bundle T ∗M , and its vertical subsystem is the equation of mathematical pendulum:

γ̇ = c, ċ = − sinγ, (γ, c) ∈ C ∼= (2S1
γ) × Rc, (1.6)

ẋ = sin
γ

2
cos θ, ẏ = sin

γ

2
sin θ, θ̇ = − cos

γ

2
· (1.7)

The phase cylinder of pendulum (1.6) decomposes into invariant subsets according to values of the energy
E = c2/2 − cos γ:

C =
5⋃

i=1

Ci,

C1 = {λ ∈ C | E ∈ (−1, 1)}, (1.8)

C2 = {λ ∈ C | E ∈ (1,+∞)}, (1.9)

C3 = {λ ∈ C | E = 1, c �= 0}, (1.10)

C4 = {λ ∈ C | E = −1} = {(γ, c) ∈ C | γ = 2πn, c = 0}, (1.11)

C5 = {λ ∈ C | E = 1, c = 0} = {(γ, c) ∈ C | γ = π + 2πn, c = 0}· (1.12)
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Figure 2. Action
of ε1, ε2 on (xt, yt).

Figure 3. Action
of ε4, ε7 on (xt, yt).

Figure 4. Action
of ε5, ε6 on (xt, yt).

In the subsets C1, C2, C3 were introduced elliptic coordinates (ϕ, k) that rectify the flow of the pendulum: ϕ is
the phase, and k a reparameterized energy of pendulum (1.6):

k =
√

(E + 1)/2 in C1 ∪ C3, k =
√

2/(E + 1) in C2.

The Hamiltonian system (1.6), (1.7) was integrated in Jacobi’s functions [22]. The equation of pendulum (1.6)
has a discrete group of symmetries G = {Id, ε1, . . . , ε7} = Z2 × Z2 × Z2 generated by reflections in the axes of
coordinates γ, c, and translations (γ, c) �→ (γ + 2π, c). Action of the group G is naturally extended to extremal
trajectories (xt, yt), this action modulo rotations is represented at Figures 2–4.

Reflections εi are symmetries of the exponential mapping Exp : N = C × R+ →M , Exp(λ, t) = qt.
The main result of work [9] is an upper bound on cut time

tcut = sup{t1 > 0 | qs is optimal for s ∈ [0, t1]}

along extremal trajectories qs. It is based on the fact that a sub-Riemannian geodesic cannot be optimal after
a Maxwell point, i.e., a point where two distinct geodesics of equal sub-Riemannian length meet one another.
A natural idea is to look for Maxwell points corresponding to discrete symmetries of the exponential mapping.
For each extremal trajectory qs = Exp(λ, s), we described Maxwell times tnεi(λ), i = 1, . . . , 7, n = 1, 2, . . . ,
corresponding to discrete symmetries εi. The following upper bound is the main result of work [9]:

tcut(λ) ≤ t(λ), λ ∈ C, (1.13)

where t(λ) = min(t1εi(λ)) is the first Maxwell time corresponding to the group of symmetries G. We recall the
explicit definition of the function t(λ) below in equations (2.20)–(2.24).

In this work we continue the study of problem (1.1)–(1.5).
First we consider the local optimality of sub-Riemannian geodesics (Sect. 2). We show that extremal trajec-

tories corresponding to oscillating pendulum (1.6) do not have conjugate points, thus they are locally optimal
forever. In the case of rotating pendulum we prove that the first conjugate time is bounded from below and
from above by the first Maxwell times t1ε2 and t1ε5 respectively. For critical values of energy of the pendulum,
there are no conjugate points.

In Section 3 we study the global optimality of geodesics. We construct open dense subsets in the preimage
and image of exponential mapping and prove that the exponential mapping transforms these domains diffeo-
morphically. As a consequence, we show that inequality (1.13) is in fact an equality. Moreover, we describe the
optimal synthesis on the open dense subset of the state space.

In Section 4 we present plots of the sub-Riemannian caustic and spheres obtained in Mathematica [23].
In the subsequent work [19] we complete our study of problem (1.1)–(1.5). There we describe explicitly the

Maxwell strata and cut locus, and characterize the optimal synthesis in this problem. For some special terminal
points q1, we provide explicit optimal solutions.
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2. Conjugate points

In this section we obtain bounds on conjugate time in the sub-Riemannian problem on SE(2), see Theorem 2.5.

2.1. General facts

First we recall some known facts from the theory of conjugate points in optimal control problems. For details
see, e.g., [2,3,20].

Consider an optimal control problem of the form

q̇ = f(q, u), q ∈M, u ∈ U ⊂ R
m, (2.1)

q(0) = q0, q(t1) = q1, t1 fixed, (2.2)

J =
∫ t1

0

ϕ(q(t), u(t)) dt → min, (2.3)

where M is a finite-dimensional analytic manifold, f(q, u) and ϕ(q, u) are respectively analytic in (q, u) families
of vector fields and functions on M depending on the control parameter u ∈ U , and U an open subset of R

m.
Admissible controls are u(·) ∈ L∞([0, t1], U), and admissible trajectories q(·) are Lipschitzian. Let

hu(λ) = 〈λ, f(q, u)〉 − ϕ(q, u), λ ∈ T ∗M, q = π(λ) ∈M, u ∈ U,

be the normal Hamiltonian of PMP for the problem (2.1)–(2.3). Fix a triple (ũ(t), λt, q(t)) consisting of a
normal extremal control ũ(t), the corresponding extremal λt, and the extremal trajectory q(t) for the problem
(2.1)–(2.3).

Let the following hypotheses hold:

(H1) For all λ ∈ T ∗M and u ∈ U , the quadratic form
∂2hu

∂ u2
(λ) is negative definite.

(H2) For any λ ∈ T ∗M , the function u �→ hu(λ), u ∈ U , has a maximum point ū(λ) ∈ U :

hū(λ)(λ) = max
u∈U

hu(λ), λ ∈ T ∗M.

(H3) The extremal control ũ(·) is a corank one critical point of the endpoint mapping.
(H4) All trajectories of the Hamiltonian vector field 	H(λ), λ ∈ T ∗M , are continued for t ∈ [0,+∞).

An instant t∗ > 0 is called a conjugate time (for the initial instant t = 0) along the extremal λt if the restriction
of the second variation of the endpoint mapping to the kernel of its first variation is degenerate, see [3] for
details. In this case the point q(t∗) = π(λt∗) is called conjugate for the initial point q0 along the extremal
trajectory q(·).

Under hypotheses (H1)–(H4), we have the following:
(1) Normal extremal trajectories lose their local optimality (both strong and weak) at the first conjugate

point, see [3].
(2) An instant t > 0 is a conjugate time iff the exponential mapping Expt = π ◦ et �H is degenerate, see [2].
(3) Along each normal extremal trajectory, conjugate times are isolated one from another, see [20].

We will apply the following statement for the proof of absence of conjugate points via homotopy.

Proposition 2.1 (Cors. 2.2 and 2.3 [18]). Let (us(t), λs
t ), t ∈ [0,+∞), s ∈ [0, 1], be a continuous in parameter s

family of normal extremal pairs in the optimal control problem (2.1)–(2.3) satisfying hypotheses (H1)–(H4).
(1) Let s �→ ts1 be a continuous function, s ∈ [0, 1], ts1 ∈ (0,+∞). Assume that for any s ∈ [0, 1] the instant

t = ts1 is not a conjugate time along the extremal λs
t .

If the extremal trajectory q0(t) = π(λ0
t ), t ∈ (0, t01], does not contain conjugate points, then the extremal

trajectory q1(t) = π(λ1
t ), t ∈ (0, t11], also does not contain conjugate points.
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(2) Let for any s ∈ [0, 1) and T > 0 the extremal λs
t has no conjugate points for t ∈ (0, T ]. Then for any

T > 0, the extremal λ1
t also has no conjugate points for t ∈ (0, T ].

One easily checks that the sub-Riemannian problem (1.1)–(1.5) satisfies all hypotheses (H1)–(H4), so the
results cited in this subsection are applicable to this problem.

We denote the first conjugate time along an extremal trajectory q(t) = Exp(λ, t) as tconj
1 (λ).

2.2. Conjugate points for the case of oscillating pendulum

In this section we assume that λ ∈ C1 and prove that the corresponding extremal trajectories do not contain
conjugate points, see Theorem 2.1.

Using the parameterization of extremal trajectories obtained in Section 3.3 [9], we compute explicitly Jacobian
of the exponential mapping:

J =
∂(xt, yt, θt)
∂(t, ϕ, k)

=
4

k3(1 − k2)(1 − k2 sn2 p sn2 τ )
J1,

p = t/2, τ = ϕ+ t/2, (2.4)

J1(τ, p, k) = v1 sn2 τ + v2 cn2 τ , (2.5)

v1 = (1 − k2)(p− E(p) )( E(p) − (1 − k2)p),

v2 = (p− E(p) )( E(p) − (1 − k2)p) + k2 cn p dn p (2 E(p) + (k2 − 2)p) sn p

+ k2(( E(p) − p)( E(p) − (1 − k2)p) − k2) sn2 p + k4 sn4 p ,

so that sgnJ = sgnJ1.

2.2.1. Preliminary lemmas

Lemma 2.1. For any k ∈ (0, 1) and p > 0 we have v1(p, k) > 0.

Proof. The statement follows from the relations

p− E(p) = k2

∫ p

0

sn2 t dt > 0, E(p) − (1 − k2)p = k2

∫ p

0

cn2 t dt > 0. (2.6)
�

Lemma 2.2. For any k ∈ (0, 1), n ∈ N, and τ ∈ R we have J1(τ, 2Kn, k) > 0.

Proof. If p = 2Kn, n ∈ N, then v2(p, k) = (p− E(p) )( E(p) − (1 − k2)p) > 0 by inequalities (2.6).
By virtue of Lemma 2.1 and decomposition (2.5), we obtain the inequality J1(τ, 2Kn, k) > 0. �

Lemma 2.3. ∀p1 > 0, ∃ k̂ ∈ (0, 1), ∀k ∈ (0, k̂), ∀p ∈ (0, p1), ∀τ ∈ R, J1(τ, p, k) > 0.

Proof. The statement of the lemma follows from the Taylor expansions:

J1 =
k4

16
(4p2 − sin2 2p) + o(k4), k → 0, (2.7)

J1 =
1
3
k4p4 + o(k2 + p2)4, k2 + p2 → 0. (2.8)

By contradiction, if the statement is not verified, then there exists a converging sequence (τn, pn, kn) → (τ0, p0, 0)
such that J(τn, pn, kn) ≤ 0 for all n ∈ N . If p0 > 0, then a standard calculus argument yields contradiction
with (2.7). And if p0 = 0, then similarly one obtains a contradiction with (2.8). �
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2.2.2. Absence of conjugate points in C1

Theorem 2.1. If λ ∈ C1, then the extremal trajectory q(t) = Exp(λ, t), t > 0, does not contain conjugate
points.

Proof. We choose any λ̂ ∈ C1, t̂ > 0, and prove that the extremal trajectory q̂(t) = Exp(λ̂, t) does not contain
conjugate points for t ∈ (0, t̂ ].

Find the elliptic coordinates (k̂, ϕ̂) corresponding to the covector λ̂ ∈ C1 according to Section 3.2 [9], and
let p̂ = t̂/2, τ̂ = ϕ̂ + p̂. Find n ∈ N such that p1 = 2K(k̂)n > p̂. Choose the following continuous curve in the
plane (k, p):

{(ks, ps) | s ∈ [0, 1]}, ks = sk̂, ps = 2K(ks)n,

with the endpoints (k0, p0) = (0, πn) and (k1, p1) = (k̂, 2K(k̂)n).
Consider the following family of extremal trajectories:

γs = {qs(t) = Exp(ϕs, ks, t) | t ∈ [0, ts]}, s ∈ [0, 1],

ts = 2ps, ϕs = τ̂ − ps.

The endpoint qs(ts) of each trajectory γs, s ∈ [0, 1], corresponds to the values of parameters (τ, p, k) =
(τ̂ , 2K(ks)n, ks). Thus Lemma 2.2 implies that for any s ∈ [0, 1] the endpoint qs(ts) is not a conjugate point.

Further, Lemma 2.3 states that

∃ k0 ∈ (0, k̂) ∀τ ∈ R ∀p ∈ (0, p1) J(τ, p, k) > 0. (2.9)

Denote s0 = k0/k̂ ∈ (0, 1), so that ks0 = k0. Condition (2.9) means that the extremal trajectory γs0 does not
contain conjugate points for all t ∈ [0, ts0 ].

Then Proposition 2.1 yields that for any s ∈ [s0, 1], the extremal trajectory qs(t) does not contain conjugate
points for all t ∈ [0, ts]. In particular, the trajectory q̂(t) = q1(t), t ∈ (0, t̂], is free of conjugate points. �

So we proved that extremal trajectories q(t) = Exp(λ, t) with λ ∈ C1 (i.e., corresponding to oscillating
pendulum) are locally optimal at any segment [0, t1], t1 > 0.

2.3. Conjugate points for the case of rotating pendulum

In this section we obtain bounds on conjugate points in the case λ ∈ C2.
Using the formulas for extremal trajectories of Section 3.3 [9], we get:

J =
∂(xt, yt, θt)
∂(t, ϕ, k)

= − 4k
(1 − k2)(1 − k2 sn2 p sn2 τ )

J2,

p = t/(2k), τ = ψ + t/(2k) = (2ϕ+ t)/(2k), (2.10)

J2 = α sn2 τ + β cn2 τ , (2.11)

α = (1 − k2) sn pα1, (2.12)

α1 = cn p dn p (p− 2 E(p) ) + sn p ( dn2 p + E(p) (p− E(p) )), (2.13)

β = f1(p)β1, β1 = cn p E(p) − dn p sn p , (2.14)

where f1(p, k) = cn p (E(p) − p) − dn p sn p , see equation (5.12) [9].

2.3.1. Preliminary lemmas

Recall that we denoted the first positive root of the function f1(p) by p1
1(k), see Lemma 5.3 [9].

Lemma 2.4. If k ∈ (0, 1) and p = p1
1(k), then α(p, k) > 0.

If additionally sn τ �= 0, then J2 > 0 and J < 0.
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Proof. In terms of the auxiliary function

ϕ(p, k) = sn p dn p − (2 E(p) − p) cn p , (2.15)

we have a decomposition
α1 = dn pϕ(p) + sn p E(p) (p− E(p) ). (2.16)

Let k ∈ (0, 1) and p = p1
1(k). Then f1(p) = 0, i.e., sn p dn p = cn p ( E(p) − p). Thus ϕ(p) = cn p ( E(p) −

p) − (2 E(p) − p) cn p = −E(p) cn p . By virtue of Corollary 5.1 [9], we have cn p < 0, so ϕ(p) > 0. Moreover,
sn p > 0. Then decomposition (2.16) yields α1(p) > 0, consequently, α(p) > 0.

If additionally sn τ �= 0, then it is obvious that J2 > 0 and J < 0. �

Lemma 2.5. ∃ k̂ ∈ (0, 1), ∀k ∈ (0, k̂), ∀p ∈ (0, p1
1], α(p, k) > 0.

Proof. The statement of this lemma follows by the argument used in the proof of Lemma 2.3 from the Taylor
expansions

α = sin p(sin p− p cosp) + o(1), k → 0,

α =
p4

3
+ o(p2 + k2)2, p2 + k2 → 0. �

Lemma 2.6. ∀k ∈ (0, 1), ∀p ∈ (0, 2K], β1(p, k) < 0.

Proof. Since (β1(p)/ cn p )′ = −(1−k2) sn2 p / cn2 p , the function β1(p)/ cn p decreases at the segments p ∈ [0,K)
and p ∈ (K, 2K].

We have β1(0) = 0, thus β1(p)/ cn p < 0, so β1(p) < 0 for p ∈ (0,K).
Further, β1(K) = −√

1 − k2 < 0.
Since β1(p)/ cn p → +∞ as p → K + 0, and β1(2K)/ cn(2K) = E(2K) > 0, we have β1(p)/ cn p > 0, so

β1(p) < 0 for p ∈ (K, 2K]. �
Lemma 2.7. Let k ∈ (0, 1).

(1) Let sn τ = 0. Then J2(τ, p, k) > 0 for p ∈ (0, p1
1), and J2(τ, p, k) = 0 for p = p1

1.
(2) Let sn τ �= 0. Then J2(τ, p, k) > 0 for p ∈ (0, p1

1].

Proof. If p ∈ (0, p1
1), then f1(p, k) < 0 (Cor. 5.1 [9]), and β1(p, k) < 0 (Lem. 2.6), thus β(p, k) =

f1(p, k)β1(p, k) > 0.
(1) Let sn τ = 0. If p ∈ (0, p1

1), then J2(τ, p, k) = β(p, k) > 0. And if p = p1
1, then f1(p, k) = 0, thus

J2(τ, p, k) = β(p, k) = 0.
(2) Let sn τ �= 0.
(2.a) We prove that the function ϕ(p) given by (2.15) satisfies the inequality

ϕ(p) > 0 ∀p ∈ (0,K].

First, ϕ(p) = p3/3 + o(p3) > 0 as p→ +0. Second,

(ϕ(p)/ cn p )′ = dn2 p sn2 p / cn2 p > 0 ∀p ∈ (0,K).

Thus ϕ(p) > 0 for p ∈ (0,K). And if p = K, then ϕ(p) =
√

1 − k2 > 0.
(2.b) By virtue of the decomposition ϕ(p) = −f1(p) − E(p) cn p , we get the inequality ϕ(p) > 0 for all

p ∈ (K, p1
1]. We proved that

ϕ(p) > 0 ∀p ∈ (0, p1
1].

(2.c) In view of (2.16), we obtain that α1(p) > 0 for p ∈ (0, p1
1]. Then equation (2.12) yields α(p) > 0 for

p ∈ (0, p1
1]. Finally, equation (2.11) gives J2 > 0 for p ∈ (0, p1

1]. �
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Lemma 2.8. ∀z ∈ (0, 1], ∃ k̂ ∈ (0, 1), ∀k ∈ (0, k̂), ∀p ∈ (0, p1
1], we have J2(z, p, k) > 0.

Proof. Fix any z ∈ (0, 1]. By Lemma 2.5,

∃ k̂ ∈ (0, 1), ∀k ∈ (0, k̂), ∀p ∈ (0, p1
1], α(p, k) > 0.

But if p ∈ (0, p1
1], then p ∈ (0, 2K], thus β1(p, k) < 0 by Lemma 2.6, so β(p, k) > 0 by Corollary 5.1 [9].

Then the inequalities α(p, k) > 0, β(p, k) > 0 imply the required inequality J2(τ, p, k) > 0. �

2.3.2. Conjugate points in C2

First we obtain a lower bound on the first conjugate time. It will play a crucial role in the subsequent analysis
of the global structure of the exponential mapping in Section 3 and in the subsequent work [19].

Theorem 2.2. If λ ∈ C2, then tconj
1 (λ) ≥ 2kp1

1(k).

Proof. Given any λ ∈ C2, compute the corresponding elliptic coordinates (ϕ, k). If additionally we have t > 0,
find the corresponding parameters p = t/(2k), τ = ϕ/k + t/(2k) and denote z = sn2 τ .

We should prove that for any λ ∈ C2 the interval t ∈ (0, 2kp1
1(k)) does not contain conjugate times for the

extremal trajectory q(t) = Exp(λ, t).
Take any λ1 ∈ C2 and denote the corresponding elliptic coordinates (ϕ1, k1). For t1 = 2k1p1

1(k1) we denote
the corresponding parameters p1, τ1, z1. In order to prove that the extremal trajectory q1(t) = Exp(λ1, t) does
not have conjugate points at the interval t ∈ (0, t1), we show that

p ∈ (0, p1) ⇒ J2(z1, p, k1) > 0 ⇒ J(z1, p, k1) < 0.

(1) Assume first that z1 = sn2(τ1, k1) �= 0, i.e., z1 ∈ (0, 1]. We prove that in this case

p ∈ (0, p1] ⇒ J(z1, p, k1) < 0.

Consider the following continuous curve in the space (z, p, k):

{(z1, ps, ks) | s ∈ (0, 1]}, ks = sk1, ps = p1
1(k

s).

The corresponding curve in the space (τ, p, k) is

{(τs, ps, ks) | s ∈ (0, 1]}, τs = F (am(τ1, k1), ks),

and in the space (t, ϕ, k) is

{(ts, ϕs, ks) | s ∈ (0, 1]}, ts = 2ksps, ϕs = (τs − ps)ks.

Let λs = (ϕs, ks), s ∈ (0, 1], be the corresponding curve in C2, and consider the continuous one-parameter
family of extremal trajectories

qs(t) = Exp(λs, t), t ∈ [0, ts], s ∈ (0, 1].

For any s ∈ (0, 1], if t = ts, then by Lemma 2.4 we have J2(z1, p1
1(ks), ks) < 0, i.e., the terminal instant

t = ts is not a conjugate time along the extremal trajectory qs(t).
Further, by Lemma 2.8, for z1 ∈ (0, 1]

∃ k̂ ∈ (0, 1), ∀k ∈ (0, k̂), ∀p ∈ (0, p1
1(k)], J2(z1, p, k) > 0.
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Consequently, there exists s0 ∈ (0, 1) such that the whole trajectory qs0(t), t ∈ (0, ts0 ], is free of conjugate
points.

Then Proposition 2.1 implies that the trajectory q1(t), t ∈ (0, t1], also does not contain conjugate points.
We proved that if z1 �= 0, then the trajectory q1(t) = Exp(λ1, t), t ∈ (0, t1], does not have conjugate points.

(2) Now consider the case z1 = sn2(τ1, k1) = 0. Then Lemma 2.7 states that the terminal instant t =
2k1p1

1(k
1) is a conjugate point. We prove that all the less instants are not conjugate.

Since conjugate points are isolated one from another at each extremal trajectory, there exists p < p1
1(k

1)
arbitrarily close to p1

1(k
1) such that the corresponding time t = 2k1p is not conjugate.

Consider the continuous curve in the space (z, p, k):

{(zs, p, k
1) | s ∈ [0, ε)}, zs = sz1.

By item (1) of this proof, there exists ε > 0 such that for any s ∈ (0, ε) the extremal trajectory qs(t), t ∈ (0, ts],
ts = 2k1p, does not have conjugate points. By Proposition 2.1, for s = 0 the initial extremal trajectory q0(t),
t ∈ (0, t0], also does not contain conjugate points. The endpoint t0 = 2k1p can be chosen arbitrarily close to
t1 = 2k2p1

1(k
1), so the initial extremal trajectory does not have conjugate points for t ∈ (0, t1). �

Now we obtain the final result on the first conjugate time in the domain C2 – the following two-side bound.

Theorem 2.3. If λ ∈ C2, then
2kp1

1(k) ≤ tconj
1 (λ) ≤ 4kK(k). (2.17)

Proof. We proved in Theorem 2.2 that 2kp1
1(k) ≤ tconj

1 (λ); moreover, if t ∈ (0, 2kp1
1), then J < 0.

Let t = 4kK, then p = 2K, thus α = 0, f1 = p− E(p) > 0, β1 = −E(p) < 0, so

J = − 4k
1 − k2

J2 =
4k

1 − k2
cn2 τ E(p) (p− E(p) ) ≥ 0.

It follows that for any λ ∈ C2 the function t �→ J has a root at the segment t ∈ [2kp1
1, 4kK]. Consequently, also

the first root tconj
1 ∈ [2kp1

1, 4kK]. �

One can show that the bound (2.17) can be a little bit improved. The precise bound on the first conjugate
time is

2kp1
1(k) ≤ tconj

1 (λ) ≤ γ(k) = min (4kK, 2kpα1
1 (k)), (2.18)

where p = pα1
1 (k) is the first positive root of the equation α1(p) = 0, and the function α1 is given by equa-

tion (2.13). One can show that γ(k) = 4kK for k ∈ (0, k0] and γ(k) = 2kpα1
1 (k) for [k0, 1), where k0 ≈ 0.909

is the unique root of the equation 2E(k) − K(k) = 0, see Proposition 11.5 [17]. Thus for k ∈ (k0, 1) the
bound (2.17) is not exact and can be replaced by the following exact one:

2kp1
1(k) ≤ tconj

1 (λ) ≤ 2kpα1
1 (k), k ∈ (k0, 1). (2.19)

The bound (2.17) is illustrated at Figures 5 and 6; and the bound (2.19) — at Figure 7. The exact bounds (2.18)
are plotted at Figure 8.

Proposition 2.2. Let λ ∈ C2 and τ = (2ϕ+ 2kp1
1)/(2k).

(1) If sn τ = 0, then tconj
1 (λ) = 2kp1

1.
(2) If sn τ �= 0, then tconj

1 (λ) ∈ (2kp1
1, 4kK].

Proof. Notice first that by Theorem 2.2, the interval (0, 2kp1
1) does not contain conjugate times. Then items (1),

(2) of this proposition follow directly from the corresponding items of Lemma 2.7, and from Theorem 2.3. �
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Figure 5. Plot of tconj
1 (ψ, k),

k = 0.8 < k0.
Figure 6. Plot of tconj

1 (ψ, k),
k = k0.

Figure 7. Plot of tconj
1 (ψ, k),

k = 0.99 > k0. Figure 8. Bounds of tconj
1 (ψ, k).

2.4. Conjugate points for the cases of critical energy of pendulum

The subset C3 ∪ C4 ∪ C5 of the cylinder C is the boundary of the domain C1, see equations (1.8)–(1.12)
above, and Figure 2 in [9]. Thus absence of conjugate points for the corresponding extremal trajectories follows
by limit passage from C1.

Theorem 2.4. If λ ∈ C3 ∪ C4 ∪ C5, then the corresponding extremal trajectory q(t) = Exp(λ, t) does not have
conjugate points for t > 0.

Proof. For any λ ∈ C3 ∪ C4 ∪ C5, there exists a continuous curve λs, s ∈ [0, 1], such that λs ∈ C1 for s ∈ [0, 1)
and λ1 = λ. By Theorem 2.1, the trajectories qs(t) = Exp(λs, t), t > 0, are free of conjugate points. Then
Proposition 2.1 implies the same for the trajectory q1(t) = q(t). �

2.5. General bound of conjugate points

We collect the bounds on the first conjugate time obtained in the previous subsections. Moreover, we conclude
that the first conjugate time tconj

1 admits the lower bound by the function t : C → (0,+∞] on the phase cylinder
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of pendulum (2S1
γ) × Rc = C = �5

i=1Ci introduced in [9]:

λ ∈ C1 ⇒ t(λ) = 2K(k), (2.20)

λ ∈ C2 ⇒ t(λ) = 2kp1
1(k), (2.21)

λ ∈ C3 ⇒ t(λ) = +∞, (2.22)

λ ∈ C4 ⇒ t(λ) = π, (2.23)

λ ∈ C5 ⇒ t(λ) = +∞. (2.24)

Theorem 2.5. (1) If λ ∈ C1 ∪ C3 ∪ C4 ∪ C5, then tconj
1 (λ) = +∞.

(2) If λ ∈ C2, then tconj
1 (λ) ∈ [2kp1

1, 4kK].
(3) Consequently, tconj

1 (λ) ≥ t(λ) for all λ ∈ C.

3. Exponential mapping of open stratas and cut time

In this section we show that there exist open dense domains Ñ ⊂ N , M̃ ⊂M transformed diffeomorphically
by the exponential mapping. As a consequence, we prove that tcut(λ) = t(λ) for any λ ∈ C, and describe the
optimal synthesis on M̃ .

3.1. Decompositions in preimage and image of exponential mapping

Denote M̂ = M \ {q0}. For any point q ∈ M̂ there exists an optimal trajectory q(s) = Exp(λ, s) such that
q(t) = q, (λ, t) ∈ N . Thus the mapping Exp : N → M̂ is surjective. By Theorem 5.4 [9], the optimal instant t
satisfies the inequality t ≤ t(λ). So the restriction

Exp : N̂ → M̂,

N̂ = {(λ, t) ∈ N | t ≤ t(λ)},

is surjective as well.

3.1.1. Decomposition in N̂

Now we select open dense subsets of N̂ such that restriction of Exp to these subsets will turn out to be a
diffeomorphism. Let

Ni = Ci × R+, i = 1, . . . , 5,

Ñ = {(λ, t) ∈ ∪3
i=1Ni | t < t(λ), sn τ cn τ �= 0}, (3.1)

N ′ = {(λ, t) ∈ ∪3
i=1Ni | t = t(λ) or sn τ cn τ = 0} ∪ N̂4 ∪N5,

N̂4 = N̂ ∩N4.

We have the obvious decomposition N̂ = Ñ �N ′ (we denote by � the union of mutually non-intersecting sets).
There hold the following implications, see [9]:

(λ, t) ∈ N1 ⇒ t(λ) = 2K, τ ∈ R/(4KZ),

(λ, t) ∈ N2 ⇒ t(λ) = 2kp1
1, τ ∈ R/(4KZ),

(λ, t) ∈ N3 ⇒ t(λ) = +∞, τ ∈ R.
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Table 1. Definition of domains Di.

Di D1 D2 D3 D4 D5 D6 D7 D8

λ C0
1 C0

1 C0
1 C0

1 C1
1 C1

1 C1
1 C1

1

τ (3K, 4K) (0,K) (K, 2K) (2K, 3K) (−K, 0) (0,K) (K, 2K) (2K, 3K)
p (0,K) (0,K) (0,K) (0,K) (0,K) (0,K) (0,K) (0,K)

λ C+
2 C+

2 C−
2 C−

2 C+
2 C+

2 C−
2 C−

2

τ (−K, 0) (0,K) (−K, 0) (0,K) (K, 2K) (2K, 3K) (−3K,−2K) (−2K,−K)
p (0, p1

1) (0, p1
1) (0, p1

1) (0, p1
1) (0, p1

1) (0, p1
1) (0, p1

1) (0, p1
1)

λ C0+
3 C0+

3 C0−
3 C0−

3 C1+
3 C1+

3 C1−
3 C1−

3

τ (−∞, 0) (0,+∞) (−∞, 0) (0,+∞) (−∞, 0) (0,+∞) (−∞, 0) (0,+∞)
p (0,+∞) (0,+∞) (0,+∞) (0,+∞) (0,+∞) (0,+∞) (0,+∞) (0,+∞)

Figure 9. Projections of domains Di to the phase cylinder of pendulum (2S1
γ) × R

1
c .

Consequently, there holds the following decomposition:

Ñ = �8
i=1Di,

where the sets Di, i = 1, . . . , 8, are defined by Table 1.
Table 1 should be read by columns. For example, the first column means that

D1 = (D1 ∩N1) � (D1 ∩N2) � (D1 ∩N3),

D1 ∩N1 = {(τ, p, k) ∈ N1 | λ ∈ C0
1 , τ ∈ (3K, 4K), p ∈ (0,K), k ∈ (0, 1)},

D1 ∩N2 = {(τ, p, k) ∈ N2 | λ ∈ C+
2 , τ ∈ (−K, 0), p ∈ (0, p1

1), k ∈ (0, 1)},
D1 ∩N3 = {(τ, p, k) ∈ N3 | λ ∈ C0+

3 , τ ∈ (−∞, 0), p ∈ (0,+∞), k = 1}·

Projections of the sets Di to the phase cylinder of the pendulum (γ, c) are shown in Figure 9.

Lemma 3.1. Each set Di, i = 1, . . . , 8, is homeomorphic to R
3.

Proof. We prove the statement only for the set D2 since all other sets Di can be defined in the coordinates
(τ, p, k) by the same inequalities as D2 by a shift of origin in elliptic coordinate ϕ. Taking into account Table 1
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Table 2. Definition of domains Mi.

Mi M1 M2 M3 M4 M5 M6 M7 M8

sgn(sin θ) − − − − + + + +
sgn(R1) + + − − − − + +
sgn(R2) + − − + + − − +

and equations (2.4), (2.10), we get:

D2 = (D2 ∩N1) � (D2 ∩N2) � (D2 ∩N3),

D2 ∩N1 = {(λ, t) ∈ N1 | λ ∈ C0
1 , k ∈ (0, 1), t ∈ (0, 2K), ϕ ∈ (−t,−t+ 2K)},

D2 ∩N2 = {(λ, t) ∈ N1 | λ ∈ C+
2 , k ∈ (0, 1), t ∈ (0, 2kp1

1), ϕ ∈ (−t,−t+ 2kK)},
D2 ∩N3 = {(λ, t) ∈ N1 | λ ∈ C0+

3 , k = 1, t ∈ (0,+∞), ϕ ∈ (−t,+∞)}·

As shown in [17], one can choose regular system of coordinates (k1, ϕ, t) on the set D2, where

k1 = k for λ ∈ C1; k1 = 1/k for λ ∈ C2; k1 = 1 for λ ∈ C3.

In this system of coordinates

D2 = {ν = (k1, ϕ, t) | k1 ∈ (0,+∞), t ∈ (0, t1(k1), ϕ ∈ (−t,−t+ t2(k2))}, (3.2)

where t1(k1) = 2K(k1) for k1 ∈ (0, 1), t1(k1) = +∞ for k1 = 1, t1(k1) = (2/k1)p1
1(1/k1) for k1 ∈ (1,+∞);

and t2(k1) = 2K(k1) for k1 ∈ (0, 1), t2(k1) = +∞ for k1 = 1, t2(k1) = (2/k1)K(1/k1) for k1 ∈ (1,+∞). The
both functions ti : (0,+∞) → (0,+∞], i = 1, 2, are continuous. Thus representation (3.2) implies that the
domain D2 is homeomorphic to R

3. �

Consequently, all domains Di are open, connected, and simply connected. These domains are schematically
represented in the left-hand side of Figure 10.

3.1.2. Decomposition in M̂

The state space of the problem admits a decomposition of the form

M = M̃ �M ′,

M̃ = {q ∈M | R1(q)R2(q) sin θ �= 0},
M ′ = {q ∈M | R1(q)R2(q) sin θ = 0},

where

R1 = y cos
θ

2
− x sin

θ

2
, R2 = x cos

θ

2
+ y sin

θ

2
·

Further,
M̃ = �8

i=1Mi,

where each of the sets Mi is characterized by constant signs of the functions sin θ, R1, R2 described in Table 2.
For example, M1 = {q ∈M | sin θ < 0, R1 > 0, R2 > 0}. The numeration of the sets Mi is chosen so that it

correspond to numeration of the sets Ni (we prove below in Thm. 3.1 that each mapping Exp : Ni → Mi is a
diffeomorphism). It is obvious that all the sets Mi are diffeomorphic to R

3.
All the domains Mi are contained in the set {q ∈ M | θ �= 0}. At this set θ is a single-valued func-

tion, and we choose the branch θ ∈ (0, 2π). Thus in the sequel we assume that θ ∈ (0, 2π) on the sets Mi.
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Figure 10. Global structure of exponential mapping.

Then R1, R2 become single-valued functions, and the last two rows of Table 2 reflect the signs of these single-
valued functions Ri on the sets Mi.

The boundary M ′ of the domain M̃ decomposes into four mutually orthogonal surfaces: two planes {θ = 0},
{θ = π} and two Moebius strips {R1 = 0}, {R2 = 0}, see the right-hand side of Figure 10, and Figure 7 [9].

3.2. Diffeomorphic properties of exponential mapping

Lemma 3.2. The restriction Exp|Ñ is nondegenerate.

Proof. If ν = (λ, t) ∈ Ñ , then t < t(λ). By Theorem 2.5, tconj
1 (λ) ≥ t(λ), thus t < tconj

1 (λ) = inf{s > 0 |
Exp(λ, s) is degenerate}. Consequently, the exponential mapping is nondegenerate at the point (λ, t). �

Lemma 3.3. For any i = 1, . . . , 8, we have Exp(Di) ⊂Mi.

Proof. We prove only the inclusion Exp(D1) ⊂M1 since the rest inclusions are proved similarly.
Let (λ, t) ∈ D1∩N1 = {(λ, t) ∈ N1 | λ ∈ C0

1 , τ ∈ (3K, 4K), p ∈ (0,K), k ∈ (0, 1)}, see Table 1. Since λ ∈ C0
1 ,

then s1 = sgn(γt/2) = 1. Moreover, we have cn p sn p dn τ > 0, thus sin θt < 0 by virtue of equation (5.2) [9]. So
θt/2 ∈ (π/2, π). Consequently, cos(θt/2) < 0, sin θt/2 > 0 on D1 ∩N1, thus s3 = −1, s4 = 1 in equations (5.3)–
(5.6) [9]. Then we get R1 > 0 from equation (5.5) [9], and R2 > 0 from equation (5.6) [9] and Lemma 5.2 [9].
We proved that if ν ∈ D1 ∩ N1, then sin θt < 0, R1 > 0, R2 > 0, i.e., Exp(ν) ∈ M1, see Table 2. That is,
Exp(D1 ∩N1) ⊂M1.

A similar argument works in the case (λ, t) ∈ D1 ∩ N2 = {(λ, t) ∈ N2 | λ ∈ C+
2 , τ ∈ (−K, 0), p ∈ (0, p1

1),
k ∈ (0, 1)}. We have s2 = sgn ct = 1; sin θt < 0 by equation (5.7) [9]; R1 > 0 and R2 > 0 by equation (5.10)
and (5.11) [9]. Thus Exp(D1 ∩N2) ⊂M1.
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It follows from the definition of N3 and N2 (see Tab. 1) that D1 ∩N3 ⊂ cl(D2 ∩N3), thus Exp(D1 ∩N3) ⊂
cl(M1). So

Exp(D1) ⊂ cl(M1). (3.3)

Let ν = (λ, t) ∈ D1∩N3, then qt = Exp(ν) ∈ cl(M1). In order to prove that qt ∈M1, assume by contradiction
that qt ∈ ∂M1. By Lemma 3.2, the exponential mapping is a local diffeomorphism near ν. Thus there exist a
neighborhood U ⊂ D1 of the point ν and a neighborhood V ⊂ M of the point qt such that Exp : U → V is
a diffeomorphism. Since qt ∈ ∂M1, there exists a point q̃ ∈ V \ cl(M1). Then ν̃ = Exp−1(q̃) ∈ U ⊂ D1, but
q̃ = Exp(ν̃) /∈ cl(M1), which contradicts to (3.3). Thus qt ∈ M1. So Exp(D1 ∩ N3) ⊂ M1, and the required
inclusion Exp(D1) ⊂M1 follows. �

Lemma 3.4. For any i = 1, . . . , 8, the mapping Exp : Di → Mi is proper.

Proof. Similarly to Lemma 3.1, we can consider only the case i = 2. Let K ⊂ M2 be a compact, we show that
S = Exp−1(K) ⊂ D2 is a compact as well, i.e., S is bounded and closed.

There exists ε > 0 such that

| sin θ| ≥ ε, ε ≤ |R1|, |R2| ≤ 1/ε for all q ∈ K.

(1) We show that S is bounded. By contradiction, let νn = (kn, ϕn, tn) → ∞ for some sequence {νn} ⊂ S.
Then there exists a sequence {νn} ⊂ S ∩Ni for some i = 1, 2, 3 with νn → ∞.

Let S ∩ N1 � νn = (kn, ϕn, tn) → ∞. Then tn = 2pn ∈ (0,K(kn)), τn = (ϕn + tn)/2 ∈ (0,K(kn)). If kn

is separated from 1, then pn, τn are bounded, thus tn, ϕn are bounded, a contradiction. Thus kn → 1 for a
subsequence (we will assume that this holds for the initial sequence).

If (γn, cn) → (±π, 0), then (θt, yt) → 0, thus R1 → 0, a contradiction. Thus the sequence (γn, cn) is separated
from the point (±π, 0).

Then there exists a sequence such that kn → 1 and ϕn → ϕ ∈ (−∞,+∞), thus tn → +∞, pn → +∞,
τn → +∞. Then (pn − E(pn))/(kn

√
Δ) → ∞, f2(pn, kn)/(kn

√
Δ) → ∞.

If cn(τn) is separated from zero, then R1 → ∞ (see equation (5.5) [9]). And if cn(τn) is not separated from
zero, then there exists a sequence such that cn(τn) → 0, thus sn(τn) is separated from zero, then R2 → ∞ (see
equation (5.6) [9]).

So the hypothesis S ∩ C1 � νn = (kn, ϕn, tn) → ∞ leads to a contradiction.
Similarly the hypotheses C ∩ Ci � νn → ∞, i = 2, 3, lead to a contradiction.
Thus the set S = Exp−1(K) is bounded.
(2) We show that S is closed. Let {νn} ⊂ S, we have to prove that there exists a subsequence νnk

converging
in D2. By contradiction, let νn → ∞ or νn → ν ∈ ∂D2.

Consider the case νn = (τn, pn, kn) ∈ S ∩N1.
If kn → 0, then (x, y) → 0, thus R1, R2 → 0, a contradiction.
Let kn → 1. If (γn, cn) → (±π, 0), then (θ, y) → (0, 0), thus R1 → 0, a contradiction.
If (γn, cn) → (γ, c) �= (±π, 0), then ν ∈ N3, a contradiction.
Thus kn → k ∈ (0, 1). Then τn → τ ∈ [3K(k), 4K(k)]. If τ = 3K, then R1 → 0, and if τ = 4K, then R2 → 0,

a contradiction. Thus τn → τ ∈ (3K(k), 4K(k)).
Further, pn → p ∈ [0,K(k)]. If p = 0, then t = 0 and R1, R2 → 0. If p = K, then R1 → 0. Thus

pn → p ∈ (0,K).
So (τn, pn, kn) → (τ, p, k) ∈ N1, a contradiction.
We proved that any sequence νn ∈ S ∩ N1 contains a subsequence converging in D2. Similarly one proves

the same for a sequence νn ∈ S ∩Ni, i = 2, 3.
Thus any sequence νn ∈ S contains a subsequence converging in D2, thus converging in S. So the set

S = Exp−1(K) is closed. �
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Theorem 3.1. For any i = 1, . . . , 8, we have Exp(Di) ⊂ Mi, and the mapping Exp : Di → Mi is a
diffeomorphism.

Proof. The inclusion Exp(Di) ⊂ Mi was proved in Lemma 3.3. The mapping Exp : Di → Mi is smooth,
nondegenerate (Lem. 3.2), and proper (Lem. 3.4), thus it is a covering. Since Mi is simply connected, the
mapping Exp : Di →Mi is a diffeomorphism. �
Lemma 3.5. Exp(N4) = {q ∈ M | R1 = R2 = 0} = {q ∈ M | x = y = 0}, Exp(N5) = {q ∈ M | R1 = 0,
R2 �= 0, θ = 0} = {q ∈M | x �= 0, y = 0, θ = 0}.
Proof. Follows immediately from the corresponding formulas for extremal trajectories of Section 3.3 [9]. �
Lemma 3.6. Exp(N ′) ⊂M ′.

Proof. Follows from formulas (5.2)–(5.11) [9]. �
Theorem 3.1 implies the following statement.

Corollary 3.1. The mapping Exp : Ñ → M̃ is a diffeomorphism.

In view of Lemma 3.6, for any q ∈ M̃ there exists a unique ν = (λ, t) = Exp−1(q) ∈ Ñ , λ = λ(q), t = t(q).
The diffeomorphism Exp : Ñ = ∪8

i=1Di → M̃ = ∪8
i=1Mi is schematically shown at Figure 10. At this

figure in the left, each set Ni, i = 1, . . . , 5, projects down to the corresponding subset Ci in the phase cylinder
of the pendulum, see (1.8)–(1.12) and Figure 2 [9]. Each domain Di, i = 1, . . . , 8, is mapped to one of the
domains Mi, i = 1, . . . , 8, cut out in the solid torus by the discs {θ = 0}, {θ = π}, and the Moebius strips
{R1 = 0}, {R2 = 0}. Boundaries of the domains Di are mapped to these discs and Moebius strips in a more
complicated way to be described in detail in the forthcoming work [19].

3.3. Cut time

Theorem 3.2. For any q1 ∈ M̃ , let (λ1, t1) = Exp−1(q1) ∈ Ñ . Then the extremal trajectory q(s) = Exp(λ1, s)
is optimal with q(t1) = q1.

Thus optimal synthesis on the domain M̃ is given by

ui(q) = hi(λ), i = 1, 2, (λ, t) = Exp−1(q) ∈ Ñ , q ∈ M̃.

Proof. Let q1 ∈ M̃ . There exists ν1 = (λ1, t1) ∈ N̂ = Ñ � N ′ such that the trajectory q(s) = Exp(λ1, s) is
optimal and q(t1) = Exp(ν1) = q1. By Lemmas 3.5 and 3.6, we have ν1 ∈ Ñ . By Corollary 3.1, there exists a
unique ν1 ∈ Ñ such that Exp(ν1) = q1. So q(s) = Exp(λ1, s) is a unique optimal trajectory coming to q1. �

In work [9] we proved the inequality tcut(λ) ≤ t(λ). Now we prove the corresponding equality.

Theorem 3.3. For any λ ∈ C we have tcut(λ) = t(λ).

Proof. We proved the inequality tcut(λ) ≤ t(λ) in Theorem 5.4 [9].
(1) Consider first the generic case λ1 ∈ ∪3

i=1Ci. There exists t1 ∈ (0, t(λ1)) and arbitrarily close to t(λ1)
such that sn τ1 cn τ1 �= 0. Then ν1 = (λ1, t1) ∈ Ñ , thus q1 = Exp(ν1) ∈ M̃ . By Theorem 3.2, the
trajectory q(s) = Exp(λ1, s), s ∈ [0, t1], is optimal, thus t1 ≤ tcut(λ1).

So there exists t1 ∈ (0, t(λ1)) arbitrarily close to t(λ1) such that t1 ≤ tcut(λ1). Consequently,
t(λ1) ≤ tcut(λ1).

We proved that tcut(λ1) = t(λ1) for any λ1 ∈ ∪3
i=1Ci.

(2) If λ ∈ C4, then the extremal trajectory (x, y, θ) = (0, 0,±t) is a Riemannian geodesic for the restriction
of the sub-Riemannian problem on SE(2) to the circle {(0, 0, θ) | θ ∈ S1}. It is optimal up to the
antipodal point, thus tcut(λ) = π = t(λ).

(3) In the case λ ∈ C5 the extremal trajectory is a line (x, y, θ) = (±t, 0, 0), thus it is optimal forever:
tcut(λ) = +∞ = t(λ). �
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Figure 11. Sub-Riemannian caustic.

4. Plots of sub-Riemannian caustic and spheres

Here we collect 3-dimensional plots of some essential objects in the sub-Riemannian problem on SE(2).
Figure 11 shows the sub-Riemannian caustic

{Exp(λ, t) | λ ∈ C, t = tconj
1 (λ)}

in the rectifying coordinates (R1, R2, θ).
Figures 12–20 present sub-Riemannian spheres

SR = {q ∈M | d(q0, q) = R} = {Exp(λ,R) | λ ∈ C, tcut(λ) ≥ R}

of different radii R, where

d(q0, q1) = inf{l(q(·)) | q(·) trajectory of (1.1), q(0) = q0, q(t1) = q1}

is the sub-Riemannian distance – the cost function in the sub-Riemannian problem (1.1)–(1.5).
In this problem sub-Riemannian spheres can be of three different topological classes. If R ∈ (0, π), then SR

is homeomorphic to the standard 2-dimensional Euclidean sphere S2, see Figure 14. For R = π the sphere SR

is homeomorphic to the sphere S2 with its north pole N and south pole S identified: Sπ
∼= S2/{N = S}, see

Figure 17. And if R > π, then SR is homeomorphic to the 2-dimensional torus, see Figure 20.
Figure 12 shows the sphere Sπ/2 in rectifying coordinates (R1, R2, θ). Figure 13 represents the same sphere

with a cut-out opening the singularities of the sphere: the sphere intersects itself at the local components
of the cut locus Cutloc described in [19]. Figure 14 shows embedding of the same sphere to the solid torus.
Sub-Riemannian spheres of small radii resemble the well-known apple-shaped sub-Riemannian sphere in the
Heisenberg group [21]. Although, there is a major difference: the sphere in the Heisenberg group has a one-
parameter family of symmetries (rotations), but the sphere in SE(2) has only a discrete group of symmetries
G = {Id, ε1, . . . , ε7} (reflections).
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Figure 12. Sub-Riemannian
sphere Sπ/2.

Figure 13. Sub-Riemannian
sphere Sπ/2 with cut-out.

Figure 14. Sub-Riemannian sphere Sπ/2, global view.

Figures 15–17 represent similarly the sub-Riemannian sphere of the critical radius π. In addition to self-
intersections at the local component Cutloc, the sphere Sπ has one self-intersection point at the global component
Cutglob.

Figures 18–20 show similar images of the sphere of radius 3π/2. For R > π the sphere SR has two topological
segments of self-intersection points at Cut±loc respectively, and a topological circle of self-intersection points at
Cutglob.

Figures 21 and 22 show intersections of the spheres Sπ/2, Sπ, S3π/2 with the half-spaces θ < 0 and R2 > 0
respectively.
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Figure 15. Sub-Riemannian
sphere Sπ.

Figure 16. Sub-Riemannian
sphere Sπ with cut-out.

Figure 17. Sub-Riemannian sphere Sπ, global view.

Figure 23 shows self-intersections of the wavefront

WR = {Exp(λ,R) | λ ∈ C}

for R = π.

5. Conclusion

The solution to the sub-Riemannian problem on SE(2) obtained in the previous paper [9], this one, and
the subsequent paper [19] is based on a detailed study of the action of the discrete group of symmetries of
the exponential mapping. This techniques was already partially developed in the study of related optimal
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Figure 18. Sub-Riemannian
sphere S3π/2.

Figure 19. Sub-Riemannian
sphere S3π/2 with cut-out.

Figure 20. Sub-Riemannian sphere S3π/2, global view.

control problems (nilpotent sub-Riemannian problem with the growth vector (2, 3, 5) [13–16] and Euler’s
elastic problem [17,18]). The sub-Riemannian problem on SE(2) is the first problem in this series, where a
complete solution was obtained (local and global optimality, cut time and cut locus, optimal synthesis). We
believe that our approach based on the study of symmetries will provide such complete results in other symmetric
invariant problems, such as the nilpotent sub-Riemannian problem with the growth vector (2,3,5), the ball-plate
problem [7], and others.
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Figure 21. Sub-Riemannian hemi-spheres Sπ/2, Sπ, S3π/2 for θ < 0.

Figure 22. Sub-Riemannian hemi-spheres Sπ/2, Sπ, S3π/2 for R2 > 0.

Figure 23. Wavefront Wπ with cut-out.
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