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CLASSIFICATION OF CONTROLLABLE SYSTEMS
ON LOW-DIMENSIONAL SOLVABLE LIE GROUPS

YU.L. SACHKOV

ABSTRACT. Right-invariant control systems on simply connected solv-
able Lie groups are studied. A complete and explicit description of
controllable single-input right-invariant systems on such Lie groups
up to dimension 6 is obtained.

0. INTRODUCTION

The aim of this paper is to study controllability of single-input right-
invariant control systems on low-dimensional simply connected solvable Lie
groups. It i1s an immediate continuation of our previous papers 6, 7, in
which controllability of such systems on solvable Lie groups and, more gen-
erally, Lie groups different from their derived subgroups was studied. We
use definitions and results of those papers (especially of the second one)
throughout this paper.

A nice introduction to the subject of right-invariant systems on Lie groups
is given in the recent book by V. Jurdjevic 3. One may also consult survey 8§,
which is an attempt to cover all results published so far on this subject (the
majority of results of the present paper were announced in this survey).

0.1. Description of the problem and results. Given a Lie algebra
L, there is the “largest” connected Lie group G having Lie algebra L, the
simply connected one. All other connected Lie groups with Lie algebra L
are “smaller” than G in the sense that they are quotients G/C, where C is
a discrete subgroup of the center of G. A right-invariant system I' C L may
thus be considered on any of these groups, and the simply connected group
G is the hardest to control among them. Hence, given a right-invariant
gystem T on a Lie group (or a homogeneous space of a Lie group) H, it is
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natural first to study its controllability on the simply connected covering H
of H. If T is controllable on H, then it is obviously controllable on H (and on
all its homogeneous spaces); in the opposite case, one should use particular
geometric properties of H (e.g., the existence of periodic one-parameter
subgroups) to verify controllability of T on H. It is obvious and remarkable
that controllability conditions on a simply connected Lie group G should
have a completely Lie-algebraic form: they are completely determined by
the Lie algebra L and its subset T' (see, e.g., 1, 5, 6, 7).

This motivates the following definition. Let L be a finite-dimensional
real Lie algebra.

Definition 1. A right-invariant system I' C L is called controllable if it
is controllable on the (unique) connected simply connected Lie group with
Lie algebra L.

The next definition makes sense at least for solvable Lie algebras in small
dimensions.

Definition 2. A Lie algebra L is called controllable if there exist ele-
ments A, B € L such that the system I' = A + RB C L is controllable.

Remark. We define controllability of a Lie algebra L in terms of affine
lines

A+RB={A+uB|u€eR}C L.

It is easy to show that this definition is equivalent to a similar one in terms
of affine segments

{1—-uw)A+uB |uel0,1]} C L

see Theorem 8.2.
In this paper, we show that for solvable low-dimensional Lie algebras L,
the following takes place:

e existence of a controllable single-input system I' = A+ RB C L,
i.e., controllability of L is a strong restriction on L;

e if L is controllable, then almost all pairs (4, B) € L x L give rise
to controllable systems I' = A + R B;

e controllability of a system I' = A + RB C L depends primarily on
L but not on T

Moreover, these results yield a complete description of controllability in
low-dimensional solvable Lie algebras, which is the main result of this work.
Up to dimension 6, we describe all solvable Lie algebras L that are
controllable, and give controllability tests for single-input systems I' =
A+RBC L.
The general “bird’s-eye view” of controllable low-dimensional solvable
Lie algebras is as follows:
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dim L = 1: the (unique) Lie algebra is controllable;
dim L = 2: the two Lie algebras are noncontrollable;
dim L = 3: there is one family of controllable Lie algebras Lg(A),
Ae C\R;
dim L = 4: there is one family of controllable Lie algebras L4(A),
Ae C\R;
dim L = 5: there are two families of controllable Lie algebras:
(]—) L5,I(/\7/L)a /\7/‘ € C\Ra A ;é 1y fhs
(2) Ls11(A), A € C\ R;
dim L = 6: there are six families and, in addition, two controllable
Lie algebras:
(]—) LG,I(/\7/L)7 /\7/‘ € C\Ra A ;é 1y fhs
) LG,II(/\aﬂ)a A p€ C\Ra Re A = Rep, A £ p, i,
) Le,rrr(A), A € C\ R,
) LGJ’V(A), AE C\ (RUiR),
) LG,V(/\)v A e C\R,
) Levi(A), A€ C\ R,
) Levrr,
) Levrrr.

All these Lie algebras L have codimension one derived subalgebras L1,
and the complex parameters A and p are eigenvalues of the operators
adz|pa), # € L\ LW, The Lie algebras in distinct families are noniso-
morphic. Inside each family, the Lie algebras are isomorphic iff the corre-
sponding sets {\, A, g, 1} (or {\,A}) are homothetic in C (for the family
Le,1(A, 1), the corresponding sets {A\, A} and {y, i} should be homothetic
with the same coeflicient).

For all controllable low-dimensional solvable Lie algebras, we obtain the
following general result.

Theorem 7.1. Let L be a controllable solvable Lie algebra, dim L < 6.
Then the following assertions hold.

(a) The only codimension one subalgebra in L is its derived subalgebra
L.
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW
(2) Lie(A,B) = L.
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

0.2. Structure of the paper. We obtain the description of controllable
solvable Lie algebras and controllability conditions for systems of the form
I' = A+ RB for dimensions 1-6 in Secs. 1-6, respectively.
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In Sec. 7, we summarize these results in the form valid for all dimensions
from 1 to 6.

While Secs. 1-7 are devoted to controllability of the lines I' = A 4+ R B,
in Sec. 8, we study controllability of the segments § = {(1 —u)A+uB|u€
[0, 1]} We relate controllability of segments with controllability of lines
and give a general controllability test for segments in solvable Lie algebras
in terms of half-planes containing the angles generated as cones by the
segments.

In Sec. 9, we suggest several final remarks that might be helpful for the
further study of controllability of right-invariant systems.

Finally, in the Appendix, we collect and prove some necessary auxiliary
propositions.

0.3. Known facts. The main tools in the subsequent study of controlla-
bility are the results of 6, 7.

In addition to them, we also apply the following nice description of con-
trollable right-invariant systems on solvable Lie groups (in the simply con-
nected case, this description provides a controllability test). This controlla-
bility condition is applicable to Lie groups with cocompact radical, i.e., for
Lie groups G such that the quotient G/ Rad G modulo the maximal solv-
able normal subgroup Rad G is compact. In particular, this result applies
to solvable Lie groups, for which G = Rad G.

Proposition 1 (J.D. Lawson 5). Assume that G/ Rad G is compact;
let T ' C L be a right-invariant system that satisfies the rank condition
Lie(T) = L. If T is not contained in any half-space of L with boundary
being a subalgebra, then T' is controllable on the connected Lie group G.
The converse holds if G is simply connected.

1. ONE-DIMENSIONAL LIE ALGEBRA

The unique one-dimensional Lie algebra is Abelian and isomorphic to R.

Theorem 1.1. The one-dimensional Lie algebra R is controllable.
A system ' = A+ RB C R is controllable if and only if B # 0.

Proof. The statement of the theorem is obvious. [

2. TWO-DIMENSIONAL LIE ALGEBRAS

There are two nonisomorphic two-dimensional Lie algebras: Abelian R2,
and solvable non-Abelian S; = span(z, y), [z,y] = .

Theorem 2.1. Both two-dimensional Lie algebras R* and So are not
controllable.
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Proof. Both Lie algebras L = R? and S, are completely solvable, i.e., all
operators ad z, © € L, have real spectra. By Theorem 2 of 6, a completely
solvable Lie algebra L is not controllable if dimL > 1. O

3. THREE-DIMENSIONAL LIE ALGEBRAS

3.1. Construction of controllable Lie algebras.
Construction 3.1. The Lie algebra Lz(A), A € C\ R; see Fig. 1.

L3 () = span(z, y, ),

b .
ad z|span(y,:) = < _ab a > » A=atbi

In other words, the following commutation relations hold in the Lie al-

gebra L3(\):
[2,y] = ay — bz, [z,z]=by+ az.

All other brackets of the base elements z, y, and z either are determined
from these ones by skew-symmetry: [y, ] = —ay + bz, [z, 2] = —by — az,or
are zero: [y,z] = [z,y] = 0. We use such descriptions of multiplication in
low-dimensional solvable Lie algebras in what follows.

Remark. The Jacobi identity for the (only) triple of base elements
(z,y,z) holds; thus, Lz()\) is a Lie algebra. A similar argument with the
Jacobi identity for all triples of base elements shows that all controllable
Lie algebras defined in Secs. 46 are also realizable.

The Lie algebra L3(2A) is schematically represented in Fig. 1 by the eigen-
values A\, A € C and realifications of the eigenvectors y, z € L3(A) of the
operator ad z|span(y,)-
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3.2. Controllability conditions.

Theorem 3.1. Let L = L3(\), A € C\R. Then the following assertions
hold.

(a) The only codimension one subalgebra in L is its derived subalgebra
i,
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW
(2) Lie(A,B) =L, or
(2") the vectors A and B are linearly independent, or
(2") span(B, A, (ad B)A) = L.
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Remark. In statement (b), we assert that controllability of the system T’
is equivalent to any one of the following (mutually equivalent) conditions:
(1) & (2), or (1) & (2'), or (1) & (2”). We use such a convention in similar
theorems for higher dimensions below.

Theorem 3.2. A three-dimensional solvable Lie algebra is controllable
if and only if it is isomorphic to L3(A), A € C\ R.

3.3. Proof of controllability conditions.
3.3.1. Lie algebra L3(\): Theorem 3.1.

Proof. Statement (b), (1) & (2'). Sufficiency. We show that all hypotheses
of Corollary 3 7 hold.

Conditions (1) and (2) obviously hold.

Condition (3). Consider the decomposition B = Byz + Byy + B.z. By
Lemma 10.2, we have

Sp(l) = Sp(adB|L(1)) = Bx . Sp(ad$|L(1)) = B“‘ : {A’ X}

The condition B ¢ L) is equivalent to B, # 0; thus, the spectrum Sp(l)
is simple.

Condition (4): Sp? = sp(t) = ¢,

Condition (5), A(a) # 0 for alla € Spﬁl), means that the vector A has a
nonzero projection onto L(1) along the line R B, i.e., A and B are linearly
independent.

Condition (6): Sp*) = ¢.

Now it follows from Corollary 3 in 7 that the system I' is controllable.

Necessity follows from items (2) and (5) of Corollary 1 in 7.

Statement (b), (1) & (2): we prove that (2) < (2') under condition (1).
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(2) = (2). If (2) is violated, then (2) is also violated by Lemma 3.5 in
7.

(2) < (29). (2) is violated, then T is not controllable by the rank
condition; thus, (2') is also violated.

Statement (b), (1) & (2") follow from Lemma 10.4.

Statement (c) follows from statement (b), (1) & (2/).

Statement (a) follows from statement (c¢) and Lemma 10.5. O

If
(2'

3.3.2. Controllable Lie algebras: Theorem 3.2.

Proof. Necessity. Let L be a solvable three-dimensional Lie algebra, and let
I' = A+RB C L be a controllable system. By Theorem 1in 7, dim L(1) = 2,
B¢ LM and Spﬁl) = Spﬁz). The derived subalgebra L(1) is nilpotent and
two dimenswnal thus, it is Abelian. Consequently, L(?) = {0}, and hence

Sp{t) = gp|? —@ Thus,
SpM) =Sp(adBlpmy) = (M A}, A=a+ibeC\R.
Then there exists a basis y, z of the plane L(1) such that
[B,y] = ay — bz and [B,z] = by + az.

Taking into account that L(}) is Abelian, we obtain that L = Lz()\); it
remains to set z = B.
Sufficiency is an obvious consequence of Theorem 3.1 (¢). O

3.4. Isomorphisms of controllable Lie algebras. We say that a set
S1 C C is homothetic to a set S C Cif S5 = k.87 for some number
ke R\ {0}. We denote this by S; ~ Ss.

Theorem 3.3. Lie algebras L3(A1) and L3(X2), A1, A2 € C\ R, are iso-
morphic if and only if { 1, A1} ~ {2, Aa}.

Proof. Necessity follows from Lemma 10.2.
Sufficiency. The following two cases are possible:
(1) Ao = kAr, k€ {0);
(2) Az = kA, ke R\ {0}.
In these cases, the required isomorphism Lz(Az) — L3(A1) is defined on
canonical bases Lz(A\;) = span(z;, i, zi), ¢ = 1,2, given in Construction 3.1
as follows:

(1) o= kzy1, y2 = y1, 22 = 215
(2) iBg'—)kiBl,yg'—)Zl,Zg'—)yl. [
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4. FOUR-DIMENSIONAL LIE ALGEBRAS
4.1. Construction of controllable Lie algebras.
Construction 4.1. The Lie algebra Ly(A), A € C\ R; see Fig. 2.

L4(/\) = Spa'n(xa Y, %, w)a

a b 0
ad $|span(y,z,w) = b a 0 s A=a-+ bl,
0 0 2a

[y, 2] = w.
The arrows in the schematic representation of the Lie algebra L4(A) in
Fig. 2 mean that Lie bracket of the vectors y and z gives the vector w.

Fig. 2. L4(N), Re A =a.

In the sequel, we consider the following decomposition for a vector B €

L4(A):
B =DB,r+ Byy+ B.2z+ B,w.

4.2. Controllability conditions.
Theorem 4.1. Let L = Ly(A), A € C\R. Then the following assertions

hold.
(a) The only codimension one subalgebra in L is its derived subalgebra

i,
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW
(2) Lie(A,B) =L, or
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(2") A(BgzA) #£0, or
(2") span(B, A, (ad B)A,w) = L.
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Theorem 4.2. A four-dimensional solvable Lie algebra is controllable if
and only if it is isomorphic to Ly(N), A € C\R.

4.3. Proof of controllability conditions.
4.3.1. Lie algebra Ly(A): Theorem 4.1.

Proof. First, we prove the theorem for the case a = Re A # 0.

Statement (b), (1) & (2/). Sufficiency follows from Corollary 3 in 7.
Necessity follows from Corollary 1 in 7.

Statement (b), (1) & (2”): we show that (2') < (2”) under condi-
tion (1). The line I = Rw is an ideal in L. Consider the quotient Lie
algebra

L = L/I = span(%,§, ) ~ L3()\). (1)

(Here and below the sign of tilde denotes the passage to cosets.) Further,
in view of Theorem 3.1, we obtain the chain of equivalent conditions

(2') & A(B.)) £ 0 < span(B, 4, (ad B)A) = L < (2").

The remainder of the proof: statement (b), (1) & (2), statement (c),
and statement (a) follow as in Theorem 3.1.

Now we consider the case ¢ = Re A = 0.

Statement (a). On the contrary, let I C L, | # LMW be a codimension
one subalgebra. Consider the quotient Lie algebra (1) and the image IcL
of the Lie algebra {. Obviously, dim! can be equal to 2 or 3.

Let dim [ = 2. By Theorem 3.1, we have [ = Lgl)(/\) = span(y, z). Then
the Lie algebra ! contains elements of the form

ff=y+ fow, fieR,
fP=z+fow, fieR.

Then [f1, f?] = w € I; thus, y, z € I. Therefore, | = LY, a contradiction.
If dim!/ = 3, then I= L, and we obtain | = L by an argument similar to
the previous one.
Statement (b), (1) & (2) follows from statement (a) and Proposition 1.
Statement (b), (1) & (2’). We prove that (2) < (2') under condition
(1).
(2) = (2/). If (2') is violated, then (2) is violated by Lemma 3.5 in 7.
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(2) < (2'). Consider the quotient Lie algebra (1). In view of Theo-
rem 3.1, we have the chain

(2') = A(B,)\) # 0 = Lie(4, B) = L.
Therefore, the Lie algebra I = Lie(A, B) contains elements of the form
fr=y+fow,  fo€R;
fP=z+flw, fieR;
P=et flw  fo R
Then [f1, f?] = w € I; consequently, | = L

Statement (b), (1) & (2") follows exactly as in the case a # 0.
Statement (c) follows from statement (b), (1) & (2'). O

4.3.2. Controllable Lie algebras: Theorem 4.2.

Proof. Necessity. Let L be a controllable solvable four-dimensional Lie al-
gebra, and let I' = A+ RB C L be a controllable system. By Theorem 1
in 7, dimL(Y) = 3, B ¢ LM, and L!* = LY.

It Sp(l) C R, then Lemma 10.3 yields L7(n1) + L1(n2), which contradicts
condition (3) of Theorem 1 in 7. Consequently, the operator ad B|;a) has
two complex and one real eigenvalue:

1):{a:I:ln', c}, a,byce R, b#£0.

We can choose vectors y, z, w € L) in such a way that

LM = span(y, z, w); (2)
a b 0
ad Blspan(y,=,w) b a 0 (3)
0 0 ¢
We have
Bw =LY (c) =LY = L(?), (4)

The dlmenswn of the space L(? /L is even; thus, dim L(2 /L =2or0. If
dim L2 /L =2, then dim L(®) = 3, i.e., L®) = LM which contradicts to
the nilpotency of L(V). Consequently, L(?) = L1(n2). Taking into account (4),

we obtain
Rw= L3,

Thus, all the brackets [y, w], [z,w], and [y, z] should have the form kw,
k € R, and for at least one bracket, the coefficient %k should be nonzero.
The relation [y, w] = kw, k # 0, is impossible, since the operator ad y|; o)
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is nilpotent (which follows from solvability of the Lie algebra L). Similarly,
the relation [z, w] = kw, k # 0, is also impossible. Thus,

[y, w] = [z,w] =0 (5)
and [y, z] = kw, k # 0. We denote the vector kw by w and obtain
[ya Z] = w. (6)

Further, y,z € L) (a + bi) and w € LW (¢), thus, w = [y, 2] € LM (2a) =
LW (¢); consequently,

c = 2a. (7)

Now we set = B, take into account (2)—(7), and see that L = L4(A),
A = a + bi. Necessity is proved.
Sufficiency follows from Theorem 4.1, statement (¢). O

4.4. Isomorphisms of controllable Lie algebras.

Theorem 4.3. Lie algebras Ly(A1) and La(X2), A1, A2 € C\ R, are iso-
morphic if and only if { 1, A1} ~ {2, Aa}.

Proof. Necessity. By Lemma 10.2, {)y, AL 2ReAt ~ {Aa, A2, 2ReAs};
thus, {Al, /\1} ~ {Ag, /\2}
Sufficiency is proved exactly as in Theorem 3.3. O

5. FIVE-DIMENSIONAL LIE ALGEBRAS

5.1. Construction of controllable Lie algebras.

Construction 5.1. The Lie algebra L; 1 (A, 1), A, ¢ € C\ R; see Fig. 3.

L57I(/\7 N) = Spa'n(xa Y, 2, U, U);

a b 0 0

—b 0 0 . .

a'd:’3|span(y,z,u,v) = 0 g c d s A=a-+ bl, H=c+ di.
0 0 —-d ¢

Construction 5.2. The Lie algebra Ls rr(A), A € C\ R; see Fig. 4.

Ly 11(A) = span(z, y, z, u, v);
a b 0 0
—b a 0 0 .
ad $|span(y,z,u,v) = 10 a b s A=a+bi.
0 1 =b «a
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The circles around the eigenvalues A, A in Fig. 4 mean that they have
algebraic multiplicity two. (Note that their geometric multiplicity is one.)

Yy u
o A w ® A
o
— o /1 —
DY K ® A
z z v
Flg 3. L57I(/\,/L). Flg 4. L5,II(/\)-

For an element B of the Lie algebras Ls ;(A, 1) or Ls rr(A), we consider
the following decomposition with respect to the base elements:

B =B,z + Byy+ B.z+ B,u+ Byv.
5.2. Controllability conditions.

Theorem 5.1. Let L = L5 (A u), \,p € C\R, X # p,fi. Then the
following assertions hold.

(a) The only codimension one subalgebra in L is its derived subalgebra
i,
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW
(2) Lie(A,B) =L, or
(2") A(BzA) #0 and A(Byp) #£0, or
(2") span(B, A, (ad B)A, (ad B)?A, (ad B)*A) = L.
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Theorem 5.2, Let L = L5 11(A), A € C\R. Then the following asser-
tions hold.

(a) The only codimension one subalgebra in L is its derived subalgebra
i,
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B¢ LM,
(2) Lie(A,B) =L, or
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(2") top(A,BzA) #0, or
(2") span(B, A, (ad B)A, (ad B)?A, (ad B)*A) = L.
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Remark. The notation top(4, ByA) # 0 in Theorem 5.2 (and in Theo-
rem 6.5 below) means that the vector A has a nonzero component in the
higher order root space of the operator ad, B|L(1) corresponding to its eigen-
value B, A, see Definition 2 in 7. )

Theorem 5.3. A five-dimensional solvable Lie algebra is controllable if
and only if it is isomorphic to Ly r(A, 1), A, p € C\IR, A # u, i, o7 L5 11(N),
AeC\R.

5.3. Proof of controllability conditions.

5.3.1. Lie algebra Ls r(A, p): Theorem 5.1.

Proof. Statement (b), (1) & (2'). The Lie algebra L = L5 (A, p), A, pp €
C\R, X # p, i1, is meta-Abelian. A controllability test for simply connected
meta-Abelian Lie groups is provided by Theorem 3 in 7. By this theorem,
controllability of a system I' = A + RB C L is equivalent to the following
conditions:

(1) B ¢ L
(2) top(A,a) # 0 for all a € Sp;

the other three conditions of Theorem 3 in 7 are satisfied for L = L5 r (A, u),
Ap € C\NIR, A pu, i
We have
Sp£1) = Sp(l) =B, - {Aa ;\7 Hy /]}

Each of the conditions top(4, B, \) # 0 and top(4, B, A) # 0 is equivalent to
the inequality A(Bgy\) # 0; similarly, each of the conditions top(A4, Byp) # 0
and top(A4, By ji) # 0 is equivalent to the relation A(B,u) # 0.

The remainder of the proof: statement (b), (1) & (2) and (1) & (2"),
statement (c), and statement (a) follow as in Theorem 3.1. O

5.3.2. Lie algebra Ls rr()): Theorem 5.2.

Proof. The proof of this theorem is completely similar to that of Theo-
rem 5.1. O
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5.3.3. Controllable Lie algebras: Theorem 5.3.

Proof. Necessity. Let ' = A+RB C L be a controllable system in a solvable
five-dimensional Lie algebra L.
Theorem 1 in 7 implies the following:

dim LW = 4;

B¢ LY;

) ®
The operator ad B|y) has 4 eigenvalues. Now we consider their possible
location in the complex plane and show that the controllability assumption
leads necessarily to the cases indicated in this theorem: L = L5 (A, u),

Ap€C\R, X# p, i, or L=Ls (M), A€ C\R.

(a) Four real eigenvalues of the operator ad B|y ). In this case,
Sp') = Sp(ad B|ym) C B;

this is impossible, since Lemma 10.3 gives L7(n1) + L1(n2), a contradiction
to (8).

(b) Two complex eigenvalues and two real eigenvalues of the operator
ad B|pa). Now let

sp = {\ A e, d}, AeC\R, c¢deR.

We have the following decomposition of the derived subalgebra into in-
variant subspaces of the operator ad B:

LW = LO ) + LM (¢) + LM (d). (9)

If ¢ # d, then the vector spaces L) (c) and L(Y)(d) are one dimensional
and form a direct sum; if ¢ = d, then the space L1V (¢) = L1 (d) is two
dimensional. In both cases, the space

1=LW(c)+ LW (a)

is two dimensional.
We commute relation (9) with itself and obtain

L) =[0)(3), O ()] + (203, 20 6] +
+(ZW), I (@] + 2 (¢), 2V (d)]. (10)
The space [ is a Lie algebra, since

(LW (e), LY (d)] c LV (¢ +d) c LY =1.
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The Lie algebra [ is nilpotent (as a subalgebra of the nilpotent Lie algebra
L(l)) and two dimensional; therefore, it is Abelian. Then for the summands

of (10) we have

(LM ), LM ¢ LM (2ReA) N LP;
(L), LW (e)] ¢ LY (A +¢) N LP);
(LM, LY(d)] ¢ LY\ +d)n L3,
[()

Therefore, all the spaces [LM(N), LM (c)], [ZM(N),LH)(d)], and
[L(l)(c),L(l)(c)] have zero intersection with L1(n2), and L7(n2) =
[L(l)(/\), L(l)(/\)]; thus

dim L? = dim[L®(\), LM (V)] < 1,

which contradicts to L7(n2) = L7(n1) =/ and dim! = 2. Case (b) is impossible.
(c) Four distinct complex eigenvalues of the operator ad By ). Now let
sp = (A A\ it Ap€C\R, A#p .
Denote A = a+ bt and p =c¢ + di, b,d # 0.

Choose a basis y, z,u,v in L") in which the adjoint operator has the
matrix

a b 00
b a 0 0

ad Blspan(y,z,u,0) = 00 ¢ d
0 0 —d ¢

—

Now it remains to prove that the Lie algebra L(1) is Abelian and to set

z = B: then L = L5 (A, p).
In order to prove that L(Y) is Abelian, we consider its complexification

LM =M e M) e LY (u) & LY (i)

and the corresponding basis
Lﬁl) = span(ex, €3, €u, €5),
LM = Cex, L) = Cex, LM (p) = Ce,, LM () = Cey,
ex=ex, €= eg.
We show that Lﬁl) is Abelian. We have
lexes] € LV +X) =1L
fepres] € L (ut ) = I

Q=

Y(2ReA) = {0};

er!
€Ll Y(2Rep) = {0}

Q=

es)
consequently,

[exs ex] = [ens el = 0.
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Further,

DA+ p);
RICER)

[GM eﬂ]
lex. eq] €

The eigenspace Lﬁl)(/\ + p) # {0} iff A + p equals one of the eigenvalues A,
A, iy and g But A+ g # A, p, since g, A # 0, respectively. Further,

L
L

A=A & p=X—\=—2bi;
Adp=p & A=p—p=—-2d.
Consequently,
LM+ p) # {0} & either p = —2bi or A = —2di.
Similarly,
LU+ 1) # {0} © either = 2bi or A = 2di.

Consider the case y = —2bi (the other three cases, A = —2di, p = 2bi,
and A = 2di, are considered similarly). We have

lexseu] € LBV (A + ) = LI (N) = Cey;
[exs eal € L (A + f2) = {0};
lex e € LI (A + ) = {0},
lex,eq] € LD (A + 1) = LV (X) = Cen;

hence,

Suppose that & # 0. Then

thus,
[_(1/k)eﬂ - (1/k)eﬂ7 ex + 65\] =ex + ey,

i.e., ey + ey is an eigenvector of the operator ad(—(1/k)e, — (1/k)ex)|pm
with the eigenvalue 1. But this operator is nilpotent, since L is solvable.
The contradiction shows that & = 0. The Lie algebra Lﬁl) is Abelian; thus,
LM is Abelian as well.

We set z = B and obtain L = L5 (A, i) in case (c).

(d) Two complex eigenvalues of the operator ad B|; ). Finally, let

D={)\2}, AeC\R.
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Choose a basis

{ex,eXsexn €3} (11)
n Lﬁl) such that
A0 0 O
e A 0 0
ach|span(el,e§,e§,e§) = 0 0 by 0 ’ (12)
0 0 ¢ A
e=0or1,
g:ei—\, g:eg\. (13)

In order to show that Lﬁl) is Abelian, we prove that all brackets for the
base elements (11) are zero. First,

[ex,exl € LV (2A) = {0} = [eX, 3] = 0.
Taking into account (13), we obtain
[e},e3] = 0.

Similarly,

[eX, ex] = [eX, €3] = 0.

Thus, the Lie algebra Lﬁl) is Abelian, as well as L1,

(d.1) Consider first the case where the operator ad Bl ) is diagonalizable
over C, i.e., ¢ = 0 in (12). By the Abelian property of L(Y), we have
L®) = {0}; thus, LM /L®) = LM and the quotient operator ad B
LW /L®) — LM /L?) has geometric multiplicity 2. That is, JA) = 2 (see
Definition 1 in 7). But this contradicts condition (6) of Theorem 1 in T7:
j(a) < 1for all a € Sp'M). This contradiction implies that case (d.1) is
impossible.

(d.2) Therefore, the matrix of the operator ad. B|L£1) should have Jordan
blocks, i.e., € = 1 in (12). We can find a real basis {y, z,u,v} in L(!) that
corresponds to the complex basis (11) in which the operator ad B| ) has
the matrix

a b 0 0

-5 a 0 0

adB|SPan(y7z7u7v) = 1 0 a b
01 —-b a

Now we set ¢ = B and obtain L = L5 r(}) in case (d.2). The proof of
necessity in Theorem 5.3 is complete.
Sufficiency follows from Theorems 5.1, 5.2, (¢). O
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5.4. Isomorphisms of controllable Lie algebras.

Theorem 5.4. Any two Lie algebras Ls p(A1, p11), A, p1 € C\ R, Ay #
w1, fa, and Ls pr(A2), A2 € C\ R, are nonisomorphic. All isomorphisms
inside these classes are as follows:

(1) Ls r(Ar, p1) = Ly r(Aay pa), Aiypi € C\NIR, N £ iy i, 0= 1,2, of

and only if {1, A1 p1, g} ~ {Aa, Ao pa, fia }s _
(2) L57II(A1) ~ L57II(A2), Al,Ag & C\R, ’Lf and only ’Lf {Ala/\l} ~

{Az, A2},

Proof. Lie algebras Ls (A1, t1) and Ls rr(A2) are nonisomorphic, since the

corresponding sets {1, Ap pi1, i1} and {Xs, A2} cannot be homothetic.
Statements (1) and (2) are proved exactly as in Theorem 4.3. O

6. SIX-DIMENSIONAL LIE ALGEBRAS
6.1. Construction of controllable Lie algebras.
Construction 6.1. The Lie algebra Leg 1 (A, pt), A, ¢ € C\ R; see Fig. 5.

LGJ(/\v N) = Spa'n(xa Y, 2, U, U, w);

a b 0 0 0
—b a 0 0 0
adx|span(y,z,u,v,w) = 0 0 ¢ d 0 )
0 0 —d ¢ 0
0 0 0 0 2a

A=a+bi, p=c+di
[y, 2] = w.

Construction 6.2. The Lie algebra Lg rr(A, i), A,p € C\R, ReX =
Re ;5 see Fig. 6.

LG,II(Aa /L) = Spa'n(xa Y, 2, U, U, w)a

a b 0 0 0
b a 0 0 0
a'dx|span(y,z,u,v,w) = 0 0 a d 0 ;
00 —d a 0
0 0 0 0 2a

A=a+bi, p=a+di

[y, 2] =w, [u,v]=w.
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Construction 6.3. The Lie algebra Lg rrr(A), A € C\ R; see Fig. 7.

LG,III(A) = Spa'n(xa Y, 2, U, v, w)a

a b 0 0 0
—-b a 0 0 0
ad $|Span(y,z,u,v,w) = 0 0 3a b 0 ;
0 0 =b 3a 0
0 0 0 0 2a

A =a + bi;

[y’ Z] =w, [wa y] = U, [wa Z] = .

Construction 6.4. The Lie algebra Lgrv(A), A € C\ (R UiR); see
Fig. 8.

Lg,rv(A) = span(z, y, z, u, v, w);

a b 0 0 0
—-b a 0 0 0
ad % |span(y,2,u,0,0) = 0 0 —a b 0|,
0 0 =b —a O
0 0 0 0 0

A= a+ bi;

[y 0] = —[z,u] = w.

Construction 6.5. The Lie algebra Lg v (A), A € C\ R; see Fig. 9.

Lg,v (A) = span(z, y, z, u, v, w);

a b 0 0 0
—b a 0 0 0
a'dx|span(y,z,u,v,w) = 10 a b 0 ;
01 =b a 0
00 0 0 2a

A= a+ bi;
[y, 2] = w.
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Construction 6.6. The Lie algebra Lgvr(A), A € C\ R;see Fig. 9.

Lg,vi(A) =span(z,y, z,u, v, w);

a b 0 0 0
—b a 0 0 0
a'dx|span(y,z,u,v,w) = 10 a b 0 ;
01 =b a 0
00 0 0 2a

A= a+ bi;
[y, u] = [2,0] = w.
Construction 6.7. The Lie algebra Le vrr; see Fig. 10.

LG,VII = Spa'n(xa Y, 2, U, U, w)a

ad :B|Spa’n(y7z7u7/v7w) =

S o R = O
e R =
(e i e BN e B e
S o Rk oo
oo o oo

[ya Z] = w, [wa y] ) [wa Z] =Uu.
Construction 6.8. The Lie algebra Le vrrr; see Fig. 10.

LG,VIII = Span(f& Y, 2, U, U, w)7

0 1 0 0 0
-1 0 0 0 0
a'dx|span(y,z,u,v,w) = 1 0 0 1 0 H
01 -1 0 0
0 0 0 0 0

[y7 Z] = w, [wa y] =, [w, Z] = —U.

Yy
A w u/\
o [ I
2a 2a
/u
A
z

Fig. 5. L 1(A, 1), ReA =a. Fig. 6. Le rr(A 1), ReA=Repu=a.
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LASY u ) VU Yy )
3a + b1 —a+ bt a+ be
;:2a )
A. )
- 3a — b1 —a— b1 a— bs
z A v v z

Flg 7. LG,III(/\)a A=a+bi. Flg 8. Ler(/\), A=a+ b

Yy ou Y| u
M\ i
2a 0
w w

A —i
z v zZ| v

Flg 9. L67v(/\), LG,VI(/\)a Re A =a. Flg 10. LG,VII, LG,VIII-
In the sequel, we consider the following decomposition for a vector B in

any of the Lie algebras Lg 1—Ls virr:

B =B,z +Byy+ B.z+ B,u+ B,v + B, w.

6.2. Controllability conditions.
Theorem 6.1. Let L = Lg (A u), \,pp € C\R, X # p,fi. Then the

following assertions hold.
(a) The only codimension one subalgebra in L is its derived subalgebra

i,
(b) Let A,B € L. The system T = A+ RB C L is controllable if and

only if the following conditions hold:
(1) B¢ LM,

) Lie(A,B) =L, or

) A(BgA) #0 and A(Bgp) #0, or

)
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(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Theorem 6.2, Let L = Lg rr(A, pt), A, 0 € C\R, ReA = Repu, A # p, i.
Then the following assertions hold.

(a) The only codimension one subalgebra in L is its derived subalgebra
i,
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW
(2) Lie(A,B) =L, or
(2") A(BzA) #0 and A(Byu) #0, or
(2") span(B, A, (ad B)A, (ad B)?A, (ad B)*A, w) = L.
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Theorem 6.3. Let L = Lg 111(A), A € C\R. Then the following asser-
tions hold.

(a) The only codimension one subalgebra in L is its derived subalgebra
L.
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW;
(2) Lie(A,B) =L, or
(2") span(B, A, (ad B)A, w,u,v) = L, or
(2") A(BzA) £ 0 (if Re A #0).
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Theorem 6.4. Let L = Lg v (), A € C\ (RU:R). Then the following
assertions hold.

(a) The only codimension one subalgebra in L is its derived subalgebra
i,
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW
(2) Lie(A,B) =L, or
(2") A(ByA) #0 and A(—Bg\) #0, or
(2") span(B, A, (ad B)A, (ad B)?A, (ad B)*A, w) = L.
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Theorem 6.5. LetL = Lgv(A), A€ C\R, or L = Lgvi(A), A € C\R.
Then the following assertions hold.
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(a) The only codimension one subalgebra in L is its derived subalgebra
L.
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW
(2) Lie(A,B) =L, or
(2') span(B, A, (ad B)A, (ad B)?A, (ad B)*A, w) = L, or
(2") top(4, Bz A) #0 (if Re A #0).
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Theorem 6.6. Let L = Lgyvir or L = Lgvirr. Then the following
assertions hold.

(a) The only codimension one subalgebra in L is its derived subalgebra
L.
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW;
(2) Lie(A,B) =L, or
(2") span(B, A, (ad B)A, w,u,v) = L.
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Theorem 6.7. A siz-dimensional solvable Lie algebra L is controllable
if and only if it is isomorphic to one of the following Lie algebras:

1) LG,I(A7/'L)f /\,/LEC\R,/\#/L,/];
2) LG,II(A7/'L)f A p€ C\Rf ReA=Rep, A # p, 15
3) Lerrr(M), A € C\R;
4) Le v (A), A€ C\ (RUIR);
5) Lev (M), A € C\R;
6) LG,VI(/\); AE C\R,
7) Levir;
8) Le,virr

e e e, o e, e,

6.3. Proof of controllability conditions.
6.3.1. Lie algebra L r(A, pu): Theorem 6.1.

Proof. Statement (b), (1) & 52’). Necessity. By Lemma 10.2, we have
Sp(l) = B, - {\ A\, u, i, 2a}, Sp 2 = B, - {2a}, and the statement follows
directly from items (2) and (5) of Corollary 1 in 7.

Sufficiency. If Re A # 0, then the operator ad B|; ) has no N-pairs of
real eigenvalues (see Definition 3 in 7). Then controllability of T follows
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from Theorem 2 in 7. Indeed, conditions (1) and (2) of this theorem are
obviously satisfied. Condition (3):

LY = LW(B, - 2a) = Rw, and L® = L*)(B, - 2a) = Ruw.

r

Condition (4): the complex spectrum
Spﬁl) =B, - {/\7 ;\7 Hy /]}

is simple; thus, all eigenspaces L.(a), a € Sp(l), are one-dimensional. Con-

dition (5):
top(A, By A) = A(BzA) and top(A, Byu) = A(Bgp),

since both eigenvalues By A and B,y are simple. Condition (6): the only
pair of real (coinciding) eigenvalues, B, - 24 = B, - 2a, is not an N-pair. All
hypotheses (1)—(6) of Theorem 2 in 7 are satisfied; thus, the system T is
controllable.

Consider the case Re A = ¢ = 0. Now we show that the following asser-
tions hold:

(1) Lie(A, B) = L;
(2) there does not exist a codimension one subalgebra of L that contains
the element B.

Then the system T’ is controllable by Proposition 1.
Statement (1). We have

L = Lg (A p) = span(B, y, z, u, v, w);

see Construction 6.1. The line Rw is an ideal in L. Consider the quotient
Lie algebra

L = L/Rw = span(B, §, 2, i, ). (14)
The derived subalgebra is

LW = [f,, f/] = span(y, z, 4, ¥),
and the operator ad has the matrix

0
—b
0
0

ad Bz =

oo o o>
= P o P el e
[ W Wi e )

thus, the spectrum

Sp(adB|ﬁ(1)) =B, - {/\7 ;\7 Hy /]}
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is simple. Moreover,
A(BoX) #0, A(Bop) 20 & A(BA) #0, A(Bop) #0. (15)
By Lemma 10.4, we have
span(B, A, (ad B)A, (ad B)?A, (ad B)*>4) = L. (16)
This means that the image of the space
! = span(B, A, (ad B)A, (ad B)*4, (ad B)*A) C L

under the canonical projection L — L is the whole quotient Lie algebra L.
Thus, dim! = 5; then the space ! contains vectors of the form

y1=y+aw and z; =z +Pw, «a,FcR.
Then
w = [y, z] = [y1, z1] € Lie(l);
thus, Lie(l) = L. Consequently,

the proof of statement (1) is complete.
Statement (2). On the contrary, we suppose that there exists a subalgebra
! such that

lCL, diml=dimL -1 and B €l. (17)
The set
MN={CeL|C(BsA) =0o0r C(Byp) =0}
is a union of two 4-dimensional spaces, and it can not contain the 5-
dimensional space [:
I ¢ I
Therefore, there exists a vector C' € [\ II such that

Cel, C(BgA)#0 and C(Byu) #0.

By statement (1),
Lie(C, B) = L.
But ! D Lie(C, B); thus,
l=1L.

The contradiction to (17) proves statement (2).

Now statements (1), (2), and Proposition 1 imply controllability of the
system I' = A + R B. This completes the proof of sufficiency.

Statement (b), (1) & (2). We prove that (2) < (2') under condition

(1).
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(2) = (2'). Let Lie(A, B) = L, and let condition (2') be violated. For
definiteness, let A(ByA) = 0. Then j(ByzA) = 1 and top(4, B;A) = 0.
Lemma 3.5 in 7 yields Lie(4, B) # L; a contradiction.

(2) < (2"). If Lie(A,B) # L, then the system I' = A + RB is not
controllable by the rank condition, and condition (2') is violated.

Statement (b), (1) & (2”). We prove that (2') < (2”) under condition
(1). As above, consider the quotient Lie algebra (14). In view of (15),
condition (2') is equivalent to (16), which, in turn, is equivalent to (2").

Statement (c) easily follows from statement (b), (1) & (2).

Statement (a) follows from statement (¢) and Lemma 10.5.

Theorem 6.1 is proved. [

6.3.2. Lie algebra Lg rr(A, p): Theorem 6.2.
Proof. The proof is completely similar to that of Theorem 6.1. O
6.3.3. Lie algebra Lg rrr(A): Theorem 6.3.

Proof. Case 1: ReX # 0.

Statement (b), (1) & (2”). Necessity follows directly from items (2)
and (5) of Corollary 1 in 7, since spY = B, - A s iy 2a} and spt? =
B, - {p, ii, 2a}; see Lemma 10.2.

Sufficiency. In the generic case A(Byu) # 0, controllability follows di-
rectly from Theorem 2 in 7. Indeed, conditions (1), (2), (4)—(6) of this
theorem are obviously satisfied. Consider condition (3). We have

SpY = spl? = {B, - 2a};

r

thus,

LM = LW(B, - 24) and L{? =L3)(B, - 24).
Further,

L®(B, - 2a) c LW (B, - 2a).
Moreover, the eigenvalue B, - 2a is simple; thus,

dim L® (B, - 24) = dim LM (B, - 2¢) = 1.

Consequently,
L® (B, -2a) = L'Y(B, - 2a)
and
L =M,
By Theorem 2 in 7, the system I is controllable.
In the case A(Bypu) = 0, we have to slightly modify the proof of this
theorem. By Lemma 4.2 in 7, we obtain

LW(B,\) c LS(T). (18)
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We can choose a basis in the space L) (B, \) of the form

Y=Y Yt G YW, Yar Yy, Yo € R, (19)
2=zt ziudzivziw, 2l 2l 2l e R (20)
Since
11y _ (1)
span(y,z") = L'V (ByA) C LS(T),
we have

+ [y, 21 = 2w = £(w + wiu + wiv) € LS(T). (21)
Using a linear combination of (19), (20), and (21), we obtain

v =ytyautyin, vi, v €R;
22 =z4 22u+ 220, 22, 22 ER;
span(y?, z%) C LS(T).
Therefore,
+w = +[y?, 2%] € LS(T).

Then

Therefore, we have
L(l) = Spa'n(ya Zy Uy v, w) - LS(I‘)

Since B ¢ L(Y), we have LS(T') = L, and the system T' is controllable (see 4
or controllability condition (15) in 7).

Statement (b), (1) & (2’). The space I = span(u,v) is an ideal in L.
Consider the quotient Lie algebra

L = L/I =span(&, 9, 2,w) ~ Ly()\).
In view of Theorem 4.1, we obtain the following chain:
(2") & A(B.)) # 0 < span(B, 4, (ad B)A,w) = L < (2).

The remainder of the proof: statement (b), (1) & (2), statement (c),
and statement (a), follow exactly as in the proof of Theorem 6.1.

Case 2: Re A = 0.

Statement (a). On the contrary, assume that the Lie algebra L =
Lo rr1(bi), b € R\ {0}, contains a codimension one subalgebra I # L(1).
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The space I = span(u,v) is an ideal in L; therefore, we can consider the
quotient Lie algebra

L = L/I = span(%,§, 2, @), (22)
0 b 0

ad i|span(gj,z~,1ﬁ) = -5 0 0 ’ (23)
0 0 0

[ga 2] = w, (24)

and the corresponding image
IcL
of the Lie algebra [. It is easy to see that dim! can be equal to 3 or 4.

(1) dim! = 4. Then [ = L; thus, the Lie algebra ! contains elements of
the form

fl=a+fyut fiv, fu, £y €R;
FP=y+fiut flo, fi £ €R;
FP=ztfiut fiv, fi, ] €R;
fr=wt fout fiv, fo £y R
We have [f2, f3] = w € I. Further, [f%,w] = —u €l and [f3,w] = —v €.
Since vectors (25)—(28) belong to I, we see that z,y, z,w € [. Wehavel = L,
a contradiction. R
(2) dim! = 3. In view of (22)-(24), the Lie algebra L is isomorphic to
the Lie algebra L4 (bi), see Construction 4.1. Since [ is a codimension one
subalgebra of L, Theorem 4.1 yields

I=L" = span(y, Z, ).
Therefore, the Lie algebra [ contains elements of the form
fl=y+ fuut fiv, fu fo € B
fP=zt fiut fiv. fo £l ER.
Then [f1, %] = w € I, [f',w] = —u € I, and [f*,w] = —v € I. Thus,
1= LM, a contradiction.
Statement (b), (1) & (2), follows from Proposition 1 and (a).
Statement (b), (1) & (2’). We prove that (2) < (2') under condition
(1). Consider the quotient Lie algebra (22). In view of Theorem 4.1, it is
easy to see that

(2) < Lie(4, B) = L < span(B, A, (ad B)A, %) = L < (2').

Statement (c) follows from statement (b), (1) & (2'). O
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6.3.4. Lie algebra Lg rv(A): Theorem 6.4.

Proof. Statement (b), (1) & (2'). Necessity follows from items (2) and (5)
of Corollary 1 in 7, since

SpW\ Sp® = B, - {&\, A}

Sufficiency follows exactly as in the proof of Theorem 6.1 for the case
ReX = 0: one should just replace the Lie algebra L¢ (A, i), the eigen-
value g, and Construction 6.1, respectively, by the Lie algebra Lg v ()),
the eigenvalue —\, and Construction 6.4.

The remainder of the proof: statement (b), (1) & (2) and (1) & (2"),
statement (c), and statement (a) follow exactly as in the proof of Theo-

rem 6.1. [
6.3.5. Lie algebras Lg v (A) and Leyvi(A): Theorem 6.5.

Proof. Case 1: ReX # 0.
Statement (b), (1) & (2"). Necessity follows directly from items (2) and
(7) of Theorem 1 in 7, since

Sp(l) = B, - {}, A, 2a}, Sp(z) = {2B,a},
i(BoA) =1, j(2Bya)=0
(see Definition 1 in 7 and remarks after it).
Sufficiency follows from Corollary 2 in 7.

Statement (b), (1) & (2'). The line I = Rw is an ideal in L. Consider
the quotient Lie algebra

Taking into account Theorem 5.2, we obtain the following chain:

(2") < top(A, B,A) £ 0 <
span(B, A, (ad B)A, (ad B)2A, (ad B)>A) = L < (2').
The remainder of the proof: statement (b), (1) & (2), statement (c),
and statement (a) follow exactly as in the proof of Theorem 6.1.
Case 2: Re A = 0.
Statement (a). On the contrary, suppose that the Lie algebra L contains

a codimension one subalgebra I # L(1),
The line I = Rw is an ideal in L. Consider the quotient Lie algebra

L = L/I = span(&, §, 7, @, ), (29)
0 1 0 0
) -1 0 0 0
ad $|span(§727~ﬂ7) = 1 0 0 1 ;
01 -1 0



188 YU.L. SACHKOV

thus, L = Ls 11(i) (see Construction 5.2), and the corresponding image

b=~

lc

Obviously,

s {4 Hfwel,
dlml_{5 if w ¢ 1.

(a) Let dim! = 4. Then [ is a codimension one subalgebra in L, and
by Theorem 5.2, | = L(1)57H(i) = span(y, Z, 4, ¥). Since w € I, we obtain
1= LM, a contradiction.

(b) Let dim! = 5. Then I = L 3 §, 2, & thus, the Lie algebra ! contains
elements of the form

fl=y+ fiw, fieR;
P=z+fow, flIeR;
fP=u+fow, fieR.

Consequently, [f1, f?] = w € I. Thus, [ = L, a contradiction.

Statement (b), (1) & (2), follows from Proposition 1 and (a).

Statement (b), (1) & (2’). We prove that (2) < (2’) under condition (1).
As above, consider the quotient Lie algebra (29).

(2) = (2'). If Lie(A, B) = L, then Lie(A, B) = L. By Theorem 5.2, we
have span(é,fi, (ad B)A, (ad2 B)A, (ad3 B)A) — L, which is equivalent to
(2).

(2) < (2'). Condition (2') implies Lie(4, B) = L. Then we show that
Lie(A, B) = L exactly as in item (b) above.

Statement (c) follows from statement (b), (1) & (2'). O

6.3.6. Lie algebras L vir and Lgvirr: Theorem 6.6.

Proof. Statement (a). Let | C L be a codimension one subalgebra, [ #
LW, The space I = span(u,v) is an ideal in L; thus, we can consider the
quotient Lie algebra

L = L/I = span(, j, 2, %), (30)
010

ad :E|span(g],z~,15) = —1 0 0 s
00 0

[, 2] = w,

and the corresponding image I C L of the Lie algebra [. Obviously, dim!
can be equal to 3 or 4.

(1) Let dim! = 3. Then [ is a codimension one subalgebra of the Lie alge-
bra L, which is isomorphic to the Lie algebra L4(); see Construction 4.1. By
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Theorem 4.1, [ coincides with the derived subalgebra LW = span(
Thus, the Lie algebra [ contains vectors of the form

X
™

S}
N

ff=y+flut fiv,  fo, fr €R, (31)
f2:Z—|—f3u—|—fv21), 37 fUZE}R, (32)
P=w+ fiu+ fiv, v, flER. (33)

The condition dim/ = 3 implies span(u,v) C I, which, together with (31)-
(33), yields y, z,w € I. Thus, I = L}, a contradiction.

(2) Let dim! = 4; then [ + span(u,v) = L. Consequently, the Lie algebra
! contains elements of the form

fr=y+ flu+ fiv, T fLEeR
F2=z+ flu+ fiv, . f2ER.

Then [f1, f2] = w € [; thus, the elements [f!,w] = +v and [f?,w] = Fu
also belong to the Lie algebra l. Therefore, we obtain ! = L, a contradiction.

Statement (b), (1) & (2), follows from Proposition 1 and (a).

Statement (b), (1) & (2’). We prove that (2) < (2') under condition
(1). Consider the quotient Lie algebra (30).

(2) = (2'). Let Lie(A, B) = L; then Lie(fi,B) = L. By Theorem 4.1, we
obtain span(B,fl, (ad B)A,ﬁ)) = L, which is equivalent to hypothesis (2"
of this theorem.

(2) < (2'). Conversely, hypothesis (2') implies Lie(A, B) = L. Therefore,
the Lie algebra Lie(A, B) contains elements of the form

fr=y+ flu+ fiv, T fLEeR
=z flut fio,  fi, fPER;
P=z+ flu+t fov, 2 fPER.

Then the elements [f1, f2] = w, [f!,w] = +v, and [f%,w] = Fu are in
Lie(A, B); consequently, Lie(A, B) = L.
Statement (c) follows from statement (b), (1) & (2'). O

6.3.7. Controllable Lie algebras: Theorem 6.7.

Proof. Necessity. Let a six-dimensional solvable Lie algebra L be control-
lable, i.e., there exist A,B € L such that the system ' = A + RB is
controllable. Then Theorem 1 in 7 implies the following:

dim LM = 5;

B¢ LW,

LM =, (34)
Now we consider step by step all possibilities for location of the spectrum
sptt) = Sp(ad B|p)) in the complex plane.
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(a) Five real eigenvalues of the operator ad B|; ). The operator ad By q)
cannot have real spectrum, since if Sp(l) C R then L7(n1) + L7(n2) by
Lemma 10.3, a contradiction with (34).

(b) Three real eigenvalues of the operator ad B|; ). Suppose that
spM = {\ A e, de}, AeC\R, cdeck

(some or all of the numbers ¢, d, e may coincide one with other). Then we
have the decomposition

LW =1W) e LM, (35)
where dim L(l)(/\) = 2 and L7(n1) = L(l)(c) + L(l)(d) + L(l)(e),
dim LM = 3. (36)

Thus,
1) = [£0(3), 2O 0] + £ (), 20] + (20, L0,

r T Y r

Taking into account Lemma 10.1 and decomposition (35), we obtain

(M), L] c P () C 1),
VN, LW\ ¢ L®(2ReN) € L3,

Consequently,
(1) ()

T T ]'

L = (L (), ZO )] + (L

r

Now we estimate the dimensions of the summands in the right-hand side.
The space L(Y)()) is two-dimensional; thus, dim[L(})()), LH)(\)] < 1.

(1)

The space Ly’ is three-dimensional, and by Lemma 10.1

(M, LM c LM,

T Y T

(1)

i.e., Ly

is a Lie algebra. But L is solvable, hence L7(n1) c LM is nilpotent.

(1)

Thus, L7(n1) is a three-dimensional nilpotent Lie algebra. Consequently, L;
is either Abelian, or a (unique) three-dimensional nilpotent non-Abelian Lie
algebra. In both cases, dim[Lﬁl), Lﬁl)] < 1.

Therefore, dim L'® < dim[Z(V(\), LO(\)] + dim[Z{M, L] < 2, which
contradicts equalities (34) and (36). Therefore, case (b) is impossible.

(c) One real eigenvalue of the operator ad B|; ). Since both cases (a) and
(b) are impossible, we should have

SpM = M\ A g jnel, A=a+bicC\R, p=c+dicC\R, eck.

We can assume that b, d > 0. Replacing, if necessary, B by —B, we obtain
e > 0.
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(c.1) Let A # p. Then the operator ach|L£1) has a simple spectrum,
and there is the following decomposition into one-dimensional eigenspaces:
LM =1\ e L) e LM (n) @ LY (1) @ L (o).
Choose the corresponding eigenvectors
Ch=LPW), Ci=pM0N, Cf =L w), Cf =10 RE),
and Cf. = LM (e),
so that their complex conjugates in L. satisfy
=1 fu=fa and fo=fo
By Lemma 10.1,
[£3: Ful € L+ p) = L (a + ¢ + (b+ d)i) = {0},

hence

[£xs ful = 0. (37)
We take complex conjugate and obtain

[fx, fal = 0. (38)

(c.1.1) Let b = Im A # Imp = d. We show that [fy, fe] = 0. On the
contrary, we suppose that [fx, fc] # 0. By Lemma 10.1,

[frs fe] € LV (A +e) = L (a + e + bi).
Since [fi, fe] # 0, we have a + e + bi € Sp!*). Tt is obvious that a + ¢ + bi

cannot equal any one of the eigenvalues e, A = a — bi, and i = ¢ — di (recall
that b,d > 0). Further, a + e + bi # u = ¢ + di, since b # d. Consequently,

a+te+bi = lam = a+bi and [fx, f.] € LY (N, ve., [fr, o] = kfr, k € C\{0}.

But this contradicts the nilpotency of the operator ad f. : Lﬁl) — Lﬁl)

(L is solvable; hence L) is nilpotent and ad felp @ is nilpotent). This
contradiction shows that

[fx, fe] = 0. (39)
We prove similarly that

[fXafe]:[fuafe]:[fﬂafe]:()- (40)

Now we show that [fx, fz] = 0. On the contrary, we suppose that
[fx, fu]l # 0. Then

[Fas fal € LY A+ i) = LM (a + ¢ + (b — d)i).
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It is easy to see that A + i = a + ¢ + (b — d)i cannot equal any one of the
eigenvalues e (since b £ d), A = a+bi (since c—di = i #0), and i = c—di
(since @ 4+ bi = A # 0). There are only two mutually exclusive possibilities:

at+c+b—dii=A=a-bi & ¢=0,d=2b
or
at+c+b—dii=p=c+di & a=0,5b=2d

Let @ = 0 and b = 2d (the case ¢ = 0, d = 2b is considered similarly). We
have

[fx: fa) € L (@ + e + (b — d)i) = L (c + di) = L (u);
thus,
[fAvfﬂ] = kfﬂv ke C\{O}'
We take complex conjugate and obtain
[f5: ful = K fa-
Then, in view of (37) and (38), we have
[(1/k)f)\ + (1/1;)]05\7 fu + fﬂ] = fu + fﬂ-
This contradicts the nilpotency of the operator ad((1/k)fx + (1/k)f5)

|L(Cl) .
Consequently,
[fx, fu] =0 (41)
and
(55 ful = 0. (42)

Now we consider the remaining brackets

[fa, fx] € LV (2a) and [fu, fa] € LY (2¢).

If 2a # e and 2¢ # e, then [fx, fz] = [fu, fz] = 0, and the derived subalgebra
LY is Abelian (see (37)-(42)). Then L) is Abelian and L(?) = {0}, which
contradicts condition (34), since L7(n1) = L(l)(e).

(c.1.1.1) Let 2a = e and 2¢ # e. Then

[fua fﬂ] =0; (43)
[anfX]:kfea kEC\{O}, (44)
where k& # 0, since L7(n2) = L7(n1) = L(l)(e). Therefore, the only nonzero

bracket in Lﬁl) (see (37)—(44)) is bracket (44). We take complex conjugate of
this relation and obtain [f5, fa] = kfe; thus, k = —k, l.e., k =il, 1 € R\ {0}.
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Now we return from Lﬁl) to LY. Denote

z = B; (45)
y=Ux+15)/2, 2= (= 1)/ (2); (46)
= (fu+fa)/20 v=(fu— fa)/(20); (47)
w=—(/2)f.. (48)

Now an immediate verification of multiplication rules in the Lie algebra
L = span(z, y, z, u, v, w) shows that L = Lg 1 (A, p).

(c.1.1.2) Let 2a # e and 2¢ = e. This case is completely similar to case
(c.1.1.1); one should just switch A and p. Thus, I = Lg (g, A).

(c.1.1.3) Let 2a = 2¢ = e. Then

[f)\vff\]:kfea [fﬂafﬂ]:lfea k, leC

Ifk#0and [ =0, then L = Lg 1(A, p).

If k =0and! # 0, then L = Lgs(p, A). If k # 0 and I # 0, then
L =Leir(\p).

(c.1.2) Let b =ImA = Imu = d. Consider the bracket

[fx, el € LV (A +e) = LY (a + e + bi). (49)

It is obvious that a+e+bi # e, a—bi, c—di. There can be only the following
two mutually exclusive possibilities:

atet+bi=c+di & ate=c

or
at+et+bi=a+bh & e=0.
(c.1.2.1) Let a + e = ¢ and let e # 0; thus, e > 0. We have
[£x, fo] € LY (a4 e + bi) = LY (¢ + di);
consequently,
U, fel=Fkfu, keC (50)
30 £ = kfa. (51)

Now consider the bracket
[fus fe] € I (p+ e) = LM (e + e + bi) = LM (a + 2 + bi).

It is obvious that the number ¢ 4+ e + b = a + 2e + b is not an eigenvalue
of ad B|,m), since it is not equal to any of the numbers e, a & bi, and ¢ & bi.
Consequently,

[fu> fe] = [fi, fe] = 0.
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(c.1.2.1.1) Let e = 2a # 2¢. Then

[fus Fa] € LY (2¢) = {0}
thus,
[fua fﬂ] = 0.
Further,
[f)\a fﬂ] € Lﬁl)(a + C),
but @ 4+ ¢ # e = 2a; hence L£1)(a +¢) = {0} and

[xs fal = [fxs fu] = 0.
Finally,

[anfX]:lfea ZEC\{O}v (52)

where [ # 0, since otherwise Rf, = A # A {0}. We take complex
conjugate of (52) and obtain

Rel = 0.

Therefore, the only nonzero brackets in LM are (52) and, probably, (50)
and (51).

We pass to the real basis in L corresponding to the basis B, fx, fx, fu,
fa, fe in L. and observe that if &£ # 0 in (50) and (51), then L = Lg rrr(A).
If k= 0in (50) and (51), then L = Lg (A, ).

(c.1.2.1.2) Let e = 2¢ # 2a. Then

[Fx F) € LA+ ) = LV (20) = {0

thus,

[f)\a f):] =0.
Similarly,

[frs fal € L (a+ ¢) = {0},

since a + ¢ # e = 2¢, we have

[f)\a fﬂ] =0.
But

[fus fal € LM (p+ ) = LM (2¢) = LM (e);

thus,

[fu, fal = 1fe, 1€ C\{0}, (53)

where | # 0, since otherwise condition (34) is violated as in the previous
item. Jacobi identity for the triple f,, fa, f yields &l = 0. But [ # 0;
consequently, £ = 0 in (50) and (51).
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Therefore, the only nonzero bracket in Lﬁl) is (53). Therefore, L =

LG,I(#? /\)
(c.1.2.2) Let e = 0 and a + e # ¢. In view of (49), we have [fi, fe] €

Lﬁl)(a—l—bi); thus, [f, fe] = kfr. The operator ad fe|, o) is nilpotent; there-
fore, k = 0, i.e.,
[f)\afe] == [f)iafe] =0.
Similarly
[fua fe] = [fﬂa fe] =0.
Now consider the bracket
[fAv fﬂ] € Lﬁl)(a + c).
(c.1.2.2.1) Let a4+ ¢ = 0. Then

[fxs fal € I (e);
consequently,
[f)\afﬂ]zlffea kEC, (54)
[fXafu]:kfe- (55)
Further, [f, f3] € LW (2a) = {0} (a # 0, since otherwise ¢ = 0 and A = g,

which contradicts condition (c.1)). Consequently,

[f)\a f):] =0.

Similarly,
[£us fa] = 0.
Therefore, the only possibly nonzero brackets in Lﬁl) are given by (54)
and (55). If £ = 0 in these relations, then Lﬁl) is Abelian, which contradicts

condition (34). Consequently, & # 0. We pass to the real basis in L and
obtain L = Lg rv ().

(c.1.2.2.2) Let a + ¢ # 0. Then [f, fa] € L£1)(a + ¢) = {0}, thus

[fAv fﬂ] = [va fﬂ] =0.
Now consider the bracket
[frs f3] € I (2a).
(c.1.2.2.2.1) Let a # 0. Then
[f)\a f):] =0.

Further, [f,, fz] € Lﬁl)(2c). If ¢ # ¢0, then [f,, fz] = 0 and Lﬁl) is Abelian,

which contradicts condition (34). Consequently, ¢ = 0, and

[fﬂvfﬂ]:kfea kEC\{O},
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is the only nonzero bracket in Lﬁl). We pass to the real basis in L and
obtain L = Lg r(, A).

(c.1.2.2.2.2) Let @ = 0. Then [fy, f5] € I (2a) = L (e); thus,

[fx. ] = kfe, keC. (56)
By condition (¢.1.2.2.2), we have a + ¢ # 0; therefore, ¢ # 0. Consequently,
(fus fal € Lﬁl)(2c) = {0} and
[fﬂa fﬂ] =0.

The only possibly nonzero bracket in Lﬁl) is given by (56). If £ = 0 in this
(1)

relation, then L¢” is Abelian, which is impossible in view of (34). Thus,
k#0and L = Le r(A p).
(c.2) Let A = pi. The operator ad B|j ) has the multiple spectrum

Sp(l) = {A7 X? 6}7

where A = a + be, b > 0, is a double eigenvalue and e > 0 is a simple
eigenvalue. We have the decomposition

LW =M e LW (e) with dimLM(A\) =4 and dimL® (e) = 1.
Thus,

16) = [0 0), D] + (20, 20c)),

where
A IO € IV (A + ),
A), O] € LW (2a).
Then the condition L7(n1) = L7(n2) = L(l)(e) implies e = 2a.

(c.2.1) Let a # 0.

(c.2.1.1) Let the operator ad. B|, 1) be not diagonalizable, i.e., in some

(1)(
(1)(

basis f, ga, f5, 95, fe of the space Lﬁl) for which
f_)\:f):7 g_)\:g):7 a'nd E:fe7

this operator has the matrix

ach|L(cl) =

[ N D
[ N )
SO R > O
(=R N e i e
(3 P e B e I )

We have the decomposition

IV =LON) e LM & LM (e),

c c
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where LI (A) = span(fy, gx), L (A) = span(fy, g3), and L (e) = Cf...
Because [f, fe] € Lﬁl)(/\ + e) = {0}, we obtain

[f)\a fe] =0.

Similarly,

[g)\a fe] = [f):a fe] = [g):a fe] =0.
Further, all pairwise brackets for the vectors fi, ga, fx, and g5 are contained
in Lﬁl)(e); therefore,
[f)\ag)\]:afea Oé:C—|—di, C,dER;
(x93l =Bfe, B=p+aqi, pgeR;
[£x: £5]
[9x, 9]

=vfe, v€(
=éf, oeC.

We apply complex conjugation to the last two relations and obtain

’Y:_’y = 722k7 kE]Ra
§=-5 = d=il, lcR.

Consider the following real basis in L():

y=(H+1R)/2 2= (i — fr)/(29),
u=(gx+9x)/2, v=(9x—9x)/(29),
w=fe

and obtain the following multiplication table:

Y z % v

0 F2w | (e+p)/Dw | (d—q)/2)

0 [+ /2w | (p—o)/2w

(et /2w | —[dtq/2w 0 /2w
Cd—a)/Dw | (—p—c/2w ]| /2w 0

e e n|
T
=
T~
[\)
=
g

= (d+4g)/2=(d—q)/2,

= bWp-¢)/2-(c+p)/2)=-1/2,
= ble+p)/2—(p—0¢)/2) =-1/2,
= (d+¢)/2=—(d—q)/2.
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Thus, d = ¢ =1 = ¢ =0, i.e., the multiplication tabl e takes the form

y z U v
0 [ e (e
z | (—k/2)w 0 0 (p/2)w
u | (=p/2)w 0 0 0
v 0 (—p/2)w 0 0

Note that k2 + p? # 0, since if k = p = 0, then the derived subalgebra L
is Abelian, a contradiction to (34). If p= 0, then L = Lg v (A), and if p # 0,
then L = LG,VI(/\)-

(c.2.1.2) Let the operator ad, B|L£1) be diagonalizable. Then there exists
a basis {y, z,u,v,w} of the space L(!) in which the operator ad B|; ) has
the matrix

, A=a+ bi.

oo o ©

a

—b

adB|L(1) = 0
0

0

oo o e o
oo R OO
OR TTO O

[\

a
In the same way as in item (c.2.1.1) we show that

[y, w] = [z, w] = [u, w] = [v,w] = 0.

h
D
[l
=
B
h
B
[l
=
=
=
)
h
=
=
h

D) @& LV (e)] =

Consequently, L) /L(?) = L(1)()), and the quotient operator

——

adB: LW/L® - MW/

has the matrix

a b 0 0
—~— b a 0 0
ad B = 00 a b

00 —b a

The complexification of this operator m has two linearly independent
eigenvectors, i.e., j(A) = 2, see Definition 1 in 7. By Theorem 1 in 7, the
gystem I' = A+R B cannot be controllable; thus, case (c.2.1.2) is impossible.

(c.2.2) Let a = 0. Then Sp*) = {+bi,0}, b # 0. Both eigenvalues +bi

have algebraic multiplicity two and 0 is a simple eigenvalue.
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In order to obtain b = 1, we replace the element B by the element B/b
and denote it by z in the sequel. Thus, Sp'*) = Spad z|po) = {£4,0}.

(c.2.2.1) Let the both eigenvalues 44 have the geometric multiplicity one.
In the complexification L., we can choose a Jordan basis of the operator

ad. z|p0):
Lc :Span($,€1,€2,f1,f2,g), (57)
e1=fi, e2=f, g=gy, (58)
L£1 :Span(617627f17f27g)7 (59)
¢ 0 0 0 0
1 0 0 0
a'dc $|Span(€17€27f17f279) = 0 0 - 0 0 (60)
0 0 -2 0
0 0 0 0 0

(1)

Now we examine Lie brackets in the derived subalgebra L¢ ™.

The vectors e; and es belong to Lﬁl)(i); thus, by Lemma 10.1,

[61762] € Lﬁl)(27’) = {0}7

that is,
le1, e2] = 0. (61)
Similarly,
[f1, f2] = 0. (62)
A similar argument using Lemma 10.1 yields
le1, f1] = ag, a € G (63)
ez, f2] =bg, b (64)
[e1, f2] = ¢y, ce G (65)
[627 fl] = dg, deC. (66)
Further,
ag = ag = [ex, 1] = [ex, 1] = [f1, 1] = —ay,
consequently,
a:—ﬁ:za’ aceR (67)
Similarly,
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and
c=—-d=~vy+1i, v, §E€R. (69)
In view of (67)-(69), the commutation relations (63)—(66) are rewritten as
[elafl] :’LOég, «@ ER? (70)
[e2, fo] = ifg, BER; (71)
[617 f2] = ( + Zé)ga v 6 S Ra (72)
[e2, f1] = (=7 + 2d)g. (73)

Now we consider Lie brackets with g. By Lemma 10.1, the operator ad g
leaves the subspace Lﬁl)(i) = span(ey, e3) invariant. Moreover, since LM s
nilpotent, the operator

adg: LY (i) — LW () (74)

is nilpotent.
(c.2.2.1.1) Let operator (74) be nonzero. Then it has a one-dimensional
image.

(c.2.2.1.1.1) Let Im (adg|L(1) ) # Ces. We choose a vector

¢} € LM (4) = span(ey, e3)
such that

el =e1+kes, keC, and Im (adg|L(1)(i)) =Cé. (75)

The operator ad z : Lﬁl)(i) — Lﬁl)(i) has the same matrix

(1)

in the both bases {e1,e2} and {e}, ez}. Therefore, we can denote €] by ey,
choose the corresponding vector f; = €, and preserve the previous notation
for the new basis L, = span(z, e1, €3, f1, f2, ¢) with the additional property
(see (75))

Im (adg|L£1)(Z.)) = Ce;.
Then, since the operator adg : Lﬁl)(i) — Lﬁl)(i) is nilpotent and nonzero,
it has the matrix
0 r
adg|span(el,ez) == < 0 0 > s e C\{O}

But the Jacobi identity for the triple (z, g, e2) yields » = 0. The contradic-
tion shows that case (c.2.2.1.1.1) is impossible.
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(c.2.2.1.1.2) Let Im (adg|L£1)(Z.)) = Ces. Then

>, g€ C\{0};
).

(z,e1,f1) = d=0,

(zie1, o) = B=0,

(e1,e2,f1) = v=0.
Therefore, the preceding relations should be satisfied; if they hold, the Ja-
cobi identity for all possible triples of base elements in L. is satisfied. Fi-

nally, multiplication rules in the Lie algebra L. = span(z,es, €3, f1, f2,9)
are determined by the following Lie brackets: (60) and

[617 fl] = iOég, ac R \ {0}7 (76)

0 0 .
adg|span(el,ez) = < g 0 > y ¢@=4q11+192 € C \ {0}7

0 0
a,dg|span(f17f2) = < qg 0 >’

all other brackets between the base elements are either zero or follow from
the preceding ones by the skew-symmetry property (note that & # 0in (77),
since g € Lﬁl)).

Choose a new base vector

ad glspan(f1, 7.

adg|span(el,ez) == <
=

Qe @ o
ceo oo

The Jacobi identity yields

T =z+v9, YER, (77)
in L.; the value of the parameter v will be specified later. We have
[, e1] = ie1 + ea + qyes = iex + (14 gv)es;
[/, fil = —ifi + fo +@vfo = —ifi + (L + ) fo-
(c.2.2.1.1.2.1) Let ¢ ¢ R. Choose the new base vectors
ep=e1n, e =(1+gy)es,
f{zfla fé:(1+g7)f27
g =—(a/2)g
in L. and define the constants

2 2
SV DR Y '

i+ 43 2 g

£0
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We have
[glvell] = iKelz;
lg's f1] = —iK f5.

Further, we divide the base vectors e}, fi, €5, and f5 by +/|K]|, the vector
g’ by |K|, denote the vectors obtained by ey, f1, e, f2, and g, and come to
the multip lication rules in L.

le1, f1] = —2ig;
l9, e1] = ties;
l9, f1] = Fifs.

We pass to the real basis in L and obtain L = Lg v or L = Lg vrrr.
(c.2.2.1.1.2.2) Let ¢ € .
We set vy = —1/¢ in (77) and choose the following new base vectors in
L.:

el =e1, eh=—alqg/2)ea,
f]l_:fla fé:_a(Q/2)f27
g = —(a/2)g;

preserving the old notation for the new basis, we obtain the multiplication
rules

[elafl] = _2ig7
[gael] = €3,
[gafl] = f2-

In the corresponding real basis:

L = span(z,y, z, u, v, w),
y=(ex+ f1)/2, z=(e1— f1)/(29),
uw=(e2+f2)/2, v=(e2— f2)/(20),

w=4dg,

we have L = Lg rrr(4).
(c.2.2.1.2) Now let operator (74) be zero:

adg|span(el,ez) = 07 (82)

thus,

adg|span(fl7f2) = 0 (83)
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Multiplication rules in L. are determined by (60)-(62), (70)—(73), (82), and
(83). The Jacobi identity implies

(:Baelafl) = 6:07

(:BaelafZ) = BZO

If § = 8 =0, then the Jacobi identity for all base elements in L. holds.
Therefore, Lie brackets in L. are determined by the following ones: (60)
and

[elafl]:iaga QER,

[e1, f2] = —[e2, fil = v9, Y ER,
where
o’ + 4% #0,
since g € Lﬁl).
Now we proceed exactly as in item (c.2.2.1.1.2): we choose the real ba-

sis (79)—(81) and obtain
ly, 2] = kw, k=-—-a/2€R,
[y, u] = [z,v] =lw, [=v/2€R,
k> 412 £0.
If I =0, then L = Lg v (%), and if | # 0, then I = Lg v (i) (see Construc-

tions 6.5, 6.6) in case (c.2.2.1.2).
(c.2.2.2) Let both eigenvalues +¢ have algebraic multiplicity two. There

exists a basis ey, es, f1, f2, g of the derived subalgebra Lﬁl) in which the
operator ad has the diagonal matrix

1 0 0 0 0
0 =2 0 0 0
a0 |span(er e fogy = | 0 0 =i 0 0 (84)
0 0 0 — 0
0 0 0 0 0

In the same way as before, we obtain the Lie brackets

le1, f1] = tag, a €R,

ez, f2] = iBg, B ER,

[er, fo] = (v +id)g, v, 6 ER,
le2, f1] = (= +id)g.

The operator adyg : span(er,es) — span(er, ez) is nilpotent; moreover, it

is nonzero, since otherwise L£2) = Cg; hence j(+4) = 2, a contradiction to
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Theorem 1 in 7. Therefore, there exists a basis ej,es In Lﬁl)(i) and the
corresponding basis f; = e, f» = €3 in L£1)(—i) in which

0 1 0 1
adg|span(el,ez) = < 0 0 >7 and a'dg|span(f1,f2) = < 0 0 >; (85)

note that the matrix in (84) remains without changes in the new basis.
We write the Jacobi identity for the triples of elements and obtain

(g7627f1) = O[:O;
(g7627f2) = 6:07
(f2761762) = Y = 0

If « =68 =+ = 0, then Jacobi identity holds for all possible triples of base
elements of L..
Therefore, multiplication rules in L. are determined by (84), (85), and

[e2, f2] = iBg, B €R\{0}, (86)

where § # 0, since g € Lﬁl).
Now we choose the new base vectors

eg.:ﬁela f]l_:ﬁfla and gl:ﬁga

denote them as before by e1, f1, and g, respectively, and obtain

[e2, f2] = ig

instead of (86).

Finally, we pass to the real basis (79)—(81) in L and obtain L = Lg rrr(4);
see Construction 6.3.

Therefore, all possible cases of disposition of the spectrum Sp(l) in the
complex plane are considered, and in all these cases, the Lie algebra L has
one of the types Le 1—Le vrrr. The necessity follows.

Sufficiency. All Lie algebras listed in (1)—(8) of Theorem 6.7 are control-
lable by Theorems 6.1-6.6, (c).

Theorem 6.7 is completely proved. O

6.4. Isomorphisms of controllable Lie algebras.

Theorem 6.8. Any two siz-dimensional controllable solvable Lie alge-
bras that belong to distinct classes (1)—(8) given in Theorem 6.7 are not
isomorphic one to another. All isomorphisms inside these classes are as
follows.

(1) Le,r(A1, p1) =~ Lo r(Aas p2), Ajypy € CN R, Ay # iy, iy, 5= 1,2, if
and only if {A2, A2} = k{A1, A1} and {2, p2} = k{pa, pa} for some
ke R\ {0}.
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(2) LG,II(/\la/il) ~ LG,II(/\Za/iz); /\]’,/Ll' S C\R, Re/\j = Re/L]', /\j ;ﬁ
Nj?/]j) .7 = 172) Zf and Only if{AlaAlaﬂlaﬁl} ~ {A27A27N27ﬁ2}'

(3) LG,III(/\l) ~ Lp,III(/\Z); /\]’ € C\R, i = 1,2, ’Lf and only ’Lf
A1 At ~ {2, A2}

(4) Lov (M) =~ Lo gv(A2), Aj € C\ (RUIR), j = 1,2, if and only if
A1 At ~ {2, A2} B

(5) Le,v (M) = Loy (A2), Aj € C\R, j = 1,2, if and only if {A1, A1} ~
{Az, A2},

(6) Levr(A) ~ Levr(Az), Aj € C\R, j = 1,2, if and only if
A1 At ~ {2, A2}

Proof. In this proof, we denote the Lie algebra Le rrr(bi) ~ Le,rr1(2), b €
R\ {0}, by Le,rx-

(1) Lie algebras Lg (M), A € C\ (RU¢R), are not isomorphic to Lie
algebras of all other classes Lg 1, Le rr , Lerv—Le 1x, since dimL® =3
and the spectrum Sp(ad z|,m) = {\, A, A + 2a, A + 2a, 2a} is algebraically
simple for L = Lg rr1(A), A € C\ (RU{¢R), which is not the case for Lie
algebras of all other classes.

(2) We show that Le r(A1, p1) % Le,rr (A2, pt2). On the contrary, we sup-
pose that Lg r(A1, 1) ~ Le (A2, pt2). We identify both these Lie algebras
with L = Le (A 1), and fix a basis {z,y,z,u,v,w} in L as in Construc-
tion 6.1. There exists another basis {z’, v, z’, v/, v, w'} in L with multi-
plication rules as in Construction 6.2. By Lemma 10.2, Sp(ad z|;a)) ~
Sp(ad 2’| ). Rescaling and renumbering the base vectors, if necessary, we
can obtain A = Ay = Ag, and p = pu1 = ps.

We pass to the corresponding complex bases in L.:

T, e1 =y + 1z, flzy_iza ez = u+1v, fZZU_iva g=w,

! ! ! - 1 ! ! - 1 ! ! -7 ! ! -7 ! !
r,ey=y 4z, fi=y —iz, es5=u +w, fr=u -0, ¢ =w.

Then
A0 0 0 0
0O X 0 0 O
a‘dx|span(el7f17ez7f27g) = 0 0 H 0 0 3
00 0 2 0
0 0 0 0 2a
le1, f1] = —21g,
[eh, fa] = —2ig". (87)

Further, we have the decomposition

o =z+oaertafi+BfL+Bl+yy, o, BEC, yeR;
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hence
A 00 0 0
0 A0 0 O
ad $l|span(€17f17€27f279) = 0 0w 0 0
0 0 0 g 0
—2ic 2iac 0 0 2a
Thus,
ey = pler — 2i(a/N)g), ey =qes, p, € C\ {0} (88)
fi=p(fr +2i(@/N)g), fi=Tqea, (89)
g =rg, reR\{0}. (90)
Now
[el27 fé] =0,

which contradicts (87). Thus Leg r(A1, 1) % Le,rr( Az, p2).
(3) We show that L r(A1, p1) 2 Le,rv(X2). Asin (2), we have
[e1, f3] = —2ig’
from Construction 6.4 and
el f3] =10
from (88) and (89), a contradiction.

(4) The Lie algebras Lg 1 (A, pt), A, p € C\RR, X # p, [i, are not isomorphic
to any of the Lie algebras Lg,v—Le, rx, since the spectrum {\, A, i, i} of the
operator ad x|y ) is algebraically simple for L = Lg (A, 1), A, p € C\ R,
A # p, i, which is not the case for Lie algebras of the classes Lg v—Le rx.

(5) Lo rr(A1spi1) # Lerv(Az), Ar, Ao, 1 € C\R, Re Ay = Repq, Ay #
1y fia, since {1, Ax, i1, fi1, 2a1} £ { A2, A2, —Az, — Az, 0},

(6) The Lie algebras Lg r1(A, 1), A, ¢ € C\IR, Re A = Rep, A # p, fi, are
not isomorphic to any of the Lie algebras Le v —Le rx, since the spectrum
{\ A, i} is algebraically simple for L = L r7(), p1), which is not the case
for Lie algebras of the classes Lgv—Le 1x-

(7) The Lie algebras Lg rv(A), A € C\ (RU4R), are not isomorphic to
any of the Lie algebras Lgv—Le rx by the same argument as in (6).

(8) We show that Lg v (A1) # Levi(A2), A1, A2 € C\ R. Assume that
Lsv (A1) ~ Le,vi(Az2). Choose the canonical bases as in Constructions 6.5,
6.6:

LG,V(/\l) = Spaﬂ(fBl,yl,Zl,Ul,Ul,wl);

Lo, vi(A2) = span(za, yz2, 22, u2, v2, wa).
The derived subalgebra Lg‘),(/\l) contains the 3-dimensional subspace

I, = span(uq, v1, w1)
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in 1ts center. Thus, there is a 3-dimensional subspace Is in the center of

L((;‘)/—I(Ag). We have

dim(Iz N span(ys, 22, ug, v2)) > 1.
Take any vector
0 # f=ays +bza + cuz + dvs € I5.
We multiply this decomposition by vectors ys, z3, us2, and vz, and obtain
a=b=c=d=0,

a contradiction.

(9) The Lie algebras Lg v (M), A € C\ R, are not isomorphic to any one
of the Lie algebras Le vrr, Levirr, and Lg rx, since dim Lg‘)/(/\) =1 but
dimL$) ;= dim LY} = dim L) = 3.

(10) We show that LG,VI(/\) i LG,VII, LG,VIII, LG,IX, AE C\R, as in
items (8) and (9) above.

(11) We show that Lg vrr % Le,virr. We suppose the contrary, identify
L = Levrir = Levirr, and choose the canonical bases as in Constructi-

ons 6.7 and 6.8:

LG,VII = span(:c,y,z,u,v,w);

! ! ! ! ! !
LG,VIII:Spa'n(x7yazauavaw);
el = y+1z, flzy_iza ez = u+1v, fZZU_iva g = w;

! ! - 1 ! ! - 1 ! ! -7 ! ! -7 ! !
en=y +2, fi=y —iz, es5=u 4+, fr=u—w, ¢ =w.

Then
i 0 0 0 0
1 2 0 0 0
a‘dx|span(€17f17€27f279) = 00 - 00 ?
0 0 —i 0
0 0 0 0 0
l9,e1] = iea, [g, f1] = —ifs,
[glv ell] = _iel27 [glv fﬂ = Zfé (91)
Further,

=z +ae+Pext+afi+Bfzt+yg, o BEC, yeER,
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consequently,
i 0 0 0 0
14wy 2 0 0 i«
ad $I|SPan(€17f17€27f279) = 0 0 —1 0 0
0 0 1—w»y — —i
2 0 —2ia 0 0
Thus,
&) = kler +2ag), e =k(1+in)ea, ke {0},
fi=k(fi+2a9),  fr=Ek(1—iv)fe,
g' = —1/(2i)[eh, f1] = kk(g + ez + @f2),
ikk
g, eh] = 1_|_Z-,Y€l2-

We compare the last relation with (91) and obtain

kk
=1 2
T+iy (92)

which is impossible. The contradiction shows that Le vrr 2 Levirr.
(12) We show that Lgvrr % Lex. By an argument similar to that of
item (11), we obtain from multiplication rules in Lg rx that
[, €] = €3

instead of (91). Now

instead of (92), a contradiction.

(13) By a similar argument, we show that Le vrrr % Le rx.

Therefore, we proved that all classes of Lie algebras Lg ;—Le 1x are pair-
wise nonisomorphic. Now we pass to the study of isomorphisms inside these
classes.

(14) We prove statement (1) of Theorem 6.8.

Necessity. By Lemma 10.2, there exists a number k € R \ {0} such that

{X2, Az pras 2} = k{ A1, Ay pa, i}

It follows from the multiplication rules in Construction 6.1 that in any Lie
algebra Lg 1 (A, 1) = span(z, y, 2, u, v, w), the ideal I = span(u,v) = LY ()
is invariantly defined (see expressions for 5, and f3 in (88), and (89)). Let
I; C Le (A, 1), 5 = 1,2, be such ideals in the isomorphic Lie algebras.
Then

Ly(A1) = Le 1 (A1, p1)/Th ~ Lo 1( Az, p2) /T2 = Ly(As).
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By Theorem 4.3,
{Az, A2} = k{A1, A1}

Necessity follows.
Sufficiency. Let

X2 Ao} = k{A, And, {pos o} = k{pa, a}, k€ R\ {0}

There can be the following four cases:

(1) A2 = kg, p2 = kpas
(2) Ao = bi, s =
(3) A2 = kA1, p2 = kpuas
(4) Ag = kAl, Mo = k/]l
In each of these cases, the required correspondence between the canonical
base vectors in Lg 1 (A1, ft1) = span(z1, y1, 21, 1, v1, w1) and Lg 1(A2, p2) =
span(zz, Y2, 22, Uz, V2, W) is as follows:
(1) @2 = kz1, y2 — Y1, 22 = 21, U2 —> U7, V2 > V1, Wa — W1;
(2) @2 = kz1, y2 — Y1, 22 = 21, Uz > V1, V2 > UL, Wa > WIS
(3) za = kz1, y2 — 21, 22 — Y1, U2 > U1, V2 > V1, Wa > W1;
(4) o > kil, Ya > 21, 22 > Y1, U > V1, V2 > UL, W — W1,
(15) We prove statement (2) of Theorem 6.8.
Necessity follows from Lemma 10.2.
Sufficiency is proved by constructing a correspondence between canonical
bases as in item (14).
(16) Statements (3)—(6) are proved by the argument used in the previous
item. O

7. LOW-DIMENSIONAL SOLVABLE LIE ALGEBRAS

In this section, we collect several propositions that are valid for all con-
trollable low-dimensional solvable Lie algebras.

Theorem 7.1. Let L be a controllable solvable Lie algebra, dim L < 6.
Then the following assertions hold.

(a) The only codimension one subalgebra in L is its derived subalgebra
L.
(b) Let A,B € L. The system T = A+ RB C L is controllable if and
only if the following conditions hold:
(1) B ¢ LW
(2) Lie(A,B) = L.
(c) Let B € L\ LY. Then the system T = A+ RB C L is controllable
for almost all A€ L.

Proof. This proposition follows directly from results of Secs. 1-6. O
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The simple description of all codimension one subalgebras provided by
the previous theorem leads to the following controllability test for arbitrary
(not just control-affine and single-input) right-invariant systems.

Theorem 7.2. Let L be controllable solvable Lie algebra with dim L < 6.
Then an arbitrary right-invariant system % C L is controllable if and only
if the following conditions hold:

(1) Lie(®) = L;
(2) the system X is not contained in any one of the two half-spaces in
L bounded by the hyperplane LY,

Proof. Apply Proposition 1 and Theorem 7.1, (a). O

8. CONTROLLABILITY OF SEGMENTS

The preceding results of this paper were related to right-invariant systems
of the form

I‘:A—I—RB:{A—I—UBMLER}CL, (93)

i.e., afline lines in a Lie algebra L. Moreover, we define a controllable Lie
algebra as a Lie algebra that contains at least one controllable line I'. Now
we pass to right-invariant systems of the form

S={(1-uwA+uB|ucl0,1]}C L, (94)

l.e., segments in L. We obtain complete controllability conditions for seg-
ments and show that the definition of a controllable Lie algebra L can
equivalently be given in terms of controllable segments in L.

Remark. In the classical notation, segment (94) is written as the control
system

X =(1-wA(X)+uB(X), wel0,1], XeGq,

where the state space G is the connected simply connected Lie group cor-
responding to the Lie algebra L.

For a subset X of a vector space L, denote by cone(X) the closed convex
positive cone generated by the set . Recall that a right-invariant system
Y in a Lie algebra L is controllable iff the system cone(X) is controllable.

For an arbitrary Lie algebra L, controllability of a segment S C L obvi-
ously implies controllability of any line T' C L such that cone(S) C cone(T').
The inverse implication holds in solvable Lie algebras.

Theorem 8.1. Let L be a real solvable Lie algebra. A segment S C L s
controllable iff any line T C L with cone(S) C cone(T) is controllable.
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Proof. Necessity is already known, and we pass to sufficiency. Let S C
L be a noncontrollable segment. To prove this theorem, we construct a
noncontrollable line I' C L with cone(S) C cone(T'). By Proposition 1, we
have
(1) Lie(S) # L or
(2) there exists a codimension one subalgebra ! C L such that S is
contained in a half-space IT C L bounded by the hyperplane .

In case (1), the line T O S is the required one:

Lie(T') = Lie(A, B) = Lie(S) # L,
cone(S) C cone(T).

Counsider case (2). If the subalgebra ! contains the space span(S), then
Lie(S) Cl # L,

and we proceed as in case (1). Let span(S) ¢ [. If dimspan(S) = 1,
then Lie(S) = span(S) # L. Therefore, dimspan(S) = 2, i.e., the hy-
perplane ! and the plane span(S) intersect transversally. The intersec-
tion II; = span(S) NII is a half-plane and obviously S C II;. Thus,
cone(S) C cone(Il;) = II;. Take any line T' in the half-plane IT; such
that cone(T') = IT;. The line T is the required one, since

cone(S) C II; = cone(T)

and
I' CII; CII = T isnoncontrollable. [J

Theorem 8.2. A Lie algebra L is controllable (i.e, L contains a control-
lable line (93)) iff L contains a controllable segment (94).

Proof. Sufficiency. If a segment S C L is controllable, then the line I' O §
is also controllable.

Necessity. If a line I' C L is controllable, then a sufficiently long segment
S C T is also controllable. Indeed, let O C span(T') be a circle centered at
the origin. Since the line I' is controllable, the arc

A =0nNcone(l)

is controllable because cone(A) = cone(T'). Further, controllability of right-
invariant systems is preserved under small perturbations (see, e.g., Theo-
rem 2.10 in 8); therefore, any arc A; contained in interior of A and suffi-
ciently close to A is controllable. Then the segment

S =TnNcone(A;) CT

is controllable since cone(S) = cone(41). O
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Therefore, if a solvable Lie algebra L is noncontrollable, then any segment
S C L is noncontrollable. If L is controllable, then it contains a controllable
segment S. A controllability test for segments (as well as for arbitrary right-
invariant systems) in controllable Lie algebras is provided by Theorem 7.2.

9. CONCLUDING REMARKS

The complete description of controllable solvable Lie algebras up to di-
mension 6 obtained in this paper is possible mainly due to the necessary
and suflicient controllability conditions on solvable Lie groups of Theorems 1
and 2 in 7. The most essential gap between these conditions, the absence of
N-pairs of eigenvalues of the operator ad B|; ), almost vanishes in dimen-
sions 1-6. However, in dimension 7, there appear families of Lie algebras
L and vectors A, B € L for which necessary controllability conditions hold,
but sufficient controllability conditions are violated (see Construction 9.1
below). Therefore, the approach of this paper fails starting from dimen-
sion 7. Although, this bound seems to be technical only: the results of
Sec. 7 common for all dimensions 1-6 may well be extended to higher di-
mensions. Intrinsically, the result of Jimmie Lawson (Proposition 1) states
that in solvable Lie algebras, codimension one subalgebras (together with
the rank condition) are responsible for controllability. It seems that in solv-
able Lie algebras L, the following alternative holds:

(1) either the derived subalgebra L) is the only codimension one sub-
algebra;
(2) or there is an infinite number of codimension one subalgebras.

If this alternative is true, then controllable solvable Lie algebras are exactly
Lie algebras with one subalgebra of codimension one, the derived subalge-
bra. The theory of K.H. Hoffmann of codimension one subalgebras 2 can
be helpful in this direction.

We conclude by the seven-dimensional example, a gap between necessary
and sufficient controllability conditions.

Construction 9.1. The Lie algebra L7(A, ), A, it € C\ R; see Fig. 11.

L7(A7 /L) = span(:c, Y, z,u,, 8, t)a

a b 00 0 0
b a 00 0 0
0 0 c d 0 0
a'd$|span(y,z,u,v,s,t) = 0 0 =d ¢ 0 0 ;
0 0 0 0 2a 0
0 0 0 0 0 2

A=a+bi, p=c+ds
[y,z] =5 [U,U] =t
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Fig. 11. Lr(\, ).

Let L = L7z(A, p), A, p € C\R with ¢ = Rep < 0 < Re A = a, and let
A, B € L be any elements such that B ¢ L1) and A(B,\) # 0, A(Bu) # 0.
Then all conditions of Theorem 1 in 7 are satisfied. On the other hand, the
pair (Bg - 2¢, By - 2a) is an N-pair of eigenvalues; thus, condition (6) of
Theorem 2 in 7 is violated.

Remark. After this work was completed, the author found out that Dirk
Mittenhuber 10 obtained a purely algebraic description of controllable solv-

able Lie algebras in arbitrary dimensions. It follows from this description
that the Lie algebra Lz(A, p), A, p € C\ R, XA # u, fi, is controllable.

10. APPENDIX: AUXILIARY PROPOSITIONS
Lemma 10.1. Let L be a real Lie algebra and B € L'\ L(Y). Then
(1) (29 (a), L (b)) € T (a + b) if a,b € SV

LM (a +b) if a,b e SpY,
LW (a +b) if a € SptY)
1 1 C k)
(2) L), 2O(B)] C e st

LW(a+b)+ LM (a+b) ifa,beSpt;
(3) (LM (a), LW (a)] € LW (2Rea) if a € SpP.

[

Proof. (1) follows from the Jacobi identity.
(2) and (3) follow from realification of (1). O
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Lemma 10.2. Let L be a real solvable Lie algebra with dimL(Y) =
dim L — 1. For any elements ¢, B € L'\ LW, consider the decomposition

B=B,z+B', B'erW,
Then

Sp(ad B|yo)) = Be - Splad z[pm));
Sp(ad B|p)) = By - Sp(ad 2|2 )-
Proof. 1t is well known that in any complex solvable Lie algebra there ex-

ists a basis in which all inner derivation operators are triangular (see e.g.
Theorem 3.7.3 in 9). We choose such a basis in the complexification L.:

G *
ade z| ) = 0 . ; 2€ Leg
0 0 A(2)

then

Sp(adcz|L(cl)) =Sp(adz| ) = {Mi(2),..., An(2)}, z€ L.

But the Lie algebra Lﬁl) is nilpotent as the derived subalgebra of a solvable
Lie algebra; consequently, the operator ad, Bl|L(1) is nilpotent, 1.e.,

MBYHY = =0 (BY =0
Therefore,
A1(z)  * *
ach|L(cl) =B, adc:B|L£1) + ad, Bl|L£1) =B, 0 « ;
0 0 An(2)
thus,

Sp(ad B|pa)) = By - {A1(2),..., An(2)} = By - Splad z| ) )-
The relation for the spectra in L(?) is proved similarly. [

Lemma 10.3. Let L be a real Lie algebra such that L # LV £ L(3),
Let B € L\ LW and SpV) Cc R. Then L\ £ L.

Proof. LY = LW £ 1@ = ¥
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Lemma 10.4. Let L be a real Lie algebra, dim LY = dimL—1, A,B €
L, B ¢ LW, and let the spectrum spt) = Sp(ad B|pa)) be geometrically
simple. Consider the decomposition

A=ApB+ A', ApeR, AleLW, (95)

Then the following conditions are equivalent:
(1) top(A,A) £ 0 for all X € spM;
(2) the vector A' does not belong to any proper invariant subspace of

the operator ad B|pa);
(3) span(B, A, (ad B)A,...,(ad B)""2A) = L, n = dim L.

Proof. By Lemma 5.1 in 7, condition (1) is equivalent to the following one:
rank(A', (ad B)A',... ,(ad B)"?AY) =n -1 (96)

(one should just replace in that lemma R™, b, and A respectively by LW,
A', and ad B). Further, (96) is equivalent to

span(Al, (ad B)AY,..., (ad B)""2AY) = L), (97)
which holds iff
span(B, A', (ad B)A',...  (ad B)""2A4') = L.

In view of (95) and since (ad B)A! = (ad B)A, the above relation is equiva-
lent to condition (3) of this lemma. The equivalence (1) < (3) is proved.
The proposition (2) < (3) follows since (97) is equivalent to (2). O

Lemma 10.5. Let L be a real solvable Lie algebra with a codimension
one derived subalgebra LY. Assume that for any element B € L \ LW,
there exists an element A € L such that the system I' = A+ RB C L 1is
controllable. Then the derived subalgebra LY is the only codimension one
subalgebra of L.

Proof. Suppose that [ # LM is another codimension one subalgebra in L.
Take any element B € l\L(l). By Proposition 1, for any A € L, the system
I' = A+ R B is not controllable, since T' is contained in a half-space bounded
by the subalgebra I. The contradiction with the hypothesis of this lemma
completes the proof. [
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