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Structure of the talk

Motivation: Application in medical imaging
Image analysis on Lie groups

Sub-Riemannian problems on 3D Lie groups
(short overview)

Sub-Riemannian problem in SE(2) with given
external cost

Sub-Riemannian problem in SO(3) with
cuspless spherical projection constraint



Motivation:
Computer Aided Diagnosis
system for early detection and
prevention of diabetic retinopathy



Analysis of Images of the Retina

Diabetic retinopathy --- one of the main causes of blindness.
Epidemic forms: 10% people in China suffer from DR.
Patients are found early --> treatment is well possible.

Early warning --- leakage and malformation of blood vessels.
The retina --- excellent view on the microvasculature of the brain.

Diabetes Retinopathy with
tortuous vessels

Healthy retina



Detect Vascular Tree in Images of the Retina

Application: Early diagnosis of diabetes
Problem: Low contrast & crossings & bifurcations & scales
Aim: Reliable tracking of all blood vessels in retina




Sub-Riemannian Geodesics

We use data-driven sub-Riemannian geodesics
for detection and analysis of blood vessel
structure in optical images of the retina.




Lie groups image analysis



Contextual Image Analysis

R. Duits: generic mathematical model for contextual
image analysis via scores on Lie groups with many applications.




Lie Group Analysis via Invertible Orientation Scores

Image Score
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Application of 3D Lie Groups in Image Analysis

* Group of roto-translations of Euclidean plane
SE(2): processing of flat images

* Group of rotations of Euclidean 3-dimensional
space SO(3): processing of spherical images
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Sub-Riemannian problems
on unimodular 3D Lie groups
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Left-invariant sub-Riemannian structures

e (G - 3D Lie group,
L - Lie algebra of left-invariant vector fields on G,
A CTG, A+ [A,A] = TG - left invariant subbundle,

g - left-invariant inner product in A.
e Left-invariant contact sub-Riemannian structure on Lie group:
(G,4A,g), A =span(X1,X2), 9(X;, X;) = 0;5, where X, X> € L.

e Here X, X5 are left-invariant vector fields on a 3D Lie group G,
such that the distribution A is bracket-generating:

Span(Xl(q),Xg(q), [Xl,XQ](Q)) = TqG, q < G.

e SR length minimizers ¢ : [0,t1] — G, ¢(t) € Ay,

l(q \/g ) dt — min.
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Classification of SR structures on 3D Lie groups

SU(2) = 30 3)

-~
A (R)aR

A. Agrachev, D. Barilari (2012):
Complete classification of left-invariant sub-Riemannian structures
on 3D Lie groups in terms of the basic differential invariants x and Y.

[XQ’XI] = Xo, [leXO] = (X+ H)X% [XQ,XO] = (X = "G)Xl
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Optimal Control Problem

e Statement of the problem

¢ = u1X1(q) +u2X2(q), q €6, (u1,u2) € R?,
Q(O) — Ida Q(tl) — ({1,
= otl Vu? + u2 dt — min,

e By Cauchy-Schwarz inequality: J = fo % +u? dt — min.

ODE-based Approach to Optimal Control Problem

1. Existence of SR length minimizers (optimal trajectories),

2. Parametrization of SR geodesics (extremal trajectories) via
PMP,

3. Selection of SR length minimizers among SR geodesics (study
optimality of extremal trajectories).
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Pontryagin Maximum Principle

e Pontryagin function:

u%-}-u%
2

where ¢y € {0, —1}, ¥ = (Y1, 92,%3) # (0,0,0) — momentum variables,

H(r‘rbo-: wa q, U) = d’o

+ (Y, u1 X1 + u2 Xo),

e Maximality condition:
H('l,/)o, wv qa '&') = Inax H(¢09 wa q: U),
ueR?

where (g, u) is an optimal process,
e Hamiltonian system of PMP:

OH
_B_Q’
. OH
q = 5—,41"

) =

(vertical part)

(horizontal part)
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PMP in Moving Frame of References

Abnormal extremal trajectories (g = 0): u; = 0.

Normal extremal trajectories (g = —1):

e Left invariant hamiltonians h;(\) = (¢, X;(q)), where A = (¢, q) € T*G;
e Maximality condition: u; = h;;

e Hamiltonian H = 3(hi(\) + h3()));

e Normal Hamiltonian system of PMP:

A= ﬁ(A), where H is the Hamiltonian vector field corresponding to H.

( hq = hoho,
) ibQ = —h1hyg,
ho = 2xh1ha,
G = hiX1 + haXo.

H is an integral of the system.

16



Vertical Part of the Hamiltonian System

]:l‘l — thO’
ilg = —hlho,
iL() = 2Xh1h2.

¢ = —2xr?sinv.

- - -
» -~
~ - W
A~ - p. SO
- -
-
-
s .
he -
-

Mathematical Pendulum

Horizontal Part -> Extremal Trajectories

Exponential mapping:

Exp : (Ao, t) = (v, ¢co,t) — q(t)
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Optimality of Extremal Trajectories

Short arcs of extremal trajectories g(s) are optimal

Cut time along g(s):
tewr = sup{t > 0| q(s), s € [0,t], is optimal }.
Maxwell time: i

3.q(s) # a(s),  q(0) = 4(0) = qo,
q(t) = q(t) Maxwell point,
t =ty ax Maxwell time.

q(t)

Conjugate time: Maxwell Point

Qeconj — Conjugate point ~

Jeonj  critical  value of Exp:

. oaA N
conjugate time q(tcon;) = Qeonj

Cut time: Conjugate Point

teut = min(t.MAXa tconj)-
18



Sub-Riemannian Wave Front

W(T) = {Exp(Xo, T)|Xo € TiqG, H(Ao) = 5}

Ao = (o, ¢o)

Varying ¢
=
one geodesic
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Sub-Riemannian Wave Front

W(T) = {Exp(Xo, T)|Xo € TiqG, H(Ao) = 5}

Ao = (o, ¢o)

t€[0,T]
Varying 1)
= family of
geodesics
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Sub-Riemannian Wave Front

W(T) = {Exp(Xo,T)| o € T{3G, H(Xo) =

3}

Ao = (o, ¢o)

te|0,T]

2V € Si
Varying cg
=

whole family
of geodesics

21



Self intersection of Sub-Riemannian Wave Front

. General case: astroidal shape of conjugate locus

N
N
N
R S \
A -

N 0s \

A \

S \

N
A
N

/" Special case with rotational symmetry
22
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Sub-Riemannian Sphere
S(T) = {EXI)(/\(),T)|/\0 € TIEG,H()\()) = %,tcut(/\o) > T}.
7

i |
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PDE-based Approach to Optimal Control Problem

Numerical scheme based on Hamilton-Jacobi-
Bellman PDE:

* Derivation of HJB equation that describe wave
front propagation from identity of the group;

e Constructing the distance map (based on
viscosity solution of HJB equation);

 Computing optimal trajectories by steepest
descent on the distance map.

Advantage: It allows extension to non-uniform data-driven cost
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Sub-Riemannian problem in SE(2)
with given external cost

(E.J. Bekkers, R. Duits, A. Mashtakov, G. Sanguinetti)
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SE(2): Group of Roto-translations of a Plane

The group of Euclidean motions (rototranslations) of the plane:
cosf —sinf =x
SE(2) = sinf cosf y ||0eS z,yeR %Ri,yKS(}.
0 0 1

Lie algebra se(2) = Tiq SE(2) = span(Ay, Az, A3),

0 0 1 0 -1 0 0 0 O
Aiy=1 0 0 0 |, A= 1 0 0], A3=1 0 0 1 |.
0 0 0 0 0 0 0 0 0

Lie algebra of left-invariant vector fields L = span(X;, X5, X3)

X1 (Q) = qA17 XQ((]) = ‘IA2, XB(Q) — QA3, g s SE(Q) ;

Via the isomorphism SE(2) 2 R2 , x S}

x,y

X1 ~ Ay =cos00, +sinf0,, Xo~ Az =0y, X3~ Az3= —sinf0, + cosyd,.
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Left-invariant Sub-Riemannian Problem on SE(2)
= ul ./41'7 + u? AQ‘,Y
(0) Id, ~(T)=y,

/ VE2|ul(t)|2 + |u2(t)|2 dt — min,
( ) € SE(2), (u'(t),u(t)) e R?, £>0.

Was solved in recent works:

 |. Moiseeyv, Yu. L. Sachkov, Maxwell strata in sub-Riemannian
problem on the group of motions of a plane, (2010)

* Yu. L. Sachkov, Conjugate and cut time in sub-Riemannian
problem on the group of motions of a plane, (2010)

* Yu. L. Sachkov, Cut locus and optimal synthesis in the sub-
Riemannian problem on the group of motions of a plane,
(2011) (ESAIM:COCV)
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Applications: Cortical Based Model of Perceptual Completion

e Sub-Riemanian structures in neurogeometry of the vision:
— G. Citti and A. Sarti, A Cortical Based Model of Perceptual Com-
pletion in the Roto-Translation Space, 2006.
— J. Petitot, The neurogeometry of pinwheels as a sub-Riemannian

contact structure, 2003

e Variational principle: recovered arc should have minimal length in the
space (z,y,0):

/ \/&2 (&2 + 92) + 62dt — min .

| ﬁ
(xn.Yx)/-\f(’./' \-\__(f:_',_y;- 9' -

\
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Application of SR minimizers in Image Analysis

B2 x S

+ Disentanglement of intersecting
structures,

+ Human brain inspired method
for contour completion,

- Existence of cusp points
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Cuspless Sub-Riemannian Geodesics in SE(2)

2

PCurve(R7) : 0
3
(()—> min, £ free ) % '

X(O) == (), X(() = Xfin
0(0) =), 0((]) — ()fin

Range of the exponential map of PCurve(R?) :

‘R = {EXp(/\(), t)lt < tcusp(/\O)}

]
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SR-Wavefront and SR-Spheres Eo_ommm:%:




Data-driven Sub-Riemannian Geodesics in SE(2)

t) dt — min,

C(x,0) =46+ (1 5)6_)“)(x 6) 0; F=I{83)

V(x,0) = I Iwi S“)Icl,fo | D1, 1) - anisotropic cake wavelets,

32
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Problem Formulation
SR-manifold (SE(2), A = span{A;, A2}, G), where

G (3(8), 4(8)) = €2 (1(8)) (21(t) cos B(t) +5(t) sin (1) > + B(1)[?)

with v : R—SF(2) a smooth curve, £ > 0 constant, and

C:SE(2)— [6,1],0 > 0 is a given external smooth cost.

Optimal Control Problem:

= ut All,y Loy A2|7
7(0) = 1d, Y(T) =g,

1 &
100) = [ CO)VERIOP +@@P dt - min,

v(t) € SE(2), (u(t),u%(t)) e R?, £ >0.

Define £L,6(h) = ¢(g~*h) then G€|(¥,5) = GFs C| A (Lo )Y )

Thus, G€ is not left-invariant, but shifting the cost Iestnct to v(0) = Id.



Motivation of Including of External Cost

- | C(a(t), y(t), 6(1))1/E2u3(t) + u3(t) dt — min



ODE-based Approach
By Cauchy-Schwarz: .J = %f(;r C2(~(t))(E2|ut (t)|? + |u?(t)|?) dt — min.

Pontryagin function: H,(p, g) = u'hy(p, g)+u?ha(p q)——Cz( ) (E2]u']? + [u?]?) .

- 1 h? :
Hamiltonian: H'% (g, p) = 202(9) ( 1 h%) ;
’Il(f) hQ(f)
Extremal controls: u'(t) = . ul(t) =
came YT E6w)
Hamiltonian system:
G o= hohs s iy ,
hy = <e0) Al €+ TGO = erne cos 0,
< ].2.2 - W AQ 7()6 E;”Cz:# < 7/ = WSIHG,
. . 1o h . 19
Vi3 = 2 Asho C ~ Ehoy = =G0

Integration of this system is a very difficult task.
No method to obtain analytic formulas of solution for general C.
ODE-based approach stops here.
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PDE-based Approach

Derivation of HJB equation for propagation of geodesically
equidistant surfaces;

Computing a distance map by numerical solution of BVP for HIB
eq. describing propagation of geodesically equidistant surfaces;

Computing a minimizing geodesic satisfying boundary conditions
by backward integration of Hamiltonian system.




Geodesically Equidistant Surfaces

Definition Given W : SE(2) x RT™ — R continuous. Given a Lagrangian
L(y(r),%(r)) on the SR manifold (SE(2),A,G®), with L(v,-) convex.
Then the family of surfaces

S, :={g € SE2) | W(g,r) = Wy(r)}, with

Wy : R — R monotonic, smooth, is geodesically equidistant if L(~y(r),~(r)) = W{(r).

Lemma  Let L be non-homogeneous and |'nllli>noo Lﬁ;lv) = 00. Then {S;}rer is

geodesically equidistant iff W satisfies the HJB-equation:

PV.(g,r) = —H(dRW (g,7))| with

2 |
dSRW(g>T) PAdW g,T Z: (g,’f’) wz‘g .

3 . - . .
Here P\ (p = >_ hiw') = > h;w" is a dual projection with dual basis w',

i=1
and Hamiltonian H (7, max yv) — L(vy,v)}.
(7, p) UGT_Y(SE@)){(p y—L{a )} )

|| ~.
I



Viscosity Solution of HIB equation

Definition W is viscosity solution of a()_v:/ = —H(dW) if it is a weak solution
such that for all smooth V : (SE(2) x R) = R one has

o if W —V attains a local mazimum at (go,to) then (%{ + H(dV))|(qo i) = 0;
e if W —V attains a local minimum at (go,to) then (—(é))—‘; + H(dV)) |(g().t()) > 0.

L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, 1998.

A. Bressan, Viscosity Solutions of Hamilton-Jacobi Equations and Optimal Control Problems.
Lecture Notes Dep. of Math., Pennsylvania State University, 2011.

Expression HJB in Eikonal form

Lemma  The family of surfaces S; := {g € SE(2) | 20(g) = t} is geodesi-
cally equidistant w.r.t. homogeneous Lagrangian L(~y,7) = \/ GC| - (F; ¥), iff 2

satisfies:

1
E\/E‘QlAﬂIIIZ =F |.AQQHI2 =1,
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Solutions via Data-driven Wavefront Propagation

Theorem 1 Let 2(g) be a solution of the BVP

{ V(C(9)) 72 (§72[A12(9) |2 + [A220(g)[?) —1 =0, for g #e,
NW(e) = 0.

Then the iso-surfaces
Sy = {9 € SE(2) | W(g) =t}
are geodesically equidistant with unit speed.

A SR geodesic departing from g € SE(2) is found by backward integration

Almlfyb(t) AQQB"W,(t)
(fC(’yb(t)))z Al'%(t) o (C(’Yb(t)))z 'A2|‘7b(t) \ ’)’b(O) =g,

Yo(t) = —

Accepted to SSVM; Submitted to SIAM
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Implementation of Solution to the BVP

Iterative implementation to solve BVP:

- Viscosity solutions of subsequent IVP’s for each r € [rg, 7o + €,
with 7o = ne at step n € NU {0}, € > 0 fixed:

{ B(g,7) =1-+/(C(9)2(2[AiWe(g, ) + [AW<(g,7)]?),
W¢(g,m0) = W;g (9).

Here Wi _g = dM the morphological delta.

- After each iteration at time-step r = ro, update W¢(e,r9) = Wy (e) = 0.
For g # e and n > 1 we set Wy, (g) = Wy, _.(g9,70)-

r

- Then we obtain

W(g) = W>(g) = lim lim W*(g,ne),

e—0 n—oo

which satisfies

{ V(C(9)) 2 (2] A120(g)[2 + [A228(9)[2) — 1 = 0, for g # e,
W(e) = 0.
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Solutions via Wavefront Propagation for C=1

Theorem 2 Let (g) be the viscosity solution of BVP:

{ VE2AIW(g)|? + [A220(9)]? —1 =0, for g #e,
W(e) = 0.

Then & = {g € SE(2) | W(g) =t} equals the SR-sphere of radius t.
Backward integration gives optimal geodesics reaching e at t = d(g,e) :=

T
min /O \/|l9(t)|2 + &2|z(t) cos O(t)+y(t) sin 6(t)|? dt.

v € C®([RT,SE(2)),T > 0,
e AY0)=ev(T)=g

N

Solutions given by algorithm do not pass first Maxwell set and conjugate locus
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Numerical Verification for C=1

Converging to Exact Geodesics

Exact
— geodesic ;
“ Worse
— sampling
Better
sampling

(20, Yo, o) = (0,0,0)

SR-sphere Numerically

Exact Wavefront

r

Max Absolute Error

osk, MAX(W-T)

ol — Worse sampling

— Better sampling

Qdr

031

Q2r

1

(T — radius of SR-sphere)

Maxwell Set Numerically

) ) ‘j'r

.,
LA f!
R




Application in Retinal Imaging

Tests on image patches exhibiting crossings:

1) Two seed points were selected manually (for artery and vein),
2) For each seed point the value function W was calculated,
3) Multiple end-points were traced back to the seed point.

Values of parameters in cost function: p =3, 0 =0.3, A =30

Solid curves: ¢ = 0.1 Dashed curves: £ = 0.5



Comparison with Classical Methods

R? - Riemannian SE(2) - Riemannian ~ SFE(2) - Sub-Riemannian




Summary: Data-driven SR-Geodesics in SE(2)

Diabetic Retinopathy (tortuous vessels)

Vessel Tracking esults of vessel tracking by data-driven SR-geodesics

(z,7,0) € SE(2) = R? x S1,

Problem formulation:

A, As
¥ = uy (cos 00, +sinf0,) +uz Iy ,
7(0) =e, ~(T) =g € SE(2),
u1 t) U2(f)) g Rz

Propagation of SR-spheres via HJB system:

| T e——a \ 0 SR- dlstan(‘e from the unity e = (0.0,0) :

| | | W (g) == inf{l(~(t))| (0 )—C,W(T)—g,
L | ¥(t) € span{Ay|, ), A2|y()} a.e. in [0,T7}.

W(g) must satisfy HJB system:

| y ‘{ VEAW (9)? + [A:W(9)*) = C(g), for g # e,

- W(e) =0,
TU / e - e SR-geodesics by steepest decent on W (g) in horizontal directions A;, A

— MAXWELL SET 1 — MAXWELL SET 2

(X




Data-driven SR-Geodesics in SE(2): Results and Plans

Results: new PDE-based approach, that is

 Fast and accurate for C=1,
* Allows fast adaptation for general C,

* At least for C=1 provides the global minimizers
and stays away from both Maxwell and conjugate points,

* Shows promising results in retinal vessel tracking.

Plans:
* Adapt to other 3D Lie groups SL(2), SO(3), H(3) and SH(2)

 Complete vascular tree segmentation via SR Fast Marching,

 Adapt to Lie group SE(3).
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Sub-Riemannian problem in SO(3)
with cuspless spherical projection
constraint

(A. Mashtakov, R. Duits, Y.L. Sachkov, I. Beschastnyi)
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Association Field Model on the Retinal Sphere

Statement of the problem Pcurve(S?):

Given £>0, n;eS? ief0,1}, !

nLe 7,:S%  |nl] =1

Findasmooth curve 7 :[0./] = S* st
v(0) =no, (/) =mny,

7(0) =mh. V(1) =}

E(v(-) = /()l \/52 + kz(s) ds — min,

where

£(5) = 7'()- (1(6) x 7(5)).

Motivation: A natural extension of a model due to J. Petitot, G. Citti and A. Sarti
which additionally takes into account the spherical nature of the retina. It is
important both for cortical modeling and for processing retinal images.
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Pmec(S?): Lift Pcurve(S?) to SR-problem on SO(3)

R=—uRA; + uRA;, R(0)=1d, R(t;) = R:, R €SO(3),
E(R(-)) = J‘ VE2u? +uZdt — min, (up,uz) € RZ, £>0.

We parameterize SO(3) 2 R(x,y,0) = e¥43 e~ %42 o041
and use the map projection from SO(3) 3 R — Re; € S2.

[ ’
|1

- Rz

Analogy with close related
sub-Riemannian problem
on special Euclidean group.
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Pontryagin Maximum Principle

o Left Invariant Hamiltonians h; = (A, X;), 1 =1,2,3

e Maximum Condition .
1

U1 = 6_2, == h2.
e The Hamiltonian system of PMP
ill = —hohg, = 52 L cosf,
ho = glzhlh& Y = —%& sec x sin 6,
53: ( —5%) hihs, 6 = hz sin @ tan x + ho.

vertical part horizontal part
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Vertical Part in Spherical Arclength

For any s € [0, Smax(R(0))), h1(0) > 0 the vertical part
is equivalent to the following linear system:

hl = §2U1 = €2% 2 Oa
h,2(8) — h3(8)7
hi(s) = (€2 — L)ha(s),

| S — e
| —— i ——
} —" ]

’ e e — e W e — - — o > *—— »——F

D e e e e —

...................................................................

Elliptic £ < 1 Linear ¢ = 1 Hyperbolic & > 1"



Horizontal Part

Explicit expressions in terms of Jacobi elliptic functions.




Analysis of Plots of Wave Front

W (T) = {Exp(ho, T)|Xo € T2 SO(3), H(\o) = 1.

Wave fronts in Pp,ec in elliptic (green), linear (red) and hyperbolic (blue) cases.

B | -

Comparison with SE(2) shows local similarity of wave fronts in SE(2) and SO(3).

SE(2) and SO(3)
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Singularities of Wavefront on SO(3)

Rotational symmetry in linear case ¢ = 1.
Conjugate locus is a circle without a point.

For £ # 1 the rotational symmetry is destroyed.
Conjugate and Maxwell points are getting separated and
the conjugate locus has an astroidal shape.
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Cusp Surfaces

Red surface: endpoints of geodesics starting from cusp.
Blue surface: endpoints of geodesics ending in cusp.

e
E &

SE(2):

/

=
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Application for Processing of Spherical
Images of Retina

+ No distortion
+ Existence of geodesics with cuspless projections up to infinity
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Sub-Riemannian geodesics in SO(3) with cuspless spherical
projections: Results

The effect of £ on cuspless S-curves. First cusp time in elliptic case First cusp time in hyperbolic case

=
o
: |

HH

_ ! | I H I
Some .. o M 'L‘*N TAnRERy
geodesics have
no cusp

t

| o s e

Results:

e Lift Peurve(S?) to sub-Riemannian problem on SO(3);

e Hamiltonian system of PMP;

e Classification by different dynamic of vertical part on elliptic ( 0 < £ < 1 ),
linear (¢ = 1) and hyperbolic (£ > 1) cases;

* Explicit expressions for SR-geodesics in both SR-arclength and spherical
arclength parameterization;

e Evaluation of first cusp time and asymptotic analysis &
computation conjugate locus.

 Comparison cusp-surfaces and wavefronts w.r.t. SE(2) 57




Conclusion

Results:

new PDE-based approach for computing SR-geodesics, that
allows extension to data-driven cost

Numerical solution to sub-Riemannian problem in SE(2) with
given external cost

Parameterization of range of exponential mapping in sub-
Riemannian problem in SO(3) with cuspless spherical
projections constraint

Plans:

Adaptation to other Lie groups such as SE(3) and SO(3)
Fast, efficient implementation using ordered upwind schemes

Algorithm for solving BVP for geodesics with cuspless spherical
projection



Thank you for your attention!



