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Abstract

In this paper we study geodesics of left-invariant sub-Riemannian metrics on SO(3) and almost-Riemannian
metrics on S2. These structures are connected with each other, and it is possible to use information about one
of them to obtain results about another one. We give an explicit parameterization of sub-Riemannian geodesics
on SO(3) and use it to get a parameterization of almost-Riemannian geodesics on S2. We use symmetries of
the exponential map to obtain some necessary optimality conditions. We present some upper bounds on the cut
time in both cases and describe periodic geodesics on SO(3).

Introduction

A sub-Riemannian manifold is a triple (M,∆, g), where M is a smooth connected manifold, ∆ is a smooth constant
rank distribution on M and g is a smooth Riemannian metric on ∆. Sub-Riemannian structures often appear in
applications, like quantum control [19], robotics [24–26], image manipulation [1] and many others [30].

In a recent article [6], a full classification of left-invariant sub-Riemannian structures on 3D Lie groups was
given. These structures give the basic and most simple examples of sub-Riemannian manifolds. That is why they
are often used as models for general techniques and as a source of new ideas and intuition for studying more complex
sub-Riemannian manifolds.

One of the most important issues in Riemannian geometry and its generalizations is the description of the
minimal (shortest) curves. This problem can be rather hard, and even in the simplest case of left-invariant 3D
sub-Riemannian manifolds a full description of minimal curves is known only in a small number of cases: the
sub-Riemannian problem on the Heisenberg group [14, 30], its spherical and hyperbolic analogs [15–18] and the
sub-Riemannian problem on SE(2) [23–26]. Some significant progress was also made in the case of SH(2) [2].

In general it is known that geodesic flows of sub-Riemannian structures on 3D unimodular Lie groups are
Liouville integrable [3,4]. Using a notion of curvature for sub-Riemannian manifolds, authors of paper [5] were able
to provide estimates on the conjugate time for the same groups. But a characterization of shortest left-invariant
sub-Riemannian geodesics on SO(3) and SL(2) is still unknown.

Geodesics of sub-Riemannian metrics and Riemannian metrics on SO(3) behave similarly in many ways. The
main reason for this is that any contact sub-Riemannian metric can be obtained as a limit of some family of
Riemannian metrics (the penalty metric, see [30]). After a suitable change of coordinates a Riemannian metric g
becomes diagonal:

gij =

I1 0 0
0 I2 0
0 0 I3

 .

It is well known that Riemannian geodesics on SO(3) describe motions of a free rigid body. The constants Ij
depend on the mass distribution of the body and are called the principal inertia moments. A study of the rotational
movement of rigid bodies was initiated by Euler. In 1766 he wrote down and integrated equations of motion in the
(Euler) case I1 = I2 = I3 [7]. Later, in 1788, Lagrange obtained a parameterization of geodesics for the (Lagrange)
case, when just two principal inertia moments are equal one to another [8]. In the general case equations of motion
were integrated by Jacobi in 1849 after he introduced his famous elliptic functions [9]. Nowadays the free rigid body
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dynamics became a classic topic in mechanics. It is discussed in a number of different text books, like [29] or [10].
Nevertheless, the optimality question seems still to be open in the general case (see [11], Section 6.5.4).

One obtains a sub-Riemannian structure by passing to a limit Ij → +∞ for some j. There is no physical rigid
body that corresponds to the sub-Riemannian case, because there are some additional physical constraints on the
inertia moments [10], the triangle inequalities:

I1 + I2 ≤ I3, I2 + I3 ≤ I1, I3 + I1 ≤ I2.

Nevertheless the sub-Riemannian geodesics still have meaningful applications [20]. Our initial goal was to obtain a
full description of minimal curves on SO(3) equipped with a one-parametric family of left-invariant sub-Riemannian
metrics. In this family there is one particular symmetric structure that corresponds to a bi-invariant metric, which
was completely examined earlier in papers [15–18]. Thus in this article we consider left-invariant metrics that are
not bi-invariant. Although we have not obtained a full description of the minimal curves, we give new necessary
optimality conditions for geodesic curves and some new properties of periodic geodesics. A very brief description
of periodic geodesics was previously given in [14]. In this paper we investigate their topological properties and give
specific conditions for a geodesic to be periodic.

In the second part of the article we study almost-Riemannian problems on the two-sphere. Naively an almost-
Riemannian manifold is obtained in the following way: take an n-dimensional smooth manifold, n vector fields that
are linearly independent almost everywhere and define a metric in which these vector fields form an orthonormal
frame. The set of points where these n vector fields are linearly dependent is called the singular set. Given a
sub-Riemannian structure on SO(3), one can project it down to its homogeneous space S2. After this procedure
the two-sphere is endowed with a structure of an almost-Riemannian manifold.

Almost-Riemannian structures arise in problems of population transfer in quantum mechanics [19,36] and in the
problem of orbital transfer in space mechanics [12]. Geodesics on almost-Riemannian two-spheres were previously
studied in a series of papers [19, 36] in a context of quantum control. Remarkably, authors of these articles were
able to provide an optimal synthesis for a particular initial point on S2 without a full parameterization of geodesics.
In this paper we study the symmetries of the exponential mapping in almost-Riemannian problems on S2 and
obtain some necessary optimality conditions. We then use them to obtain some new bounds on the cut time for
almost-Riemannian geodesics on S2 and sub-Riemannian geodesics on SO(3).

We also note, that during preparation of this manuscript article [21] and preprint [22] appeared, where the
same sub-Riemannian and almost-Riemannian problems were studied. Thus it is reasonable to indicate explicitly
the novelty of some results in this paper. We integrate the Hamiltonian system for sub-Riemannian geodesics
on SO(3) using a well-known approach from mechanics [29, 31], and action-angle coordinates in the dual of so(3)
induced by a pendulum [24]. In [21] and [22] the authors gave a similar parameterization using the same technique,
but omitted details. Here we give a full derivation for parameterization of sub-Riemannian geodesics and use it to
obtain a parameterization for almost-Riemannian geodesics. Using these formulas we give a novel characterization of
periodic geodesics on SO(3) and study their topological properties. The description of symmetries of the exponential
map and necessary optimality conditions in the sub-Riemannian problem are essentially new.

In [22] necessary and sufficient optimality conditions are formulated for geodesics which start from the singular
set. In this paper we show that the sub-Riemannian structure on SO(3) and almost-Riemannian structure on
S2 share a number of discrete symmetries. We use this fact to obtain some optimality conditions in the almost-
Riemannian case. This technique allows us only to give necessary conditions, but we state them for some initial
points that lie outside the singular set. We use the parameterization of geodesics from this paper and results
from [22] to obtain bounds on the cut time for almost-Riemannian geodesics that start from the singular set and for
any sub-Riemannian geodesics on SO(3). Thus the second part of this paper may be considered as complementary
to [21] and [22], where authors have proved many interesting results.

In the following text we use the following notations:

• Ai is the standard basis of so(3) = TId SO(3)

A1 =

0 0 0
0 0 −1
0 1 0

 , A2 =

 0 0 1
0 0 0
−1 0 0

 , A3 =

0 −1 0
1 0 0
0 0 0

 ; (1)

• ei is the basis of R3

e1 =

1
0
0

 , e2 =

0
1
0

 , e3 =

0
0
1

 ; (2)
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• i, j, k is the basis in the space I of imaginary quaternions;

• ηl is the basis in T ∗Id SO(3) dual to Al, i.e., 〈ηl, Am〉 = δlm, l,m = 1, 2, 3.

By a capital letter we denote an element of so(3), by a small letter — the corresponding imaginary quaternion,
and by a small letter with an arrow — the corresponding vector in R3:

Ω ' ω ' ~ω, Ω ∈ so(3), ω ∈ I, ~ω ∈ R3.

The structure of this paper is as follows. In Section 1 we formulate the sub-Riemannian problem. In Section 2
we write down the Hamiltonian system of the Pontryagin maximum principle and integrate it. Periodic geodesics
are studied in Section 3. Symmetries and necessary optimality conditions are given in Section 4. In Section 5
almost-Riemannian structures on S2 are defined and the connection with sub-Riemannian structures on SO(3) is
explained. Symmetries and bounds on the cut time in the family of almost-Riemannian problems are given in
Section 6.

For the reader’s convenience we have summarized all necessary definitions and properties of the elliptic integrals
and Jacobi elliptic functions in Appendix B. The isomorphism between the space I of imaginary quaternions, R3

and so(3) is defined by (47) in Appendix A, where the necessary information about the space of quaternions is
collected.

1 Statement of sub-Riemannian problem on SO(3)

Consider the Lie group SO(3) of rotations of the 3-dimensional space. We can define a left-invariant distribution
in two equivalent ways: as a kernel of a left-invariant one-form or as a linear span of two linearly independent
left-invariant vector fields RX1, RX2. Here X1, X2 are elements of the Lie algebra so(3) and R ∈ SO(3). If the
distribution ∆ is contact, then [X1, X2] /∈ ∆. One can define a left-invariant metric g on ∆ by declaring X1, X2

orthonormal for g.
From the classification of left-invariant structures on 3D Lie groups [6] it follows that X1 and X2 can be chosen

to satisfy the following structure equations:

[X2, X1] = X3, [X1, X3] = (κ+ χ)X2, [X2, X3] = (χ− κ)X1, (3)

where κ ∈ R, χ ≥ 0 are two differential invariants of the sub-Riemannian structure that satisfy κ − χ ≥ 0 in the
case of SO(3). The scaling of the frame {X1, X2} scales proportionally the distance function and both invariants
κ and χ. Thus authors of [6] considered normalized structures for which κ2 + χ2 = 1. For further calculations in
this paper it is more suitable to use the normalization κ + χ = 1. Let also a ∈ [0, 1) be the invariant defined by
a =
√

2χ. Then all non-isometric sub-Riemannian structures on SO(3) are parameterized by a.
It is easily verified that the Lie algebra elements

X1 = A2, X2 =
√

1− a2A1, X3 =
√

1− a2A3 (4)

satisfy the above structure equations.
A Lipschitz continuous curve R : [0, T ] → SO(3) is called horizontal if for a.e. t ∈ [0, T ] we have Ṙ(t) ∈ ∆R(t).

The length of a horizontal curve is defined as usual:

l(R) =

∫ T

0

√
g(Ṙ(t), Ṙ(t))dt.

Our goal is to find minimal horizontal curves that connect two given points R0, R1 ∈ SO(3). Since the problem
is left-invariant, we can assume that R0 is the identity element of SO(3). By the Cauchy-Shwartz inequality,
minimization of the sub-Riemannian length is equivalent to minimization of the action functional

1

2

∫ T

0

g(Ṙ(t), Ṙ(t))dt→ min

with fixed T . Thus we can formulate the problem of finding minimal curves as an optimal control problem of the
form:

Ṙ = R(u1X1 + u2X2), R ∈ SO(3), (u1, u2) ∈ R2, (5)
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R(0) = Id, R(T ) = R1, (6)∫ T

0

u21 + u22
2

dt→ min, T is fixed. (7)

Since ∆R + [∆,∆]R = TR SO(3), the system has full rank and is thus completely controllable. We can reduce
the given optimal control problem with a quadratic cost to a time optimal control problem with the same dynamics
(5), the same boundary conditions (6), but with constraints u21 +u22 ≤ 1 and time minimization functional T → min
(see, for example, [24]). After that we can apply Filippov’s Theorem to establish existence of minimizing curves [27].

If a = 0, then we get the Lagrange sub-Riemannian case, meaning that this sub-Riemannian metric is a limit
of Lagrange Riemannian metrics with I1 = I2 = 1 and I3 → +∞. This case was completely studied in [15], where
the cut time for each trajectory was found, and in [16], where analytic expressions for the sub-Riemannian spheres
were given. In this particular case we have an additional rotational symmetry and a nice geometric interpretation:
the sub-Riemannian problem is just the isoperimetric problem on the sphere. In the rest of the article we assume
that a ∈ (0, 1).

2 Parameterization of sub-Riemannian geodesics

Next we apply the Pontryagin maximum principle (PMP) to obtain a parameterization of geodesics, i.e., curves
whose short arcs are length minimizers. Let g∗ be the dual of Lie algebra g = so(3). We introduce the control-
dependent Hamiltonian of PMP:

Hu(p) = 〈p, u1X1 + u2X2〉+
ν

2
(u21 + u22), p ∈ g∗, ν ≤ 0.

Theorem 1 (Pontryagin maximum principle [27, 39]). If a pair (u(t), Rt) is optimal, t ∈ [0, T ], then there is a
Lipschitz curve p(t) ∈ g∗ and ν ≤ 0 such that:

1. (p(t), ν) 6= 0,

2.


Ṙ = R

∂H

∂p
,

ṗ = ad∗
∂H

∂p
p;

3. H(p) = maxu∈R2 Hu(p).

Here ad∗(·) is the coadjoint representation of the Lie algebra g.
Since in the contact case there are no non-constant abnormal geodesics [6], we can assume that ν = −1. The

maximized Hamiltonian of PMP is

H(p) = max
u∈R2

Hu(p) =
〈p,X1〉2 + 〈p,X2〉2

2
=
p21 + p22

2

with controls
u1 = 〈p,X1〉 = p1, u2 = 〈p,X2〉 = p2.

Thus we have
∂H

∂p
= p1X1 + p2X2.

It is easy to see that

ad
∂H

∂p
=

 0 0 −p2(1− a2)
0 0 p1
p2 −p1 0

 .

Then (
ṗ1 ṗ2 ṗ3

)
=
(
p1 p2 p3

) 0 0 −p2(1− a2)
0 0 p1
p2 −p1 0


and we get the following expression for the Hamiltonian system:

Ṙ = R(p1X1 + p2X2), (8)
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ṗ1 = p3p2,

ṗ2 = −p3p1, (9)

ṗ3 = a2p1p2.

We will perform integration of the Hamiltonian system in three steps. First we integrate the vertical subsystem
(9), since its right-hand side does not depend on the horizontal variables. After a simple change of variables
the vertical subsystem is transformed into the equations of mathematical pendulum for which explicit solution is
known. Next we rewrite the vertical subsystem in the so-called Lax form and use an Euler angles parameterization
for matrix Rt to obtain expressions for two of three Euler angles without solving the corresponding differential
equations. Finally, we use all previous results to integrate the ODE for the last angle in terms of the elliptic integral
of the third kind.

Now we begin the first step. Consider extremal curves parameterized by arclength. In this case we have H = 1
2

and we can express p1 and p2 in the following way:

p1 = cosψ, p2 = − sinψ. (10)

The vertical system (9) becomes

ψ̇ = p3,

ṗ3 = −a
2

2
sin 2ψ

(11)

where ψ ∈ S = R/2πZ.
The cylinder H = 1

2 is divided into regions determined by the energy of the pendulum E = 2p23 − a2 cos 2ψ:

C1 = {λ ∈ C : E ∈ (−a2, a2)},
C2 = {λ ∈ C : E ∈ (a2,+∞)},
C3 = {λ ∈ C : E = a2, p3 6= 0},
C4 = {λ ∈ C : E = −a2},
C5 = {λ ∈ C : E = a2, p3 = 0}.

We use different coordinates for different regions [28] (for definitions of the Jacobi elliptic functions see Appendix
B):

• Elliptic coordinates in C1:

sinψ = s1k sn
(
aθ, k2

)
, s1 = sign (cosψ) ,

cosψ = s1 dn
(
aθ, k2

)
, k ∈ (0, 1),

p3 = ak cn
(
aθ, k2

)
, θ ∈ [0, 4K(k2)/a].

• Elliptic coordinates in C2:

sinψ = s2 sn

(
aθ

k
, k2
)
, s2 = sign(c),

cosψ = cn

(
aθ

k
, k2
)
, k ∈ (0, 1),

p3 =
s2a

k
dn

(
aθ

k
, k2
)
, θ ∈ [0, 4kK(k2)/a].

• Elliptic coordinates in C3:

sinψ = s1s2 tanh aθ,

cosψ =
s1

cosh aθ
,

p3 =
s2a

cosh aθ
,

θ ∈ (−∞,+∞).
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• Solution in C4:

ψ = πn, n ∈ Z,
p3 = 0.

• Solution in C5:

ψ = −π
2

+ πn, n ∈ Z,

p3 = 0.

For integration of the horizontal subsystem (8) we follow a technique that is well known in the literature [29,31].
First we rewrite the vertical subsystem (9) in Lax form.

The Killing form Kill(·, ·) allows us to identify a semisimple Lie algebra g with its dual g∗ via the isomorphism:

Kill : X 7→ Kill(X, ·) ∈ g∗

for any X ∈ g. The biinvariance condition for the Killing form can be written in the following way:

Kill([Z,X], Y ) + Kill(X, [Z, Y ]) = 0.

Let L ∈ g be a vector dual to p ∈ g∗. Take an arbitrary element A ∈ g. Using the equality ∂H
∂p = p1X1 +p2X2 =

Ω, we obtain

Kill(L̇, A) = 〈ṗ, A〉 = 〈ad∗(Ω)p,A〉 = 〈p, [Ω, A]〉 = Kill(L, [Ω, A]) = Kill([L,Ω], A).

Since the Killing form is non-degenerate and A ∈ g is arbitrary, we have

ṗ = ad∗
∂H

∂p
p⇔ L̇ = [L,Ω].

This is the celebrated Lax equation [31].
The Killing form takes the simplest form in the basis Ai. If X = x1A1+x2A2+x3A3 and Y = y1A1+y2A2+y3A3

then

Kill(X,Y ) = −1

2
tr(XY ) =

3∑
i=1

xiyi.

Let νi be the basis in g∗ dual to Xi, i.e.,

〈νi, Xj〉 = δij , i, j = 1, 2, 3.

The basis ηi depends on νi in the following way:

η2 = ν1;

η1 =
√

1− a2ν2;

η3 =
√

1− a2ν3.

Consequently, the Lax equation takes the form:

ṗ2√
1− a2

A1 + ṗ1A2 +
ṗ3√

1− a2
A3 =

[
p2√

1− a2
A1 + p1A2 +

p3√
1− a2

A3, p2
√

1− a2A1 + p1A2

]
.

If we take P =
√

1− a2L, then P , Ω is still a Lax pair:

Ṗ = [P,Ω].

It is easy to check that
Pt = R−1t P0Rt
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is in fact a solution of the Lax equation. Using the isomorphism between so(3) and R3 we can rewrite this solution
in the form

~pt = R−1t ~p0. (12)

From this it follows that the length of ~pt is a conserved quantity. We denote its square by M = |~pt|2 = p22 + p21(1−
a2) + p23.

In order to make use of (12) we introduce a curve Dt ∈ SO(3) such that

~pt =
√
MD−1t e3.

Plugging this expression into (12) we obtain

√
MD−1t e3 =

√
MR−1t D−10 e3 ⇐⇒ D0RtD

−1
t e3 = e3.

From this it follows that D0RtD
−1
t = eαA3 and

Rt = D−10 eαA3Dt. (13)

If Dt is determined, then after differentiating the last expression, we get a differential equation for α, which together
with Dt determines a solution Rt.

We use Euler angles to find such matrix Dt explicitly:

Dt = eφ3A3eφ2A1eφ1A3 .

Since e−φ3A3e3 = e3, we can assume that φ3 = 0. Then

~pt =
√
Me−φ1A3e−φ2A1e3.

Equivalently we have

√
M

 cosφ1 sinφ1 0
− sinφ1 cosφ1 0

0 0 1

1 0 0
0 cosφ2 sinφ2
0 − sinφ2 cosφ2

0
0
1

 =

 p2
p1
√

1− a2
p3

 .

As a result we obtain the following system:

√
M sinφ1 sinφ2 = p2,
√
M cosφ1 sinφ2 = p1

√
1− a2,

√
M cosφ2 = p3;

from which we get expressions for the components of Dt:

cosφ2 =
p3√
M
,

sinφ2 =

√
M − p23
M

, (14)

cosφ1 =
p1
√

1− a2√
M − p23

,

sinφ1 =
p2√
M − p23

.

Finally, we are able to find α. We redefine α = φ3 and consider again expression (13). Let R′t = D0Rt. Then

R′t = eφ3A3Dt = eφ3A3eφ2A1eφ1A3

gives a parameterization of R′t in terms of Euler angles. Since the whole problem is left-invariant and D0 is constant
along each geodesic, we have:

dR′t
dt

= R′t

(
p2
√

1− a2A1 + p1A2

)
.
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After plugging R′t = D0Rt in the equations above we get

p2
√

1− a2A1 + p1A2 = (R′t)
−1Ṙt

′
= φ̇3e

−φ1A3e−φ2A1A3e
φ2A1eφ1A3 + φ̇2e

−φ1A3A1e
φ1A3 + φ̇1A3.

The equivalent vector equality is

p2
√

1− a2e1 + p1e2 = φ̇3(sinφ1 sinφ2e1 + cosφ1 sinφ2e2 + cosφ2e3) + φ̇2(cosφ1e1 − sinφ1e2) + φ̇1e3,

and we get a system of equations

φ̇3 sinφ1 sinφ2 + φ̇2 cosφ1 = p2
√

1− a2,
φ̇3 cosφ1 sinφ2 − φ̇2 sinφ1 = p1,

φ̇3 cosφ2 + φ̇1 = 0.

From the first two equations we get

φ̇3 sinφ2 = p2
√

1− a2 sinφ1 + p1 cosφ1.

If we use expressions (14) for cosφ1, sinφ1 and sinφ2 we obtain a differential equation for φ3 :

±
√
M − p23
M

φ̇3 = ±
√

1− a2√
M − p23

(
p22 + p21

)
⇐⇒ φ̇3 =

√
M(1− a2)

M − p23
=

√
M(1− a2)

1− a2p21
. (15)

We recall that the geodesics will be parameterized in the form Rt = e−φ1(0)A3e−φ2(0)A1eφ3A3eφ2A1eφ1A3 . Then

Rt =


p1(0)

√
1−a2√

M−p3(0)2
p2(0)√
M−p3(0)2

0

− p2(0)√
M−p3(0)2

p1(0)
√
1−a2√

M−p3(0)2
0

0 0 1




1 0 0

0 p3(0)√
M

√
M−p3(0)2

M

0 −
√

M−p3(0)2
M

p3(0)√
M


cosφ3 − sinφ3 0

sinφ3 cosφ3 0
0 0 1



×


1 0 0

0 p3√
M

−
√

M−p23
M

0

√
M−p23
M

p3√
M



p1
√
1−a2√
M−p23

− p2√
M−p23

0

p2√
M−p23

p1
√
1−a2√
M−p23

0

0 0 1

 , (16)

where φ3 satisfies (15). Since R0 = Id we have φ3(0) = 0.
Now we compute M :

1. In C1 we have:

M = k2 sn2(aθ) + (1− a2) dn2(aθ) + a2k2 cn2(aθ) = 1− a2(1− k2).

2. In C2:

M = sn2(aθ) + (1− a2) cn2(aθ) +
a2

k2
dn2(aθ) =

k2 + a2(1− k2)

k2
.

3. In C3:

M = tanh2(aθ) + (1− a2)
1

cosh2(aθ)
+

a2

cosh2(aθ)
=

sinh2(aθ) + 1

cosh2(aθ)
= 1.

4. In C4:
M = 1− a2.

5. In C5:
M = 1.

We summarize all obtained results in Table 1.
To get a full parameterization of geodesics, we only need to integrate (15). We perform the integration separately

for different regions Ci. For the definition of elliptic integral of the third kind Π(n;φ,m) see Appendix B.
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Table 1: Energy bounds, expressions for pi and values of M for different regions

Region
Energy
bounds

Expressions for pi Value of M

C1 (−a2, a2)
p1 = s1 dn(aθ),
p2 = −s1k sn(aθ),
p3 = ak cn(aθ)

1− a2(1− k2)

C2 (a2,+∞)
p1 = cn(aθ/k),
p2 = −s2 sn(aθ/k),
p3 = as2 dn(aθ/k)/k

k2 + a2(1− k2)

k2

C3 {a2}, p3 6= 0
p1 = s1/ cosh(aθ),
p2 = −s1s2 tanh(aθ),
p3 = s2a/ cosh(aθ)

1

C4 {−a2}
p1 = (−1)n,
p2 = 0,
p3 = 0

1− a2

C5 {a2}, p3 = 0
p1 = 0,
p2 = (−1)n,
p3 = 0

1

1. Integration in C1:

φ̇3 =

√
M(1− a2)

1− a2 dn2(aθ)
=

√
M(1− a2)

1− a2(1− k2 sn2(aθ))
=

√
M

1− a2
1

1 + a2k2

1−a2 sn2(aθ)
.

φ3 =

√
M

1− a2

∫ t

0

dτ

1 + a2k2

1−a2 sn2(a(τ + θ0))
=

√
M

a2(1− a2)

∫ aθ

aθ0

dα

1 + a2k2

1−a2 sn2 α

=

√
1− a2(1− k2)

a2(1− a2)

(
Π

(
a2k2

a2 − 1
; am(aθ)

)
−Π

(
a2k2

a2 − 1
; am(aθ0)

))
.

2. Integration in C2:

φ̇3 =

√
M(1− a2)

1− a2 cn2

(
aθ

k

) =

√
M(1− a2)

1− a2
(

1− sn2

(
aθ

k

)) =

√
M

1− a2
1

1 + a2

1−a2 sn2

(
aθ

k

) .

φ3 =

√
M

1− a2

∫ t

0

dτ

1 + a2

1−a2 sn2
(a
k

(θ0 + τ)
) = k

√
M

a2(1− a2)

∫ aθ
k

aθ0
k

dα

1 + a2

1−a2 sn2 α

=

√
k2 + a2(1− k2)

a2(1− a2)

(
Π

(
a2

a2 − 1
; am

(
aθ

k

))
−Π

(
a2

a2 − 1
; am

(
aθ0
k

)))
.

3. Integration in C3:

φ̇3 =

√
M(1− a2)

1− a2

cosh2(aθ)

=

√
M(1− a2) cosh2(aθ)

cosh2 aθ − a2
=
√
M(1− a2)

1− 1

1− 1

a2
cosh2(aθ)

 .

We compute the following integral:

−
∫ t

0

dτ

1− 1

a2
cosh2 a(t+ θ0)

= −1

a

∫ aθ

aθ0

dα

1− 1

a2
cosh2 α

.
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After the change of variable tanhα = y we get dα =
dy

1− y2
and

− 1

a

∫ aθ

aθ0

dα

1− 1

a2
cosh2 α

= −1

a

∫ tanh aθ

tanh aθ0

dy

(1− y2)
(

1− 1
a2(1−y2)

) =
1

a

∫ tanh aθ

tanh aθ0

dy

y2 + 1−a2
a2

=
1√

1− a2
arctan

ay√
1− a2

∣∣∣∣tanh aθ
tanh aθ0

.

As a result we obtain

φ3 =
√

1− a2t+

(
arctan

(
a√

1− a2
tanh aθ

)
− arctan

(
a√

1− a2
tanh aθ0

))
.

4. Integration in C4:

φ̇3 =

√
M(1− a2)

1− a2 cos2(πn)
=

√
M(1− a2)

1− a2
= 1 ⇒ φ3 = t.

5. Integration in C5:

φ̇3 =

√
M(1− a2)

1− a2 cos2
(
π
2 + πn

) =
√
M(1− a2) =

√
1− a2 ⇒ φ3 =

√
1− a2t.

From the parameterization it follows that geodesics which correspond to regions C4 and C5 are uniform rotations
around e1 or e2.

At the end of this section we would like to discuss how to obtain a parameterization of sub-Riemannian geodesics
on S3, which is a double cover of SO(3). Consider a family of sub-Riemannian structures (S3,∆′, g′) where

∆′ = span{X ′1, X ′2}, X ′1 = j/2, X ′2 =
√

1− a2i/2

and
g(X ′l , X

′
m) = δlm, l,m = 1, 2.

Since X ′l satisfy (3), the sub-Riemannian manifolds (S3,∆′, g′) and (SO(3),∆, g) are locally isometric. The
parameterization of sub-Riemannian geodesics on S3 can be obtained in the same way as in SO(3). The Hamiltonian
system of PMP for the sub-Riemannian problem on S3 is

q̇ =
q

2
(p1j + p2

√
1− a2i), (17)

ṗ1 = p2p3,

ṗ2 = −p1p3,
ṗ3 = a2p0p1;

The horizontal subsystem can be integrated by following the same approach as previously discussed by simply
rewriting all expressions in quaternion language using isomorphism between so(3), R3 and I. As a result we get a
parameterization

q(t) = q0e
−φ1(0)

2 ke−
φ2(0)

2 ie
φ3(t)

2 ke
φ2(t)

2 ie
φ1(t)

2 k (18)

where e
φ2(t)

2 i, e
φ1(t)

2 k are quaternions that correspond to rotations eφ2(t)A1 , eφ1(t)A3 and φ1(t), φ2(t) and φ3(t) are
exactly the same as in (14), (15).

In the next section we will use this parameterization of sub-Riemannian geodesics on SO(3) and S3 to study
periodic geodesics on SO(3).
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3 Periodic geodesics on SO(3)

In this section we describe periodic geodesics of the sub-Riemannian problems on SO(3) and study their topological
properties.

First we prove the following lemma.

Lemma 2. Consider the following functions:

G1(a, k) =

√
1− a2(1− k2)

a2(1− a2)
Π

(
a2k2

a2 − 1
; k2
)
,

G2(a, k) =

√
k2 + a2(1− k2)

a2(1− a2)
Π

(
a2

a2 − 1
; k2
)
.

where Π(n; k) is the complete elliptic integral of the third kind (see Appendix B for the definition).
For any fixed a ∈ (0, 1) the functions G1(a, k) and G2(a, k) are positive, smooth and increasing on the interval

k ∈ [0, 1). Their limit values at k = 0 and k = 1 are

lim
k→0

G1(a, k) =
π

2a
, lim

k→1−0
G1(a, k) = +∞;

lim
k→0

G2(a, k) =
π

2
, lim

k→1−0
G2(a, k) = +∞;

Proof. The smoothness property follows form the fact that Gi(a, k) is a product of two smooth functions when
k ∈ [0, 1). We can differentiate G2(a, k) with respect to k using formula (61):

∂

∂k
G2(a, k) =

kE(k2)

a2(1− k2)
√

1
1−a2 + k2

a2

.

This expression is non-negative and equal to zero only if k = 0. Thus the function G2(a, k) is increasing for k ∈ [0, 1).
For k = 0 we have

G2(a, 0) =
π

2
.

It follows that G2(a, k) is positive.
Using formulas (61) and (62) we obtain an expression for the derivative of G1(a, k) with respect to k:

∂G1

∂k
=

E(k2)− (1− k2)K(k2)

a2k(1− k2)
√

1
a2 + k2

1−a2

. (19)

We want to show that ∂G1/∂k ≥ 0, k ∈ (0, 1). First differentiate the numerator of fraction (19) with respect to k:

∂

∂k
(E(k2)− (1− k2)K(k2)) = kK(k2) > 0, 0 < k < 1.

Since the denominator of (19) is positive for any k ∈ (0, 1), and the derivative of the numerator is positive, it is
enough to show that the limit of ∂G1/∂k when k → 0 is non-negative. Using the asymptotic expansions (63) and
(64) for K(k2) and E(k2) we get

lim
k→0

∂G1

∂k
= lim
k→0

π(k2 + o(k2))

2a2k(1− k2)
√

1
a2 + k2

1−a2

= 0.

Therefore G1(a, k) is increasing at the interval k ∈ [0, 1) for any a ∈ (0, 1).
For k = 0 we have

G1(a, 0) =
π

2a
.

Then G1(a, k) is positive for a ∈ (0, 1), k ∈ [0, 1).
From the definition of the elliptic integral of the third kind it follows that for a ∈ (0, 1)

G1(a, k) ≥ K(k2)

1− a2

a2−1
, G2(a, k) ≥ K(k2)

1− a2

a2−1

and from (65) we have, that K(k2)→ +∞ when k → 1− 0. Therefore G1(a, k)→ +∞ and G2(a, k)→ +∞ when
k → 1− 0.
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Proposition 3. For family (5)–(7) of sub-Riemannian problems on SO(3) for any value of a ∈ (0, 1) there exists
an infinite number of periodic geodesics.

Proof. If a geodesic is periodic, then the covector pt must be periodic as well with some period T . In the domains
C1 and C2 the period T is equal to 4K(k2)/a and 4kK(k2)/a correspondingly. Thus the period of a closed extremal
curve must be equal to mT , m ∈ N. From this it follows that eφ1(mT )A3 = eφ1(0)A3 , eφ2(mT )A1 = eφ2(0)A1 and from
(16) we get eφ3(mT )A3 = Id. This is equivalent to φ3(mT ) = 2πn. Since φ3 > 0, we have n ∈ N.

Now we consider geodesics for which pt ∈ C1. From the addition formulas (57) and (58) we get

φ3(mT ) = 2πn ⇐⇒

√
1− a2(1− k2)

a2(1− a2)
Π

(
a2k2

a2 − 1
; k2
)

=
π

2

n

m
.

Different irreducible fractions n/m ∈ Q+ correspond to different periodic geodesics and the existence of an infinite
number of periodic geodesics is reduced to the problem of finding solutions to the equations

G1(a, k) =
π

2

n

m
. (20)

By Lemma 2, the function G1(a, k) is continuous, increasing and for any fixed a ∈ (0, 1) its image is the half-interval
[π/(2a),+∞). Therefore for every irreducible fraction n/m ∈ Q+ that satisfies

n

m
>

1

a
(21)

there exists a unique solution of (20). It is obvious that the number of fractions n/m ∈ Q+ that satisfy this
condition is infinite, thus the existence of an infinite number of closed geodesics follows.

Using exactly the same argument we prove that there is an infinite number of periodic geodesics such that the
corresponding covector pt ∈ C2 and the following condition is satisfied:

n

m
> 1. (22)

If pt ∈ C2 then the initial covector p0 ∈ C2 of the corresponding extremal can be determined from the equation

G2(a, k) =
π

2

n

m
. (23)

Apart from the periodic geodesics found in C1 and C2, there are periodic geodesics that correspond to points
in C4 and C5. In this case extremal trajectories are just rotations around e1 and e2. There are no other periodic
geodesics on SO(3). In fact, for extremal trajectories from C3 the curve pt is never periodic, and periodic geodesics
from C1 and C2 are completely described by conditions (20) and (23).

Since π1(SO(3)) = Z/2Z there are only two homotopy classes of closed paths in SO(3), and as consequence all
non-contractible loops are homotopic. Next we determine which periodic geodesics are null-homotopic. It is well
known that a rotation around a fixed vector by 2π is not contractible in SO(3), but a rotation by 4π is [32]. Thus
it is natural to study contractability of loops on SO(3) when they close up after the first period.

We need two following theorems:

Theorem 4. [34] Let p : X → B be a covering map and x0 ∈ X, b0 ∈ B be such points that p(x0) = b0. For any
path, i.e., any continuous curve γ : [0, 1]→ B, that starts at b0, there exists a unique path γ̃ : [0, 1]→ X that starts
at x0 and such that γ = p ◦ γ̃. The curve γ̃ is called the covering path for γ.

Theorem 5. [35] Let p : X → B be a covering map where X is the universal cover of B. A closed continuous
curve γ : [0, 1]→ B is null-homotopic if and only if all its covering paths on X are closed.

These theorems allow us to find null-homotopic geodesics on SO(3) by studying their covering paths on its
universal cover S3.

Proposition 6. Consider a periodic geodesic Rt ∈ SO(3) that corresponds to a covector curve in C1 or C2, and
which is determined by its fraction n/m ∈ Q+, satisfying conditions (21) or (22). Then the geodesic Rt is null-
homotopic if and only if n is even. All trajectories corresponding to C4 and C5 are non-contractible.
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Figure 1: Projections of periodic geodesics on S2 with pt ∈ C1 and pt ∈ C2.

Proof. Lifted sub-Riemannian geodesics of (SO(3),∆, g) are exactly the corresponding sub-Riemannian geodesics
on (S3,∆′, g′). From Theorem 4 it follows that only geodesics on S3 can be covering paths of geodesics from SO(3),
and from Theorem 5 we know that a geodesic on SO(3) is null-homotopic if and only if all corresponding geodesics
on S3 are closed.

Every geodesic on SO(3) has a pair of covering paths on S3 that satisfy q(0) = ±1 but since the sub-Riemannian
structure on S3 is left-invariant, these trajectories belong to the same homotopy class. Thus we can assume that
q(0) = 1.

Consider first periodic geodesics on SO(3) that correspond to regions C1 and C2 and let us prove that the
covering geodesics are periodic only for even n. In fact, for periodic geodesics on SO(3) we have φ3(mT ) = 2πn.
Therefore

e
φ3(mT )

2 k = cos
φ3(mT )

2
+ k sin

φ3(mT )

2
= cosπn+ k sinπn = (−1)n.

Since φ1(mT ) = φ1(0) and φ2(mT ) = φ2(0), we get from (18)

q(mT ) = e−
φ1(0)

2 ke−
φ2(0)

2 ie
φ3(mT )

2 ke
φ2(mT )

2 ie
φ1(mT )

2 k = (−1)n.

Consequently, if n is even, then the corresponding trajectory on S3 is closed and its projection to SO(3) is null-
homotopic. If this is not the case, then the covering geodesic is not closed and its projection is not contractible.

Since trajectories corresponding to C4 and C5 are just uniform rotations around vectors e1 and e2 they are not
contractible.

Thus we have described all periodic sub-Riemannian geodesics on SO(3) and classified them into two different
homotopy classes.

4 Symmetries of the Hamiltonian system

A point Q ∈ SO(3) is called a Maxwell point for a sub-Riemannian problem on SO(3), if there exist two distinct
geodesics of the same length joining Id with Q.

It is well known that in an analytic sub-Riemannians problem after such a point both geodesics are no longer
optimal [24]. The goal of this section is to obtain some characterization of the Maxwell sets for problem (5)-(7).
This can be done via a symmetry approach that was successfully applied in [24]. We begin by looking for some
symmetries of the exponential mapping. It is natural to expect that the fixed points of these symmetries are Maxwell
points.

We recall that the exponential mapping Exp : C×R+ → SO(3) sends a covector p ∈ C = {p ∈ g∗ : H(p) = 1/2}
and a instant of time t to the end point of the corresponding geodesic. A pair of mappings ε : C × R+ → C × R+
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1

23

45

67

Id

0  

3p

Figure 2: Discrete symmetries in the preimage of the exponential map

and ε′ : SO(3)→ SO(3) is called a symmetry of the exponential map, if the following diagram is commutative:

C × R+
Exp−−−−→ SO(3)

ε

y yε′
C × R+

Exp−−−−→ SO(3)

We can construct some symmetries of the exponential map from the symmetries of the Hamiltonian system
(8)-(9). We start with the vertical subsystem (9) that has the following symmetries:

ε1 : (p1(s), p2(s), p3(s)) 7→ (p1(t− s),−p2(t− s), p3(t− s)),
ε2 : (p1(s), p2(s), p3(s)) 7→ (p1(t− s), p2(t− s),−p3(t− s)),
ε3 : (p1(s), p2(s), p3(s)) 7→ (p1(s),−p2(s),−p3(s)),

ε4 : (p1(s), p2(s), p3(s)) 7→ (−p1(s),−p2(s), p3(s)),

ε5 : (p1(s), p2(s), p3(s)) 7→ (−p1(t− s), p2(t− s), p3(t− s)),
ε6 : (p1(s), p2(s), p3(s)) 7→ (−p1(t− s),−p2(t− s),−p3(t− s)),
ε7 : (p1(s), p2(s), p3(s)) 7→ (−p1(s), p2(s),−p3(s)).

In the phase space of the mathematical pendulum these symmetries are just reflections as it is shown in Figure
2. The variable ψ corresponds to an angle on the (p1, p2)-plane as it can be seen from (10).

The angular velocity matrix has the form

Ωs =

 0 0 p1(s)

0 0
√

1− a2p2(s)

−p1(s) −
√

1− a2p2(s) 0

 .

Under the action of εi the components of Ωs = Ω1
sA1 + Ω2

sA2 + Ω3
sA3 are transformed as follows:

ε1 : (Ω1
s,Ω

2
s, 0) 7→ (−Ω1

t−s,Ω
2
t−s, 0),

ε2 : (Ω1
s,Ω

2
s, 0) 7→ (Ω1

t−s,Ω
2
t−s, 0),

ε3 : (Ω1
s,Ω

2
s, 0) 7→ (−Ω1

s,Ω
2
s, 0),

ε4 : (Ω1
s,Ω

2
s, 0) 7→ (−Ω1

s,−Ω2
s, 0), (24)

ε5 : (Ω1
s,Ω

2
s, 0) 7→ (Ω1

t−s,−Ω2
t−s, 0),

ε6 : (Ω1
s,Ω

2
s, 0) 7→ (−Ω1

t−s,−Ω2
t−s, 0),

ε7 : (Ω1
s,Ω

2
s, 0) 7→ (Ω1

s,−Ω2
s, 0).

By using the matrices Ii = eπAi , it is easy to check that the action of the symmetries can be written in the
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following form:

ε1 : Ωs 7→ −I1Ωt−sI1,

ε2 : Ωs 7→ −I3Ωt−sI3,

ε3 : Ωs 7→ I2ΩsI2,

ε4 : Ωs 7→ I3ΩsI3,

ε5 : Ωs 7→ −I2Ωt−sI2,

ε6 : Ωs 7→ −Ωt−s,

ε7 : Ωs 7→ I1ΩsI1.

Taking into account that I2i = Id one can show that the mappings defined below are symmetries of the horizontal
part of the Hamiltonian system:

ε1 : Rs 7→ I1R
−1
t Rt−sI1,

ε2 : Rs 7→ I3R
−1
t Rt−sI3,

ε3 : Rs 7→ I2RsI2,

ε4 : Rs 7→ I3RsI3,

ε5 : Rs 7→ I2R
−1
t Rt−sI2,

ε6 : Rs 7→ R−1t Rt−s,

ε7 : Rs 7→ I1RsI1.

The action of εi in the preimage of the exponential map is defined as:

ε1 : (t, p1(0), p2(0), p3(0)) 7→ (t, p1(t),−p2(t), p3(t)),

ε2 : (t, p1(0), p2(0), p3(0)) 7→ (t, p1(t), p2(t),−p3(t)),

ε3 : (t, p1(0), p2(0), p3(0)) 7→ (t, p1(0),−p2(0),−p3(0)),

ε4 : (t, p1(0), p2(0), p3(0)) 7→ (t,−p1(0),−p2(0), p3(0)),

ε5 : (t, p1(0), p2(0), p3(0)) 7→ (t,−p1(t), p2(t), p3(t)),

ε6 : (t, p1(0), p2(0), p3(0)) 7→ (t,−p1(t),−p2(t),−p3(t)),

ε7 : (t, p1(0), p2(0), p3(0)) 7→ (t,−p1(0), p2(0),−p3(0)).

The action of εi in the image of the exponential map is defined as:

ε1 : Rt 7→ I1R
−1
t I1,

ε2 : Rt 7→ I3R
−1
t I3,

ε3 : Rt 7→ I2RtI2,

ε4 : Rt 7→ I3RtI3,

ε5 : Rt 7→ I2R
−1
t I2,

ε6 : Rt 7→ R−1t ,

ε7 : Rt 7→ I1RtI1.

Using these definitions it is easy to check that εi are symmetries of the exponential map.
We note that if εi(p0) = p0 then the corresponding geodesic is mapped to itself. The next proposition gives

necessary and sufficient conditions for this to happen.

Proposition 7. Let pt be a solution of (9), θt be the ”angle” parameter of the Hamiltonian system for the math-
ematical pendulum (11) and a ∈ (0, 1). And let τ(t, θ0) and ξ(t, θ0) be functions defined as follows:

τ + ξ = a(t+ θ0),

τ − ξ = aθ0.

Then the following statements are true:
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1.

ε1(p0) = p0 ⇐⇒

{
sn τ = 0, p0 ∈ C1 ∪ C2;

τ = 0, p0 ∈ C3;

2.

ε2(p0) = p0 ⇐⇒

{
cn τ = 0, p0 ∈ C1;

is impossible for p0 ∈ C2 ∪ C3;

3.

ε5(p0) = p0 ⇐⇒

{
cn τ = 0, p0 ∈ C2;

is impossible for p0 ∈ C1 ∪ C3;

4.
εi(p0) = p0 is impossible for i = 3, 4, 6, 7 and p0 ∈ C1 ∪ C2 ∪ C3.

Proof. It is clear from the description of the symmetries that εi(p0) = p0 is impossible for i = 3, 4, 7 and arbitrary
p0. The remaining statements are proved very similarly, so we prove just the second one. We have

ε2(ps) = ps ⇐⇒

 p1(t) = p1(0),
p2(t) = p2(0),
p3(t) = −p3(0).

In C1 from the parameterization of the extremals we get an equivalent system: dn(τ + ξ) = dn(τ − ξ),
sn(τ + ξ) = sn(τ − ξ),
cn(τ + ξ) = − cn(τ − ξ).

Using equations (51)-(53) it is easy to see that a solution of this system satisfies cn τ = 0.
If pt ∈ C2 or pt ∈ C3 then sign(p3(t)) = sign(p3(0)) for all t ≥ 0. So it is clear that in this case the equation

p3(t) = −p3(0) has no solutions.

Next we prove the main result of this section.

Theorem 8. Assume that Rs ∈ SO(3), s ∈ [0, t] is a geodesic and qs ∈ S3 is its corresponding quaternion curve.
Then Rs is not optimal if for some instant of time s0 ∈ (0, t) one of the following conditions is satisfied:

1. q0s0 = 0;

2. q1s0 = 0 and sn τ 6= 0 if p0 ∈ C1 ∪ C2 or τ 6= 0 if p0 ∈ C3;

3. q2s0 = 0 and cn τ 6= 0 if p0 ∈ C1;

4. q3s0 = 0 and cn τ 6= 0 if p0 ∈ C2.

Proof. In view of Proposition 7 and the definition of Maxwell points we only need to show that fixed points of εi

in the image of the exponential map satisfy qi = 0.
For the end-point of the geodesic Rs we have

ε1 : Rt 7→ I1R
−1
t I1,

ε2 : Rt 7→ I3R
−1
t I3,

ε3 : Rt 7→ I2RtI2,

ε4 : Rt 7→ I3RtI3,

ε5 : Rt 7→ I2R
−1
t I2,

ε6 : Rt 7→ R−1t ,

ε7 : Rt 7→ I1RtI1.
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Consider first the symmetries εi with i = 1, 2, 5, 6:

ε1 : I1R
−1
t I1 = Rt,

ε2 : I3R
−1
t I3 = Rt,

ε5 : I2R
−1
t I2 = Rt,

ε6 : R−1t = Rt;

⇒

ε1 : (RtI1)2 = Id,
ε2 : (RtI3)2 = Id,
ε5 : (RtI2)2 = Id,
ε6 : (Rt)

2 = Id .

The corresponding quaternion relations are

ε1 : (qti)
2 = ±1,

ε2 : (qtk)2 = ±1,
ε5 : (qtj)

2 = ±1,
ε6 : (qt)

2 = ±1,

⇒

ε1 :

[
Re(qti) = 0,
qti = ±1;

ε2 :

[
Re(qtk) = 0,
qtk = ±1;

ε5 :

[
Re(qtj) = 0,
qtj = ±1;

ε7 :

[
Re(qt) = 0,
qt = ±1;

⇒

ε1 :

[
q1t = 0,
qt = ±i;

ε2 :

[
q3t = 0,
qt = ±k;

ε5 :

[
q2t = 0,
qt = ±j;

ε7 :

[
qt0 = 0,
qt = ±1.

For the remaining symmetries we have:

ε3 : I2RtI2 = Rt,
ε4 : I3RtI3 = Rt,
ε7 : I1RtI1 = Rt;

⇒
ε3 : RtI2 = I2Rt,
ε4 : RtI3 = I3Rt,
ε7 : RtI1 = I1Rt.

The corresponding quaternion relations are

ε3 : qtj = ±jqt,
ε4 : qtk = ±kqt,
ε7 : qti = ±iqt,

⇒
ε3 : q0t j + q1t k − q2t − q3t i = ±(q0t j − q1t k − q2t + q3t i),
ε4 : q0t k − q1t j + q2t i− q3t = ±(q0t k + q1t j − q2t i− q3t ),
ε7 : q0t i− q1t − q2t k + q3t j = ±(q0t i− q1t + q2t k − q3t j);

⇒

⇒

ε3 :

[
q1t k − q3t i = 0,
q0t j − q2t = 0;

ε4 :

[
q2t i− q1t j = 0,
q0t k − q3t = 0;

ε7 :

[
q3t j − q2t k = 0,
q0t i− q1t = 0.

All the equations that are different from qit = 0 include them as a subsystem. Thus all fixed points of εi in the
image of the exponential map satisfy qi = 0.

We complete this section by discussing the geometric meaning of the symmetries εi in the image of the exponential
map. It easy to see that discrete symmetries εi form a finite group Z2 × Z2 × Z2. So it is enough to discuss the
meaning of some generators of this group, for example, ε3, ε4 and ε6.

Now we look at SO(3) as a unit frame bundle of S2. We can identify an element of SO(3) with a point on the
sphere and a tangent vector at this point. If R ∈ SO(3), its projection on the sphere is simply given by R 7→ Re1.

Let Re1 = xe1 + ye2 + ze3. It is easy to verify by hand that the symmetries ε3 and ε4 are just reflections with
respect to the plane y = 0 and the plane z = 0. These symmetries are shown in Figure 3. Dashed curves are the
reflected curves.

Next we assume that Rte1 6= ±e1. The curve ε6(Rs)e1 is up to some rotation a reflection of the curve Rse1 with
respect to the center of the chord joining e1 with Rte1. By a chord we mean a short arc of the unique great circle
that passes through these two points.

Write down an analytical expression for this reflection of a curve Rse1 in terms of quaternions. The centeral
point of the chord has coordinates

~c =
e1 +Rte1
‖e1 +Rte1‖

.

We can rewrite this in quaternion notations:

c =
i+ qtiq

−1
t

‖i+ qtiq
−1
t ‖

.
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(a) (b)

Figure 3: Action of discrete symmetries on S2: (a) action of ε3; (b) action of ε4

Next we reverse the direction of time on the geodesic qs 7→ qt−s and rotate qt−siq
−1
t−s around ~c by angle π. In this

way we get an expression for the reflection with respect to the middle point of the considered chord:

as = −
(i+ qtiq

−1
t )qt−siq

−1
t−s(i+ qtiq

−1
t )

‖e1 + qte1q
−1
t ‖2

.

Now consider an Euler angle parameterization of Rs:

Rs = eα3(s)A1eα2(s)A3eα1(s)A1 .

Note that αi(s) are different from φi(s) introduced earlier. The claim is that

as = e(α3(t)+α1(t)−π)i/2q−1t qt−siq
−1
t−sqte

−(α3(t)+α1(t)−π)i/2. (25)

Here e(α3(t)+α1(t)−π)i/2 is a quaternion, that corresponds to a rotation around e1 on angle α3(t)+α1(t)−π. Equation
(25) can be verified directly by lengthy computations involving trigonometric functions.

So we have found discrete symmetries of the exponential map and obtained some necessary optimality conditions.

5 Almost-Riemannian geodesics on S2

In the second part of this article we apply the same symmetry approach to study optimality of almost-Riemannian
geodesics. We give some new necessary optimality conditions and bounds on the cut time.

Consider two vector fields on S2 embedded into R3:

X1(~γ) = ~γ × e2, X2(~γ) =
√

1− a2~γ × e1, ~γ ∈ S2 = {x ∈ R3 : |x| = 1},

where ~a×~b is the usual cross product between vectors ~a and ~b. These vector fields span a rank varying distribution
~∆ on S2. Assume also that X1(~γ) and X2(~γ) are orthonormal. In this case S2 is endowed with a structure of an

almost-Riemannian manifold. Let ~γ = xe1 + ye2 + ze3. The set of points where rank ~∆~γ = 1 is called the singular
set S and in coordinates S = {~γ ∈ R3 : |~γ| = 1, z = 0}.

The problem of finding minimal trajectories for the almost-Riemannian structure on S2 can be formulated as
an optimal control problem on a sphere:

~̇γ = ~γ × ~ω, (26)

~γ, ~ω ∈ R3, |~γ| = 1, ~ω = u2
√

1− a2e1 + u1e2, (27)
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Figure 4: Action of ε6 in the image of the exponential map

~γ(0) = ~γ0, ~γ(T ) = ~γT , (28)∫ T

0

√
u21 + u22dt→ min . (29)

A solution of (26) is
~γt = R−1t ~γ0, (30)

where Rt ∈ SO(3) satisfies the following differential equation:

Ṙ = RΩ, R(0) = Id,

and Ω ∈ so(3) is isomorphic to ~ω ∈ R3. The matrix Rt is an operator that maps coordinates of a vector in a moving
frame to coordinates in the stationary frame.

Optimal control problem (26) can be lifted in a natural way to SO(3):

Ṙ = RΩ = R(u2
√

1− a2A1 + u1A2), (31)

R ∈ SO(3), Ω ∈ so(3), (32)

R(0) = eβX0 , R(T ) = eβX0RT , (33)∫ T

0

√
u21 + u22dt→ min . (34)

where β ∈ [0, 2π), X0 ∈ so(3) is isomorphic to ~γ0 ∈ R3, RT ∈ SO(3) is an arbitrary special orthogonal matrix, s.t.
~γT = R−1T ~γ0, eβX0 is the matrix that corresponds to the rotation by angle β around the initial vector ~γ0. As a
result we get an optimal transfer problem between the manifolds eβX0 and eβX0RT .

Let LR : SO(3)→ SO(3) be the left shift

LR : g 7→ Rg, g ∈ SO(3),

let pt ∈ g∗ be a solution of (9) and let λt ∈ T ∗R(t) SO(3) defined by the relation

λt = (dL∗R(t))
−1pt.

Here dLR : so(3) 7→ TR SO(3) is just the differential of the left shift LR. Extremal trajectories in problem (31)-(34)
are sub-Riemannian geodesics on (SO(3),∆, g) that satisfy the transversality conditions

〈λ0, T
(
eβX0

)
〉 = 0, 〈λT , T

(
eβX0RT

)
〉 = 0.
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From left-invariance of the problem it follows that it is sufficient to impose transversality conditions only at the
identity element (see [36] or [27]):

〈p0, X0〉 = 0. (35)

Using the isomorphism between so(3) and R3 we can write this in the form

〈~p0, ~γ0〉 = − sinψ0x0 + cosψ0y0
√

1− a2 + p3(0)z0 = 0.

Thus we can use the parameterization of sub-Riemannian geodesics on SO(3) given in Section 2 to obtain a full
paramaterization of almost-Riemannian geodesics on S2. Given an initial point ~γ0, any almost-Riemannian geodesic
starting from ~γ0 is parameterized as ~γt = R−1t ~γ0, where Rt is a sub-Riemannian geodesic that satisfies the transver-
sality conditions (35).

6 Symmetries of the almost-Riemannian problem on S2

Now we consider symmetries in the otpimal control problem (26)-(29) on the sphere. In the previous section we have
seen that almost-Riemannian geodesics on S2 are projections of sub-Riemannian geodesics on SO(3) that satisfy
transversality conditions. From this we get a system of equations for almost-Riemannian geodesics

~̇γ = ~γ × ~ω, (36)

~̇p = ~p× ~ω, (37)

〈~p0, ~γ0〉 = 0

where ~ω = p1e2 + p2
√

1− a2e1. The second equation is just the Lax equation from Section 2 rewritten in R3 using
the isomorphism between the three-dimensional Euclidean space and so(3) (see Appendix B).

Next we prove the following theorem.

Theorem 9. If the initial point of an almost-Riemanian geodesic ~γs = xse1 + yse2 + zse3 satisfies x0 = 0, y0 = 0
or z0 = 0 and for some instant of time τ > 0 we have xτ = 0, yτ = 0 or zτ = 0 correspondingly, then for all t > τ
the geodesic ~γs, s ∈ [0, t] is not optimal.

Proof. Since the vertical subsystem (37) is the same as in the sub-Riemannian case, we consider symmetries εi.
From the action of εi on Ωs (see (24)) it follows that the angular velocity vector ~ωs is transformed in one of two
following ways:

~ωs 7→ −Ij~ωt−s,
~ωs 7→ Ij~ωs.

This allows us to find symmetries of the horizontal part (36). It is easy to check that the following mappings are
symmetries of system (36),(37):

ε1 :

{
~ps 7→ −I2~pt−s,
~γs 7→ ±I1~γt−s,

(38)

ε2 :

{
~ps 7→ −I3~pt−s,
~γs 7→ ±I3~γt−s,

(39)

ε3 :

{
~ps 7→ I1~ps,
~γs 7→ ±I2~γs,

(40)

ε4 :

{
~ps 7→ I3~ps,
~γs 7→ ±I3~γs,

(41)

ε5 :

{
~ps 7→ −I1~pt−s,
~γs 7→ ±I2~γt−s,

(42)

ε6 :

{
~ps 7→ −~pt−s,
~γs 7→ ±~γt−s,

(43)

ε7 :

{
~ps 7→ I2~ps,
~γs 7→ ±I1~γs.

(44)
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We note that each εi represents two symmetries of the Hamiltonian system (36)-(37), which are characterized by
different signs. If these symmetries are also symmetries of the exponential map in an almost-Riemannian problem on
S2, then they have to satisfy two extra conditions. First, they must be consistent with the transversality conditions.
This is true for all of seven discrete symmetries. In fact, for example, for (40),(41),(44) we have

〈Ij~p0,±Ij~γ0〉 = ±〈~p0, ~γ0〉 = 0.

Secondly, these symmetries must preserve the initial point of a geodesic. It turns out that the second condition is
not always satisfied.

We write down explicitly the action of the symmetries on S2:

ε1 : (xs, ys, zs) 7→ ±(−xt−s, yt−s, zt−s),
ε2 : (xs, ys, zs) 7→ ±(xt−s, yt−s,−zt−s),
ε3 : (xs, ys, zs) 7→ ±(−xs, ys,−zs),
ε4 : (xs, ys, zs) 7→ ±(−xs,−ys, zs),
ε5 : (xs, ys, zs) 7→ ±(xt−s,−yt−s, zt−s),
ε6 : (xs, ys, zs) 7→ ∓(xt−s, yt−s, zt−s),

ε7 : (xs, ys, zs) 7→ ±(xs,−ys,−zs).

Now we find for which sets on S2 the symmetries εi, i = 3, 4, 7, leave the initial points of extremal trajectories
fixed:

ε3 : ~γ0 = ±I2~γ0,
ε4 : ~γ0 = ±I3~γ0,
ε7 : ~γ0 = ±I1~γ0;

⇒
ε3 : x0e1 + y0e2 + z0e3 = ±(−x0e1 + y0e2 − z0e3),
ε4 : x0e1 + y0e2 + z0e3 = ±(−x0e1 − y0e2 + z0e3),
ε7 : x0e1 + y0e2 + z0e3 = ±(x0e1 − y0e2 − z0e3);

⇒

⇒

ε3 :

[
y0 = 0,
y0 = ±1;

ε4 :

[
z0 = 0,
z0 = ±1;

ε7 :

[
x0 = 0,
x0 = ±1.

To prove the statement of the theorem we construct the symmetries of the exponential map in the almost-
Riemannian case similarly to the sub-Riemannian case.

ε3 : (t, ~p0) 7→ (t, I1~p0), ε3 : ~γt 7→ ±I2~γt,
ε4 : (t, ~p0) 7→ (t, I3~p0), ε4 : ~γt 7→ ±I3~γt,
ε7 : (t, ~p0) 7→ (t, I2~p0); ε7 : ~γt 7→ ±I1~γt.

From Proposition 7 we know that symmetries εi, i = 3, 4, 7, have no fixed points in the preimage. Any fixed
point in the image must satisfy x = 0, y = 0 or z = 0 and from this the proof follows.

A list of symmetries and Maxwell sets is given in Tables 2 and 3.

Table 2: Symmetries and corresponding Maxwell sets, part I

Set x0 = 0 y0 = 0 z0 = 0

Initial conditions p3 = −p1y
√

1− a2
z

p3 = −p2x
z

p2x+ p1y
√

1− a2 = 0

Symmetries ε7 ε3 ε4

Maxwell sets xt = 0 yt = 0 zt = 0

In articles [21,22] some similar results were obtained.
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Table 3: Symmetries and corresponding Maxwell sets, part II
Set x0 = ±1 y0 = ±1 z0 = ±1

Initial
conditions

p2 = 0 p1 = 0 p3 = 0

Symmetries ε3 ε4 ε7 ε3 ε4 ε7 ε3 ε4 ε7

Maxwell
sets

yt = 0 zt = 0
yt = 0
zt = 0

xt = 0
zt = 0

zt = 0 xt = 0 yt = 0
yt = 0
zt = 0

xt = 0

Theorem 10 ( [22]). 1. The Gaussian curvature is negative on S2/S for all a ∈ [0, 1).

2. If ~γ0 ∈ S then S \ {~γ0} is the cut locus.

3. The geodesic flow has two reflection symmetries: with respect to S and with respect to the plane x = 0.

First of all, we note that even if the Gaussian curvature is negative everywhere, where it is defined, a geodesic
still can have conjugate points if it crosses S [37]. That is why this argument allows to find the cut locus only for
points on S. Nevertheless any geodesic segment that does not cross the singular set is optimal.

Secondly, since symmetries (38)-(44) are consistent with the transversality conditions, all seven of them are
symmetries of the geodesic flow. But they are symmetries of the exponential map only if they preserve the initial
point.

Using formula (30) one can obtain equations, from which we can find Maxwell times. For all symmetries these
expressions have the form

Bs(t) sinφ3(t) +Bc(t) cosφ3(t) = 0,

where Bs(t), Bc(t) are coefficients that depend on the initial point ~γ0 and ~pt:

1. x0 = ±1, equation yt = 0: √
1− a2p3(t)p1(t) sinφ3(t) +

√
Mp2(t) cosφ3(t) = 0;

2. x0 = ±1, equation zt = 0:

sinφ3(t) = 0;

3. y0 = ±1, equation xt = 0:

−p3(t)p2(t) sinφ3(t) +
√
M(1− a2)p1(t) cosφ3(t) = 0;

4. y0 = ±1, equation zt = 0:

sinφ3(t) = 0;

5. z0 = ±1, equation xt = 0: √
M(1− a2)p1(t) sinφ3(t) + p3(t)p2(t) cosφ3(t) = 0;

6. z0 = ±1, equation yt = 0:

√
Mp2(t) sinφ3(t)−

√
1− a2p3(t)p1(t) cosφ3(t) = 0;

7. z0 = 0, equation zt = 0:

sinφ3(t) = 0;

8. y0 = 0, equation yt = 0:

(Mz0p2(t)− (1− a2)x0p3(t)p1(0)p1(t)) sinφ3(t)

−
√

1− a2
√
M (z0p3(t)p1(t) + x0p1(0)p2(t)) cosφ3(t) = 0;
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9. x0 = 0, equation xt = 0:

√
M(
√

1− a2y0p1(t)p2(0) + z0p3(t)p2(t)) sinφ3(t)

+
(
y0p3(t)p2(0)p2(t)−M

√
1− a2z0p1(t)

)
cosφ3(t) = 0.

In the expressions above we already used transversality conditions and canceled all non-zero multipliers.
Theorem 10 states that if ~γ0 ∈ S then the cut time is the first instant of time t when ~γt ∈ S. From the equations

above it follows that the instant of time t satisfies sinφ3(t) = 0.

Proposition 11. The equation sinφ3(t) = 0 has positive solutions and the first positive root t0 satisfies the following
inequalities:

1. In region C1: t0 ≤ 2K(k2)/a;

2. In region C2: t0 ≤ 2kK(k2)/a;

3. In region C3: t0 ≤ π/
√

1− a2;

4. In region C4: t0 = π;

5. In region C5: t0 = π/
√

1− a2.

Proof. The function φ3(t) is a monotone increasing function of t, which follows from the expression (15) for φ̇3.
Since φ3(0) = 0, the first positive root of sinφ3 = 0 must satisfy φ3 = π.

By using formula (57) in the region C1 we get:

φ3

(
2K(k2)

a

)
=

√
1− a2(1− k2)

a2(1− a2)

(
Π

(
a2k2

a2 − 1
; am(aθ, k2) + π, k2

)
−Π

(
a2k2

a2 − 1
; am(aθ0, k

2), k2
))

=

=

√
1− a2(1− k2)

a2(1− a2)
2Π

(
a2k2

a2 − 1
; k2
)

= 2G1(a, k).

From Lemma 2 we get

φ3

(
2K(k2)

a

)
≥ π, ∀a ∈ (0, 1), k ∈ [0, 1).

Similarly in C2:

φ3

(
2kK(k2)

a

)
=

√
k2 + a2(1− k2)

a2(1− a2)
2Π

(
a2

a2 − 1
; k2
)

= 2G2(a, k).

From Lemma 2 we get

φ3

(
2kK(k2)

a

)
≥ π.

In region C3 we have got earlier this expression

φ3 =
√

(1− a2)t+

(
arctan

(
a√

1− a2
tanh aθ

)
− arctan

(
a√

1− a2
tanh aθ0

))
.

Since tanh a(t + θ0) ≥ tanh aθ0 for all a ∈ (0, 1), θ0 ∈ R and t ≥ 0, the expression in brackets is non-negative.
Taking t = π/

√
1− a2 proves the estimate.

The equalities for the regions C4 and C5 are obvious.

From this we get immediately the following corollary.

Corollary 12. For any almost-Riemannian geodesic on S2, s.t. ~γ0 ∈ S the following bounds on the cut time tcut
hold:

1. In region C1: tcut ≤ 2K(k2)/a;

2. In region C2: tcut ≤ 2kK(k2)/a;
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3. In region C3: tcut ≤ π/
√

1− a2;

4. In region C4: tcut ≤ π ;

5. In region C5: tcut ≤ π/
√

1− a2.

Using bounds in the almost-Riemannian problem it is possible to give bounds for the cut time in the sub-
Riemannian problem on SO(3).

Corollary 13. The following bounds on the cut time tcut in the left-invariant sub-Riemannian problems (5)-(7)
on SO(3) are true:

1. In region C1: tcut ≤ 2K(k2)/a+ π;

2. In region C2: tcut ≤ 2kK(k2)/a+ π;

3. In region C3: tcut ≤ π/
√

1− a2 + π;

4. In region C4: tcut ≤ 2π;

5. In region C5: tcut ≤ π/
√

1− a2 + π.

Proof. We construct a trajectory joining Id with RT ∈ SO(3) that consists of two geodesic segments. Since the
sub-Riemannian problem on SO(3) is left-invariant, we can look for a curve that connects R−1T with Id.

First we find an almost-Riemannian geodesic γs : [0, τ ]→ S2 that connects RT e2 with e2. From Theorem 10 we
know that this geodesic arc is minimal. Its length can be estimated by Proposition 11.

Next we take the corresponding sub-Riemannian geodesic Rs : [0, τ ]→ SO(3) that has the same vertical curve
pt. The terminal position Rτ is up to a rotation around the vector e2 the identity element. But we know that a
rotation around e2 is a sub-Riemannian geodesic on SO(3) of length at most π. From this the proof follows.

Conclusion

In this article we have studied the left-invariant sub-Riemannian problem on SO(3) and the almost-Riemannian
problem on S2 which are connected with each other. In both problems we have studied the symmetries of the expo-
nential map and obtained some necessary optimality conditions. We gave a description of periodic sub-Riemannian
geodesics and studied some of their topological properties. Finally we have obtained some bounds on the cut time
in the almost-Riemannian problem and constructed from this estimates on the cut time in the sub-Riemannian
problem.

In the future we plan to obtain bounds on the Maxwell time and the conjugate time in sub-Riemannian problems
on SO(3). This might allow us to construct optimal synthesis similar to the case of SE(2) [24–26]. In the almost-
Riemannian problem it would be interesting to study some characteristics of the cut and conjugate locus for general
points on S2. Numerical experiments show that for a generic initial point the conjugate locus has four cusps, similar
to the case of Riemannian problem on an ellipsoid. It would be interesting to give a rigorous prove of this statement
and also to find how many cusps has a conjugate locus of a point on the singular set. At last it would be interesting
to obtain a full optimal synthesis for the points z0 = ±1. Numerical simulations suggest that the conjugate locus
in this case is a symmetric astroid and the cut locus is a segment that connects its two opposite cusps. We note
that the Gauss curvature argument will not work here, since the initial point does not lie on the singular set. We
have tried to use the comparison theorems approach from [19] combined with the results from this paper, but we
were able only to show the absence of cut points before the singular set. Solving this particular problem may help
to obtain optimal synthesis for points that lie outside the singular set and give ideas how to deal with singular sets
in other almost-Riemannian problems.
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A Quaternions, SO(3) and R3

Let H = {q = q0 + iq1 + jq2 + kq3 : q0, ..., q3 ∈ R} be the quaternion algebra. The length of q ∈ H is defined as
|q| =

√
q20 + q21 + q22 + q23 . The quaternion q = q0 − iq1 − jq2 − kq3 is called conjugate to q. The inverse quaternion

of q 6= 0 is

q−1 =
q

|q|2
.

Let S3 = {q ∈ H : |q| = 1} be a three-dimensional unit sphere and I = {q ∈ H : q0 = 0} be the space of
imaginary quaternions, which is naturally identified with R3. Every quaternion q ∈ S3 defines a rotation operator
Rq of any vector a ∈ I via conjugation:

Rq : a 7→ qaq−1 ∈ I.

For every Rq there are two distinct quaternions q and −q in S3 that correspond to the same rotation operator and
therefore the mapping p : q 7→ Rq gives a double cover of S3 over SO(3). This covering is a homeomorphism [38]
which is given in coordinates by

p : q 7→

q20 + q21 − q22 − q23 2(q1q2 − q0q3) 2(q0q2 + q1q3)
2(q1q2 + q0q3) q20 − q21 + q22 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 − q21 − q22 + q23

 . (45)

If R ∈ SO(3) is the rotation operator around a nonzero vector ~a = (a1, a2, a3) ∈ R3 by an angle β then the
corresponding unit quaternion q ∈ S3 has the form:

q = cos
β

2
+
a1i+ a2j + a3k

|~a|
sin

β

2
. (46)

The space I of imaginary quaternions is a Lie algebra with a Lie bracket

[a, b] =
ab− ba

2
.

All three spaces I, so(3) and R3 with the cross product are isomorphic as Lie algebras. This isomorphism is given
by:

A = a1A1 + a2A2 + a3A3 ' a = a1i+ a2j + a3j ' ~a = a1e1 + a2e2 + a3e3. (47)

Suppose that R ∈ SO(3) and q ∈ p−1(R). Then the following is true for any A ∈ so(3) ' a ∈ I ' ~a ∈ R3:

RAR−1 ' qaq−1 ' R~a. (48)

The Lie algebras I, SO(3) and R3 carry a natural scalar product given by

(a, b) = (~a,~b) = −1

2
tr(AB) = a1b1 + a2b2 + a3b3.

This is just the Killing form used in Section 2.

B Elliptic integrals and elliptic functions

In this article we have used the following definitions.

1. Elliptic integral of the first kind:

F (φ; k2) =

∫ φ

0

dθ√
1− k2 sin2 θ

; (49)

2. Elliptic integral of the second kind:

E(φ; k2) =

∫ φ

0

√
1− k2 sin2 θdθ (50)
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where 0 ≤ k < 1. The complete elliptic integrals are defined as K(k2) = F (π/2; k2) and E(k2) = E(π/2; k2).
The Jacobi amplitude function am(θ; k2) is the inverse of the elliptic integral of the first kind with respect to θ.

The Jacobi elliptic functions are defined in the following way:

sn(θ; k2) = sin
(
am(θ; k2)

)
;

cn(θ; k2) = cos
(
am(θ; k2)

)
;

dn(θ; k2) =
√

1− k2 sn2(θ; k2).

The functions sn(θ; k2) and cn(θ; k2) are 4K(k2)-periodic and dn(θ; k2) is 2K(k2)-periodic. When it does not lead
to any confusion we omit the modulus k2.

For the Jacobi elliptic functions we have the addition formulas [33]

sn(a± b) =
sn a cn bdn b± sn b cn a dn a

1− k2 sn2 a sn2 b
, (51)

cn(a± b) =
cn a cn b∓ sn a sn bdn adn b

1− k2 sn2 a sn2 b
, (52)

dn(a± b) =
dn adn b∓ sn a sn b cn a cn b

1− k2 sn2 a sn2 b
. (53)

Elliptic integral of the third kind:

Π(n, φ; k2) =

∫ φ

0

dθ

(1− n sin2 θ)
√

1− k2 sin2 θ
.

With a change of variables sin θ = sn(α, k2) it takes the form

Π(n, φ; k2) =

∫ F (φ;k2)

0

dα

1− n sn2(α, k2)
(54)

and the complete elliptic integral of the third kind is denoted by Π(n; k2) = Π(n, π/2; k2).
All three elliptic integrals satisfy a simple addition property of the form [28]

F (φ+mπ; k2) = F (φ; k2) + 2mK(k2), (55)

E(φ+mπ; k2) = E(φ; k2) + 2mE(k2), (56)

Π(n, φ+mπ; k2) = Π(n, φ; k2) + 2mΠ(n; k2). (57)

From (55) one can derive an analogous formula for am(θ, k2):

am(θ + 2mK(k2); k2) = am(θ; k2) +mπ. (58)

The following formulas for the derivatives of the elliptic integrals are true [33]:

dK(k2)

dk
=
E(k2)− (1− k2)K(k2)

k(1− k2)
, (59)

dE(k2)

dk
=
E(k2)−K(k2)

k
, (60)

∂Π(n; k2)

∂k
=

k

(1− k2)(k2 − n)

(
E(k2)− (1− k2)Π(n; k2)

)
, (61)

∂Π(n; k2)

∂n
=

Π(n; k2)−K(k2)

2n(1− n)
− E(k2)

2(k2 − n)(1− n)
. (62)

The following formulas for the asymptotic expansions of the elliptic integrals when k → 0 are true [33]:

K(k2) =
π

2

(
1 +

k2

4

)
+O(k4), (63)

E(k2) =
π

2

(
1− k2

4

)
+O(k4). (64)

When k → 1− 0 we have [33]:

lim
k→1−0

(
K(k2)− ln

4√
1− k2

)
= 0. (65)
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