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Introduction

I Work in Mathematical control theory
I Precisely it belongs to Geometric Control Theory based on:

I Calculus of Variations
I Pontryagin’s Maximum Principle
I Hermann Nagano - Orbit Theorem
I Rashevsky-Chow’s Theorem

I Geometric control is a nonlinear optimal control technique that draws
its strength from:

I Hamiltonian Mechanics
I Lie Groups Theory
I Differential Geometry
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Introduction Continued...

I Competing notion of nonlinear optimal control - HJB equations
I Based on good heuristics and not a mathematical formulation
I Leads to a set of nonlinear partial differential equations

I Applications are numerous
I Robotics
I Quantum Control
I Image processing
I Economics and finance

I Language and tools of research - Pure Mathematics
I Theoretical research with far reaching implications and applications
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Problem Statement
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Sub-Riemannian Manifold (M ,4,g)

Consider a driftless control system:

q̇ =
m

∑
i=1

ui (t)fi (q), q ∈M,

I M is n-dimensional manifold
I fi (q) are the control vector fields (directions along which system can

move)
I M is a sub-Riemannian manifold iff :

I the distribution ∆ = span{f1(q), . . . , fm(q)} has dimension m < n and is
completely non-integrable

I it is endowed with smooth inner product g defined on 4 to measure
distances on the manifold
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Sub-Riemannian Manifold Example

Steering of a Car Problem

 ẋ
ẏ

θ̇

= u1f1(q) +u2f2(q) =

 cosθ

sinθ

0

u1 +

 0
0
1

u2,

∆ = span{f1(q), f2(q)} .

I Dimension of State Space = 3 and dimension of ∆= 2

I Intuitively
I m < n implies that on state space of dimensions n, the system can

move infinitesimally along only m directions
I Motion along other n−m directions is constrained

I With motion constrained along n-m direction, can we still
traverse the whole n dimensional manifold is the important
question
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Sub-Riemannian Problem in General

I Recall we also need g to completely define a sub-Riemannian manifold:

g(u1, . . . ,um) : Rm→ R.

I The Sub-Riemannian length is given as:

l =

t1∫
0

√
g(u1, . . . ,um)dt.

I Given a control system defined by (M,4,g) the sub-Riemannian
problem is to find the control and corresponding trajectories that
minimize the sub-Riemannian length functional l

I Sub-Riemannian problem is the optimal control problem of
nonholonomic systems with sub-Riemannian length as the cost
to be optimized
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Pseudo Euclidean Plane

I Surfaces with constant negative curvature
I It looks like a saddle everywhere
I Polar coordinates of a point (x ,y) on the pseudo Euclidean plane:

x = r coshφ

y = r sinhφ

I Therefore, it is also called hyperbolic plane.

Figure : 1 - Types of Physical Surfaces
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Lie Groups SH(2) of Motions of Hyperbolic Plane

I A smooth manifold that also has a group structure is called a Lie
group.

I Lie groups are ubiquitous and serve as the state manifold of numerous
practical systems

I SE(3)

I The group of 6 DOF rotational and translational motions of a rigid
body moving in space

I Represented by 4x4 homogeneous matrices

I SE(2)

I The group of 3 DOF rotational and translational motions of a rigid
body moving on a plane

I Represented by 3x3 homogeneous matrices
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Lie Groups SH(2) and Lie Algebra sh(2)

I SH(2) – The group of 3 DOF rotational and translational motions of a
rigid body moving on hyperbolic plane

I Matrix Representation of the Lie group SH(2)

M = SH(2) =

 coshφ sinhφ a
sinhφ coshφ b
0 0 1

 , a,b,φ ∈ R.

I Tangent space to Lie Group at the identity – Lie Algebra
I The basis Ai for Lie Algebra sh(2) are given as:

A1 =

 0 0 1
0 0 0
0 0 0

 , A2 =

 0 0 0
0 0 1
0 0 0

 , A3 =

 0 1 0
1 0 0
0 0 0

 .
Yasir A. Butt Thesis Defense June 16, 2015 12 / 70



Sub-Riemannian Problem on SH(2)

I Sub-Riemannian problem on the Lie group SH(2) is stated as:

q̇ = u1f1(q) +u2f2(q), q ∈M = SH(2), (u1,u2) ∈ R2, (1)
q(0) = q0, q(t1) = q1, (2)

l =

t1∫
0

√
u2
1 +u2

2dt→min, (3)

q = (x ,y ,z), f1(q) = qA3, f2(q) = qA1. (4)

I Dimension of M = SH(2) = 3 and dimension of ∆ = span{f1, f2} and

g =
√

u2
1 +u2

2

I Structure (M,∆,g) is complete and defines sub-Riemannian problem
on the Lie group SH(2)

I Note that the vector fields fi (q) are matrices.
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A Physical Model for SR Problem on SH(2)

Figure : 2 - SR Problem Modeled as Unicycle Moving on Hyperbolic Plane

I Unicycle configuration - q = (x ,y ,z)

I (x ,y) - position vector of point of contact with hyperbolic plane
I z - orientation of position vector
I u1 - translational velocity, u2 - rotational velocity
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Research Objectives
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Research Objectives

1 Prove controllability and integrability of the dynamical system
2 Obtain complete parametrization of extremal trajectories

Second Order Optimality Analysis
3 Describe symmetries of the system and corresponding Maxwell

sets
4 Computation of conjugate loci
5 Geometric view of extremal trajectories and Maxwell Strata

through 3D plots sub-Riemannian spheres
6 Obtain complete characterization of the cut locus
7 Describe the global structure of the exponential mapping and

the optimal synthesis
8 Geometric analysis of the cut locus and conjugate locus

through 3D plot of sub-Riemannian caustic
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Controllability and Integrability of the Control
System

I Controllability
I Easy for linear systems
I Extremely difficult, often impossible to prove for nonlinear systems

I Integrability – Prove that nonlinear differential equations can be
explicitly integrated in the form of elementary or special mathematical
functions

I Pontryagin’s Maximum Principle – Necessary optimality conditions
I The trajectories that satisfy PMP are candidate optimal only called

extremal trajectories
I Further analysis based on Maxwell strata and conjugate loci is

necessary to establish optimality
I Explicit integration of the nonlinear differential equations is necessary
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Parametrization of Extremal Trajectories

I The process of integrating the nonlinear differential equations is called
parametrization of extremal trajectories

I Essentially it is equivalent to finding the parametric equations of state
variables of the system

I Consider a linear system:

ẋ = Ax +Bu.

I After integration, the solution to this ODE is:

x = eAtx(0) +

t∫
0

eA(t−τ)B u(τ)dτ.

I Note, all of the state variables are expressed in a common parameter
I A trivial problem for linear system but usually hopeless for nonlinear

systems
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Second Order Optimality Analysis

I After parametrization we have candidate optimal trajectories qs
I The question whether qs is indeed optimal is one of the most

challenging questions in the sub-Riemannian problems
I If q(0) is very close to q(t1), qs is the shortest curve connecting q(0)

to q(t1)

I The set of points where qs loses optimality is called cut locus
I qs can lose optimality for two reasons

I If there exist Maxwell Points along qs
I If there exist conjugate points along qs
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Maxwell Strata

I The locus of the intersection points of geodesics of equal lengths
I These are the set of points qt1 connected by more than one extremal

trajectory with the initial point q0
I The Maxwell set is closely related to optimality of geodesics: a

geodesic cannot be optimal after an intersection with another geodesic
of the same length

Figure : 3 - Concept of Maxwell Point
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Conjugate Loci

I Conjugate locus is the set of points where extremal trajectories lose
local optimality (i.e., optimality with respect to infinitesimally close
extremal trajectories)

I At conjugate points the extremal trajectories lose uniqueness property
and therefore are non-optimal

I Geometrically, at conjugate points extremal trajectories have an
envelope

Figure : 4 - Concept of Conjugate Point
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Motivation

"The majority see the obstacles; the few see the objectives; history records
the successes of the latter, while oblivion is the reward of the former."

Alfred Armand Montapert
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Why Research in Geometric Control Theory is
Important?

I Theoretical results in mathematics have far reaching implications
I Geometric control theory brings together and builds on tools of various

mathematical disciplines
I Geometric control is inherently an optimal control and path planning

technique for nonlinear systems
I Optimal control for nonlinear systems is indispensable for all man

made processes e.g.,
I Network traffic routing, Economics, Management,

I Geometry and differential equations are intertwined and closely related
I Analysis of nonlinear systems relies on geometric techniques

Yasir A. Butt Thesis Defense June 16, 2015 23 / 70



Why Sub-Riemannian Problem on SH(2) is
Important?

I Sub-Riemannian problems are the optimal control problems of
nonholonomic systems e.g.,

I Robotics, Quantum Mechanics, Economics

I Real world surfaces are non-flat
I Shape of universe, space-time and innumerable real world objects is

hyperbolic
I SR problem on SH(2) represents a unicycle moving on hyperbolic plane
I Unicycle is used to model large class of nonholonomic systems in

robotics e.g.,
I Differential drive robots, parking of car, aircraft
I Kinematic model of a helicopter lateral motion is mathematically a

unicycle model
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Geometric Control Machinery

I Obtain the vectorial (Wei–Norman) representation of the control
system

I Investigate the controllability of the system via Lie theory
I Define control dependent Hamiltonian
I Apply PMP and form the Hamiltonian system. This also gives the

open loop optimal control input
I Prove integrability of the system
I Define a suitable transformation to parametrize the extremal

trajectories
I Perform the qualitative analysis of the extremal trajectories
I Use the symmetries of the vertical subsystem to characterize Maxwell

Strata
I Describe conjugate locus where the exponential mapping is degenerate
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Wei–Norman Representation of the
Dynamical System
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Wei- Norman Representation of Control System

I Also known as representation in canonical coordinates of second kind
I Vector fields fi (q) are transformed from matrix to vector form
I According to Wei-Norman representation the solution of a driftless

control system (1) may be expressed in the form:

q = ex1A1ex2A2 . . .exnAn . (5)

I The control system may be represented in new coordinates xi in vector
form as:  ẋ1(t)

...
ẋn(t)

= F (x1, . . . ,xn)

 u1(t)
...

un(t)

 , (6)

where F is analytic in coordinates xi
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Wei- Norman Representation of Control System

I The process considers q̇ and using Baker-Capmbell-Hausdorf formula
we have

q̇ =

 ẋ
ẏ
ż

= u1f1 +u2f2 = u1

 coshz
sinhz
0

+u2

 0
0
1

 .

I It is now easier to work out controllability and integrability of the
system

I This forms part of our paper to be presented in ACC-2015 on July 3rd ,
2015

Yasir A. Butt Thesis Defense June 16, 2015 33 / 70



Controllability

I Lie Bracket

f0 = [f1, f2] =
∂ f2
∂q

f1−
∂ f1
∂q

f2 =−

 0 0 sinhz
0 0 coshz
0 0 0

 0
0
1

 ,

f0 =−

 sinhz
coshz
0

 .

I The Lie Algebra spanned by the distribution is:

Lq∆ = span{f1, f2, [f1, f2]}= TqM

I Rashevskii–Chow’s Theorem - For a connected manifold and
corresponding bracket generating control distribution, the system is
completely controllable.
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PMP Statement

Let ũ(t) be optimal control and q̃(t) be optimal trajectory for t ∈ [0, t1]
and hν

u(λ ) be the Hamiltonian function. Then, there exists a nontrivial pair:

(ν ,λt) 6= 0, ν ∈ R, λt ∈ T ∗q̃(t)M, π(λt) = q̃(t).

where λt is a Lipschitzian curve and a costate variable and ν ∈ {−1,0} is a

number such that following conditions hold for almost all time t ∈ [0, t1]:

λ̇t =
−→
h ν

ũ(t)(λt), (7)

hν

ũ(t)(λt) = max
u∈R2

hν

u(t)(λt), (8)

(ν ,λt) 6= 0. (9)

where
−→
h ν

ũ(t)(λt) is the Hamiltonian vector field corresponding to the
maximized Hamiltonian function hν

ũ(t).
Equations (7)–(9) are called costate or adjoint equation, maximization
condition and non-triviality condition respectively.
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Control Dependent Hamiltonian - ν =−1

I For ν =−1 the trajectories given by PMP are called normal extremal
trajectories.

I The Hamiltonian in this case is given as:

H = h−1
u (λ ) = u1h1(λ ) +u2h2(λ )− 1

2
(
u2
1 +u2

2
)
, u ∈ R2.

I Applying the first order optimality conditions w.r.t the controls:

∂H

∂u
=

(
h1−u1
h2−u2

)
= 0,

=⇒ u1 = h1, u2 = h2.

I Remember hi = 〈λ , fi (q)〉
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Hamiltonian System

I Using Poisson bracket:

ḣ1 = {H,h1}=

{
1
2
(
h2
1 +h2

2
)
,h1

}
= h2 {h2,h1}= h2h0,

ḣ2 = {H,h2}=

{
1
2
(
h2
1 +h2

2
)
,h2

}
= h1 {h1,h2}=−h1h0,

ḣ0 = {H,h0}=

{
1
2
(
h2
1 +h2

2
)
,h0

}
= h1 {h1,h0}+h2 {h2,h0}= h1h2.

I Hence, complete Hamiltonian system in normal case is given as:

ḣ1

ḣ2

ḣ0
ẋ
ẏ
ż

=



h2h0
−h1h0
h1h2

h1 coshz
h1 sinhz

h2

 . (10)
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Liouville Integrability of the Hamiltonian System

I Prove that Hamiltonian system can be integrated and has a closed
form solution

I Proof is based on the existence of constants or invariants of motion
i.e., quantities that remain conserved along the system trajectories

Liouville’s Theorem
If a 2n-dimensional Hamiltonian system with n degrees of freedom has n
integrals of motion f1; ; fn in involution, {fi ; fj}= 0 and functionally
independent on the (intersection of) level sets of the n functions, fi = Fi ,
then the solutions of the corresponding Hamiltonian system can be found
by quadratures.
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Liouville Integrability of the Hamiltonian System

Theorem
The normal Hamiltonian system (10) in sub-Riemannian problem on Lie
group SH(2) is integrable by quadratures.

I We compute the right invariant Hamiltonians
I Prove that they Poisson commute and are functionally independent
I Yasir Awais Butt, Aamer Iqbal Bhatti, Yuri L. Sachkov, “Integrability

by Quadratures in Optimal Control of a unicycle on a hyperbolic
plane”, Accepted for presentation in American Control Conference,
Chicago, Illinois, 1–3 Jul 2015
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Parametrization of Extremal Trajectories
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Vertical Subsystem

Theorem
Vertical subsystem of the Hamiltonian system (10) in normal case is a
mathematical pendulum.

I Introduce following coordinates transformation:

h1 = cosα, h2 = sinα.

I Another change of coordinates:

γ = 2α ∈ 2S1 = R/4πZ, c =−2h0 ∈ R,(
γ̇

ċ

)
=

(
c

−sinγ

)
.

I Hence h1 = cosγ/2, h2 = sinγ/2
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Hamiltonian System

I Hence, complete Hamiltonian system in normal case is given as:

ḣ1

ḣ2

ḣ0
ẋ
ẏ
ż

=



h2h0
−h1h0
h1h2

cos γ

2 coshz
cos γ

2 sinhz
sin γ

2

 . (11)
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Decomposition of Phase Cylinder of the Vertical
Subsystem

I Energy of the pendulum is given as:

E =
c2

2
− cosγ.

I Phase cylinder of the pendulum may be decomposed according to the

energy of the system as:

C =
5⋃

i=1

Ci ,

C1 = {λ ∈ C |E ∈ (−1,1)},
C2 = {λ ∈ C |E ∈ (1,∞)},
C3 = {λ ∈ C |E = 1,c 6= 0},
C4 = {λ ∈ C |E =−1}= {(γ,c) ∈ C |γ = 2πn,c = 0}}, n ∈ N,
C5 = {λ ∈ C |E = 1}= {(γ,c) ∈ C |γ = 2πn+ π,c = 0}, n ∈ N.
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Decomposition of Phase Cylinder of the Vertical
Subsystem

Figure : 5 - Decomposition of the Phase Cylinder and the Connected Subsets
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Elliptic Coordinates on The Phase Cylinder of
Vertical Subsystem

I λ = (ϕ,k) ∈ C1

k =

√
E +1
2

=

√
sin2 γ

2
+

c2

4
∈ (0,1),

sin
γ

2
= s1k sn(ϕ,k), s1 = sgn

(
cos

γ

2

)
,

cos
γ

2
= s1dn(ϕ,k),

c

2
= k cn(ϕ,k), ϕ ∈ [0,4K (k)].

where k is the re-parametrized energy and ϕ is the re-parametrized time of
motion of pendulum
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Rectification of Flow in Elliptic Coordinates

Theorem
The elliptic coordinates cause the flow of vertical subsystem to be rectified
i.e., the flow lines become parallel to each other.

k̇ = 0.
ϕ̇ = 1.

Figure : 6 - Rectification of Flow LineYasir A. Butt Thesis Defense June 16, 2015 46 / 70



Parametrization of Extremal Trajectories

Theorem
In case 1 extremal trajectories are parametrized as follows:


xt

yt

zt

=



s1
2

(
w + 1

w(1−k2)

)
[E(ϕt)−E(ϕ)]+

s1
2

(
k

w(1−k2)
−kw

)
[snϕt − snϕ]

1
2

(
w − 1

w(1−k2)

)
[E(ϕt)−E(ϕ)]−

1
2

(
k

w(1−k2)
+kw

)
[snϕt − snϕ]

s1 ln [(dnϕt −kcnϕt).w ]


where w = 1

dnϕ−kcnϕ
.

Yasir A. Butt Thesis Defense June 16, 2015 47 / 70



Parametrization of Extremal Trajectories

Theorem
In case 2 extremal trajectories are parametrized as follows:


xt

yt

zt

=



1
2

(
1

w(1−k2)
−w

)[
E(ψt)−E(ψ)−k ′2(ψt −ψ)

]
1
2

(
kw + k

w(1−k2)

)
[snψt − snψ] ,

− s2
2

(
1

w(1−k2)
+w

)[
E(ψt)−E(ψ)−k ′2(ψt −ψ)

]
s2
2

(
kw − k

w(1−k2)

)
[snψt − snψ] ,

s2 ln[(dnψt −kcnψt).w ],


where w = 1

dnψ−kcnψ
.
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Parametrization of Extremal Trajectories

Theorem
In case 3 extremal trajectories are parametrized as follows: xt

yt
zt

=

 s1
2

[ 1
w (ϕt −ϕ) +w (tanhϕt − tanhϕ)

]
s2
2

[ 1
w (ϕ−ϕ0)−w (tanhϕt − tanhϕ)

]
−s1s2 ln[w sechϕt ]


where w = coshϕ .
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Parametrization of Extremal Trajectories

Theorem
In case 4, 5 extremal trajectories are parametrized as follows: x

y
z

=

 sgn
(
cos γ

2

)
t

0
0

 .

 x
y
z

=

 0
0

sgn
(
sin γ

2

)
t

 .

I Y. A. Butt, Yuri L. Sachkov, A. I. Bhatti, “Extremal Trajectories and
Maxwell Strata in SR Problem on Group of Motions of
Pseudo-Euclidean Plane”, JDCS, (2014)

I Y. A. Butt, Yuri L. Sachkov, A. I. Bhatti, “Extremal Trajectories and
Maxwell Points in SR Problem on the Group SH(2)”, International
Conference on Mathematical Control Theory and Mechanics, Suzdal,
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Complete Description of Maxwell Strata
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Description of Maxwell Strata

I The vertical subsystem of the Hamiltonian system is a mathematical
pendulum which has reflection symmetries

I We use the reflection symmetries to find the fixed points in the image
and in the preimage of the exponential mapping

I These points form the Maxwell set corresponding to the reflection
symmetries

MAX i =
{

ν = (λ , t)∈N = C ×R+ | λ 6= λ
i , Exp(λ , t) = Exp(λ

i , t)
}
,

Max i = Exp(MAX i )⊂M.

Figure : Reflections ε i : δ → δ iof trajectories of a pendulum
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Description of Maxwell Strata

I We computed the manifold in which the Maxwell points are located

R1 = y cosh
z

2
−x sinh z

2
= 0, R2 = x cosh

z

2
−y sinh z

2
= 0, z = 0.

Theorem
First Maxwell time is bounded as:

λ ∈ C1 =⇒ tMAX
1 (λ ) = 4K (k),

λ ∈ C2 =⇒ tMAX
1 (λ ) = 4kK (k),

λ ∈ C3∪C4∪C5 =⇒ tMAX
1 (λ ) = +∞.

I In our later work we have also proved that the cut time is equal to the
first Maxwell time

I This involves the proof of the conjecture that the exponential mapping
is a diffeomorphism

I Results have important implications in optimal control of unicycle like
systems on hyperbolic plane
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Conjugate Locus in SR Problem on
SH(2)
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Conjugate Locus

I A point qt = Exp(λ , t) is called a conjugate point for q0 if
ν = (λ , t) = (γ,c , t) is a critical point of the exponential mapping, qt
being its critical value i.e.,

dνExp : TνN→TqtM is degenerate,

where dνExp amounts to the Jacobian J of the exponential mapping
i.e.,

J =
∂ (xt ,yt ,zt)

∂ (γ,c , t)
=

∣∣∣∣∣∣∣
∂xt
∂γ

∂xt
∂c

∂xt
∂ t

∂yt
∂γ

∂yt
∂c

∂yt
∂ t

∂zt
∂γ

∂zt
∂c

∂zt
∂ t

∣∣∣∣∣∣∣= 0.
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Conjugate Locus

I The proof is based on several concepts such as homotopy
I An important fact is that first conjugate point is upper bounded by

the same functions that correspond to the second Maxwell times

Theorem
The nth conjugate times are bounded as:

λ ∈ C1 =⇒ 4nK (k)≤ tconj
2n−1 ≤ 2pn1(k), 2pn1(k)≤ tconj

2n ≤ 4(n+1)K (k),

λ ∈ C2 =⇒ 4nkK (k)≤ tconj
2n−1 ≤ 2kpn1(k), 2kpn1(k)≤ tconj

2n ≤ 4(n+1)kK (k),

λ ∈ C4 =⇒ tconj
1 (λ ) = 2π.

I Yasir Awais Butt, Yuri L. Sachkov, Aamer Iqbal Bhatti, “Maxwell
Strata and Conjugate Points in SR Problem on Group SH(2)”,
International Youth Conference Geometry and Control, Moscow, 2014

I Yasir Awais Butt, Yuri L. Sachkov, Aamer Iqbal Bhatti, “Maxwell
Strata and Conjugate Points in the SR Problem on the Lie Group
SH(2)”, Submitted to SIAM Journal of Control and Optimization, 2014Yasir A. Butt Thesis Defense June 16, 2015 56 / 70



Conjecture

Generalized Rolle’s Theorem
Between any two Maxwell points there is one conjugate point, along any
geodesic.

I We proved in our final work that this conjecture holds for SR problem
on SH(2).
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Plot of Sub-Riemannian Sphere

Figure : 8 - Sub-Riemannian sphere of radius R=2
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Plot of Sub-Riemannian Wavefront

Figure : 9 - Cutout of the sub-Riemannian wavefront for R = 2
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Plot of Sub-Riemannian Wavefront

Figure : 10 - Sub-Riemannian wavefront with self intersections in the planes
zt = 0 for R = 2
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Plot of Matryoshka of Sub-Riemannian Wavefront

Figure : 13 - Matryoshka of sub-Riemannian wavefronts WR for R = 1,2,3
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Plot of Sub-Riemannian Caustic

Figure : 12 - Sub-Riemannian caustic
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Plot of Sub-Riemannian Caustic - Local
Component

Figure : 13 - Local Component of the sub-Riemannian caustic
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Plot of Sub-Riemannian First and Second Caustic

Figure : 14 - Sub-Riemannian first and second caustic
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Novelty of Research Problem and Results

Two aspects of novelty:
I Research discipline - Geometric control is a relatively new field with

only handful of people involved in this research
I SR problem has not been considered on Lie group SH(2) prior to this

work
I In depth analysis of extremal trajectories on SH(2)
I Integrability of of the Hamiltonian system on Lie group SH(2)
I Description of the Maxwell points and calculation of the upper bound

on cut time
I Characterization of conjugate loci
I Global explicit description of cut time and cut locus and optimal

synthesis
I Transformation between SH(2) and SOLV− has been obtained
I Geometric description of global component of the sub-Riemannian

caustic
I Proof of Generalized Rolle’s theorem
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Main Contributions of Research Work

1 Proving the controllability and the integrability of the dynamical
system

2 Obtaining parametrization of extremal trajectories in elliptic
coordinates and Jacobi elliptic functions.

3 Complete description of Maxwell strata
4 Characterization of conjugate loci
5 Geometrical view of sub-Riemannian wavefront and sphere
6 Complete description of cut loci
7 Transformation between SH(2) and SOLV− has not been obtained
8 Geometric description of global component of the sub-Riemannian

caustic
9 Proof of Generalized Rolle’s theorem
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Research Publications

6. Y. A. Butt, Y. L. Sachkov, A. I. Bhatti, “Cut Locus and Optimal Synthesis
in SR Problem on the Lie Group SH(2)”, To be Submitted

5. Y. A. Butt, Y. L. Sachkov, A. I. Bhatti, “Maxwell Strata and Conjugate
Points in the SR Problem on the Lie Group SH(2)”, Submitted to SICON,
2014

4. Y. A. Butt, A. I. Bhatti, Y. L. Sachkov, “Integrability by Quadratures in
Optimal Control of a unicycle on a hyperbolic plane”, Accepted for
presentation in ACC, 1–3 Jul 2015, Chicago, Illinois

3. Y. A. Butt, Y. L. Sachkov, A. I. Bhatti, “Extremal Trajectories and Maxwell
Strata in SR Problem on Group of Motions of Pseudo-Euclidean Plane”,
JDCS, 2014

2. Y. A. Butt, Y. L. Sachkov, A. I. Bhatti, “Maxwell Strata and Conjugate
Points in SR Problem on Group SH(2)”, International Youth Conference
Geometry and Control, Moscow, 2014

1. Y. A. Butt, Y. L. Sachkov, A. I. Bhatti, “Extremal Trajectories and Maxwell
Points in SR Problem on the Group SH(2)”, International Conference on
Mathematical Control Theory and Mechanics, Suzdal, Russia, 2013
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Future Work

I Apply methods to a physical system such as differential drive robot or
a car with trailer system

I Develop software for computation of optimal trajectories
I Work on another exciting research problem i.e.,

Generalized Dido Problem
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Questions
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Conclusion

I Sub-Riemannian problem on Lie Group SH(2) was considered
I All of the proposed research objectives have been achieved
I Analysis techniques developed in previous similar works have been

extended
I Three conference papers and three journal papers have been produced
I Some advanced results have been achieved, i.e.,

1 Orthogonal transformation between Lie groups SH(2) and SOLV−
2 Generalized Rolle’s theorem
3 Description of the global component of the sub-Riemannian caustic
4 Global explicit description of cut time and cut locus and optimal

synthesis

I Overall learning experience has been overwhelming

“The only true wisdom is in knowing that you know nothing”.

Socrates
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