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Abstract

Left-invariant sub-Riemannian problems on unimodular 3D Lie groups

are considered. For the Hamiltonian system of Pontryagin maximum prin-

ciple for sub-Riemannian geodesics, the Liouville integrability and super-

integrability are proved.
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1 Introduction

Let G be a connected 3-dimensional Lie group, and L the Lie algebra of left-
invariant vector fields on G. A left-invariant contact sub-Riemannian structure
on G is a rank 2, left-invariant subbundle ∆ ⊂ TG, ∆+ [∆,∆] = TG, endowed
with a left-invariant inner product g in ∆. Sub-Riemannian (SR) minimizers
are Lipschitzian curves q : [0, t1] → G such that q̇(t) ∈ ∆q(t) for almost all

t ∈ [0, t1], and the length of the curve l(q(·)) =

∫ t1

0

√

g(q̇(t), q̇(t)) dt is the

minimum possible for all curves that connect two given points: q(0) = q0 and
q(t1) = q1.

A left-invariant sub-Riemannian structure can be defined by a left-invariant
orthonormal frame f1, f2 ∈ L:

∆q = span(f1(q), f2(q)), g(fi(q), fj(q)) = δij , i, j = 1, 2. (1)
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Then SR minimizers are solutions to the optimal control problem

q̇ = u1f1(q) + u2f2(q), q ∈ G, (u1, u2) ∈ R
2, (2)

q(0) = q0, q(t1) = q1, (3)

l =

∫ t1

0

√

u2
1 + u2

2 dt → min . (4)

SR geodesics are curves in G whose sufficiently short arcs are SR minimizers.
Sub-Riemannian geometry is a rapidly developing domain of mathematics

at the crossroads of differential geometry, PDEs, optimal control and calculus
of variations, metric analysis, Lie groups and Lie algebras theory, and other
important domains, with rich applications to classical and quantum mechanics,
robotics, neurophysiology and vision, etc [2, 3, 13, 15, 19,24, 35, 36].

In this work we are interested in the problem of describing SR minimizers.
The most efficient approach to this problem is based on optimal control theory
[3, 17, 26], and it consists of the following steps:

1. proof of existence of SR minimizers, which is a standard corollary of the
Rashevsky-Chow and Filippov theorems,

2. parametrization of SR geodesics via Pontryagin maximum principle,

3. selection of SR minimizers among SR geodesics via second order optimality
conditions and detailed study of structure of the family of SR geodesics.

Along this sequence, complexity of the problems grows exponentially. Existence
of SR length minimizers is standard for left-invariant problems on Lie groups.
Explicit parameterization of SR geodesics was performed in many problems.
Complete description of all SR length minimizers (optimal synthesis in optimal
control problem (2)–(4)) is known just in several simplest cases: the Heisenberg
group [13, 36], SO(3), SU(2), SL(2) with the Killing metric [12], SE(2) [29], on
the Engel group [5–7], for 2-step corank 2 nilpotent SR problems [9]. Find-
ing a parameterization of SR geodesics can be a nontrivial problem even for
left-invariant SR structures on Lie groups. So a natural question arises on a
theoretical possibility of such parameterization in some reasonable sense — the
question of integrability of ODEs that determine the SR geodesics. In paper [23]
was constructed an example of a 6-dimensional Lie group with a nonintegrable
ODE for SR geodesics.

In this paper we prove that the Hamiltonian system of ODEs for SR geodesics
is Liouville integrable (and superintegrable) for any contact left-invariant SR
structure on a 3-dimensional unimodular Lie group. That is, we consider Lie
groups G with the Lie algebras L = h3, so(3), sl(2), se(2), and sh(2).

Recall that a Hamiltonian vector field
−→
H on a symplectic manifold M ,

dimM = 2d, is called Liouville integrable if it has d independent integrals
in involution, i.e., there exist functions f1 = H, f2, . . . , fd ∈ C∞(M) such that
{fi, fj} = 0, i, j = 1, . . . , d, and f1, . . . , fd are functionally independent on an
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open dense subset of M [8]. A Hamiltonian vector field
−→
H is called superinte-

grable (or integrable in noncommutative sense) [21, 25] if there exist functions
f = (f1 = H, f2, . . . , f2d−n), fi ∈ C∞(M), functionally independent on an open
dense subset of M , such that:

{fi, fj} = Pij ◦ f, Pij : f(M) → R, i, j = 1, . . . , 2d− n, (5)

the matrix (Pij) has rank 2d− 2n on an open dense subset of f(M).(6)

In the case n = d superintegrability reduces to Liouville integrability. A review
of geometry of superintegrable system may be found e.g. in [30].

2 Sub-Riemannian structures

and Pontryagin maximum principle

Left-invariant contact SR structures on 3D Lie groups G were classified up
to local isometries in a recent work by A. Agrachev and D. Barilari [1]. In
particular, it was shown that if G is unimodular, i.e., its Lie algebra L is one of
the Lie algebras h3, so(3), sl(2), se(2), or sh(2), then there exists an orthonormal
frame L = span(f0, f1, f2) such that f1, f2 satisfy (1) and

[f2, f1] = f0, [f1, f0] = (χ+ κ)f2, [f2, f0] = (χ− κ)f1, (7)

for some constants χ ≥ 0 and κ ∈ R.
It is well known [3] that arclength parameterized SR geodesics for contact

left-invariant problems on Lie groups are projections q(t) = π(λ(t)), π : T ∗G →

G, of trajectories of the Hamiltonian system λ̇ =
−→
H (λ), λ ∈ T ∗G, with the

Hamiltonian function H(λ) = 1
2 (h

2
1(λ) + h2

2(λ)), hi(λ) = 〈λ, fi(q)〉, q = π(λ).

Here the Hamiltonian vector field
−→
H on the cotangent bundle T ∗G is defined by

the equality σλ(·,
−→
H ) = dλH , λ ∈ T ∗G, where σ = ds, sλ = λ ◦ π∗. The aim of

this work is the proof of integrability of the Hamiltonian vector field
−→
H in the

Liouville and noncommutative sense.
By virtue of the Lie brackets (7), we have the Poisson brackets {H,h1} =

h2h0, {H,h2} = −h1h0, {H,h0} = 2χh1h2. Thus the Hamiltonian system

λ̇ =
−→
H (λ) reads as follows:

ḣ1 = h2h0, ḣ2 = −h1h0, ḣ0 = 2χh1h2, (8)

q̇ = h1f1 + h2f2.

In the polar coordinates h1 = r cos θ, h2 = r sin θ, the vertical subsystem (8)
reduces to

ṙ = 0, θ̇ = −h0, ḣ0 = χr2 sin 2θ.

Further, in the coordinates γ = 2θ, c = −2h0 we get the equation of pendulum

ṙ = 0, γ̇ = c, ċ = −2χr2 sin γ. (9)
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This equation has the integral of full energy

E =
c2

2
− 2χr2 cos γ = 2h2

0 − 2χ(h2
1 − h2

2).

Thus the Hamiltonian vector field
−→
H has two left-invariant integrals: the Hamil-

tonian H and the energy E of pendulum (9).

3 Right-invariant Hamiltonians

For any right-invariant vector field e ∈ Vec(G), one can define the corresponding
Hamiltonian ge(λ) = 〈λ, e〉, λ ∈ T ∗G. Since right translations commute with the
left ones, left-invariant vector fields commute with right-invariant ones. Thus
left-invariant Hamiltonians Poisson-commute with the right-invariant ones. So
right-invariant Hamiltonians provide a natural source of integrals for left-invariant
Hamiltonian vector fields (in particular, for left-invariant optimal control prob-
lems).

A standard procedure to construct a right-invariant vector field e ∈ Vec(G)
from a left-invariant one is to apply the inversion i : G → G, i(q) = q−1. If
f ∈ Vec(G) is left-invariant, then e(Id) = −f(Id). This construction preserves
Lie brackets: if [fi, fj] =

∑

k c
k
ijfk, then [ei, ej ] =

∑

k c
k
ijek.

Consider the right-invariant frame e1, e2, e0 ∈ Vec(G) constructed thus
from the left-invariant frame f1, f2, f0 ∈ Vec(G). We have a decomposition
ei = a0i f0 + a1i f1 + a2i f2, a

j
i ∈ C∞(G), with a

j
i (Id) = −δ

j
i , i, j = 0, 1, 2. Then

the right-invariant Hamiltonians gi(λ) = 〈λ, ei〉 admit the decomposition gi =
a0ih0 + a1i h1 + a2ih2.

The Hamiltonian vector field
−→
H has integrals H , E, g0, g1, g2, with the only

nonzero Poisson brackets following from the multiplication table (7):

{g2, g1} = g0, {g1, g0} = (χ+ κ)g2, {g2, g0} = (χ− κ)g1. (10)

4 Liouville integrability

In order to study the functional independence of the integrals H , E, g0, g1, g2
at a point λ ∈ T ∗G, π(λ) = Id, introduce the Jacobian matrix

J(λ) = (∇H
1

4
∇E∇g0 ∇g1 ∇g2)

T .

Let (x0, x1, x2) be local coordinates in a neighborhood of Id ∈ G, then we obtain
in the coordinates (h0, h1, h2;x0, x1, x2) on T ∗G:

J =













0 h1 h2 0 0 0
h0 −χh1 χh2 0 0 0
−1 0 0 g00 g01 g02
0 −1 0 g10 g11 g12
0 0 −1 g20 g21 g22













, (11)
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where gij =
∂gi

∂xj

(Id). Liouville integrability of the field
−→
H follows by the study of

the vertical derivatives of the integrals (i.e., the derivatives w.r.t. the variables
hi).

Theorem 1. (1) The Hamiltonian vector field
−→
H has integrals

H, E, g0, g1, g2 (12)

with the nonzero Poisson brackets (10).

(2) Integrals (12) are functionally dependent since

4κH + E = 2(g20 + (κ− χ)g21 + (κ+ χ)g22). (13)

The functions in the left-hand side and right-hand side of identity (13) are

Casimir functions on L∗.

(3) The field
−→
H is Liouville integrable. Specifically:

(3.1) If χ 6= 0, then for any g = α0g0+α1g1+α2g2, (α0, α1, α2) ∈ R
3\{0},

the integrals H, E, g are in involution and are functionally indepen-

dent on an open dense subset of T ∗G;

(3.2) If χ = 0, then the same property holds for any g = α0g0+α1g1+α2g2,

with α2
1 + α2

2 6= 0.

Proof. Item (1) was proved in Section 3.
Now we prove item (2). Consider the left-invariant Hamiltonian

Cl = 4κH + E = 2(h2
0 + (κ− χ)h2

1 + (κ+ χ)h2
2)

and its right-invariant counterpart

Cr = 2(g20 + (κ− χ)g21 + (κ+ χ)g22),

then the required identity (13) reads Cl = Cr. One checks immediately that

{Cl, hi} = {Cl, gi} = {Cr, hi} = {Cr, gi} = 0, i = 0, 1, 2,

thus Cl and Cr are Casimir functions. Now we prove that they coincide one
with another.

If λ ∈ T ∗

IdG, then hj(λ) = 〈λ, fj(Id)〉 = 〈λ,−ej(Id)〉 = −gj(λ), thus Cl(λ) =
Cr(λ).

Now take arbitrary q ∈ G and λ ∈ T ∗

q G. Then

Cl(λ) = Cl(L
∗

qλ) = Cr(L
∗

qλ) = Cr(Ad
∗

q−1 L∗

qλ) = Cr(R
∗

qL
∗

q−1L
∗

qλ) = Cr(R
∗

qλ)

= Cr(λ), (14)
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and the identity Cl = Cr is proved. In the proof of chain (14) we used the
left-invariant property of Cl (1-st equality), the inclusion L∗

qλ ∈ T ∗

IdL (2-nd
equality), the fact that Casimir functions are constant on co-adjoint orbits [18]

{Ad∗q−1(λ) | q ∈ G}, Ad∗q−1(λ) = R∗

qL
∗

q−1λ

(3-rd equality), and the right-invariant property of Cr (6-th equality).
In order to prove item (3), notice that by virtue of analyticity, functional

independence of integrals on an open dense domain in T ∗G follows from linear
independence of gradients of integrals at a single point λ ∈ T ∗G. Let π(λ) = Id.
Then the equality

∂(H,E, g)

∂(h0, h1, h2)
(λ) =

∣

∣

∣

∣

∣

∣

0 h1 h2

h0 −χh1 χh2

α0 α1 α2

∣

∣

∣

∣

∣

∣

= 2χα0h1h2 + α1h0h2 − α0h0h1 6= 0

implies item (3).

5 Superintegrability

There arises a natural question on the number of functionally independent in-
tegrals (12). We answer this question after computing the derivatives gij in
(11). We will do this for a special class of local coordinates on G considered e.g.
in [10, 16].

A system of local coordinates (x0, . . . , xn) on a smooth manifold M is called
linearly adapted to a frame f0, . . . , fn ∈ Vec(M) at a point q ∈ M if ∂

∂xi
(q) =

fi(q), i = 0, . . . , n. If f0, . . . , fn is a left-invariant frame on a Lie group G,
then both canonical coordinates of the first kind (x0, . . . , xn) 7→ ex0f0+···+xnfn

and canonical coordinates of the second kind (x0, . . . , xn) 7→ exnfn . . . ex0f0 are
linearly adapted to the frame f0, . . . , fn at the identity Id ∈ G.

The coefficients gij can be computed by the following general proposition.

Lemma 1. Let G be a Lie group, f0, . . . , fn ∈ Vec(G) a left-invariant vector

frame, ej = i∗fj the corresponding right-invariant vector fields. Let

ei =

n
∑

j=0

a
j
ifj, a

j
i ∈ C∞(G). (15)

If coordinates (x0, . . . , xn) are linearly adapted to the frame f0, . . . , fn at the

identity Id ∈ G, then
∂aki
∂xj

(Id) = ckji, (16)

where [fi, fj ] =
∑n

k=0 c
k
ijfk, i, j, k = 0, . . . , n.

Proof. Introduce the dual coframe on G: ω0, . . . , ωn ∈ Λ1(G), 〈ωi, fj〉 = δij ,

i, j = 0, . . . , n. Then decomposition (15) reads a
j
i = 〈ωj , ei〉.
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Further, for any function ϕ ∈ C∞(G) we have ∂ϕ
∂xj

(Id) = (fjϕ)(Id). Thus

∂ak
i

∂xj
(Id) = (fja

k
i )(Id), i, j, k = 0, . . . , n. Now we compute the derivative in the

right-hand side via Leibnitz’s rule:

Y 〈ω,X〉 = 〈LY ω,X〉+ 〈ω, [Y,X ]〉, X, Y ∈ Vec(G), ω ∈ Λ1(G).

Since left-invariant fields commute with right-invariant ones, we have

fja
k
i = fj〈ωk, ei〉 = 〈Lfjωk, ei〉+ 〈ωk, [fj, ei]〉 = 〈Lfjωk, ei〉.

On the other hand,

0 = fjδki = fj〈ωk, fi〉 = 〈Lfjωk, fi〉+ 〈ωk, [fj, fi]〉 =

= 〈Lfjωk, fi〉+ 〈ωk,

n
∑

l=0

cljifl〉 = 〈Lfjωk, fi〉+ ckji.

Thus
(fja

k
j )(Id) = 〈Lfjωk, ei〉(Id) = −〈Lfjωk, fi〉(Id) = ckji,

and equality (16) follows.

Now we can compute the coefficients

gij =
∂gi

∂xj

(Id) =
2

∑

k=0

∂aki
∂xj

(Id)hk =
2

∑

k=0

ckjihk,

thus

J =













0 h1 h2 0 0 0
h0 −χh1 χh2 0 0 0
−1 0 0 0 (χ+ κ)h2 (χ− κ)h1

0 −1 0 −(χ+ κ)h2 0 h0

0 0 −1 (κ− χ)h1 −h0 0













. (17)

Since the integrals (12) are dependent by item (2) of Th. 1, then rankJ < 5.
On the other hand,

∂(H, g0, g1, g2)

∂(h0, h1, h2, x1)
=

∣

∣

∣

∣

∣

∣

∣

∣

0 h1 h2 0
−1 0 0 (χ+ κ)h2

0 −1 0 0
0 0 −1 −h0

∣

∣

∣

∣

∣

∣

∣

∣

= −h0h1 6≡ 0.

Thus if π(λ) = Id and h0(λ)h1(λ) 6= 0, then rankJ(λ) = 4. We get the following
statement.

Theorem 2. The integrals H, g0, g1, g2 are functionally independent on the

set {λ ∈ T ∗G | h0(λ)h1(λ) 6= 0}.

The Hamiltonian vector field
−→
H is superintegrable.

Proof. Functional independence of the 4 integrals was proved before statement
of this theorem.

Conditions of superintegrability (5), (6) with d = 3, n = 2 follow immedi-
ately from the Poisson brackets (10).
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6 Conclusion

In this paper we proved that the Hamiltonian system of ODEs for left-invariant
SR geodesics is Liouville integrable (and superintegrable) for any 3-dimensional
unimodular Lie group, namely, for Lie groups with the Lie algebras h3, so(3),
sl(2), se(2), and sh(2). Explicit integration of these Hamiltonian systems was
done in other works for the following Lie groups (in terms of the invariants χ,
κ in (7)):

χ = κ = 0 : the Heisenberg group [13, 36],

χ = 0, κ 6= 0 : the Lie groups SO(3) and SL(2) with the Killing metric [12],

χ = κ 6= 0 : the group of Euclidean motions of the plane SE(2) [22, 28, 29],

χ = −κ 6= 0 : the group of hyperbolic motions of the plane SH(2) [14, 20].

0 < χ < κ : the Lie group SO(3) with general left-invariant SR metric [11].

The remaining cases (χ > max(0, κ), χ 6= κ, i.e., the Lie group SL(2) with
general left-invariant SR metric) are still to be studied. We hope that results
of this paper can be useful for the analysis of these cases. Moreover, even in
the cases already integrated, the Liouville integrability and superintegrability of
the Hamiltonian system may provide a geometric information about dynamics
of the Hamiltonian flow [8, 30].

An interesting direction of further study of integrability of SR problems is
suggested by the recent classification of left-invariant SR structures of Engel
type on 4D Lie groups and homogeneous spaces [4].
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