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Abstract: Let E be the Engel group andD be a rank 2 bracket generating left invariant dis-
tribution with a Lorentzian metric, which is a nondegenerate metric of index 1. In this paper, we
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non-space-like geodesics.

Key Words: Geodesics, Engel Group, sub-Lorentzian metric.

Mathematics Subject Classification(2010): 58E10, 53C50.

1 Introduction

A sub-Riemannian structure on a manifoldM is given by a smoothly varying dis-

tributionD on M and a smoothly varying positively definite metricg on the distribution.

The triple (M,D, g) is called asub-Riemannian manifold, which has been applied in

control theory, quantum physics, C-R geometry and the otherareas. Some efforts have

been made to generalize sub-Riemannian manifold. One of them leads to the following

question: what kind of geometrical features the mentioned triple will have if we change

the positively definite metric to an indefinite nondegenerate metric? It is natural to start
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with the Lorentzian metric of index 1. In this case the triple: manifold, distribution and

Lorentzian metric on the distribution is called asub-Lorentzian manifoldby analogy

with a Lorentzian manifold. For the details concerning thesub-Lorentzian geometry,

the reader is referred to [15]. To our knowledge, there are only a few works devoted to

this subject (see [12, 15, 16, 17, 18, 23]). In [12], Chang, Markina, and Vasiliev have

systematically studied the geodesics in an anti-de Sitter space with a sub-Lorentzian

metric and a sub-Riemannian metric respectively. In [17], Grochowski computed reach-

able sets starting from a point in the Heisenberg sub-Lorentzian manifold onR3. It was

shown in [23] that the Heisenberg groupH with a Lorentzian metric onR3 possesses the

uniqueness of Hamiltonian geodesics of time-like or space-like type.

The Engel group was first named by Cartan [8] in 1901. It is a prolongation of a

three dimensional contact manifold, and is a Goursat manifold. In [5, 6, 7], A.Ardentov

and Yu.L.Sachkov computed minimizers on the sub-Riemannian Engel group. In the

present article, we study the Engel group furnished with a sub-Lorentzian metric. This

is an interesting example of sub-Lorentzian manifolds, because the Engel group is the

simplest manifold with nontrivial abnormal extremal trajectories, and the vector distri-

bution of the Engel group is not 2− generating, its growth vector is (2, 3, 4). We first

study some properties of horizontal curves in the Engel group. Second, we use the

Hamiltonian formalism and Pontryagin maximum principle towrite the equations for

geodesics. Furthermore, we give a complete description of the Hamiltonian geodesics

in the Engel group.

Apart from the introduction, this paper contains three sections. Section 2 contains

some preliminaries as well as definitions of sub-Lorentzianmanifolds, the Engel group.

In Section 3, we study some properties of horizontal curves in the Engel group. In

Section 4, we prove that the time-like normal geodesics are locally maximal in the

Engel group , and explicitly calculate the non-space-like Hamiltonian geodesics.
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2 Preliminaries

A sub-Lorentzian manifold is a triple (M,D, g), whereM is a smoothn-dimensional

manifold,D is a smooth distribution onM andg is a smoothly varying Lorentzian metric

onD. For each pointp ∈ M, a vectorv ∈ Dp is said to be horizontal. An absolutely con-

tinuous curveγ(t) is said to be horizontal if its derivativeγ′(t) exists almost everywhere

and lies inDγ(t).

A vectorv ∈ Dp is said to be time-like ifg(v, v) < 0; space-like ifg(v, v) > 0 or

v = 0; null(light-like) if g(v, v) = 0 andv , 0; and non-space-like ifg(v, v) ≤ 0. A curve

γ(t) is said to be time-like if its tangent vector ˙γ(t) is time-like a.e.; space-like if ˙γ(t) is

space-like a.e.; null if ˙γ(t) is null a.e.; non-space-like if ˙γ(t) is non-space-like a.e..

By a time orientation of (M,D, g), we mean a continuous time-like vector field on

M. From now on, we assume that (M,D, g) is time-oriented. IfX is a time orientation on

(M,D, g), then a non-space-like vectorv ∈ Dp is said to be future directed ifg(v,X(p)) <

0, and past directed ifg(v,X(p)) > 0. Throughout this paper, “f.d.” stands for “future

directed”, “t.” for “time-like”, and “nspc.” for “non-space-like”.

Letv,w ∈ D be two non-space-like vectors, we have the following reverse Schwartz

inequality (see page 144 in [22]):

|g(v,w)| ≥ ‖v‖ · ‖w‖,

where‖v‖ =
√
|g(v, v)|. The equality holds if and only ifv andw are linearly dependent.

We introduce the spaceHγ(t) of horizontal nspc. curves:

Hγ(t) = {γ : [0, 1]→ M| γ(t) is absolutely continuous, g(γ̇(t), γ̇(t)) ≤ 0,

γ̇(t) ∈ Dγ(t) for almost allt ∈ [0, 1]}. (2.1)

The sub-Lorentzian length of a horizontal nspc. curveγ(t) is defined as follows:

l(γ) =
∫ 1

0
‖γ′(t)‖dt,

3



where‖γ′(t)‖ =
√
|g(γ′(t), γ′(t))|. We use the length to define the sub-Lorentzian dis-

tancedU(q1, q2) with respect to a setU ⊂ M between two pointsq1, q2 ∈ U:

dU(q1, q2) =
{ sup{l(γ), γ ∈ HU(q1, q2)} if HU(q1, q2) , ∅

0 if HU(q1, q2) = ∅,

whereHU(q1, q2) is the set of all nspc.f.d curves contained inU and joiningq1 andq2.

A nspc. curve is said to be a maximizer if it realizes the distance between its end-

points. We also use the nameU-geodesic for a curve inU whose each suitably short

sub-arc is aU-maximizer.

A distributionD ⊂ T M is called bracket generating if any local frame{Xi}1≤i≤r for

D, together with all of its iterated Lie brackets [Xi ,X j], [Xi , [X j,Xk]] , · · · span the tan-

gent bundleT M. Bracket generating distributions are sometimes also called completely

nonholonomic distributions, or distributions satisfyingHörmander’s condition.

Theorem 2.1. (Chow) Fix a point q∈ M. If the distribution D ⊂ T M is bracket

generating then the set of points that can be connected to q bya horizontal curve is the

component of M containing q.

By Chow’s Theorem, we know that ifD is bracket generating andM is connected,

then any two points ofM can be joined by a horizontal curve.

Now, we describe the Engel groupE. We consider the Engel groupE with coordi-

natesq = (x1, x2, y, z) ∈ R4. The group law is denoted by⊙ and defined as follows:

(x1, x2, y, z) ⊙ (x′1, x
′
2, y
′, z′)

=

(
x1 + x′1, x2 + x′2, y+ y′ +

x1x′2 − x′1x2

2
, z+ z′ +

x2x′2
2

(x2 + x′2) + x1y
′ +

x1x′2
2

(x1 + x′1)

)
.

A vector fieldX is said to be left-invariant if it satisfiesdLqX(e) = X(q), whereLq

denotes the left translationp→ Lq(p) = q⊙ p ande is the identity ofE. This definition

implies that any left-invariant vector field onE is a linear combination of the following
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vector fields:

X1 =
∂

∂x1
− x2

2
∂

∂y
; X2 =

∂

∂x2
+

x1

2
∂

∂y
+

x2
1 + x2

2

2
∂

∂z
;

X3 =
∂

∂y
+ x1

∂

∂z
; X4 =

∂

∂z
. (2.2)

The distributionD = span{X1,X2} of E satisfies the bracket generating condition,

sinceX3 = [X1,X2],X4 = [X1,X3]. The Engel group is a nilpotent Lie group, since

[X1,X4] = [X2,X3] = [X2,X4] = 0. We define a smooth Lorentzian metric ˜g on E such

that g̃(Xi ,X j) = (−1)δ1iδi j , i, j = 1, · · · , 4, whereδi j is the Kronecker symbol. It is not

difficult to compute the coefficients ofg̃ under the local coordinates (x1, x2, y, z) ∈ R4.

The coefficients can be expressed as

(g̃i j ) =



−1+
x2

2
4 +

x2
1x2

2
4 − x1x2

4 +
x1x3

2
4

x2
2 +

x2x2
1

2 − x1x2
2

− x1x2
4 +

x1x3
2

4 1+
x2

1
4 +

x4
2
4 − x1

2 +
x1x2

2
2 − x2

2
2

x2
2 +

x2x2
1

2 − x1
2 +

x1x2
2

2 1+ x2
1 −x1

− x1x2
2 − x2

2
2 −x1 1



(2.3)

When we restrict ˜g to D, we can get a smooth sub-Lorentzian metricg = g̃D, which

satisfies

g(X1,X1) = −1, g(X2,X2) = 1, g(X1,X2) = 0. (2.4)

On the other hand, any sub-Lorentzian metric onD can be extended to a (usually not

unique) Lorentzian metric onE. In this paper, we assume thatX1 is the time orientation.

3 Horizontal curves

Chow’s theorem states that any two points can be connected bya horizontal curve,

but we have no information about the character of horizontalcurves. In this section, we

will investigate some properties of horizontal curves.
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An absolutely continuous curveγ(s) : [0, 1] → E is said to be horizontal if the

tangent vector ˙γ(s) can be expressed linearly by the horizontal directionsX1, X2, hence

we have the following lemma.

Lemma 3.1. A curveγ(s) = (x1(s), x2(s), y(s), z(s)) is horizontal with respect to the

distribution D, if and only if

x2ẋ1

2
− x1ẋ2

2
+ ẏ = 0,

−
x2

1 + x2
2

2
ẋ2 + ż= 0. (3.1)

Proof. The distributionD is the annihilator of the one-forms:

ω1 =
x2

2
dx1 −

x1

2
dx2 + dy, ω2 = −

x2
1 + x2

2

2
dx2 + dz

soγ(s) is horizontal if and only if (3.1) holds. �

By the same method, we can easily calculate the left invariant coordinatesu1(s)

andu2(s) of the horizontal curveγ(s):

u1 = ẋ1, u2 = ẋ2. (3.2)

The square of the velocity vector for the horizontal curve is:

g(γ̇, γ̇) = −u2
1 + u2

2 = −ẋ2
1 + ẋ2

2. (3.3)

So whether a horizontal curve is time-like(or nspc.) is determined by the sign of−ẋ2
1+ẋ2

2.

Next we present a left invariant property of horizontal curves in the Lie group

with sub-Lorentzian metric. That is to say, the causal character (time-like, space-like,

light-like, or non-space-like) of horizontal curves will not change under left translations.

Hence it is also true for the Engel group.

Let us consider a left-invariant sub-Lorentzian structureon a Lie groupG: D =

span(X1,X2, · · · ,Xk) ⊂ TG, g(Xi ,X j) = (−1)δ1iδi j , with a time orientationX1. The

vector fieldsXi are left-invariant, i.e.

Lx∗Xi(q) = Xi(x · q), x, q ∈ G, i = 1, · · · , k.
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Proposition 3.2. Left translations preserve the causal character of horizontal curves of

a left-invariant sub-Lorentzian structure on a Lie group G,and the property of future-

directness is also preserved.

Proof. Let c(t) be a causal horizontal curve, and

ċ(t) =
k∑

i=1

ui(t)Xi(c(t)).

Then, the left translationγ(t) = x⊙ c(t) has the same causal character, since

γ̇(t) = Lx∗ċ(t) = Lx∗(
k∑

i=1

ui(t)Xi(c(t))) =
k∑

i=1

ui(t)Lx∗(Xi(c(t)))

=

k∑

i=1

ui(t)Xi(x⊙ c(t)) =
k∑

i=1

ui(t)Xi(γ(t)).

Therefore,

g(ċ(t), ċ(t)) =
k∑

i=1

(−1)δi1u2
i = g(γ̇(t), γ̇(t)),

g(ċ(t),X1) = −u1 = g(γ̇(t),X1).

�

By Chow’s Theorem, we know that any two points on the Engel group can be

connected by a horizontal curve. But we do not know its causalcharacter(time-likeness,

space-likeness, light-likeness). This is not an easy problem. We are able to present some

particular examples to show its complexity.

Example 1: Let ẋ2 = 0. Thenx2 = x0
2 is constant. The horizontal condition (3.1)

becomes

x2

2
ẋ1 + ẏ = 0, (3.4)

ż= 0. (3.5)
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And the square of the velocity vector

−u2
1 + u2

2 = −ẋ2
1 ≤ 0. (3.6)

It follows that, the curves satisfying (3.4) and (3.5) are all non-space-like curves. Fur-

thermore, we obtain,

y(s) = −1
2

x0
2x1(s) +

1
2

x0
2x0

1 + y0, z(s) = z0. (3.7)

Therefore, all nonconstant horizontal curvesc(s) = (x1(s), x0
2,−

x1(s)x0
2

2 +
x0

1x0
2

2 + y0, z0) are

time-like. These curves are straight lines. If ˙x1 = 0, c(s) degenerate into some points,

so there are no null curves in this family.

Example 2: Let ẋ2 , 0. We choosex2 as a parameter, then the horizontal condition

(3.1) becomes

x2

2
ẋ1 −

x1

2
+ ẏ = 0, (3.8)

−
x2

1 + x2
2

2
+ ż= 0. (3.9)

And the square of the velocity vector

−u2
1 + u2

2 = −ẋ2
1 + 1. (3.10)

We consider there different cases.

(a) If ẋ1 = 0, thenx1 = x0
1 is constant, (3.8) and (3.9) become

−
x0

1

2
+ ẏ = 0, (3.11)

−

(
x0

1

)2
+ x2

2

2
+ ż= 0. (3.12)

In this case,|ċ(s)|2 = 1, so the curves satisfying (3.11) and (3.12) are all space-like.

Furthermore, we obtain,

y(s) =
x0

1

2
x2 + y0, z(s) =

1
6

x3
2 +

(
x0

1

)2

2
x2 + z0. (3.13)
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Therefore, all nonconstant horizontal curvesc(s) = (x0
1, x2,

x0
1
2 x2 + y0, 1

6x3
2 +

(x0
1)

2

2 x2 + z0)

are space-like. There are no null or time-like horizontal curves in this family.

(b) If ẏ = 0, (3.8) and (3.9) become

x2ẋ1 − x1 = 0, (3.14)

−
x2

1 + x2
2

2
+ ż= 0. (3.15)

From (3.14), we get
1
x2
=

ẋ1

x1
,

integrating with respect tox2, we calculatex1 = ιx2, whereι =
x0

1

x0
2
, i.e. x1 =

x0
1

x0
2
x2,

substitutingx1 in (3.15), we obtain

z=
1
6

(
1+ ι2

)
x3

2 + z0. (3.16)

Therefore, all nonconstant horizontal curves

c(s) =

(
ιx2, x2, y

0,
1
6

(
1+ ι2

)
x3

2 + z0

)
(3.17)

are time-like when|ι| > 1. If |ι| < 1(= 1), they are space-like(null).

(c) If ż= 0, the horizontal condition becomes:

x2

2
ẋ1 −

x1

2
+ ẏ = 0, (3.18)

−
x2

1 + x2
2

2
= 0. (3.19)

So x1 = x2 = 0, y = y0. The curves degenerate into some points. There are no causal

(time-like, space-like, null) horizontal curves in this family.

Thus, any two pointsP1(x0
1, x

0
2, y

0, z0), Q1(x1, x0
2, y

1, z0) can be connected by a time-

like horizontal curve ify1 = − x1x0
2

2 +
x0

1x0
2

2 + y0. Especially, any two points (x0
1, 0, y

0, z0),

(x1, 0, y0, z0) can be connected by a time-like horizontal straight line.

Any two pointsP1(x0
1, x

0
2, y

0, z0), Q2(x0
1, x2, y1, z1) can be connected by a space-like

horizontal curve ify1 =
x0

1
2 x2 + y0, z1 = 1

6x3
2 +

(x0
1)

2

2 x2 + z0.

9



Any two pointsP1(x0
1, x

0
2, y

0, z0), Q3(x1, x2, y0, z1) can be connected by a time-like(space-

like, null) horizontal curve ifx1 = ιx2, z1 = 1
6

(
1+ ι2

)
x3

2+z0, and| ι |=
∣∣∣∣
x0

1

x0
2

∣∣∣∣ > 1(< 1, = 1).

4 Sub-Lorentzian geodesics

In the Lorentzian geometry there are no curves of minimal length because two

arbitrary points can be connected by a piecewise light-likecurve whose length is always

0. For example, letR2 be the two dimensional Minkowski space, ˆp = (x̂, ŷ) is any one

point in this space. We want to find a light-like curve going from the origin to ˆp. First,

we choose a curveγ1(t) : (x(t), y(t)) = (t, t) which connects the origin and the point

( x̂+ŷ
2 ,

x̂+ŷ
2 ); then we choose the second curveγ2(t) : (x(t), y(t)) = (t,−t + x̂ + ŷ) which

joints (x̂+ŷ
2 ,

x̂+ŷ
2 ) and p̂. It is easy to check that the curveγ(t) consisting ofγ1 andγ2 is

a light-like curve. It goes from the origin to the point ˆp, and the length is 0. However,

there do exist time-like curves with maximal length which are time-like geodesics [22].

Upon this reason, we will study the optimality of time-like geodesics, and compute the

longest curve among all horizontal time-like ones on the sub-Lorentzian Engel group.

The computation will be given by extremizing the action integral S = 1
2

∫
(−u2

1 + u2
2)dt

under constraint (3.1). By Proposition 3.2, horizontal time-like curves are left invariant,

so we can assume that the initial point is origin, i.e.,x1(0) = x2(0) = y(0) = z(0) = 0,

and time-like initial velocity is−u2
1(0)+ u2

2(0) = −1.

Let ξ = (ξ1, ξ2, ξ3, ξ4) be the vector of costate variables, so the Hamiltonian function

of Pontryagin’s maximum principle is

H(ξ0, ξ, q, u) = ξ0
−u2

1 + u2
2

2
+ ξ1u1 + ξ2u2 + ξ3

x1u2 − x2u1

2
+ ξ4

x2
1 + x2

2

2
u2. (4.1)

whereξ0 is a constant equals to 0 or−1. Also, we get the Hamiltonian system:

ẋ1 = Hξ1 = u1, ẋ2 = Hξ2 = u2, ẏ = Hξ3 =
x1u2 − x2u1

2
, ż= Hξ4 =

x2
1 + x2

2

2
u2,

ξ̇1 = −Hx1 = −
ξ3u2

2
− ξ4x1u2, ξ̇2 = −Hx2 =

ξ3u1

2
− ξ4x2u2, ξ̇3 = ξ̇4 = 0, (4.2)

10



and the maximum condition:

H(ξ0, ξ(t), q(t), u(t)) = max
ũ∈R2

H(ξ0, ξ(t), q̃(t), ũ), ξ0 ≤ 0, (4.3)

whereu(t) is the optimal control, and (ξ0, ξ(t)) , 0.

4.1 Abnormal extremal trajectories

We shall investigate the abnormal caseξ0 = 0. From the maximum condition (4.3)

we obtain

Hu1 = ξ1 −
ξ3x2

2
= 0, (4.4)

Hu2 = ξ2 +
ξ3x1

2
+
ξ4(x2

1 + x2
2)

2
= 0. (4.5)

Differentiating equations (4.4) and (4.5), we obtain

0 = ξ̇1 −
ξ3ẋ2

2
= ξ̇1 −

ξ3u2

2
= −u2(ξ3 + ξ4x1), (4.6)

0 = ξ̇2 +
ξ3ẋ1

2
+ ξ4(x1ẋ1 + x2ẋ2) = u1(ξ3 + ξ4x1). (4.7)

For the time-like curve, we assume that−u2
1 + u2

2 = −1, soξ3 + ξ4x1 = 0. If ξ4 = 0,

thenξ3 = 0, and thereforeξ = 0. It is a contradiction with the nontriviality of the costate

variables, henceξ4 , 0. In this case,x1 =
−ξ3

ξ4
is a constant, andu1 = 0, u2 = ±i, so

there is no time-like abnormal extremal in the Engel groupE.

For the space-like curve, we assume that−u2
1 + u2

2 = 1, by using the same method,

we get thatu1 = 0, u2 = ±1, so the space-like abnormal extremal trajectories are given

by the following expression:

γ(s) =

(
0,±s, 0,±s3

6

)
. (4.8)

For the null curve, suppose that−u2
1+u2

2 = 0, we can easily get thatu1 = 0, u2 = 0,

so the null abnormal extremal trajectories are trivial curves.
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4.2 Normal geodesics

4.2.1 Normal Hamiltonian system

Now we look at the normal caseξ0 = −1. It follows from the maximum condition

(4.3) thatHu1 = Hu2 = 0. Hence

u1 = −
(
ξ1 −

x2ξ3

2

)
, u2 = ξ2 +

ξ3x1

2
+
ξ4(x2

1 + x2
2)

2
. (4.9)

Let ζi = (ξ,Xi), i = 1, 2, be the Hamiltonian corresponding to the basis vector fields

X1,X2 in the cotangent spaceT∗qE. They are linear on the fibers of the cotangent space

T∗E, and

ζ1 = ξ1 −
x2

2
ξ3, ζ2 = ξ2 +

x1

2
ξ3 +

x2
1 + x2

2

2
ξ4. (4.10)

Sou1 = −ζ1 andu2 = ζ2.

The Hamiltonian system in the normal case becomes:



ẋ1 =
∂H
∂ξ1
= −(ξ1 − x2

2 ξ3) = −ζ1,

ẋ2 =
∂H
∂ξ2
= (ξ2 +

x1
2 ξ3 +

x2
1+x2

2
2 ξ4) = ζ2,

ẏ = ∂H
∂ξ3
= ζ1

x2
2 + ζ2

x1
2 =

1
2(x1ζ2 + x2ζ1),

ż= ∂H
∂ξ4
=

x2
1+x2

2
2 ζ2,

ξ̇1 = − ∂H
∂x1
= −ζ2(

ξ3

2 + x1ξ4),

ξ̇2 = − ∂H
∂x2
= −1

2ξ3ζ1 − x2ξ4ζ2,

ξ̇3 = −∂H
∂y = 0,

ξ̇4 = −∂H
∂z = 0.

(4.11)

Definition 4.1. A normal geodesic in the sub-Lorentzian manifold(E,D, g) is a curve

γ : [a, b] → E that admits a liftΓ : [a, b] → T∗M, which is a solution of the Hamiltonian

equations (4.11). In this case, we say thatΓ is a normal lift ofγ.

Associate with the expression ofH, a sub-Lorentzian geodesic is time-like ifH <

0; space-like ifH > 0; light-like if H = 0.

12



Remark 4.1. In fact, abnormal extremal trajectories (4.8) are also normal geodesics,

since we can choose the costate variables asξ̃ = (0,±1, 0, 0), it is easy to check that

Γ(t) = (γ, ξ̃) satisfies Hamiltonian equation (4.11). This example also confirms that

normal geodesics and abnormal trajectories are sometimes not mutually exclusive.

Lemma 4.2. The causal character of normal sub-Lorentzian geodesics does not depend

on time.

Proof. The HamiltonianH is an integral of the Hamiltonian system, i.e.,Ḣ(s) = 0, this

implies that the causality character does not change for allt ∈ [0,∞). �

Remark 4.3. If γ(t) is a nspc. normal geodesic on the Engel group, then the orientation

will not change along the curve. In fact, ifγ(t) is time-like, and it is future directed at

t = 0, then we have−u2
1(t) + u2

2(t) = −1, u1(0) > 0. We only need to show that u1(t) will

not equal to 0 along the curveγ(t). Actually, if there is a t1 > 0, such that u1(t1) = 0,

then we have u22(t1) = −1, it is impossible. So u1(t) will not change the sign (since

u1(t) = −ζ1(t) is continuous), andγ(t) is future directed along the curve. It is also true

for the other cases.

4.2.2 Maximality of short arcs of geodesics

Definition 4.2. Letϕ be a smooth function on M, U is an open subset in M, the horizon-

tal gradient∇Hϕ of ϕ is a smooth horizontal vector field on U such that for each p∈ U

and v∈ H, ∂vϕ(p) = g(∇Hϕ(p), v).

Locally, we can write

∇Hϕ = −(∂X1ϕ)X1 +

r∑

i=2

(∂Xiϕ)Xi .

Now we give a proof that the time-like normal geodesics are locally maximizing

curves on the Engel group.
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Proposition 4.4. If γ is a t.f.d. (t.p.d.) normal geodesic on the Engel group, thenevery

sufficiently short subarc ofγ is a maximizer.

Proof. Assume thatγ : (a, b)→ E is parameterized by arc-length, ˙γ(t) = u0
1(t)X1(γ(t))+

u0
2(t)X2(γ(t)), X1 is the time orientation, and̃Γ(t) = (γ(t), λ(t)) is the normal lift ofγ.

So we haveH(γ(t), λ(t)) = −1
2, t ∈ (a, b). For anyc ∈ (a, b), ǫ > 0, let Jc = (c −

ǫ, c + ǫ) ⊂ (a, b) be a neighborhood ofc. We will prove thatγ|Jc is maximal for any

c ∈ (a, b) and smallǫ > 0. Since the sub-Lorentzian metric is left invariant, so we

can assume thatγ(c) = 0, λ(c) = λ0. Consider ann − 1 dimensional hypersurfaceS

passing through the origin 0, and satisfyingλ0(T0(S)) = 0. Let λ̄ be a smooth one-form

on an open neighborhoodΩ of 0, such that̄λ(0) = λ0, and∀p ∈ S ∩ Ω, λ̄(p)(TpS) = 0,

H(p, λ̄(p)) = −1
2. Let Γp = (γp, λp) be the solution oḟΓ(t) = ~H(Γ(t)), Γ(c) = (p, λ̄(p)).

Then clearlyΓ0 = Γ̃. Sinceγ̇(0) < T0S, by the Implicit Function Theorem, there exits a

diffeomorphism:

ν : (c− ǫ, c+ ǫ) ×W→ U ⊂ E,

(t, p)→ γp(t),

whereW is a neighborhood of 0 inS, U ⊂ Ω is a neighborhood of 0 inE. Define a

smooth functionV : U → R as:

V(x) = t, i f x = γp(t),

we will show that‖∇HV‖ = 1. For this purpose, letY1 be the vector field onU given by

Y1(x) = γ̇p(t) = u1(p, t)X1(γp(t)) + u2(p, t)X2(γp(t)), i f x = γp(t),

whereu1(p, t), u2(p, t) are smooth functions onW×(c−ǫ, c+ǫ), andu1(0, t) = u0
1(t), u2(0, t) =

u0
2(t). SinceH(p, λ̄(p)) = −1

2, by the construction ofΓp(t), we haveH(γp(t), λp(t)) = −1
2,

and−u2
1 + u2

2 = −1. It is easy to check thatY1 = u1X1 + u2X2,Y2 = u2X1 + u1X2

is also an orthonormal basis ofD, so∂Y1V = 1, ∂Y2V = 0. Therefore,∇HV = −Y1,
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‖∇HV‖ =
√
|g(−Y1,−Y1)| =

√
| − u2

1 + u2
2| = 1. Chooset1, t2 in the domain ofγ. If γ(t) is

a t.f.d. geodesic, then|u0
1| > |u0

2|, andu0
1 > 0. Sinceu1(0, t) = u0

1, andu1(p, t) is a smooth

function, so there exists a neighborhoodW1× (c−ǫ1, c+ǫ1) ⊂W× (c−ǫ, c+ǫ) such that

u1(p, t) > 0. Thus∇HV = −Y1 is past directed. On the other hand, since−u2
1 + u2

2 = −1,

we have|u1| > |u2|. Let η : [0, α] → U be a t.f.d. curve withη(0) = γ(t1), η(α) = γ(t2),

andη̇ = v1X1 + v2X2, then|v1| > |v2|, v1 > 0, sog(η̇,∇HV) = u1v1 − u2v2 > 0, and

L(γ|[t1,t2]) = t2 − t1 = V(γ(t2)) − V(γ(t1)) =
∫ α

0

dV(η(s))
ds

ds

=

∫ α

0
g(η̇,∇HV)ds≥

∫ α

0
‖η̇(s)‖ds= L(η|[0,α] ).

By the reverse Schwartz inequality,L(γ) = L(η) holds if and only ifη can be repa-

rameterized as a trajectory of−∇HV. If γ(t) is a t.p.d. geodesic, then|u0
1| > |u0

2|, and

u0
1 < 0. By the same method, we choose a neighborhood such thatW2× (c− ǫ2, c+ ǫ2) ⊂

W × (c − ǫ, c + ǫ) such thatu1(p, t) < 0. Thus∇HV = −Y1 is future directed. Let

ρ : [0, α] → U be a t.p.d. curve withρ(0) = γ(t1), ρ(α) = γ(t2), andρ̇ = µ1X1 + µ2X2,

then|µ1| > |µ2|, µ1 < 0, sog(ρ̇,∇HV) = u1µ1 − u2µ2 > 0, and

L(γ|[t1,t2]) = t2 − t1 = V(γ(t2)) − V(γ(t1)) =
∫ α

0

dV(η(s))
ds

ds

=

∫ α

0
g(ρ̇,∇HV)ds≥

∫ α

0
‖ρ̇(s)‖ds= L(ρ|[0,α]).

By the reverse Schwartz inequality,L(γ) = L(ρ) holds if and only ifρ can be reparam-

eterized as a trajectory of−∇HV. In conclusion, the t.f.d(t.p.d.) normal geodesics are

locally maximizers. This ends the proof. �

Next, we compute the expressions of light-like geodesics and time-like geodesics

on the Engel group.

Differentiatingζi,

ζ̇1 = ξ̇1 −
ξ3

2
ẋ2 = −ζ2(ξ3 + x1ξ4), (4.12)

ζ̇2 = ξ̇2 +
1
2

ẋ1ξ3 + (x1ẋ1 + x2ẋ2)ξ4 = −ζ1(ξ3 + x1ξ4). (4.13)
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Let

β(s) = −(ξ3 + x1ξ4), β̇ = ξ4ζ1, (4.14)

then we have

ζ̇1 = βζ2, ζ̇2 = βζ1, β̇ = ξ4ζ1. (4.15)

4.2.3 Light-like geodesics

Firstly, we study the case of light-like sub-Lorentzian geodesics.

By the definition, we haveH = 1
2(−h2

1 + h2
2) = 0, thush2 = ±h1. If h2 = h1, then

light-like trajectories satisfy the ODE:

γ̇ = −h1(X1 − X2),

i.e. they are reparameterizations of the one-parametric subgroup of the fieldX1 − X2.

We assume ˙γ = X1 − X2, so

ẋ1 = 1, ẋ2 = −1, ẏ = −1
2

(x1 + x2), ż= −1
2

(x2
1 + x2

2),

thus

x1 = t, x2 = −t, y = 0, z= −1
3

t3.

If h2 = −h1, similarly, we obtain

x1 = t, x2 = t, y = 0, z=
1
3

t3.

In conclusion, we get the following theorem:

Theorem 4.5.Light-like horizontal geodesics starting from the origin are reparameter-

izations of the curves:

x1 = t, x2 = ±t, y = 0, z= ±1
3

t3,

i.e., they are reparameterizations of the one-parameter subgroups corresponding to the

vector fields X1 ± X2.
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4.2.4 Time-like geodesics

Secondly, we study time-like sub-Lorentzian geodesics on the Engel group.

We consider the case ofξ4 = 0 at first. This case is also of interest since it re-

produces the earlier known results for the Heisenberg group[23]. In this caseβ =

−(ξ3 + x1ξ4) = −ξ3 is a constant. Equations (4.15) become

ζ̇1 = −ξ3ζ2, ζ̇2 = −ξ3ζ1, (4.16)

whereξ3 is a constant. There are two separate cases:

Case 1: If ξ3 = 0, we haveζ1 andζ2 are constants, i.e.,ζ1(s) = ζ1(0) = ξ1(0) and

ζ2(s) = ζ2(0) = ξ2(0). According to (??), ξ1 andξ2 are constants. On the other hand, by

integrating ˙x1 = −ζ1 and ẋ2 = ζ2, we get

x1(s) = −ξ1s and x2(s) = ξ2s. (4.17)

Sinceẏ = 1
2(x1ζ2 + x2ζ1) = 0, theny(s) = 0. Also

ż=
x2

1 + x2
2

2
ζ2 =

ξ2
1 + ξ

2
2

2
ξ2s2,

so

z(s) =
ξ2

1 + ξ
2
2

6
ξ2s3 =

x2
1(s)x2(s) + x3

2(s)

6
.

Theorem 4.6. In the case ofξ3 = ξ4 = 0, there is a unique time-like horizontal geodesic

joining the origin to a point(x1, x2, y, z), if and only if y= 0, z is the following function

of x1, x2:

z=
x2

1x2 + x3
2

6
. (4.18)

And the expression of the geodesic is

x1(s) = −ξ1s, x2(s) = ξ2s, y(s) = 0, z(s) =
ξ2

1 + ξ
2
2

6
ξ2s3, (4.19)
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whereξ1, ξ2 are constants. The arc-length is given by

l =
√

x2
1 − x2

2. (4.20)

Its projection to the(x1, x2) plane is a straight line.

Case 2: If ξ3 , 0, from (4.16), we have

ζ1(s) = ξ
0
1 cosh(ξ3s) − ξ0

2 sinh(ξ3s), (4.21)

ζ2(s) = −ξ0
1 sinh(ξ3s) + ξ0

2 cosh(ξ3s), (4.22)

whereξ0
1 = ξ1(0), ξ0

2 = ξ2(0). So

x1 = −
∫ s

0
ζ1(t)dt = −

ξ0
1

ξ3
sinh(ξ3s) +

ξ0
2

ξ3
(cosh(ξ3s) − 1) , (4.23)

x2 =

∫ t

0
ζ2(t)dt = −

ξ0
1

ξ3
(cosh(ξ3s) − 1) +

ξ0
2

ξ3
sinh(ξ3s). (4.24)

Substituting them into the expression of ˙y, ż in (4.11), and integrating, we get

Theorem 4.7. In the case ofξ3 , 0, ξ4 = 0, the time-like horizontal geodesics starting

from the origin are given by:

x1(s) = −A1 sinh(ξ3s) + A2 (cosh(ξ3s) − 1) , (4.25)

x2(s) = −A1 (cosh(ξ3s) − 1) + A2 sinh(ξ3s), (4.26)

y(s) =
1
2

(A2
2 − A2

1) (ξ3s− sinh(ξ3s)) , (4.27)

z(s) = A2(A
2
1 + A2

2) cosh2(ξ3s) sinh(ξ3s) − 2
3

A3
2 sinh3(ξ3s) − 1

3
A1(A

2
1 + 3A2

2) cosh3(ξ3s)

+
1
2

A1(A
2
1 + 3A2

2) cosh
2
(ξ3s) − 1

2
A2(3A2

1 + A2
2) sinh(ξ3s) cosh(ξ3s) − 1

2
A2(3A2

1 + A2
2)s

− 1
6

A1(A
2
1 + 3A2

2). (4.28)

whereξ0
1 = ξ1(0), ξ0

2 = ξ2(0) is the initial value,ξ3, A1 =
ξ0

1
ξ3

, A2 =
ξ0

2
ξ3

are constants.

Projections of geodesics to the plane (x1, x2) are hyperbolas, forξ(0) = (
√

2, 1, 1, 0),

ξ(0) = (
√

5
2 ,

1
2, 1, 0) andξ(0) = (

√
5

2 ,
1
2,−1, 0), they are shown in Figure 1.
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Figure 1: Projections of geodesics to the plane (x1, x2) whenξ3 , 0, ξ4 = 0

From this theorem, we obtain a description of the reachable set by geodesicsξ3 ,

0, ξ4 = 0 starting from the origin.

Corollary 4.8. In the case ofξ3 , 0, ξ4 = 0, let (x1, x2, y, z) be a point on a time-like

geodesic, then we have

−1 <
4y

−x2
1 + x2

2

< 1.

Proof. By (4.25) and (4.26), we get

−x2
1 + x2

2 = 4(A2
2 − A2

1) sinh2
(
ξ3

2

)
, (4.29)

substituting (4.29) into (4.27), we obtain the following equation:

y =
(−x2

1 + x2
2)(ξ3 − sinh(ξ3))

8 sinh2
(
ξ3

2

) , (4.30)

if we setτ = ξ3

2 , then

y =
(−x2

1 + x2
2)

4

(
τ

sinh2(τ)
− coth(τ)

)
, (4.31)

or

4y

(−x2
1 + x2

2)
=

τ

sinh2(τ)
− coth(τ). (4.32)

It is easy to check that the right hand side of (4.32) is a decreasing function in (−∞,+∞),

and its range is (−1, 1). That is to say, the points on the time-like geodesics should satisfy

−1 <
4y

−x2
1 + x2

2

< 1.

This ends the proof. �
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Next, we consider the caseξ4 , 0. Recall that

ζ̇1 = βζ2, ζ̇2 = βζ1, where β(s) = −(ξ3 + x1ξ4), β̇ = ξ4ζ1. (4.33)

Combining the expressions forβ̇ andζ̇2 to get

ξ4ζ̇2 = βξ4ζ1 = ββ̇. (4.34)

Integrating both sides, we have

ξ4ζ2 =
β2

2
+C1, where C1 = ξ4ζ2(0)− β

2(0)
2
= ξ4ξ

0
2 −

ξ2
3

2
. (4.35)

This yields

x1(s) = −
β(s) + ξ3

ξ4
, (4.36)

and

ζ2(s) =
1
ξ4

(
β2(s)

2
+C1

)
. (4.37)

Sinceẋ2 = ζ2, we deduce

x2(s) =
∫ s

0
ζ2(t)dt =

1
ξ4

∫ s

0

(
β2(t)

2
+C1

)
dt. (4.38)

To computey(s) in term ofβ(s), we note that

ẏ =
1
2

(x1ζ2 + x2ζ1) =
1
2

(x1ẋ2 − x2ẋ1), (4.39)

then integration by parts yields

y(s) =
1
2

∫ s

0
(x1ẋ2 − x2ẋ1)dt =

∫ s

0
x1ζ2dt− 1

2
x1x2

= − 1

ξ2
4

∫ s

0
(β(t) + ξ3)

(
β2(t)

2
+C1

)
dt− 1

2
x1x2. (4.40)

Finally, sinceż=
x2

1+x2
2

2 ζ2,

z(s) =
∫ s

0

x2
1 + x2

2

2
ζ2dt =

1
2

∫ s

0
x2

1ζ2dt+
1
6

x3
2

=
1

2ξ3
4

∫ s

0
(β(t) + ξ3)

2

(
β2(t)

2
+C1

)
dt+

1
6

x3
2. (4.41)
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Once we findβ, we can find the geodesic (x1(s), x2(s), y(s), z(s)) explicitly.

Sinceβ̇(s) = ξ4ζ1, β̇(0) = ξ4ζ1(0) = ξ4ξ
0
1, we have

β̈(s) = ξ4ζ̇1 = ξ4β(s)ζ2 = β(s)(ξ4ζ2) = β(s)

(
β2(s)

2
+C1

)
. (4.42)

Multiplying both sides by 2̇β(s) and integrating, we have

β̇2(s) =
β4(s)

4
+C1β

2(s) +C2 =

(
β2(s)

2
+C1

)2

+C2 −C2
1, (4.43)

whereC2 is a constant, and

C2 = β̇
2(0)− β

4(0)
4
−C1β

2(0) = (ξ0
1)2ξ2

4 +
ξ4

3

4
− ξ0

2ξ
2
3ξ4. (4.44)

Then

C2 −C2
1 = (ξ0

1)2ξ2
4 +

ξ4
3

4
− ξ0

2ξ
2
3ξ4 −

(
ξ0

2ξ4 −
ξ2

3

2

)2

= ξ2
4((ξ0

1)2 − (ξ0
2)2) = ξ2

4, (4.45)

since (ξ0
1)2 − (ξ0

2)2 = 1.

Assumeβ̇(s) > 0, we have

dβ(s)
ds
=

√(
β2(s)

2
+C1

)2

+ ξ2
4. (4.46)

Hence

ds=
dβ

√(
β2(s)

2 +C1

)2
+ ξ2

4

. (4.47)

Let ρ2 = C1 + ξ4i, ρ̄2 = C1 − ξ4i andu = β√
2
, integrating (4.47) from 0 tos, we obtain

s=
∫ β(s)√

2

β(0)√
2

√
2du√

(u2 + ρ2)(u2 + ρ̄2)
. (4.48)

Set

k2 = −(ρ − ρ̄)2

4ρρ̄
=

√
C2

1 + ξ
2
4 −C1

2
√

C2
1 + ξ

2
4

,

g =
1

2
√
ρρ̄
=

1

2(C2
1 + ξ

2
4)

1
4

.
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Since
∫ ∞

y

dt
√

(t2 + ρ2)(t2 + ρ̄)
= g · cn−1 (cosϕ, k) = gF(ϕ, k), (4.49)

wherecn−1 (y, k) is a Jacobi’s Inverse Elliptic Functions, and

ϕ = cos−1

(
y2 − ρρ̄
y2 + ρρ̄

)
, F(ϕ, k) =

∫ ϕ

0

dt
√

1− k2sin2 t
.

Hence
∫ β(s)√

2

β(0)√
2

√
2du

√
(u2 + ρ2)(u2 + ρ̄2)

=

∫ ∞

β(0)√
2

√
2du

√
(u2 + ρ2)(u2 + ρ̄2)

−
∫ ∞

β(s)√
2

√
2du

√
(u2 + ρ2)(u2 + ρ̄2)

.

According to (4.49), we have

∫ ∞

β(0)√
2

√
2du

√
(u2 + ρ2)(u2 + ρ̄2)

=
√

2gF(ϕ1, k) = constant, (4.50)

where

ϕ1 = cos−1



ξ2
3 − 2

√
C1 + ξ

2
4

ξ2
3 + 2

√
C1 + ξ

2
4


.

Since
∫ ∞

β(s)√
2

√
2du

√
(u2 + ρ2)(u2 + ρ̄2)

=
√

2g · cn−1

(
β2(s) − 2ρρ̄
β2(s) + 2ρρ̄

)
. (4.51)

Hence

cn−1

(
β2(s) − 2ρρ̄
β2(s) + 2ρρ̄

)
= F(ϕ1, k) − s

√
2g
, (4.52)

let F = F(ϕ1, k), we obtain

β2(s) =
2ρρ̄

(
1+ cn

(
F − s√

2g
, k

))

(
1− cn

(
F − s√

2g
, k

)) =
2ρρ̄ (1+ cn (2s̃, k))

(1− cn (2s̃, k))
, (4.53)

where 2s̃= F − s√
2g

.
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Since

1− cn (2s)
1+ cn (2s)

= tn2 (s)dn2 (s), (4.54)

hence

β(s) =

√
2ρρ̄

tn (s̃, k)dn (s̃, k)
=

√
2ρρ̄cs(s̃, k)nd (s̃, k). (4.55)

For the case oḟβ(s) < 0, we can calculate by the same method, and get the same

result. But the expression of the parameter ˜s in (4.53) and(4.55) should be changed to

1
2

(
F +

s
√

2g

)
.

Thus the sign oḟβ(s) will not affect the expression of the geodesics.

Therefore, integrating equations (4.36), (4.38), (4.40) and (4.41), we get a complete

description of the Hamiltonian time-like geodesics in the Engel group.

Theorem 4.9. In the case ofξ4 , 0, time-like geodesics starting from the origin are

given by:

x1(s) = −
1
ξ4

(β(s) + ξ3), (4.56)

x2(s) =
1

2ξ4
(B2(s) + 2C1), (4.57)

y(s) = − 1

2ξ2
4

(B3(s) + 2C1B1(s) + ξ3B2(s) + 2C1ξ3s) − 1
2

x1(s)x2(s), (4.58)

z(s) =
1

4ξ3
4

(B4(s) + 2C1B2(s) + 2ξ3B3(s) + 4C1ξ3B1(s) + ξ
2
3B2(s) + 2C1ξ

2
3) +

1
6

x3
2(s),

(4.59)

where C1 = ξ4ξ
0
2 −

ξ2
3
2 , Bi(s) =

∫ s

0
βi(t)dt, i = 1, . . . , 4, and the expressions of Bi(s) are

presented in Appendix.

Projections of geodesics to the plane (x1, x2) with ξ(0) = (1, 0, 1, 1), ξ(0) =

(
√

5
2 , 1/2, 2, 1) andξ(0) = (

√
5

2 , 1/2, 1, 1) are shown in Figure 2.
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Figure 2: Projections of geodesics to the plane (x1, x2) whenξ3 , 0, ξ4 , 0

Appendix

Denoting

ψ1(s) = ln (k′2 + cs2 (s, k)), ψ2(s) =
dn (2s, k)sn(2s, k)

(1− cn (2s, k))2
,

ψ3(s) =
E(2s, k) − E(2s, k)cn (2s, k)

1− cn (2s, k)
, F(ϕ, k) =

∫ ϕ

0

dt
√

1− k2sin2 t
,

k2 =

√
C2

1 + ξ
2
4 −C1

2
√

C2
1 + ξ

2
4

, g =
1

2(C2
1 + ξ

2
4)

1
4

, ϕ1 = cos−1



ξ2
3 − 2

√
C1 + ξ

2
4

ξ2
3 + 2

√
C1 + ξ

2
4



we get the expressions ofBi(s) as following:

B1(s) =
∫ s

0
β(t)dt = gψ1(s̃) + D1,

B2(s) =
∫ s

0
β2(t)dt =

√
2
g

[−3s̃+ (1− cn (2s̃, k))ψ2(s̃) + ψ3(s̃)] + D2,

B3(s) =
∫ s

0
β3(t)dt =

1
2g2k′2

[k′2cs2 (s̃, k) + k′2(2k2 − 1)ψ1(s̃) − (2k4 − k6 − k2)eψ1(s̃)] + D3,

B4(s) =
∫ s

0
β4(t)dt =

√
2

3g3
[−3

2
s̃+ (3− 4k2)ψ2(s̃) + 4k′2(1+ k2)s̃− 2k′2E(2s̃, k)] + D4,
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wheres̃= 1
2

(
F ± s√

2g

)
, F = F(ϕ1, k), D1,D2,D3,D4 are constants, and

D1 = −gψ1

(F
2

)
,

D2 =

√
2
g

[
3F
2
− (1− cn (F, k))ψ2

(F
2

)
− ψ3

(F
2

)]
,

D3 =
1

2g2k′2

[
−k′2cs2

(F
2
, k

)
− k′2(2k2 − 1)ψ1

(F
2

)
+ (2k4 − k6 − k2)eψ1( F

2 )
]
,

D4 =

√
2

3g3

[
3F
4
− (3− 4k2)ψ2

(F
2

)
− 2k′2(1+ k2)F + 2k′2E(F, k)

]
.
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