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Abstract. We compare different notions of curvature on contact sub-Riemannian manifolds.
In particular we introduce canonical curvatures as the coefficients of the sub-Riemannian Jacobi
equation. The main result is that all these coefficients are encoded in the asymptotic expansion
of the horizontal derivatives of the sub-Riemannian distance. We explicitly compute their
expressions in terms of the standard tensors of contact geometry. As an application of these
results, we prove a version of the sub-Riemannian Bonnet-Myers theorem that applies to any
contact manifold, with special attention to contact Yang-Mills structures.
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1. Introduction

The definition of general curvature-like invariants in sub-Riemannian geometry is a challeng-
ing and interesting topic, with many applications to the analysis, topology and geometry of these
structures. In the general setting, there is no canonical connection à la Levi Civita and thus the
classical construction of the Riemann curvature tensor is not available. Nevertheless, in both the
Riemannian and sub-Riemannian setting, the geodesic flow is a well defined Hamiltonian flow
on the cotangent bundle: one can then generalize the classical construction of Jacobi fields and
define the curvature as the invariants appearing in the the Jacobi equation (i.e. invariants of the
linearization of the geodesic flow). This approach has been extensively developed in [5,8,19,25].
This method, which leads to direct applications, has still some shortcomings since, even if these
invariants could be a priori computed via an algorithm, it is extremely difficult to implement.

Another natural approach is to extract geometric invariants from the horizontal derivatives of
the sub-Riemannian (squared) distance. This approach was developed in [4], where the authors
introduce a family of symmetric operators canonically associated with a minimizing trajectory.
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Under some assumptions, this family admits an asymptotic expansion and each term of this
expansion defines a metric invariant.

The goal of this paper is to revisit both constructions for contact manifolds, and to establish
a bridge between the two approaches to curvature. The main result is how all invariants of
the linearization of the geodesic flow are encoded in the asymptotic expansion of the squared
distance. We explicitly compute these invariants in terms of the standard tensors of contact
geometry (Tanno curvature, torsion and and Tanno’s tensor). Combining these formulas with
the results of [9], we obtain Bonnet-Myers type results for contact manifolds.

1.1. The contact setting. Contact manifolds are an important sub-class of corank 1 sub-
Riemannian structures that includes Yang-Mills type structures, Sasakian manifolds, strongly
pseudo-convex CR structures, Heisenberg type groups.

More precisely, let M be a smooth manifold, with dim M = 2d + 1 and ω ∈ Λ1M be a
one-form such that ω ∧ (dω)d 6= 0. The contact distribution is D := ker ω. A sub-Riemannian
structure on M is given by a smooth scalar product g on D . In this case we say that (M, ω, g) is
a contact sub-Riemannian manifold. This scalar product can be extended to the whole tangent
space by requiring that the Reeb vector field X0 is orthogonal to D and of norm one. The
contact endomorphism J : T M → T M is defined by :

g(X, JY ) = dω(X, Y ), ∀ X, Y ∈ Γ(T M).

By a classical result (see [13, Thm. 4.4]) there always exists a choice of the metric g on D such
that J2|D = −I. The Tanno’s tensor is the (2, 1) tensor field

Q(X, Y ) := (∇Y J)X, ∀ X, Y ∈ Γ(T M),

where ∇ is the Tanno connection of the contact manifold (see Sec. 2.2 for precise definitions).
Horizontal curves (also called Legendrian in this setting), are curves γ such that γ̇(t) ∈ Dγ(t).

The length ℓ(γ) of an horizontal curve is well defined, and the sub-Riemannian distance is

d(x, y) = inf{ℓ(γ) | γ is horizontal curve that joins x with y}.

This turns a contact sub-Riemannian manifold in a metric space. Length minimizing trajectories
are called geodesics. Geodesics are projections of the integral lines of the geodesic flow on
T ∗M defined by the Hamiltonian function associated with the (sub-)Riemannian structure. In
particular any geodesic is uniquely specified by its initial covector λ ∈ T ∗M . In the classical,
Riemannian setting, this is nothing else then the geodesic flow seen on the cotangent space
through the canonical ismorphism and the initial covector corresponds to the initial tangent
vector of a geodesic. In the sub-Riemannian setting only the “cotangent viewpoint” survives.

1.2. A family of operators. For a fixed geodesic γ(t), the geodesic cost function is

ct(x) := − 1

2t
d

2(x, γ(t)), x ∈ M, t > 0.

This function is smooth (as a function of t and q) for small t > 0 and x sufficiently close to
x0 = γ(0). Moreover, its differential recovers the initial covector of the geodesic λ = dx0ct, for
all t > 0. As a consequence, the family of functions ċt := d

dt
ct has a critical point at x0 and its

second differential is a well defined quadratic form

d2
x0

ct : Tx0M → R.

Remark 1.1. The definition of ċt makes sense both in the Riemannian and sub-Riemannian
setting. In both cases, for any unit-speed geodesic

ċt(x) =
1

2
‖γ̇(t) − W t

x,γ(t)‖2 − 1

2
,

where W t
x,γ(t) is final tangent vector of the geodesic joining x with γ(t) in time t (this is uniquely

defined precisely where ct is smooth). See Sec. 4.1.
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Through the sub-Riemannian metric we associate with the restrictions d2
x0

ċt|Dx0
the family

of symmetric operators Qλ(t) : Dx0 → Dx0 defined by

d2
x0

ċt(w) = g(Qλ(t)w, w), ∀ t > 0, ∀ w ∈ Dx0 .

The family Qλ(t) is singular for t → 0, but in this setting we have the following (Theorem 4.7).

Theorem 1.2. The family t 7→ t2Qλ(t) can be extended to a smooth family of operators on Dx0

for small t ≥ 0, symmetric with respect to g. Moreover Iλ := lim
t→0+

t2Qλ(t) ≥ I > 0.

In particular, we have the Laurent expansion at t = 0

(1) Qλ(t) =
1

t2
Iλ +

m∑

i=0

Q(i)
λ ti + O(tm+1).

Every operator Q(i)
λ : Dx0 → Dx0 , for i ∈ N, is clearly an invariant of the metric structure and,

in this sense, Qλ(t) can be thought of as a generating function for metric invariants. These
operators, together with Iλ, contain all the information on the germ of the structure along the
fixed geodesic (clearly any modification of the structure that coincides with the given one on a
neighborhood of the geodesic gives the same family of operators).

Remark 1.3. Applying this construction in the case of a Riemannian manifold, where Dx0 =

Tx0M , one finds that Iλ = I for any geodesic, and the operator Q(0)
λ is the “directional” sectional

curvature in the direction of the geodesic:

Q(0)
λ =

1

3
R(·, γ̇)γ̇,

where γ̇ is the initial vector of the geodesic and R is the curvature of the Levi-Civita connection.

A similar construction has been carried out, in full generality, for the geometric structures
arising from affine optimal control problems with Tonelli-type Lagrangian (see [4]). In that
setting the geodesic is replaced by a minimizer of the optimization problem. Under generic
assumptions on the extremal, the singularity of the family Qλ(t) is controlled.

In the contact setting, due to the absence of abnormal minimizers, these assumptions are
always satisfied for any non-trivial geodesic. One of the purposes of this paper is to provide a
simpler and direct proof of the existence of the asymptotic.

1.3. The singular term. A first surprise is that, already in the contact case, Iλ is a non-trivial
invariant. We obtain the complete characterization of the singular term of (1) (Theorem 4.9).

Theorem 1.4. The symmetric operator Iλ : Dx0 → Dx0 satisfies

(i) spec Iλ = {1, 4},
(ii) tr Iλ = 2d + 3.

More precisely, let Kγ(0) ⊂ Dx0 be the hyperplane dω-orthogonal to γ̇(0), that is

Kγ(0) := {v ∈ Dγ(0) | dω(v, γ̇(0)) = 0}.

Then Kγ(0) is the eigenspace corresponding to eigenvalue 1 (and geometric multiplicity 2d − 1)

and K⊥

γ(0) ∩ Dx0 is the eigenspace corresponding to eigenvalue 4 (and geometric multiplicity 1).

Iλ is a structural invariant that does not depend on the metric, but only on the fact that the
distance function comes from a contact sub-Riemannian structure (operators Iλ coming from
different metrics g on the same contact distribution have the same spectral invariants).

Remark 1.5. The trace N := tr Iλ = 2d + 3, coincides with the geodesic dimension (of the
contact sub-Riemannian structure) defined in [4, Sec. 5.6]. In particular, if Ωt is the geodesic
homothety with center x0 and ratio t ∈ [0, 1] of a measurable, bounded set Ω ⊂ M , we have the
following asymptotic measure contraction property:

lim
t→0

log µ(Ωt)

log t
= N ,
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for any smooth measure µ. I.e. N is the order of vanishing of µ(Ωt) for t → 0.

The regular terms of the asymptotic 1 are curvature-like invariants. The next main result is

the explicit relation of the operators Q(i)
λ with the symplectic invariants of the linearization of

the geodesic flow, that we introduce now.

1.4. Linearized Hamiltonian flow. In the (sub-)Riemannian setting, the geodesic flow φt :
T ∗M → T ∗M is generated by the Hamiltonian function H ∈ C∞(T ∗M) (the co-metric of the
sub-Riemannian structure). More precisely, if σ is the canonical symplectic structure on T ∗M ,

then the Hamiltonian vector field ~H is defined by σ(·, ~H) = dH, and φt = et ~H . Integral lines

λ(t) = et ~H(λ) of the geodesic flow are usually called extremals. Geodesics are then projections

of non-trivial extremals γ(t) = et ~H(λ) (non-trivial is equivalent to H(λ) 6= 0). For any fixed
extremal, and initial datum ξ ∈ Tλ(T ∗M), we define the vector field along the extremal

Xξ(t) := et ~H
∗ ξ ∈ Tλ(t)(T

∗M).

The set of these vector fields is a 2n-dimensional vector space that coincides with the space of
solutions of the (sub-)Riemannian Jacobi equation

Ẋ = 0,

where Ẋ := L ~H
X denotes the Lie derivative in the direction of ~H.

Pick a Darboux frame {Ei(t), Fi(t)}n
i=1 along λ(t) (to fix ideas, one can think at the canonical

basis {∂pi
|λ(t), ∂qi

|λ(t)} induced by a choice of coordinates (q1, . . . , qn) on M). In terms of this

frame, the Jacobi field X(t) has components (p(t), q(t)) ∈ R
2n:

X(t) =
n∑

i=1

pi(t)Ei(t) + qi(t)Fi(t).

In the Riemannian case, one can choose a canonical Darboux frame (satisfying special equations,
related with parallel transport) such that the components (p(t), q(t)) ∈ R

2n satisfy

(2) ṗ = −R(t)q, q̇ = p,

for some smooth family of symmetric matrices R(t). It turns out this class of frames is defined
up to a constant orthogonal transformation and R(t) is the matrix representing the curvature
operator Rγ(t) : Tγ(t)M → Tγ(t)M in the direction of the geodesic, in terms of a parallel
transported frame. In particular

Rγ(t)v = R(v, γ̇(t))γ̇(t), ∀ v ∈ Tγ(t)M.

where R is the Riemannian curvature tensor. From Eq. (2), it follows the classical classical
Jacobi equation written in terms of a parallel transported frame: q̈ + R(t)q = 0. In this
language, the Riemann curvature arises as a set of invariants of the linearization of the geodesic
flow.

1.4.1. Canonical curvatures. Analogously, in the sub-Riemannian setting, we might look for a
canonical Darboux frame such that the Jacobi has, in coordinates, the simplest possible form.
This analysis begun in [5] and has been completed in a very general setting in [25]. The “normal
form” of the Jacobi equation defines a series of invariants of the sub-Riemannian structure along
the given geodesic:

• A canonical splitting of the tangent space along the geodesic:

Tγ(t)M =
⊕

α

Sα
γ(t),

where α runs over a set of indices that depends on the germ of the sub-Riemannian
structure along the geodesic.

• A canonical curvature operator Rγ(t) : Tγ(t)M → Tγ(t)M .
4



The operator Rγ(t) (and its partial traces) is the correct object to bound to obtain sectional-type
(and Ricci-type) comparison theorems in the general sub-Riemannian setting, as it controls the
evolution of the Jacobian of the exponential map (see for instance [9]).

The general formulation is complicated, since the very structure of the normal form depends
on the type of sub-Riemannian structure. In Section 3 we give an ad-hoc presentation for the
contact case. In particular, we prove the following (Theorem 6.1).

Theorem 1.6 (Canonical splitting). Let γ(t) be a unit speed geodesic of a contact sub-Rieman-
nian structure with initial covector λ. Then the canonical splitting is given by

Sa
γ(t) := span{X0 − 2Q(γ̇, γ̇) − h0γ̇}, dim Sa

γ(t) = 1,

Sb
γ(t) := span{Jγ̇}, dim Sb

γ(t) = 1,

Sc
γ(t) := Jγ̇⊥ ∩ Dγ(t), dim Sc

γ(t) = 2d − 1,

where X0 is the Reeb field, Q is the Tanno tensor, h0 = 〈λ, X0〉 and everything is computed
along the extremal. Indeed Dγ(t) = Sb

γ(t) ⊕ Sc
γ(t) and γ̇(t) ∈ Sc

γ(t).

The above theorem follows from the explicit computation of the canonical frame. Moreover,
we obtain an explicit expression for Rγ(t) (Theorems 6.2-6.3).

1.5. Relation between the two approaches. The main goal of this paper is to find the
relation between the curvature-like objects introduced so far: on one hand, the canonical curva-

ture operator Rγ(t) that we have just defined, on the other hand, the invariants Q(i)
λ , for i ≥ 0,

defined by the asymptotics (1) (both associated with a given geodesic with initial covector λ).
Notice that R is a canonical operator defined on a space of dimension n, while the operators

Q(i) are defined on a space of dimension k, equal to the dimension of the distribution. In the
Riemannian case k = n, and a dimensional argument suggests the first element Q(0) should
“contain” all the canonical curvatures. Indeed we have

Rγ(t) = 3Q(0)
λ(t) = R(·, γ̇(t))γ̇(t).

In the sub-Riemannian setting the relation is much more complicated and in general the first
element Q(0) recovers only a part of the canonical curvature R. More precisely, as proved in [4]

Rγ(t)

∣∣
Dγ(t)

= 3Q(0)
λ(t).

It turns out that, on contact structures, we recover the whole R by computing the higher order
invariants Q(0), Q(1) and Q(2) (see Theorem 4.11 for the explicit relations).

1.6. Comparison theorems. The restriction of the curvature operator on the invariant sub-

spaces Sα
γ(t) is denoted R

αβ
γ(t), for α, β = a, b, c. We have more than one Ricci curvature, one

partial trace for each subspace

Ricα
γ(t) := tr

(
Rαα

γ(t) : Sα
γ(t) → Sα

γ(t)

)
, α = a, b, c.

In the Riemannian case, we only have one subspace (the whole tangent space) and only one
average: the classical Ricci curvature.

In [9], under suitable conditions on the canonical curvature of a given sub-Riemannian ge-
odesic, we obtained bounds on the first conjugate time along the geodesic and, in particular,
Bonnet-Myers type results. In Sec. 5 we first apply the results of [9] to contact structures. It
is interesting to express these conditions in terms of the classical tensors of the contact struc-
ture (Tanno’s tensor, curvature and torsion). With the explicit expressions for the canonical
curvature of Sec. 6, we obtain the following results (Theorem 5.3).

Theorem 1.7. Consider a complete, contact structure of dimension 2d + 1 of Yang-Mills type.
Assume that there exists constants κ1 > κ2 ≥ 0 such that, for any horizontal unit vector X

(3) Ric(X) − R(X, JX, JX, X) ≥ (2d − 2)κ1, ‖Q(X, X)‖2 ≤ (2d − 2)κ2.
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Then the manifold is compact with diameter not greater than π/
√

κ1 − κ2, and the fundamental
group is finite.

We stress that the curvatures appearing in (3) are computed w.r.t. Tanno connection. This
generalizes the results for a 3D contact structures [6] and for Sasakian ones [17,18].

Finally, we obtain the following corollary for strongly pseudo-convex CR manifolds (that is,
for Q = 0). Notice that this condition is strictly weaker then Sasakian. Observe that in the CR
case, Tanno’s curvature coincides with the classical Tanaka-Webster curvature.

Corollary 1.8. Consider a complete, strongly pseudo-convex CR structure such that, for any
horizontal unit vector X

Ric(X) − R(X, JX, JX, X) ≥ (2d − 2)κ > 0.

Then the manifold is compact with diameter not greater than π/
√

κ, and the fundamental group
is finite.

Besides the above references, other Bonnet-Myers type results are found in the literature,
proved with different techniques and for different sub-Riemannian structures. For example, with
heat semigroup approaches: for structures with transverse symmetries of Yang-Mills type [10]
and Riemannian foliations with totally geodesic leaves [11]. With direct computation of the
second variation formula: for 3D contact CR structures [23] and for general 3D contact ones [16].
Finally, with Riccati comparison techniques for any sub-Riemannian structure [9].

A compactness result for contact structures is also obtained in [12] by applying the classical
Bonnet-Myers theorem to a suitable Riemannian extension of the metric.

1.7. Final comments and open questions. In the contact setting, the invariants Q(i) for
i = 0, 1, 2 recover the whole canonical curvature operator R. It is natural to conjecture that,
in the general case, there exists N ∈ N (depending on the sub-Riemannian structure) such that

the invariants Q(i) for i = 0, . . . , N, recover the whole canonical curvature R. Already in the
contact case the relation is complicated due to the high number of derivatives required.

Finally, the comparison results obtained above (and in the general sub-Riemannian setting
in [9]) rely on the explicit computations of R and its traces. In view of the relation we obtained
between R and the operators Q(i), it is natural to ask whether it is possible to obtain comparison
theorems in terms of suitable CN -bounds on the geodesic cost (for some finite N depending on
the sub-Riemannian structure).

2. Preliminaries

We recall some basic facts in sub-Riemannian geometry. We refer to [3] for further details.
Let M be a smooth, connected manifold of dimension n ≥ 3. A sub-Riemannian structure

on M is a pair (D , g) where D is a smooth vector distribution of constant rank k ≤ n satisfying
the Hörmander condition (i.e. LiexD = TxM , ∀x ∈ M) and g is a smooth Riemannian metric
on D . A Lipschitz continuous curve γ : [0, T ] → M is horizontal (or admissible) if γ̇(t) ∈ Dγ(t)

for a.e. t ∈ [0, T ]. Given a horizontal curve γ : [0, T ] → M , the length of γ is

ℓ(γ) =

∫ T

0
‖γ̇(t)‖dt,

where ‖ · ‖ is the norm induced by g. The sub-Riemannian distance is the function

d(x, y) := inf{ℓ(γ) | γ(0) = x, γ(T ) = y, γ horizontal}.

The Rashevsky-Chow theorem (see [14, 21]) guarantees the finiteness and the continuity of
d : M × M → R with respect to the topology of M . The space of vector fields (resp. horizontal
vector fields) on M is denoted by Γ(T M) (resp. Γ(D)).

Locally, the pair (D , g) can be given by assigning a set of k smooth vector fields that span
D , orthonormal for g. In this case, the set {X1, . . . , Xk} is called a local orthonormal frame for
the sub-Riemannian structure.
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A sub-Riemannian geodesic is an admissible curve γ : [0, T ] → M such that ‖γ̇(t)‖ is constant
and for every sufficiently small interval [t1, t2] ⊆ [0, T ], the restriction γ|[t1,t2] realizes the distance
between its endpoints. The length of a geodesic is invariant by reparametrization of the latter.
Geodesics with ‖γ̇(t)‖ = 1 are called length parametrized (or of unit speed). A sub-Riemannian
manifold is complete if (M, d) is complete as a metric space.

With any sub-Riemannian structure we associate the Hamiltonian function H ∈ C∞(T ∗M)

H(λ) =
1

2

k∑

i=1

〈λ, Xi〉2, ∀λ ∈ T ∗M,

for any local orthonormal frame X1, . . . , Xk, where 〈λ, ·〉 denotes the action of the covector λ on
vectors. Let σ be the canonical symplectic form on T ∗M . For any function a ∈ C∞(T ∗M), the
associated Hamiltonian vector field ~a is defined by the formula da = σ(·,~a). For i = 1, . . . , k let
hi ∈ C∞(T ∗M) be the linear-on-fibers functions hi(λ) := 〈λ, Xi〉. Indeed

H =
1

2

k∑

i=1

h2
i , and ~H =

k∑

i=1

hi
~hi.

2.1. Contact sub-Riemannian structures. In this paper we consider contact structures
defined as follows. Let M be a smooth manifold of odd dimension dim M = 2d + 1, and let
ω ∈ Λ1M a one-form such that ω ∧ (dω)n 6= 0. In particular ω ∧ (dω)n defines a volume form
and M is orientable. The contact distribution is D := ker ω. Indeed dω|D is non-degenerate. A
sub-Riemannian structure on M is fixed once one endows D with a scalar product g. In this
case we say that (M, ω, g) is a contact sub-Riemannian manifold.

Trajectories minimizing the distance between two points are solutions of first-order necessary
conditions for optimality, given by a weak version of the Pontryagin Maximum Principle (see [20],
or [3] for an elementary proof). We denote by π : T ∗M → M the standard bundle projection.

Theorem 2.1. Let M be a contact sub-Riemannian manifold and let γ : [0, T ] → M be a sub-
Riemannian geodesic. Then there exists a Lipschitz curve λ : [0, T ] → T ∗M , such that π ◦λ = γ
and for all t ∈ [0, T ]:

(4) λ̇(t) = ~H(λ(t)).

If λ : [0, T ] → M is a curve satisfying (4), it is called a normal extremal. It is well known that
if λ(t) is a normal extremal, then λ(t) is smooth and its projection γ(t) := π(λ(t)) is a smooth
geodesic. Let us recall that this characterization is not complete on a general sub-Riemannian
manifold, since also abnormal extremals can appear.

Let λ(t) = et ~H(λ0) be the integral curve of the Hamiltonian vector field ~H starting from λ0.
The sub-Riemannian exponential map (from x0) is

Ex0 : T ∗
x0

M → M, Ex0(λ0) := π(e
~H(λ0)).

Unit speed normal geodesics correspond to initial covectors such that H(λ0) = 1/2.

Definition 2.2. Let γ(t) = Ex0(tλ0) be a normal unit speed geodesic. We say that t > 0 is a
conjugate time (along the geodesic) if tλ0 is a critical point of Ex0. The first conjugate time is
t∗(λ0) = inf{t > 0 | tλ0 is a critical point of Ex0}.

On a contact sub-Riemannian manifold or, in general, when there are no non-trivial abnormal
extremals, the first conjugate time is separated from zero (see for instance [1, 3]) and, after its
first conjugate time, geodesics lose local optimality.

2.2. Contact geometry. Given a contact manifold (M, ω), the Reeb vector field X0 is the
unique vector field satisfying ω(X0) = 1 and dω(X0, ·) = 0. Indeed X0 is transverse to D .
We can extend the sub-Riemannian metric g on D to a global Riemannian structure (that we
denote with the same symbol g) by promoting X0 to an unit vector orthogonal to D .
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We define the contact endomorphism J : T M → T M by:

g(X, JY ) = dω(X, Y ), ∀ X, Y ∈ Γ(T M).

Indeed J is skew-symmetric w.r.t. to g. By a classical result (see [13, Thm. 4.4]) there always
exists a choice of the metric g on D such that J2 = −I on D and J(X0) = 0, or equivalently

J2 = −I + ω ⊗ X0.

In this case, g is said to be compatible with the contact structure and (M, ω, g, J) is usually
referred to as a contact metric structure or a contact Riemannian structure. In this paper, we
always assume the metric g to be compatible.

Theorem 2.3 (Tanno connection, [13, 24]). There exists a unique linear connection ∇ on
(M, ω, g, J) such that

(i) ∇ω = 0,
(ii) ∇X0 = 0,
(iii) ∇g = 0,
(iv) T (X, Y ) = dω(X, Y )X0 for any X, Y ∈ Γ(D),
(v) T (X0, JX) = −JT (X0, X) for any vector field X ∈ Γ(T M),

where T is the torsion tensor of ∇.

The Tanno’s tensor is the (2, 1) tensor field defined by

Q(X, Y ) := (∇Y J)X, ∀ X, Y ∈ Γ(T M).

A fundamental result due to Tanno is that (M, ω, g, J) is a (strongly pseudo-convex) CR mani-
fold if and only if Q = 0. In this case, the Tanno connection is the Tanaka-Webster connection.
Thus, Tanno connection is a natural generalisation of the Tanaka-Webster connection for con-
tact structures that are not CR.

2.3. K-type structures. If X is an horizontal vector field, so is T (X0, X). As a consequence,
if we define τ(X) = T (X0, X), τ is a symmetric horizontal endomorphism which satisfies τ ◦J +
J ◦ τ = 0, by property (v). On CR manifolds, τ is called pseudo-Hermitian torsion. A contact
structure is K-type iff X0 is a Killing vector field or, equivalently, if τ = 0.

2.4. Yang-Mills structures. We say that a contact sub-Riemannian structure is Yang-Mills
if the Tanno’s tensor has zero horizontal trace, i.e. for an orthonormal frame X1, . . . , X2d of D :

tr Q =
2d∑

i=1

Q(Xi, Xi) = 0.

Our definition of Yang-Mills type structures coincides with the classical one given in [15, Sec.
5.1] for totally geodesic foliations with bundle like metric, and generalizes it to contact sub-
Riemannian structure that are not foliations, e.g. when τ 6= 0. See Appendix A.

2.5. Sasakian structures. If (M, ω, g, J) is a contact sub-Riemannian manifold with Reeb
vector X0, consider the manifold M ×R. We denote vector fields on M ×R by (X, f∂t), where
X is tangent to M and t is the coordinate on R. Define the (1, 1) tensor

J(X, f∂t) = (JX − fX0, ω(X)∂t).

Indeed J2 = −I and thus defines an almost complex structure on M × R (this clearly was
not possible on the odd-dimensional manifold M). We say that the contact sub-Riemannian
structure (M, ω, g, J) is Sasakian (or normal) if the almost complex structure J comes from
a true complex structure. A celebrated theorem by Newlander and Nirenberg states that this
condition is equivalent to the vanishing of the Nijenhuis tensor of J. For a (1, 1) tensor T , its
Nijenhuis tensor [T, T ] is the (2, 1) tensor

[T, T ](X, Y ) := T 2[X, Y ] + [T X, T Y ] − T [T X, Y ] − T [X, T Y ].
8



In terms of the original structure, the integrability condition [J, J] = 0 is equivalent to

[J, J ](X, Y ) + dω(X, Y )X0 = 0.

Remark 2.4. The Sasakian condition is rigid. Any Sasakian structure is K-type (i.e. the Reeb
field X0 is Killing). The converse, however, is not true (except for dim M = 3). A Sasakian
manifold is also a strongly pseudo-convex CR manifold (i.e. Q = 0). Also in this case, the
converse is not true. For examples see the monograph1 [13].

3. Jacobi fields revisited

Let λ ∈ T ∗M be the initial covector of a normal geodesic, projection of the extremal λ(t) =

et ~H(λ). For any ξ ∈ Tλ(T ∗M) we define the field along the extremal λ(t) as

X(t) := et ~H
∗ ξ ∈ Tλ(t)(T

∗M).

Definition 3.1. The set of vector fields obtained in this way is a 2n-dimensional vector space,
that we call the space of Jacobi fields along the extremal.

In the Riemannian case, the projection π∗ is an isomorphisms between the space of Jacobi
fields along the extremal and the classical space of Jacobi fields along the geodesic γ. Thus, this
definition agrees with the standard one in Riemannian geometry and does not need curvature
or connection.

In Riemannian geometry, the subspace of Jacobi fields vanishing at zero carries information
about conjugate points along the given geodesic. This corresponds to the subspace of Jacobi
fields along the extremal such that π∗X(0) = 0. This motivates the following construction.

For any λ ∈ T ∗M , let Vλ := ker π∗|λ ⊂ Tλ(T ∗M) be the vertical subspace. We define the
family of Lagrangian subspaces along the extremal

L(t) := et ~H
∗ Vλ ⊂ Tλ(t)(T

∗M).

Remark 3.2. A time t > 0 is a conjugate time along γ if L(t) ∩ Vλ(t) 6= {0}. The first conjugate
time is the smallest conjugate time, namely t∗(γ) = inf{t > 0 | L(t) ∩ Vλ(t) 6= {0}}.

Notice that conjugate points correspond to the critical values of the sub-Riemannian expo-
nential map with base at γ(0). In other words, if γ(t) is conjugate with γ(0) along γ, there
exists a one-parameter family of geodesics starting at γ(0) and ending at γ(t) at first order.

Indeed, let ξ ∈ Vλ such that π∗ ◦ et ~H
∗ ξ = 0, then the vector field τ 7→ π∗ ◦ eτ ~H

∗ ξ is precisely the
vector field along γ(τ) of the aforementioned variation.

3.1. Linearized Hamiltonian. For any vector field X(t) along an integral line λ(t) of the

(sub-)Riemannian Hamiltonian flow, a dot denotes the Lie derivative in the direction of ~H:

Ẋ(t) :=
d

dt

∣∣∣∣
ε=0

e−ε ~H
∗ X(t + ε).

The space of Jacobi fields along the extremal λ(t) coincides with the set of solutions of the
(sub-)Riemannian Jacobi equation:

Ẋ = 0.

We want to write the latter in a more standard way. Pick a Darboux frame {Ei(t), Fi(t)}n
i=1

along λ(t) (to fix ideas, one can think at the canonical basis {∂pi
|λ(t), ∂qi

|λ(t)} induced by a choice

of coordinates (q1, . . . , qn) on M). In terms of this frame, X(t) has components (p(t), q(t)) ∈ R
2n:

X(t) =
n∑

i=1

pi(t)Ei(t) + qi(t)Fi(t).

1Blair defines the differential in such a way that 2dα(X, Y ) = X(α(Y )) − Y (α(X)) − α([X, Y ]), while we
employ the same definition without the factor 2. Then many formulas will differ from a factor 2.
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The elements of the frame satisfy

(
Ė
Ḟ

)
=

(
C1(t) −C2(t)
R(t) −C∗

1(t)

)(
E
F

)
,

for some smooth families of n × n matrices C1(t), C2(t), R(t), where C2(t) = C2(t)∗ and R(t) =
R(t)∗. The notation for these matrices will be clear in the following. We only stress here
that the particular structure of the equations is implied solely by the fact that the frame is
Darboux. Moreover, C2(t) ≥ 0 as a consequence of the non-negativity of the sub-Riemannian
Hamiltonian (in the Riemannian case C2(t) > 0). In turn, the Jacobi equation, written in terms
of the components p(t), q(t), becomes

(5)

(
ṗ
q̇

)
=

(−C1(t)∗ −R(t)
C2(t) C1(t)

)(
p
q

)
.

3.2. Canonical frame: Riemannian case. In the Riemannian case one can choose a suitable
frame (related with parallel transport) in such a way that, in Eq. (5), C1(t) = 0, C2(t) = I (in
particular, are constant), and the only remaining non-trivial block R(t) is the curvature operator
along the geodesic. The precise statement is as follows (see [9]).

Proposition 3.3. Let λ(t) be an integral line of a Riemannian Hamiltonian. There exists a
smooth moving frame {Ei(t), Fi(t)}n

i=1 along λ(t) such that:

(i) span{E1(t), . . . , En(t)} = Vλ(t).
(ii) It is a Darboux basis, namely

σ(Ei, Ej) = σ(Fi, Fj) = σ(Ei, Fj) − δij = 0, i, j = 1, . . . , n.

(iii) The frame satisfies the structural equations

Ėi = −Fi, Ḟi =
n∑

j=1

Rij(t)Ej ,

for some smooth family of n × n symmetric matrices R(t).

Moreover, the projections fi(t) := π∗Fi(t) are a parallel transported orthonormal frame along
the geodesic γ(t).

Properties (i)-(iii) uniquely define the moving frame up to orthogonal transformations: if

{Ẽi(t), F̃j(t)}n
i=1 is another frame satisfying (i)-(iii), for some family R̃(t), then there exists a

constant n × n orthogonal matrix O such that

(6) Ẽi(t) =
n∑

j=1

OijEj(t), F̃i(t) =
n∑

j=1

OijFj(t), R̃(t) = OR(t)O∗.

A few remarks are in order. Property (ii) implies that span{E1, . . . , En}, span{F1, . . . , Fn},
evaluated at λ(t), are Lagrangian subspaces of Tλ(t)(T

∗M). Eq. (6) reflects the fact that a
parallel transported frame is defined up to a constant orthogonal transformation. In particular,
one can use properties (i)-(iii) to define a parallel transported frame γ(t) by fi(t) := π∗Fi(t).
The symmetric matrix R(t) induces a well defined operator Rγ(t) : Tγ(t)M → Tγ(t)M

Rγ(t)fi(t) :=
n∑

j=1

Rij(t)fj(t).

Lemma 3.4. Let R : Γ(T M) × Γ(T M) × Γ(T M) → Γ(T M) the Riemannian curvature tensor
w.r.t. the Levi-Civita connection. Then

Rγ(t)v = R(v, γ̇(t))γ̇(t), v ∈ Tγ(t)M.

10



Back to the Jacobi equation (5), in terms of the above (parallel transported) frame, it reduces
to the classical Jacobi equation for Riemannian structures:

q̈ + R(t)q = 0, with Rij(t) = g
(
R(γ̇(t), fi(t))fj(t), γ̇(t)

)
.

3.3. Canonical frame: sub-Riemannian case. In the (general) sub-Riemannian setting,
such a drastic simplification cannot be achieved, as the structure is more singular and more
non-trivial invariants appear. Yet it is possible to simplify as much as possible the Jacobi
equation (seen as a first order equation Ẋ = 0) for a sufficiently regular extremal of more
general Hamiltonians (including the sub-Riemannian ones). This is achieved by the so-called
canonical Darboux frame, introduced in [5, 19,25].

In particular, C1(t) and C2(t) can be again put in a constant, normal form. However, in sharp
contrast with the Riemannian case, their very structure may depend on the extremal. Besides,
the remaining block R(t) is still non-constant (in general) and defines a canonical curvature
operator along γ(t). As in the Riemannian case, this frame is unique up to constant, orthogonal
transformations that preserve the “normal forms” of C1 and C2.

At this point, the discussion can be simplified as, for contact sub-Riemannian structures, C1

and C2 have only one possible form that is the same for all non-trivial extremal. We refer to the
original paper [25] and the more recent [4,9] for a discussion of the general case and the relation
between the normal forms and the invariants of the geodesic (the so-called geodesic flag).

Proposition 3.5. Let λ(t) be an integral line of a contact sub-Riemannian Hamiltonian. There
exists a smooth moving frame along λ(t)

E(t) = (E0(t), E1(t), . . . , E2d(t))∗, F (t) = (F0(t), F1(t), . . . , F2d(t))∗

such that the following holds true for any t:

(i) span{E0(t), . . . , E2d(t)} = Vλ(t).
(ii) It is a Darboux basis, namely

σ(Eµ, Eν) = σ(Fµ, Fν) = σ(Eµ, Fν) − δµν = 0 µ, ν = 0, . . . , 2d.

(iii) The frame satisfies the structural equations

Ė(t) = C1E(t) − C2F (t),(7)

Ḟ (t) = R(t)E(t) − C∗
1F (t),(8)

where C1, C2 are (2d + 1) × (2d + 1) matrices defined by

C1 =




0 1 0
0 0 0
0 0 02d−2


 , C2 =




0 0 0
0 1 0
0 0 I2d−2


 ,

and R(t) is a (2d + 1) × (2d + 1) smooth family of symmetric matrices of the form

R(t) =




R00(t) 0 R0j(t)
0 R11(t) R1j(t)

Ri0(t) Ri1(t) Rij(t)


 , i, j = 2, . . . , 2d.

Notice that C1 is nilpotent, and C2 is idempotent.

Moreover, the projections fi(t) := π∗Fi(t) for i = 1, . . . , 2d are an orthonormal frame for Dγ(t)

and f0(t) := π∗F0(t) is transverse to Dγ(t).

If {Ẽ(t), F̃ (t)} is another frame that satisfies (i)-(iii) for some matrix R̃(t), then there exists
a constant orthogonal matrix O that preserves the structural equations (i.e. OCiO

∗ = Ci) and

Ẽ(t) = OE(t), F̃ (t) = OF (t), R̃(t) = OR(t)O∗.
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3.4. Invariant subspaces and curvature. Let fµ(t) = π∗Fµ(t) a frame for Tγ(t)M (here
µ = 0, . . . , 2d). The uniqueness part of Proposition 3.5 implies that this frame is unique up to
a constant rotation of the form

O = ±



1 0 0
0 1 0
0 0 U


 , U ∈ O(2d − 1),

as one can readily check by imposing the conditions OCiO
∗ = Ci. In particular, the following

invariant subspaces of Tγ(t)M are well defined

Sa
γ(t) := span{f0},

Sb
γ(t) := span{f1},

Sc
γ(t) := span{f2, . . . , f2d},

and do not depend on the choice of the canonical frame (but solely on the geodesic γ(t)). The
sets of indices {0}, {1} and {2, . . . , 2d} play distinguished roles and, in the following, we relabel
these groups of indices as: a = {0}, b = {1} and c = {2, . . . , 2d}. In particular we have:

Tγ(t)M = Sa
γ(t) ⊕ Sb

γ(t) ⊕ Sc
γ(t).

With this notation, the curvature matrix R(t) has the following block structure

(9) R(t) =




Raa(t) 0 Rac(t)
0 Rbb(t) Rbc(t)

Rca(t) Rcb(t) Rcc(t)


 ,

where Raa(t), Rbb(t) are 1 × 1 matrices, Rac(t) = Rca(t)∗, Rbc(t) = Rcb(t)
∗ are 1 × (2d − 2)

matrices and Rcc is a (2d − 2) × (2d − 2) matrix.

Definition 3.6. The canonical curvature is the symmetric operator Rγ(t) : Tγ(t)M → Tγ(t)M ,
that, in terms of the basis fa, fb, fc2 , . . . , fc2d

is represented by the matrix R(t).

The definition is well posed, in the sense that different canonical frames give rise to the same

operator. For α = a, b, c, we denote by R
αβ
γ(t) : Sα

γ(t) → Sβ
γ(t) the restrictions of the canonical

curvature to the appropriate invariant subspace.

Definition 3.7. The canonical Ricci curvatures are the partial traces

Ricα
γ(t) := tr

(
Rαα

γ(t) : Sα
γ(t) → Sα

γ(t)

)
, α = a, b, c.

The canonical curvature R(t) contains all the information on the germ of the structure
along the geodesic. More precisely, consider two pairs (M, g, γ) and (M ′, g′, γ′) where (M, g)
and (M ′, g′) are two contact sub-Riemannian structure and γ, γ′ two geodesics. Then Rγ(t) is
congruent to R′

γ′(t) if and only if the linearizations of the respective geodesic flows (as flows on

the cotangent bundle, along the respective extremals) are equivalent (i.e. symplectomorphic).

4. Geodesic cost and its asymptotic

We start by a characterization of smooth points of the squared distance d
2 on a contact

manifold. Let x0 ∈ M , and let Σx0 ⊂ M be the set of points x such that there exists a unique
length minimizer γ : [0, 1] → M joining x0 with x, that is non-conjugate.

Theorem 4.1 (see [2]). Let x0 ∈ M and set f := 1
2d

2(x0, ·). Then Σx0 is open, dense and f is
smooth on Σx0. Moreover if x ∈ Σx0 then dxf = λ(1), where λ(t) is the normal extremal of the
unique length minimizer γ(t) joining x0 to x in time 1.

Remark 4.2. By homogeneity of the Hamiltonian, if in the statement of the previous theorem
one consider a geodesic γ : [0, T ] → M joining x0 and x in time T , then dxf = T λ(T ).
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The statement of Theorem 4.1 is also valid for a general for sub-Riemannian manifold if one
defines the set Σx0 to be the set of points that are reached from x0 by a unique non-conjugate
minimizer, that is also not abnormal.

Remark 4.3. If M is a contact sub-Riemannian structure, the function f = 1
2d

2(x0, ·) is Lipschitz
on M \ {x0}, due to the absence of abnormal minimizers (see for instance [3,22]). In particular
from this one can deduce that the set M \ Σx0 where f is not smooth has measure zero.

Definition 4.4. Let x0 ∈ M and consider a geodesic γ : [0, T ] → M such that γ(0) = x0. The
geodesic cost associated with γ is the family of functions for t > 0

ct(x) := − 1

2t
d

2(x, γ(t)), x ∈ M.

x0

γ(t)
b

x

From Theorem 4.1 one obtains smoothness properties of the geodesic cost.

Theorem 4.5. Let x0 ∈ M and γ(t) = Ex0(tλ0) be a geodesic. Then there exists ε > 0 and an
open set U ⊂ (0, ε) × M such that

(i) (t, x0) ∈ U for all t ∈ (0, ε),
(ii) the function (t, x) 7→ ct(x) is smooth on U ,
(iii) For any (t, x) ∈ U , the covector λx = dxct is the initial covector of the unique geodesic

connecting x with γ(t) in time t.

In particular λ0 = dx0ct and x0 is a critical point for the function ċt := d
dt

ct for every t ∈ (0, ε).

Proof. There exists ε > 0 small enough such that for t ∈ (0, ε), the curve γ|[0,t] is the unique
minimizer joining x0 = γ(0) and γ(t), and γ(t) is non conjugate to γ(0). As a direct consequence
of Theorem 4.1 one gets ct(x) is smooth for fixed t ∈ (0, ε) and x in a neighborhood of x0. The
fact that the function ct(x) is smooth on an open set U as a function of the two variables is
proved in [4, Appendix B]. Let us prove (iii). Notice that

dx0ct = −1

t
dx0

(
1

2
d

2(γ(t), ·)
)

= −1

t
dx0ft.

where ft denotes one half of the squared distance from the point γ(t). Observe that x ∈ Σγ(t)

is in the set of smooth points of the squared distance from γ(t). Hence the differential dx0ft is
the final covector of the unique geodesic joining γ(t) with x in time 1. Thus, −dxft is the initial
covector of the unique geodesic joining x with γ(t) in time 1, and dxct = −1

t
dxft is the initial

covector λ0 of the unique geodesic connecting x with γ(t) in time t. �

4.1. A geometrical interpretation. By Theorem 4.5, for each t > 0 the function x 7→ ċt(x)
has a critical point at x0. This function will play a crucial role in the following, and has a
nice geometrical interpretation. Let W t

x,γ(t) ∈ T ∗

γ(t)M be the final tangent vector of the unique

minimizer connecting x with γ(t) in time t. We have:

(10) ċt(x) =
1

2
‖W t

x0,γ(t) − W t
x,γ(t)‖2 − 1

2
‖W t

x0,γ(t)‖2.
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x0

x

γ(t)

γ̇(t)

W t
x,γ(t)

xA xB

κ > 0

κ = 0

κ < 0

Figure 1. Geometric interpretation of ċt. W t
x,γ(t) is the tangent vector, at time

t, of the unique geodesic connecting x with γ(t) in time t.

This formula is consequence of Theorem 4.1 and is proved in [4, Appendix H]. Indeed the second
term ‖W t

x0,γ(t)‖ is the speed of the geodesic γ and is then an inessential constant. Eq. (10) has

also natural physical interpretation as follows. Suppose that A and B live at points xA and xB

respectively (see Fig. 1). Then A chooses a geodesic γ(t), starting from xA, and tells B to meet
at some point γ(t) (at time t). Then B must choose carefully its geodesic in order to meet A at
the point γ(t) starting from xB , following the curve for time t. When they meet at γ(t) at time
t, they compare their velocity by computing the squared norm (or energy) of the difference of
the tangent vectors. This gives the value of the function ċt, up to a constant.

The “curvature at x0” is hidden in the behavior of this function for small t and x close to x0.
To support this statement, consider the Riemannian setting, in which Eq. (10) clearly remains
true. If the Riemannian manifold is positively (resp. negatively) curved, then the two tangent
vectors, compared at γ(t), are more (resp. less) divergent w.r.t. the flat case (see Fig. 1).

Remark 4.6. We do not need parallel transport: A and B meet at γ(t) and make there their
comparison. We only used the concept of “optimal trajectory” and “difference of the cost”. This
interpretation indeed works for a general optimal control system, as in the general setting of [4].

4.2. A family of operators. Let f : M → R be a smooth function. Its first differential at a
point x ∈ M is the linear map dxf : TxM → R. The second differential of f is well defined only
at a critical point, i.e. at those points x such that dxf = 0. Indeed in this case the map

d2
xf : TxM × TxM → R, d2

xf(v, w) = V (W f)(x),

where V, W are vector fields such that V (x) = v and W (x) = w, respectively, is a well defined
symmetric bilinear form that does not depend on the choice of the extensions. The associated
quadratic form, that we denote by the same symbol d2

xf : TxM → R, is defined by

d2
xf(v) =

d2

dt2

∣∣∣∣
t=0

f(γ(t)), where γ(0) = x, γ̇(0) = v.

By Theorem 4.5, for each t > 0 the function x 7→ ċt(x) has a critical point at x0. Hence we can
consider the family of quadratic forms restricted on the distribution

d2
x0

ċt

∣∣
Dx0

: Dx0 → R, ∀ t > 0.

Using the sub-Riemannian scalar product on Dx0 we can associate with this family of quadratic
forms the family of symmetric operators Qλ(t) : Dx0 → Dx0 defined for all t > 0 by

(11) d2
x0

ċt(w) = g(Qλ(t)w, w), ∀ w ∈ Dx0,

where λ = dx0ct is the initial covector of the fixed geodesic γ.
14



Theorem 4.7. Let M be a contact sub-Riemannian manifold and γ(t) be a geodesic with initial
covector λ ∈ T ∗

x0
M . Let Qλ(t) : Dx0 → Dx0 be as in (11).

The family of operators t 7→ t2Qλ(t) can be extended to a smooth family of operators on Dx0

for small t ≥ 0, symmetric with respect to g. Moreover,

Iλ := lim
t→0+

t2Qλ(t) ≥ I > 0.

Then we have the following Laurent expansion at t = 0:

Qλ(t) =
1

t2
Iλ +

m∑

i=0

Q(i)
λ ti + O(tm+1).

In particular, Theorem 4.7 defines a sequence of operators Q(i)
λ , for i ∈ N. These operators,

together with Iλ contain all the information on the germ of the structure along the fixed geodesic
(clearly any modification of the structure that coincides with the given one on a neighborhood
of the geodesic gives the same family of operators).

Remark 4.8. Applying this construction in the case of a Riemannian manifold, one finds that

Iλ = I for any geodesic, and the operator Q(0)
λ is indeed the “directional” sectional curvature

in the direction of the geodesic (see [4, Sect. 4.4.2]):

Q(0)
λ =

1

3
R(·, γ̇)γ̇,

where γ̇ is the initial velocity vector of the geodesic (that is the vector corresponding to λ in
the canonical isomorphism T ∗

x M ≃ TxM defined by the Riemannian metric).

The expansion is interesting in two directions. First, the singularity is controlled (Qλ(t) has
a second order pole at t = 0), even tough the sub-Riemannian squared distance is not regular
on the diagonal. Second, the Laurent polynomial of second order of Qλ(t) recovers the whole
canonical curvature operator R at the point. The next two theorems describe in detail the
Laurent expansion of the operator Qλ(t).

Theorem 4.9. The symmetric operator Iλ : Dx0 → Dx0 satisfies

(i) spec Iλ = {1, 4},
(ii) tr Iλ = 2d + 3.

The vector subspaces of Dγ(0)

Sb
γ(0) := span{Jγ̇(0)}, Sc

γ(0) := Jγ̇(0)⊥ ∩ Dγ(0)

are the eigenspaces of Iλ corresponding to eigenvalues 4 and 1, respectively. In particular the
eigenvalue 4 has multiplicity 1 while the eigenvalue 1 has multiplicity 2d − 1.

Remark 4.10. Let Kγ(0) ⊂ Dγ(0) be the hyperplane dω-orthogonal to γ̇(0), that is

Kγ(0) := {v ∈ Dγ(0) | dω(v, γ̇(0)) = 0}.

Then Sc
γ(0) = Kγ(0) and Sb

γ(0) = K⊥

γ(0) ∩ Dγ(0).

Theorem 4.11. The asymptotics of Qλ(t) recovers the canonical curvature at γ(0). More
precisely, according to the orthogonal decomposition Dγ(0) = Sb

γ(0) ⊕ Sc
γ(0) we have

Q(0)
λ =

(
2
15Rbb

1
12Rbc

1
12Rcb

1
3Rcc

)
,

Q(1)
λ =

(
1
15Ṙbb

1
10Rac − 1

30 Ṙbc

1
10Rca − 1

30 Ṙcb
1
6 Ṙcc

)
,

Q(2)
λ =

1

240

(
1
35

(
240Raa + 44R2

bb + 65RbcRcb + 240R̈bb

)
RbbRbc − 2RbcRcc + 12Ṙac − 6R̈bc

RcbRbb − 2RccRcb + 12Ṙca − 6R̈cb 16R2
cc + RbcRcb + 12R̈cc

)
,
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where the dot denotes the derivative w.r.t. t and here Rαβ = Rαβ(0) for α, β = a, b, c are the
components of the canonical curvature operator Rγ(0) : Tx0M → Tx0M .

Remark 4.12. To recover the operator Rγ(s) : Tγ(s)M → Tγ(s)M for all s on the geodesic, one
needs the Laurent expansion of the operator Qλ(s)(t) for all the points λ(s) on the extremal.

Proof of Theorems. 4.7, 4.9 and 4.11. For a m-uple v = (v1, . . . , vm) of vectors and a linear
map L : V → W , the notation L(v) denotes the m-uple (Lv1, . . . , Lvm). Consider a canonical
frame E(t), F (t) from Proposition 3.5. Accordingly, f(t) := π∗F (t) ∈ Tγ(t)M is the (2d+1)-uple

f(t) = (f0(t), f1(t), . . . , f2d(t)︸ ︷︷ ︸
o.n. basis for Dγ(t)

)∗.

The geodesic cost function ct has not a critical point at x0, and thus its second differential is
not well defined as a quadratic form on Tx0M . Still it is well defined as a linear map as follows.
Consider the differential dct : M → T ∗M . Taking again the differential at x0, we get a map
d2

x0
ct : Tx0M → Tλ(T ∗M), where λ = dx0ct is the initial covector associated with the geodesic.

For fixed t > 0 and x in a neighborhood Ut of x0, we clearly have π(dxct) = x. Thus d2
x0

ct has

maximal rank. Similarly, π(et ~Hdxct) = γ(t) by Theorem 4.5. It follows that et ~H
∗ d2

x0
ct(Tx0M) =

Vλ(t). Then there exists a smooth family of (2d + 1) × (2d + 1) matrices Θ(t) such that

(12) et ~H
∗ d2

x0
ct(f(0)) = Θ(t)E(t).

We pull back the canonical frame E(t) through the Hamiltonian flow, and express this in terms
of the canonical frame at time zero:

(13) e−t ~H
∗ E(t) = A(t)E(0) + B(t)F (0), t ≥ 0.

for some smooth families of (2d + 1) × (2d + 1) matrices A(t), B(t) (in particular A(0) = I and
B(0) = 0). As we already noticed, π(dxct) = x (here t > 0), then

f(0) = π∗d2
x0

ct(f(0))

= Θ(t)π∗e−t ~H
∗ E(t) (by Eq. (12))

= Θ(t)π∗(A(t)E(0) + B(t)F (0)) (by Eq. (13))

= Θ(t)B(t)f(0) (by definition of f and verticality of E)

Thus Θ(t)B(t) = I (in particular, B(t) is not-degenerate for t > 0 small). Then

d2
x0

ct(f(0)) = B(t)−1A(t)E(0) + F (0), t > 0.

Let S(t) := A(t)−1B(t). We get, taking a derivative

d2
x0

ċt(f(0)) =
d

dt

[
S(t)−1

]
E(0).

In particular, d2
x0

ċt maps Tx0M to the vertical subspace Vλ = Tλ(T ∗
x0

M) ≃ T ∗
x0

M . By the latter

identification, we recover the standard second differential (the Hessian) d2
x0

ċt : Tx0M → T ∗
x0

M
at the critical point x0. The associated quadratic form is, for t > 0

(14) 〈d2
x0

ċt(f(0)), f(0)〉 =
d

dt

[
S(t)−1

]
.

According to (11), Qλ(t) : Dx0 → Dx0 is the operator associated with the above quadratic form
d2

x0
ct : Tx0M → T ∗

x0
M , restricted on Dx0 , through the sub-Riemannian product g. Recall now,

from Proposition 3.5, that f = (f0, f1, . . . , f2d) where f1, . . . , f2d is an orthonormal frame for D .
Then, in terms of the basis f1, . . . , f2d of Dx0 (here we suppressed explicit evaluation at t = 0)
we have, from (14):

Qλ(t) =
d

dt

[
S(t)−1

]
�

.

where the notation M� denotes the bottom right 2d × 2d block of a matrix M .
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We are left to compute the asymptotics of the matrix S(t)−1 = B(t)−1A(t), where A(t)
and B(t) are defined by Eq. (13). In order to do that we study a more general problem. We
introduce smooth matrices C(t), D(t) such that (here t ≥ 0)

e−t ~H
∗ E(t) = A(t)E(0) + B(t)F (0),

e−t ~H
∗ F (t) = C(t)E(0) + D(t)F (0).

Since (E(t), F (t)) satisfies the structural equations (7)-(8), we find that A, B, C, D are the
solutions of the following Cauchy problem:

d

dt

(
A B
C D

)
=

(
C1 −C2

R(t) −C∗
1

)(
A B
C D

)
,

(
A(0) B(0)
C(0) D(0)

)
=

(
I 0
0 I

)
.(15)

From (15) one can compute an arbitrarily high order Taylor polynomial of A(t) and B(t), needed
for the computation of S(t)−1.

Notice that A(0) = I, but B(0) = 0 (but B(t) is non-singular as soon as t > 0). We say that
B(t) has order r (at t = 0) if r is the smallest integer such that the r-th order Taylor polynomial
of B(t) (at t = 0) is non-singular. It follows from explicit computation that B(t) has order 3.
In particular, for t > 0, the Laurent polynomial of B(t)−1 has poles of order ≥ 3:

B(t) = −t




0 0 0
0 1 0
0 0 I2d−1


+

t2

2




0 −1 0
1 0 0
0 0 0


+

t3

6




1 0 0
0 0 0
0 0 0


+ O(t4).

Thus, to compute the Laurent polynomial of S(t)−1 = B(t)−1A(t) at order N , one needs to
compute B(t) and A(t) at order N + 6. One finds, after explicit and long computations, that

S(t)−1 =
1

t3




12 0 0
0 0 0
0 0 0


+

1

t2




0 −6 0
−6 0 0
0 0 0


+

1

t




6
5Rbb 0 0

0 −4 0
0 0 −I2d−1


+ O(1).

In particular, for the restriction we obtain
[
S(t)−1

]
�

= −1

t

(
4 0
0 I2d−1

)
+ O(1).

The restriction to the distribution has the effect of taking the “least degenerate” block. Indeed

(16)
d

dt

[
S(t)−1

]
�

=
1

t2

(
4 0
0 I2d−1

)
+ O(t).

This proves Theorems 4.7 and 4.9, as Iλ = limt→0+ t2Qλ(t) is finite.
For Theorem 4.11, we need the Laurent polynomial of Qλ(t) = d

dt

[
S(t)−1

]
�

at order 2. That

is, we need S(t)−1 at order N = 3. According to the discussion above, this requires the solution
of Cauchy problem 15 at order N + 6 = 9. This is achieved by long computations (made easier
by the properties of C1, C2: C2

1 = 0, C2
2 = C2, C1C2 = C1 and C2C1 = 0). One checks that

d

dt

[
S(t)−1

]
�

=
1

t2
Iλ + Q(0)

λ + tQ(1)
λ + t2Q(2)

λ + O(t3),

where Iλ was computed in Eq. (16) while

Q(0)
λ =

(
2
15Rbb

1
12Rbc

1
12Rcb

1
3Rcc

)
,

Q(1)
λ =

(
1
15Ṙbb

1
10Rac − 1

30 Ṙbc

1
10Rca − 1

30 Ṙcb
1
6 Ṙcc

)
,

Q(2)
λ =

1

240

(
1
35

(
240Raa + 44R2

bb + 65RbcRcb + 240R̈bb

)
RbbRbc − 2RbcRcc + 12Ṙac − 6R̈bc

RcbRbb − 2RccRcb + 12Ṙca − 6R̈cb 16R2
cc + RbcRcb + 12R̈cc

)
.

where we labeled the indices of R(t) as in (9), that is a = {0}, b = {1} and c = {2, . . . , 2d}.
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This computes the asymptotics of Qλ(t) in terms of the orthonormal frame f1(0), . . . , f2d(0)
obtained as a projection of the canonical frame. By definition (see Sec. 3.4) Sb

γ(0) = span{f1(0)}
and Sc

γ(0) = span{f2(0), . . . , f2d(0)} and thus concludes the proofs of statements (i)-(ii) of

Theorem 4.9 and Theorem 4.11. The explicit form of Sb
γ(0) and Sc

γ(0) follows from computation

of the canonical frame in Theorem 6.1. �

4.3. Reparametrization and homogeneity. The operators Iλ and Q(i)
λ for i ≥ 0, are well

defined for each nontrivial geodesic on the contact manifold M , i.e. for each covector λ ∈ T ∗
x M

such that H(λ) 6= 0.
By homogeneity of the Hamiltonian, if H(λ) 6= 0, then also H(αλ) = α2H(λ) 6= 0 for α 6= 0.

Proposition 4.13. For all λ such that H(λ) 6= 0, the operators Iλ, Q(i)
λ : Dx → Dx satisfy the

following homogeneity properties:

Iαλ = Iλ, Q(i)
αλ = α2+iQ(i)

λ . i ∈ N, α > 0.

Proof. Here we denote by x 7→ cλ
t (x) the geodesic cost function associated with λ ∈ T ∗

x M . For
α > 0, if Ex(tλ) = γ(t) then Ex(tαλ) = Ex(αtλ) = γ(αt). Hence

cαλ
t (x) = − 1

2t
d

2(x, γ(αt)) = − α

2αt
d

2(x, γ(αt)) = αcλ
αt(x).

This implies that ċαλ
t = α2ċλ

αt and d2
xċαλ

t = α2d2
xċλ

αt. If we restrict these quadratic forms to the
distribution Dx, we get the identity

(17) Qαλ(t) = α2Qλ(αt).

Applying the expansion of Theorem 4.7 to (17) we get

1

t2
Iαλ +

m∑

i=0

Q(i)
αλti + O(tm+1) = α2

(
1

α2t2
Iλ +

m∑

i=0

αiQ(i)
λ ti + O(tm+1)

)
,

which gives the desired identities. �

5. A Bonnet-Myers type theorem

In [9], under suitable bounds on the canonical curvature of a given sub-Riemannian geodesic,
we obtained bounds on the first conjugate time. Then, with global conditions on R, one obtains
Bonnet-Myers type results. We first specify the results of [9, Sec. 6] to contact structures (in
the contact case all the necessary hypotheses apply). Then, using the results of Sec. 6, we
express them in terms of known tensors (Tanno’s tensor, curvature and torsion). See also [6]
for the case of a 3D contact manifold, and [18] for Sasakian structures.

For any initial covector λ ∈ T ∗M we denote by h0 = h0(λ) = 〈λ, X0〉 the linear function on
the fiber associated with the Reeb vector field X0.

Theorem 5.1. Assume that for every unit speed geodesic γ(t) of a complete contact sub-Rie-
mannian structure of dimension 2d + 1 we have

Ricc
γ(t) ≥ (2d − 2)κc, ∀t ≥ 0,

for some κc > 0. Then the manifold is compact, with diameter not greater than π/
√

κc, and the
fundamental group is finite.

Theorem 5.2. Assume that for every unit speed geodesic γ(t) of a complete contact sub-
Riemannian structure we have

Rica
γ(t) ≥ κa, Ricb

γ(t) ≥ κb, ∀t ≥ 0,

for some κa, κb ∈ R such that

(18)

{
κb > 0,

4κa > −κ2
b ,

or

{
κb ≤ 0,

κa > 0.
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Then the manifold is compact, with diameter not greater than t∗(κa, κb) < +∞, and the funda-
mental group is finite.

The value of t∗(κa, κb) in Theorem 5.2 is the first conjugate time of a particular variational
problem (a so-called LQ optimal control problem) which, in the framework of [9], plays the role of
a constant curvature model. These are synthetic models, that are not sub-Riemannian manifolds
but on which the concept of conjugate time t∗ is well defined. It can be explicitly computed
as the smallest positive root of a transcendental equation. In this specific case, t∗(κa, κb) is the
first positive solution of:

(19)
4κa[1 − cos(λ+t) cosh(λ−t)] − 2κbλ+λ− sin(tλ+) sinh(tλ−)

2κa(4κa + κ2
b)

= 0, λ± =

√
±κb+

√
4κa+κ2

b

2 .

This equation admits positive roots (actually, an infinite number of them) precisely if and only
if (18) are satisfied. This result, that already in this simple case is quite cumbersome to check,
comes from an general theorem on the existence of conjugate times for LQ optimal control
problems, obtained in [7]. For κa = 0, κb > 0, (19) must be taken in the limit κa → 0 and
reduces to 2 − 2 cos(

√
κbt) − sin(

√
κbt) = 0 and t∗(0, κb) = 2π/

√
κb.

With the explicit expressions for the canonical curvature of Theorem 6.3, we obtain, from
Theorem 5.1, the following result (for Yang-Mills structures).

Theorem 5.3. Consider a complete, contact structure of dimension 2d + 1 of Yang-Mills type.
Assume that there exists constants κ1 > κ2 ≥ 0 such that, for any horizontal unit vector X

(20) Ric(X) − R(X, JX, JX, X) ≥ (2d − 2)κ1, ‖Q(X, X)‖2 ≤ (2d − 2)κ2.

Then the manifold is compact with diameter not greater than π/
√

κ1 − κ2, and the fundamental
group is finite.

Remark 5.4. The Ricci tensor appearing in Eq. (20) is the trace of Tanno’s curvature, that is

Ric(X) =
2d∑

i=1

R(X, Xi, Xi, X) + R(X, X0, X0, X),

for any orthonormal basis X1, . . . , X2d of the sub-Riemannian structure. One can check that
R(X, X0, X0, X) = 0 (since ∇X0 = 0 for Tanno connection). Therefore the l.h.s. of Eq. (20) is
precisely the partial trace on the 2d − 2 dimensional subspace span{X ⊕ JX}⊥ ∩ D .

We directly obtain the following corollary for strongly pseudo-convex CR manifolds (that is,
for Q = 0). Notice that this condition is strictly weaker then Sasakian.

Corollary 5.5. Consider a complete, strongly pseudo-convex CR structure such that, for any
horizontal unit vector X

Ric(X) − R(X, JX, JX, X) ≥ (2d − 2)κ > 0.

Then the manifold is compact with diameter not greater than π/
√

κ, and the fundamental group
is finite.

6. Computation of the canonical curvature

We are ready to compute the canonical frame for an extremal λ(t) of a contact sub-Rieman-
nian structure. Recall that dim M = 2d + 1. Fix a normalized covector such that 2H(λ) = 1.
Let γλ(t) the associated unit speed geodesic, with tangent vector T = γ̇λ. X0 is the Reeb vector
field and h0(λ) = 〈λ, X0〉.
Theorem 6.1 (Canonical splitting). Let γλ(t) be a unit speed geodesic of a contact sub-Rieman-
nian structure. Then the canonical splitting is

Tγ(t)M = Sa
γ(t) ⊕ Sb

γ(t) ⊕ Sc
γ(t),
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where, defining Xa := X0 − 2Q(T, T) − h0T and Xb := −JT, we have:

Sa
γ(t) := span{Xa}, dim Sa

γ(t) = 1,

Sb
γ(t) := span{Xb}, dim Sb

γ(t) = 1,

Sc
γ(t) := JT

⊥ ∩ Dγ(t), dim Sc
γ(t) = 2d − 1.

where everything is computed along the geodesic. Indeed Dγ(t) = Sb
γ(t) ⊕ Sc

γ(t) and T|γ(t) ∈ Sc
γ(t).

The directional curvature is a symmetric operator Rγ(t) : Tγ(t)M → Tγ(t)M . As in Sec. 3.4,

for α = a, b, c, we denote by R
αβ
γ(t) : Sα

γ(t) → Sβ
γ(t) the restrictions of the canonical curvature to

the appropriate invariant subspace. We suppress the explicit dependence on γ(t) from now on.
Let Xa and Xb defined as above, and {Xcj

}2d
j=2 be an orthonormal frame for Sc. Without

loss of generality we assume Xc2d
= T. Then Sc = span{Xc2 , . . . , Xc2d−1

} ⊕ span{T}.

Theorem 6.2 (Canonical curvature, case Q = 0). In terms of the above frame,

Raa = (∇TR)(T, X0, JT, T) + g((∇2
T

τ)(T), JT) − 5h0g((∇Tτ)(T), T) − 2g(τ(T), T)2

− 6h2
0g(τ(T), JT) − 2‖τ(T)‖2 − g((∇X0τ)(T), T),

Rab = 0,

Rac = R(T, X0, Xj , T) + g((∇Tτ)(T), Xj) + 2h0g(τ(T), JXj)

− [g((∇Tτ)(T), T) + 2h0g(τ(T), JT)]g(T, Xj ),

Rbb = R(T, JT, JT, T) − 3g(τ(T), JT) + h2
0,

Rbc = −R(T, JT, Xj , T) + g(τ(T), Xj) − g(τ(T), T)g(T, Xj ),

Rcc = S[R(T, Xi, Xj , T)] +
1

4
h2

0 [g(Xi, Xj) − g(Xi, T)g(Xj , T)] ,

where i, j = 2, . . . , 2d and S denotes symmetrisation. The canonical Ricci curvatures are

Rica = (∇TR)(T, X0, JT, T) + g((∇2
Tτ)(T), JT) − 5h0g((∇Tτ)(T), T) − 2g(τ(T), T)2

− 6h2
0g(τ(T), JT) − 2‖τ(T)‖2 − g((∇X0τ)(T), T),

Ricb = R(T, JT, JT, T) − 3g(τ(T), JT) + h2
0,

Ricc = Ric(T) − R(T, JT, JT, T) +
1

4
h2

0(2d − 2).

Theorem 6.3 (Canonical curvature, general Q). In terms of above frame

Rbb = R(T, JT, JT, T) + 3‖Q(T, T)‖2 − 3g(τ(T), JT) + h2
0,

Rbc = −R(T, JT, Xj , T) + g(τ(T), Xj) − g(τ(T), T)g(T, Xj ) + 3g((∇TQ)(T, T), Xj)

+ 8h0g(Q(T, T), JXj)

Rcc = S[R(T, Xi, Xj , T)] + h0S[g(T, Q(Xj , Xi))] +
1

4
h2

0g(Xi, Xj)

− 1

4
g(Xi, h0T − 2Q(T, T))g(Xj , h0T − 2Q(T, T)),

where i, j = 2, . . . , 2d and S denotes symmetrisation. The canonical Ricci curvatures are

Ricb =R(T, JT, JT, T) + 3‖Q(T, T)‖2 − 3g(τ(T), JT) + h2
0,

Ricc =Ric(T) − R(T, JT, JT, T) + h0g(T, tr Q) +
1

4
h2

0(2d − 2) − ‖Q(T, T)‖2.

Remark 6.4. As in the Riemannian setting, there is no curvature in the direction of the geodesic,
that is RT = 0.

The rest of the section is devoted to the proofs of Theorems 6.1, 6.2 and 6.3.
20



6.1. Lifted frame. Only in this subsection, M is an n-dimensional manifold, since the con-
struction is general. We define a local frame on T ∗M , associated with the choice of a local
frame X1, . . . , Xn on M . All our considerations are local, then we assume that the frame is
globally defined. For α = 1, . . . , n let hα : T ∗M → R be the linear-on-fibers function defined
by hα(λ) := 〈λ, Xα〉. The action of derivations on T ∗M is completely determined by the ac-
tion on affine functions, namely functions a ∈ C∞(T ∗M) such that a(λ) = 〈λ, Y 〉 + π∗g for
some Y ∈ Γ(T M), g ∈ C∞(M). Then, we define the lift of a field X ∈ Γ(T M) as the field

X̃ ∈ Γ(T (T ∗M)) such that X̃(hα) = 0 for α = 1, . . . , n and X̃(π∗g) = X(g). This, together

with Leibniz’s rule, characterize the action of X̃ on affine functions, and completely define X̃.
Indeed π∗X̃ = X. On the other hand, we define the (vertical) fields ∂hα

such that ∂hα
(π∗g) = 0,

and ∂hα
(hβ) = δαβ . It is easy to check that {∂hα

, X̃α}n
α=1 is a local frame on T ∗M . We call

such a frame the lifted frame.

Remark 6.5. Let (q1, . . . , qn) be local coordinates on M , and let Xα = ∂qα . In this case, our
construction gives the usual frame {∂qα , ∂pα}n

α=1 on T ∗M associated with the dual coordinates
(q1, . . . , qn, p1, . . . , pn) on T ∗M . The construction above is then a generalization of this classical
construction to non-commuting local frames.

Any fixed lifted frame defines a splitting

Tλ(T ∗M) = spanλ{X̃1, . . . , X̃n} ⊕ spanλ{∂h1 , . . . , ∂hn
}.

Since spanλ{∂h1 , . . . , ∂hn
} = ker π∗|λ is the vertical subspace of Tλ(T ∗M), we associate, with

any vector ξ ∈ Tλ(T ∗M) its horizontal part ξh ∈ TxM and its vertical part ξv ∈ T ∗
x M :

ξh := π∗ξ, ξv := ξ − π̃∗ξ,

where here, as we will always do in the following, we used the canonical identification ker π∗|λ =
Tλ(T ∗

x M) ≃ T ∗
x M , where x = π(λ). We stress that the concepts of vertical part introduced here

make sense w.r.t. a fixed frame, has no invariant meaning, and is only a tool for computations.
Let ν1, . . . , νn be the dual frame of X1, . . . , Xn, i.e. να(Xβ) = δαβ. In the following, we use

the notation ∂α := ∂hα
and we suppress the tilde from X̃; the meaning will be clear from the

context. Then the symplectic form is written as

(21) σ =
n∑

α=1

dhα ∧ π∗να + hαπ∗dνα.

We say that a vector Vλ ∈ Tλ(T ∗M) is vertical if π∗V = 0. In this case Vλ ∈ Tλ(T ∗

π(λ)M) ≃
T ∗

π(λ)M can be identified with a covector. We have the following useful lemma.

Lemma 6.6. Let V, W ∈ Tλ(T ∗M). If V is vertical, then

σλ(V, W ) = 〈V, π∗W 〉.
Using Eq. (21), the Hamiltonian vector field associated with hα has the form

~hα = Xα +
n∑

δ=1

cδ
αβhδ∂β, α, β = 1, . . . , n.

Since H = 1
2

∑k
i=1 h2

i , then ~H =
∑k

i=1 hi
~hi, where k = rank D .

6.2. Some useful formulas. In what follows ∇ will always denote the Tanno connection. Let
X1, . . . , X2d be an orthonormal frame for D and X0 be the Reeb field. The structural functions
are defined by

[Xα, Xβ ] =
2d∑

δ=0

cδ
αβXδ, α, β = 0, . . . , 2d.

Notice that c0
α0 = ω([Xα, X0]) = dω(Xα, X0) = 0. We define “horizontal” Christoffel symbols:

Γk
ij :=

1

2

(
ck

ij + cj
ki + ci

kj

)
, i, j, k = 1, . . . , 2d.
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Notice that Γk
ij + Γj

ik = 0 and one can recover some of the structural functions with the relation

ck
ij = Γk

ij − Γk
ji.

In terms of the structural functions, we have, for i, j, k = 1, . . . , 2d

∇Xi
Xj =

2d∑

k=1

Γk
ijXk, ∇X0Xi =

1

2

2d∑

k=1

(ci
k0 − ck

i0)Xk,

τ(Xi) =
1

2

2d∑

k=1

(ci
k0 + ck

i0)Xk, T (Xj , Xk) = −c0
jkX0, JXi =

2d∑

j=1

c0
ijXj .

Lemma 6.7. Let λ ∈ T ∗M an initial covector, associated with the normal geodesic γλ(t) =
π(λ(t)). In terms of Tanno covariant derivative, along the geodesic γλ(t), we have

∇TT = h0JT,

∇T(JT) = −h0T + Q(T, T),

∇Th0 = g(τ(T), T),

where h0 = h0(λ(t)) = 〈λ(t), X0〉 and T := γ̇λ.

Proof. Along the geodesic, T|γ(t) =
∑2d

i=1 hi(t)Xi|γ(t), where hi(t) = hi(λ(t)) = 〈λ(t), Xi〉. Then

∇TT =
2d∑

i=1

ḣiXi +
2d∑

i,j=1

hjhi∇Xi
Xj =

2d∑

i=1

{H, hi}Xi +
2d∑

i,j,k=1

hjhiΓ
k
ijXk

=
2d∑

α=0

2d∑

i,j=1

hjcα
jihαXi +

2d∑

i,j,k=1

hjhiΓ
k
ijXk = h0

2d∑

j=1

hjc
0
jiXi =

2d∑

j=1

h0hjJXj = h0JT.

where we used the Hamilton’s equation for normal geodesics. The second identity follows from
the first and the definition of Q. For the third identity, we use again Hamilton’s equations:

�∇Th0 = ḣ0 = {H, h0} =
2d∑

i,j=1

hic
j
i0hj =

1

2

2d∑

i,j=1

hihj(cj
i0 + ci

j0) = g(τ(T), T).

Lemma 6.8. Let X, Y, Z be vector fields. Then

a) Q(X, Y ) is horizontal,
b) Q(JX, Y ) = −JQ(X, Y ),
c) Q(X, Y ) ⊥ X,
d) g(X, Q(Y, Z)) = −g(Y, Q(X, Z)) (skew-symmetry w.r.t. the first two arguments),
e) Q(X, Y ) ⊥ JX,
f) Sg(T (X, Y ), JZ) = 0, where S denotes the cyclic sum,
g) Sg(Y, Q(Z, X)) = 0,
h) Q(Y, JY ) = Q(JY, Y ) = −JQ(Y, Y ).

Proof. To prove a), observe that, since JX0 = 0, it follows that Q(X0, Y ) = 0 for any Y . Then
we can assume w.l.o.g. that X is horizontal. Indeed JX is horizontal too. Then ω(JX) = 0.
Therefore, since ω is parallel for Tanno connection, 0 = ω(∇Y (J)X + J∇Y X) = ω(Q(X, Y )),
where we used the fact that ∇Y X is horizontal. To prove b), observe first that if X = X0

the identity is trivially true. Then, w.l.o.g. we assume that X is horizontal. Consider the
covariant derivative of the identity J2X = −X. Then we obtain (∇Y J)(JX) + J(∇Y J)X +
J2∇Y X = −∇Y X, which implies b), by definition of Q. To prove c), observe that X ⊥ JX by
definition. Then g(JX, X) = 0. By taking the covariant derivative we obtain g(Q(X, Y ), X) +
g(J∇Y X, X) + g(JX, ∇Y X) = 0, which implies c). To prove d), observe that the identity is
trivially true when X = X0 or Y = X0. Then we may assume w.l.o.g. that X, Y are horizontal.
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Then we take the covariant derivative in the direction Z of the identity g(JX, Y ) = −g(X, JY ),
and we obtain the result. Point e) follows from d) and b). To prove f), we have

Sg(T (X, Y ), JZ) = g(T (X, Y ), JZ) + g(T (Z, X), JY ) + g(T (Y, Z), JX).

If X, Y, Z ∈ D , then all the terms are trivially zero. Then assume w.l.o.g. that X = X0. Then

Sg(T (X0, Y ), JZ) = g(T (X0, JY ), Z) − g(T (X0, JZ), Y ) + g(T (Y, Z),
✟

✟✟JX0)

= g(τ(JY ), Z) − g(τ(JZ), Y ) = 0,

where we used the fact that τ is symmetric and τ ◦ J + J ◦ τ = 0. To prove g), consider the
following identity for the differential of a 2-forms α:

dα(X, Y, Z) = S(X(α(Y, Z)) − Sα([X, Y ], Z).

We apply it to the two form α = dω. Indeed dα = d2ω = 0. Thus we have

0 = d2ω = S [X(dω(Y, Z)) − dω([X, Y ], Z)] = S [X(g(Y, JZ)) − g([X, Y ], JZ)]

= S [✭✭✭✭✭✭✭
g(∇XY, JZ) + g(Y, Q(Z, X)) + g(Y, J∇XZ) − g(✘✘✘∇XY − ∇Y X, JZ)]

+
✭✭✭✭✭✭✭✭✭❤❤❤❤❤❤❤❤❤
Sg(T (X, Y ), JZ)

= S [g(Y, Q(Z, X)) −
✭✭✭✭✭✭✭
g(∇XZ), JY ) +✭✭✭✭✭✭✭

g(∇Y X, JZ)] .

where we used the definition of J and property f). Finally, h) follows from g) e) d) and b). �

Tanno connection has torsion. Then the curvature tensor

R(X, Y, Z, W ) := g(∇X∇Y Z − ∇Y ∇XZ − ∇[X,Y ]Z, W )

is not symmetric w.r.t. to exchange of the first and second pair of arguments.

Lemma 6.9. For any X, Y, Z ∈ D we have

R(X, Z, Y, X) = R(X, Y, Z, X) + g(X, JZ)g(X, τ(Y )) + g(Z, JY )g(X, τ(X))

+ g(Y, JX)g(X, τ(Z)).
(22)

In particular, if Y, Z ∈ JX⊥ ∩ D

R(X, Z, Y, X) = R(X, Y, Z, X) + g(Z, JY )g(X, τ(X)).

Moreover, for Tanno’s tensor we have

(23) Sg(X, Q(Xi, Xj)) =
1

2
g(Xj , Q(Xi, X)) − g(Xj , Q(X, Xi)),

where S denotes the symmetrization w.r.t. the displayed indices.

Proof. The first identity is a consequence of first Bianchi identity for connections with torsion:

S(R(X, Y )Z) = S(T (T (X, Y ), Z)) + (∇XT )(Y, Z),

where S denotes the cyclic sum. If X, Y, Z ∈ D , for Tanno connection we obtain

S(R(X, Y )Z)) = S [g(X, JY )τ(Z) + ∇X(T (Y, Z)) − T (∇XY, Z) − T (Y, ∇XZ)]

= S [g(X, JY )τ(Z) + ∇X(g(Y, JZ))X0 − g(∇XY, JZ)X0 − g(Y, J∇XZ)X0]

= S [g(X, JY )τ(Z)] +
✭✭✭✭✭✭✭✭

Sg(Y, Q(Z, X)),

where we used property g) of Tanno’s tensor. If we take the scalar product with X, we get

R(X, Y, Z, X) + R(Y, Z, X, X) + R(Z, X, Y, X) = g(X,Sg(X, JY )τ(Z)).

Tanno’s curvature is still skew symmetric in the first and last pairs of indices, and we get

R(X, Y, Z, X) − R(X, Z, Y, X) = g(X, JY )g(X, τ(Z)) + g(Y, JZ)g(X, τ(X))

+ g(Z, JX)g(X, τ(Y )).
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This proves (22). For (23), using property g) of Tanno’s tensor, we get

�
1

2
g(Xj , Q(Xi, X)) − g(Xj , Q(X, Xi)) =

1

2
[g(X, Q(Xi, Xj)) + g(X, Q(Xj , Xi))] .

6.3. Computation of the curvatures. We choose a conveniently adapted frame along the
geodesic, of which we will consider the lift.

Definition 6.10. A local frame X0, X1, . . . , X2d is adapted if

• X0 is Reeb vector field,
• X2d is an horizontal extension of γ̇λ(t), namely X2d ∈ D and γ̇λ(t) = X2d(γλ(t)),
• X1 = −JX2d,
• X2, . . . , X2d−1 ∈ span(X2d, JX2d)⊥ are orthonormal.

In particular, X0, X1, . . . , X2d is an orthonormal frame for the Riemannian extension of g.
From now on the last index 2d plays a different role, since it is constrained to be an horizontal
extension of the tangent vector of the fixed geodesic.

Definition 6.11. An adapted frame X0, X1, . . . , X2d is parallel transported if

(24) ∇TXj =
1

2
(h0JXj + ajJX2d), j = 2, . . . , 2d

along the geodesic γλ(t), where

aj := g(h0X2d − 2Q(X2d, X2d), Xj).

As one can readily check, an adapted, parallel transported frame is unique up to constant
rotation of X2, . . . , X2d−1. Notice that aj and h0 are well defined functions on the curve γλ(t)
once the initial covector λ is fixed.

6.3.1. The algorithm. To compute the canonical frame and curvatures, we follow the general
algorithm developed in [25]. The elements of the canonical frame and the curvature matrices
will be recovered in the following order:

Ea → Eb → Fb → Ec → Fc → Rbb, Rcc, Rbc → Fa → Raa, Rac.

We choose an adapted parallel transported frame X0, X1, . . . , X2d as defined above, and the
associated lifted frame {Xα, ∂α}2d

α=0. Along the extremal, we have

hi = 〈λ, Xi〉 = g(X2d, Xi) = δi,2d, i = 1, . . . , 2d.

We have the following simplifications for some structural functions, for α = 0, . . . , 2d:

c0
1,α = ω([X1, Xα]) = −dω(X1, Xα) = −g(X1, JXα) = g(JX2d, JXα) = δ2d,α,

c0
2d,α = ω([X2d, Xα]) = −dω(X2d, Xα) = −g(X2d, JXα) = −g(X1, Xα) = δ1,α.

From here, repeated Latin indices are summed from 1 to 2d, and Greek ones from 0 to 2d.

6.3.2. Preliminary computations. The Lie derivative w.r.t. ~H is denoted with a dot, namely

Ėα = [ ~H, Eα]. We compute it for the basic elements of the lifted frame {Xα, ∂α}2d
α=0. Here, we

use the shorthand ∇α = ∇Xα for α = 0, . . . , 2d.

Lemma 6.12. For any adapted frame (not necessarily parallel transported), we have

∂̇0 = ∂1,

∂̇i = −Xi − 2g(τ(X2d), Xi)∂0 + h0g(JXj , Xi)∂j − g(∇2dXj, Xi)∂j − g(∇iXj , X2d)∂j ,

Ẋi = ∇2dXi − ∇iX2d − δi1X0 − ∇ig(τ(X2d), X2d)∂0 − ∇ig(X2d, ∇2dXj)∂j ,

Ẋ0 = −∇0X2d + τ(X2d) − ∇0g(τ(X2d), X2d)∂0 − ∇0g(X2d, ∇2dXj)∂j .
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Proof. The proof is a routine computation, using the properties of the adapted frame.

∂̇0 = [ ~H, ∂0] = [hi
~hi, ∂0] = hi[Xi + cβ

iαhβ∂α, ∂0] = c0
2d,α∂α = ∂1.

For i = 1, . . . , 2d, we have

∂̇i = [ ~H, ∂i] = [hj
~hj , ∂i] = −~hi − ci

2d,α∂α

= −Xi − cβ
iαhβ∂α − ci

2d,α∂α

= −Xi − c2d
i0 ∂0 − c2d

ij ∂j − c0
ijh0∂j − ci

2d,0∂0 − ci
2d,j∂j

= −Xi − (c2d
i0 + ci

2d,0)∂0 − c0
ijh0∂j − (ci

2d,j + c2d
ij )∂j

= −Xi − 2g(τ(X2d), Xi)∂0 − h0g(Xj , JXi)∂j − (Γi
2d,j + Γ2d

ij )∂j

= −Xi − 2g(τ(X2d), Xi)∂0 + h0g(JXj , Xi)∂j − g(∇2dXj , Xi)∂j − g(∇iXj , X2d)∂j .

Moreover, for µ = 0, . . . , 2d

Ẋµ = [ ~H, Xµ] = [hi
~hi, Xµ] = [~h2d, Xµ]

= [X2d + cβ
2d,αhβ∂α, Xµ]

= [X2d, Xµ] − Xµ(cβ
2d,α)hβ∂α

= [X2d, Xµ] − Xµ(c2d
2d,0)∂0 − Xµ(c2d

2d,j)∂j − Xµ(c0
2d,j)h0∂j

= ∇2dXµ − ∇µX2d − T (X2d, Xµ) − Xµ(g(τ(X2d), X2d))∂0

− Xµ(g(∇2dXj , X2d))∂j ,

and we obtain the result using the properties of the torsion of Tanno connection. �

Step 1: Ea. The element Ea is uniquely determined by the following conditions:

(i) π∗Ea = 0,
(ii) π∗Ėa = 0,
(iii) 2H(Ėa) = 1 (equivalent to σ(Ëa, Ėa) = 1).

The first condition implies Ea = vα∂α for some smooth function vα along the extremal.
Lemma 6.12 implies Ea = v0∂0. To apply the third condition, observe that

Ėa = v̇0∂0 + v0∂̇0 = v̇0∂0 + v0∂1.

By standard identifications, 2H(Ea) = v2
0‖X1‖2 = v2

0 , and v0 = ±1 (we choose the “+” sign).

Step 2: Eb. Ea directly determines Eb through the structural equation:

Eb = Ėa = ∂̇0 = ∂1.

Step 3: Fb. Eb directly determines Fb through the structural equation:

Fb = Ėb = −∂̇1

= X1 + 2g(τ(X2d), X1)∂0 + h0g(JX1, Xj)∂j − g(∇2dX1, Xj)∂j − g(∇1X2d, Xj)∂j

= X1 + 2g(τ(X2d), X1)∂0 +
✭✭✭✭✭✭✭✭

h0g(X2d, Xj)∂j + g(Q(X2d, X2d) −✘✘✘✘h0X2d, Xj)∂j

− g(∇1X2d, Xj)∂j

= X1 + 2g(τ(X2d), X1)∂0 + g(Q(X2d, X2d) − ∇1X2d, Xj)∂j .

Where we used the equation ∇2dX2d = h0JX2d.
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Intermediate step: Ḟb. We now compute Ḟb. We use Leibniz’s rule, Lemma 6.12 and we obtain:

Ḟb = Ẋ1 + 2∇2dg(τ(X2d), X1)∂0 + 2g(τ(X2d), X1)∂̇0 + ∇2dg(Q(X2d, X2d) − ∇1X2d, Xj)∂j

+ g(Q(X2d, X2d) − ∇1X2d, Xj)∂̇j

= ∇2dX1 − ∇1X2d − X0 − ∇1g(τ(X2d), X2d)∂0 − ∇1g(X2d, ∇2dXj)∂j

+ 2∇2dg(τ(X2d), X1)∂0 + 2g(τ(X2d), X1)∂1 + ∇2dg(Q(X2d, X2d) − ∇1X2d, Xj)∂j

− Q(X2d, X2d) + ∇1X2d − 2g(τ(X2d), Q(X2d, X2d) − ∇1X2d)∂0

+ h0g(JXj , Q(X2d, X2d) − ∇1X2d)∂j − g(∇2dXj , Q(X2d, X2d) − ∇1X2d)∂j

− g(∇Q(X2d,X2d)−∇1X2d
Xj , X2d)∂j

= ∇2dX1 − X0 − Q(X2d, X2d) + 2∇2dg(τ(X2d), X1)∂0 − ∇1g(τ(X2d), X2d)∂0

− 2g(τ(X2d), Q(X2d, X2d) − ∇1X2d)∂0 + 2g(τ(X2d), X1)∂1 − ∇1g(X2d, ∇2dXj)∂j

+ ∇2dg(Q(X2d, X2d) − ∇1X2d, Xj)∂j + h0g(JXj , Q(X2d, X2d) − ∇1X2d)∂j

− g(∇2dXj , Q(X2d, X2d) − ∇1X2d)∂j − g(∇Q(X2d,X2d)−∇1X2d
Xj , X2d)∂j .

Step 4: Ecj
. The elements Ecj

, for j = 2, . . . , 2d are uniquely determined by the conditions:

(i) They generate the skew-orthogonal complement of span{Ea, Eb, Fb, Ḟb},
(ii) Darboux property: σ(Ėci

, Ecj
) = δij ,

(iii) Their derivative Fcj
= −Ėcj

generate an isotropic subspace (or, equivalently, assuming

the two points above, π∗Ëcj
= 0).

Since π∗Ecj
= 0 we have

Ecj
= αij∂i + βj∂0, j = 2, . . . , 2d,

for some smooth functions αij and βj along the extremal. Observe that α is a 2d × (2d − 1)

matrix. In order to apply condition (i) we compute π∗Ḟb. From the previous step we get

π∗Ḟb = ∇2dX1 − X0 − Q(X2d, X2d) = −2Q(X2d, X2d) + h0X2d − X0.

Then we apply (i) and we obtain:

0 = σ(Fb, Ecj
) = −〈Ecj

, π∗Fb〉 = −〈Ecj
, X1〉 = −α1j.

Thus the first row of α is zero. Moreover

0 = σ(Ḟb, Ecj
) = −〈Ecj

, π∗Ḟb〉 = 〈Ecj
, X0 + 2Q(X2d, X2d) − h0X2d〉

= βj + αijg(2Q(X2d, X2d) − h0X2d, Xi).

Denoting ai := g(h0X2d − 2Q(X2d, X2d), Xi), for all i = 1, . . . , 2d we get

Ecj
= αij(∂i + ai∂0), j = 2, . . . , 2d.

Condition (iii) gives

0 = π∗Ëcj
= αijπ∗

(
∂̈i + äi∂0 + 2ȧi∂̇0 + ai∂̈0

)
+ 2α̇ijπ∗

(
∂̇i + ȧi∂0 + ai∂̇0

)

= αij (−∇2dXi +✘✘✘✘∇iX2d + h0JXi − ∇2dXi −✘✘✘✘∇iX2d − aiX1) − 2α̇ijXi

= −2α̇ijXi,

where in the last line we used we used our choice of a parallel transported frame. Then αij is
a constant 2d × (2d − 1) matrix. Since the first row is zero, we can consider α as a (2d − 1) ×
(2d − 1) constant matrix. Condition (ii) implies that this matrix is orthogonal. Without loss of
generality, we may assume that αij(0) = δij . Thus

Ecj
= ∂j + aj∂0, j = 2, . . . , 2d.
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Step 4: Fcj
. For j = 2, . . . , 2d, the element Fcj

is obtained from Ecj
by the structural equations:

Fcj
= −Ėcj

= −∂̇j − ȧj∂0 − aj ∂̇0

= Xj + 2g(τ(X2d), Xj)∂0 − h0g(JXi, Xj)∂i + g(∇2dXi, Xj)∂i + g(∇jXi, X2d)∂i

− ȧj∂0 − aj∂1

= Xj + (2g(τ(X2d), Xj) − ȧj) ∂0 − h0g(JXi, Xj)∂i − g(Xi, ∇2dXj)∂i

+ g(∇jXi, X2d)∂i − aj∂1

= Xj + (2g(τ(X2d), Xj) − ȧj) ∂0 − h0g(JXi, Xj)∂i − 1

2
g(Xi, h0JXj − ajX1)∂i

+ g(∇jXi, X2d)∂i − aj∂1

= Xj + (2g(τ(X2d), Xj) − ȧj) ∂0 + g(∇jXi, X2d)∂i +
1

2
h0g(Xi, JXj)∂i − 1

2
aj∂1.

Where we used again the parallel transported frame to eliminate ∇2dXj for j = 2, . . . , 2d.
The computations so far prove Theorem 6.1. In fact the canonical subspaces are defined by

Sa := span{π∗Fa}, Sb := span{π∗Fb}, Sc := span{π∗Fc2, . . . , π∗Fc2d
}.

and from the computations above we have explicitly:

Xa := π∗Fa = −π∗Ḟb = X0 + 2Q(T, T) − h0T = X0 − ajXj ,

Xb := π∗Fb = −JT,

Xcj
:= π∗Fcj

= Xj , j = 2, . . . , 2d.

Step 5: Rbb, Rbc and Rcc. To compute the curvature we need to compute symplectic products.

Lemma 6.13. Let X0, . . . , X2d an adapted frame. Then, along the extremal

σ(Xµ, Xν) = h0ω(T (Xµ, Xν)) − g(X2d, ∇µXν − ∇νXµ − T (Xµ, Xν)),

σ(∂µ, Xν) = δµν ,

σ(∂µ, ∂ν) = 0.

for all µ, ν = 0, . . . , 2d.

Proof. From Eq. (21), we obtain, along the extremal

σ(Xµ, Xν) = hαdνα(Xµ, Xν) = −hανα([Xµ, Xν ])

= −hανα(∇µXν − ∇νXµ − T (Xµ, Xν))

= h0ω(T (Xµ, Xν)) − g(X2d, ∇µXν − ∇νXµ − T (Xµ, Xν)).

where, in the last line, we used the fact that the frame is adapted. The second and third
identities follow with analogous but shorter computations starting from Eq. (21). �

Now we can compute Rbb. It is convenient to split the computation as follows.

Rbb = σ(Ḟb, Fb) = σ(Ḟ h
b , F h

b ) + σ(Ḟ h
b , F v

b ) + σ(Ḟ v
b , F h

b ).

We compute the three pieces, using Lemma 6.13. We obtain, after some computations

σ(Ḟ h
b , F h

b ) = −g(τ(X2d), X1) + h2
0 + g(X2d, ∇2Q(X2d,X2d)−h0X2d+X0

X1)

+ g(∇1X2d, 2Q(X2d, X2d)),

σ(Ḟ v
b , F h

b ) = 2g(τ(X2d), X1) + g(∇2d∇1X1 − ∇1∇2dX1.X2d) + ‖Q(X2d, X2d)‖2

− g(∇Q(X2d ,X2d)−∇1X2d
X1, X2d),

σ(Ḟ h
b , F v

b ) = 2g(τ(X2d), X1) + 2‖Q(X2d, X2d)‖2 − g(∇1X2d, 2Q(X2d, X2d)).

Taking in account that Q(X2d, X2d) − h0X2d + ∇1X2d + X0 = −[X2d, X1] (easily proved using
the properties of Tanno connection) we obtain immediately

Rbb = R(T, JT, JT, T) + 3‖Q(T, T)‖2 − 3g(τ(T), JT) + h2
0.
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where we replaced the explicit tangent vector T = γ̇λ. We proceed with Rcc. Again we split:

Rcc
ij = σ(Ḟci

, Fcj
) = σ(Ḟ h

ci
, F h

cj
) + σ(Ḟ v

ci
, F h

cj
) + σ(Ḟ h

ci
, F v

cj
) = σ(Ḟ v

ci
, F h

cj
),

where we used the fact that, by construction, Ḟci
is vertical hence Ḟ h

ci
= 0. We use Leibniz’s rule,

Lemma 6.12, Eq. (24) for the parallel transport and the identity [X2d, Xi] = ∇2dXi − ∇iX2d,
valid for i = 2, . . . , 2d. We obtain, after some computations

σ(Ḟ v
ci

, F h
cj

) = R(X2d, Xi, Xj , X2d) +
1

2
g(τ(X2d), X2d)g(Xj , JXi)

+
1

2
h0g(Xj , Q(Xi, X2d)) − h0g(Xj , Q(X2d, Xi)) +

1

4
h2

0g(Xi, Xj) − 1

4
aiaj .

for i, j = 2, . . . , 2d. This expression is symmetric w.r.t. to i and j as a consequence of Lemma 6.9.
Restoring the tangent vector T = γ̇ and the functions aj we get, for i, j = 2, . . . , 2d

Rcc
ij = S[R(T, Xi, Xj , T)] + h0S[g(T, Q(Xj , Xi))] +

1

4
h2

0g(Xi, Xj)

− 1

4
g(Xi, h0T − 2Q(T, T))g(Xj , h0T − 2Q(T, T)).

The trace over the subspace Sc = span{X2, . . . , X2d} is

Ricc =
2d∑

i=2

Rcc
ij = Ric(T) − R(T, JT, JT, T) + h0g(T, tr Q) +

1

4
h2

0(2d − 2) − ‖Q(T, T)‖2,

where we used property c) of Tanno’s tensor.
Now we compute Rcb : Sc → Sb (this is a (2d − 1) × 1 matrix). As usual we split

Rcb
j = σ(Ḟcj

, Fb) = σ(Ḟ v
cj

, F h
b ).

We use Leibniz’s rule, Lemma 6.12, Eq. (24) for the parallel transported frame and the identity
[X2d, Xi] = ∇2dXi − ∇iX2d, valid for i = 2, . . . , 2d. Moreover, we use also properties b), d) and
h) of Tanno’s tensor. After some computations, and restoring the notation T = γ̇ we get

Rcb
j = −R(T, Xj , JT, T ) + 2g(τ(T), Xj ) − 2g(τ(T), T)g(T, Xj ) + 3g((∇TQ)(T, T), Xj)

+ 8h0g(Q(T, T), JXj).

Indeed Rbc = (Rcb)∗. We can write, in a more symmetric fashion using Eq. (22):

Rbc
j = −R(T, JT, Xj , T) + g(τ(T), Xj) − g(τ(T), T)g(T, Xj ) + 3g((∇TQ)(T, T), Xj)

+ 8h0g(Q(T, T), JXj).

Step 6: Fa. The structural equations give:

Fa = −Ḟb + RbbEb +
2d∑

j=2

(Rbc)jEcj
.

After some computations, we obtain

Fa = X0 − aiXi + φi∂i + φ0∂0,

where

aiXi = h0X2d − 2Q(X2d, X2d),

φiXi = −∇X0+2Q(X2d,X2d)X2d + τ(X2d) − g(τ(X2d), X2d)X2d

− 4h0JQ(X2d, X2d) + 2(∇2dQ)(X2d, X2d) − 3‖Q(X2d, X2d)‖2JX2d,

φ0 = 2g((∇2dτ)(X2d), JX2d) − 4h0g(τ(X2d), X2d) + g((∇1τ)(X2d), X2d)

+ 2R(X2d, JX2d, Q(X2d, X2d), X2d) + 2g(τ(X2d), Q(X2d, X2d))

− 3∇2d‖Q(X2d, X2d)‖2.
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The vector φ := φiXi is orthogonal to X2d (or, equivalently, φ2d = 0). Clearly φ0 is a well
defined, smooth function along the geodesic. In particular, it makes sense to take the derivative
of φ0 in the direction of the geodesic or, in terms of our adapted frame ∇2dφ0.

Remark 6.14. Dramatic simplifications occur if the structure is Sasakian. In particular, this
condition implies Q = 0, τ = 0. To complete the computation, we assume Q = 0, i.e. (M, ω, J, g)
is a strongly pseudo-convex CR manifold.

Step 7: Raa (with Q = 0). Many simplification occur. In particular

aiXi = h0X2d,

φiXi = −∇0X2d + τ(X2d) − g(τ(X2d), X2d)X2d,

φ0 = 2g((∇2dτ)(X2d), JX2d) − 4h0g(τ(X2d), X2d) + g((∇1τ)(X2d), X2d).

As usual, we split

Raa = σ(Ḟa, Fa) = σ(Ḟ v
a , F h

a ) = 〈Ḟ v
a , F h

a 〉 = 〈Ḟ v
a , X0 − h0X2d〉 = Ḟ v

a (h0) − h0Ḟ v
a (h2d),

where we used the fact that Ḟa is vertical by construction. By Lemma 6.12, we obtain

Raa = g((∇h0T−X0τ)(T), T) + 2h2
0g(τ(T), JT) − 2‖τ(T)‖2 + 2g(τ(T), T)2 + ∇Tφ0.

It is not convenient to explicitly compute the derivative ∇2dφ0 since no simplifications occur.

Remark 6.15. Since π∗Fa = X0 −h0T, one would expect a term of the form R(T, X0 −h0T, X0 −
h0T, T) in the expression for R(Xa, Xa). However, using the symmetries of the Riemann tensor
(with torsion) and the fact that ∇X0 = 0, we obtain that R(T, X0 − h0T, X0 − h0T, T) = 0.

Step 8: Rac (with Q = 0). The term Rac : Sa → Sc is a 1 × (2d − 1) matrix. For j = 2, . . . , 2d

Rac
j = σ(Ḟa, Fcj

) = σ(Ḟ v
a , F h

cj
) = 〈Ḟ v

a , Xj〉.
With long computations using Leibniz’s rule, the identity [X2d, X0] = −∇0X2d + τ(X2d) and
Lemma 6.12, we obtain for j = 2, . . . , 2d − 1

Rac
j = R(T, X0, Xj , T) + g((∇Tτ)(T), Xj) + 2h0g(τ(JT), Xj).

and Rac
2d = 0.

Appendix A. On the Yang-Mills condition

We prove that our definition of Yang-Mills type contact structures coincides with the one
given in [15, Sect. 5.1] for totally geodesic foliations with bundle like metric. We observe
that a contact sub-Riemannian structure is a totally geodesic foliation with bundle like metric
(with leaves tangent to the Reeb field X0) if and only if it is K-type, that is X0 is Killing or,
equivalently, τ = 0 (see also [10]).

Proposition A.1. For any X ∈ Γ(D) and Y ∈ Γ(T M) we have the following identity:

(∇XT )(X, Y ) = −g(Q(X, X), Y )X0 − ω(Y )(∇Xτ)(X).

Proof. Let X ∈ Γ(D). For Y ∈ Γ(D), using the properties of Tanno connection

(∇XT )(X, Y ) = X(T (X, Y )) − T (∇XX, Y ) − T (X, ∇XY )

= X(dω(X, Y )X0) − dω(∇XX, Y )X0 − dω(X, ∇XY )X0

= [X(g(X, JY )) − g(∇XX, JY ) − g(X, J∇XY )]X0

= [−X(g(JX, Y )) + g(J∇XX, Y ) + g(JX, ∇XY )]X0

= −g((∇XJ)X, Y )X0 = −g(Q(X, X), Y )X0.

On the other hand, for Y = X0 we get

(∇XT )(X, X0) = X(T (X, X0)) − T (∇XX, X0) − T (X, ∇XX0)

= −X(τ(X)) + τ(∇XX) = −(∇Xτ)(X). �
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Corollary A.2. Assume that the contact structure is of K-type. Then the Yang-Mills condition
tr Q = 0 is equivalent to

2d∑

i=1

∇Xi
T (Xi, Y ) = 0, ∀ Y ∈ Γ(T M).
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