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Abstract

We study homological structure of the filtration of the space of self-
adjoint operators by the multiplicity of the ground state. We consider
only operators acting in a finite dimensional complex or real Hilbert
space but infinite dimensional generalizations are easily guessed.

1 Introduction

This paper is dedicated to the memory of V. I. Arnold and is somehow
inspired by his works [1], [2] (see also [5]). It opens a planned series of
papers devoted to homological invariants of the families of quadratic forms
and related geometric structures; Theorem 2 below forms a fundament of all
further development.

In this paper we study the filtration of the space of self-adjoint operators
by the multiplicity of the ground state. We restrict ourself to operators
in a finite dimensional complex or real Hilbert space, but possible infinite
dimensional generalizations are easily guessed.

Let λ1(A) ≤ λ2(A) ≤ · · · ≤ λk(A) ≤ · · · be the ordered eigenvalues of
the operator A. The operators with the ground state of multiplicity at least
k are characterized by the equation λ1(A) = λk(A). Theorem 1 describes
the homotopy type of the space of nontrivial solutions to this equation, it
appears to be the Thom space of certain vector bundle over a Grassmannian.

The growth of the multiplicity from k to k+1 is realized by the intersection
of the space of solutions to the equation λ1(A) = λk(A) with the space of
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solutions to the equation λk(A) = λk+1(A). We focus on the homological
structure of this intersection procedure.

As often happens, it is more convenient to accept the dual viewpoint,
i. e. to deal with the cohomology of the pair: (B, {A ∈ B : λ1(A) 6= λk(A)})
instead of the homology of the space {A ∈ B : λ1(A) = λk(A)}, where B
is the space of all self-adjoint operators. Then the intersections of cycles is
substituted by the standard cohomological product.

The space of solutions to the equation λk(A) = λk+1(A) is a cycle of
codimension 3 in the complex case and a cycle modulo 2 of codimension 2
in the real case. The dual object is a 3-dimensional cohomology class in the
complex case and a 2-dimensional cohomology class modulo 2 in the real one;
we mean the class of the pair (B, {A ∈ B : λk(A) 6= λk+1(A)}).

In both cases, we denote this cohomology class by Γk and study the
map from the cohomology of the pair (B, {A ∈ B : λ1(A) 6= λk(A)}) to the
cohomology of the pair (B, {A ∈ B : λ1(A) 6= λk+1(A)}) which sends any
cohomology class to its product with Γk. The main result of the paper,
Theorem 2 states that the sequence of these maps for k = 1, 2, . . . is an exact
sequence.

Let us consider the simplest case of self-adjoint operators
on C2 or, in other words, of 2 × 2 Hermitian matrices. The pair
(B, {A ∈ B : λ1(A) 6= λk(A)}) equals (R4, ∅) for k = 1 and (R4,R4 \ R) for
k = 2. The exact sequence of Theorem 2 is reduced to the obvious sequence

0 → H∗(R3) → H∗+3(R3,R3 \ 0) → 0.

The general multidimensional calculation is far from being trivial and
has perhaps a fundamental nature as we hope to show in the forthcoming
publications.

In the next section we introduce some notations and recall well-known
facts on the spaces of self-adjoint operators. The Theorems 1 and 2 are
formulated and proved in Section 3.

All pairs of topological spaces and their subspaces we deal with are homo-
topy equivalent to pairs of finite cell complexes and their subcomplexes. Let
(M, X), (M, Y ), (M,X ∪ Y ) be such pairs, ξ ∈ H i(M,X), η ∈ Hj(M, Y );
then ξ ^ η ∈ H i+j(M,X ∪ Y ) is the cohomological product of ξ and η.
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2 Preliminaries

We consider the spaces of self-adjoint operators on Rn or Cn. In both cases,
given an operator A we denote by λ1(A) ≤ · · · ≤ λn(A) its ordered eigen-
values. Let I be the unit operator and α a positive real number. Obviously,
λi(A± αI) = λi(A)± α, λi(αA) = αλi(A). Moreover, A± αI and αA have
the same eigenvectors as A. It is convenient do not distinguish the operators
obtained one from another by just described trivial transformations.

We denote by S(R) (correspondingly by S(C)) the space of all non-scalar
self-adjoint linear operators A : Rn → Rn (correspondingly A : Cn → Cn)
factorized by the equivalence relation A ∼ (αA + βI), ∀α > 0, β ∈ R. Then

S(R) is homeomorphic to the sphere S
n(n+1)

2
−2 and S(C) is homeomorphic

to Sn2−2. In what follows we often deal simultaneously with the real and
Hermitian cases and simply omit the argument of S. The join of S and the
origin is denoted by B; this is the ball of dimension n(n+1)

2
−1 in the real case

and the ball of dimension n2 − 1 in the Hermitian case.
We can substitute the factorization by the normalization and define S as

the space of self-adjoint operators A such that
n∑

i=1

λi(A) = 0,
n∑

i=1

λ2
i (A) = 1;

then B is defined by the relations
n∑

i=1

λi(A) = 0,
n∑

i=1

λ2
i (A) ≤ 1. Anyway,

the normalization is sometimes less convenient than the factorization and we
often use the same symbols for the equivalence classes and their representa-
tives; this simplifies notations and does not lead to a confusion.

Now consider open subsets

Σk,k+1
.
= {A ∈ S : λk(A) 6= λk+1(A)}.

The following facts are well-known:

Proposition 1. S \ Σk,k+1 is an algebraic subset of S of codimension 2 in
the real case and of codimension 3 in the Hermitian case. Singular locus of
S \Σk,k+1 consists of the operators with at least triple eigenvalue λk; it is an
algebraic subset of S of codimension 5 in the real case and of codimension 8
in the Hermitian case. Moreover, regular part of S \ Σk,k+1 is orientable in
the Hermitian case.

Sketch of the proof. Let A0 ∈ S \ Σk,k+1 and JA0 be the set of all
j ∈ {1, . . . , n} such that λj(A0) = λk(A0); then #JA0 ≥ 2. Given a self-
adjoint operator A, we set KA = span{x ∈ X : Ax = λj(A)x, j ∈ JA0},
where X is Rn in the real case and X is Cn in the Hermitian case.
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Let O0 be a neighborhood of A0 in S such that KA ∩K⊥
A0

= 0, ∀A ∈ O0.
We denote by P k

A0A : KA → KA0 the restriction to KA of the orthogonal
projector X → KA0 and set Φ(A) = PA0AAP−1

A0A, A ∈ O0. Then Φ is
a well-defined rational map from O0 to the space of self-adjoint operators
on KA0 . The differential of Φ at A0 sends A to the composition of A

∣∣
KA0

with the orthogonal projection X → KA0 . In particular, DA0Φ is surjective;
hence Φ is a submersion on a neighborhood of A0. We may assume that
Φ is a submersion on the whole O0. Moreover, λi(Φ(A)) = λi+j0(A), i =
1, . . . , #JA0 , where j0 = min JA0 .

Let A ∈ O0; we obtain that JA = JA0 if and only if Φ(A) is a scalar
operator. Hence {A ∈ O0 : JA = JA0} is a regular algebraic subset of O0 of

codimension j0(j0+1)
2

− 1 in the real case and j2
0 − 1 in the Hermitian case.

It remains to prove the orientability in the Hermitian case. It is suffi-
cient to show that the space of self-adjoint operators on KA, A ∈ S has a
canonical orientation. The orientation of the space of self-adjoint operators
is induced by the orientation of the space KA itself, and the orientation of
KA ⊂ Cn is defined by the complex structure (any complex space has a
canonical orientation). ¤

Proposition 1 implies that Hdim S−2(S \ Σk,k+1;Z2) = Z2 in the real case
and Hdim S−3(S \ Σk,k+1;Z) = Z in the Hermitian case. According to the
Alexander duality, H1(Σk,k+1;Z2) = Z2 in the real case and the generator of
H1(Σk,k+1;Z2) applied to a closed curve in Σk,k+1 equals the linking num-
ber of the curve and S \ Σk,k+1 modulo 2. Similarly, H2(Σk,k+1;Z) = Z in
the Hermitian case and the generator of H1(Σk,k+1;Z) applied to a com-
pact oriented surface in Σk,k+1 equals the linking number of the surface and
S \ Σk,k+1.

Further in this paper we always consider homology and cohomology with
coefficients in Z2 in the real case and with coefficients in Z in the Hermitian
case, and we omit the indication of coefficients in order to simplify notations.
We also denote by ε the codimension of S \ Σk,k+1 in S; then ε = 2 in the
real case and ε = 3 in the Hermitian case.

Given A ∈ Σk,k+1, we set

Ek
A = span{x ∈ X : Ax = λi(A)x, i = 1, . . . , k},

where X = Rn in the real case and X = Cn in the complex case. Then
Ek = {(x,A) : A ∈ Σk,k+1, x ∈ Ek

A} is a k-dimensional vector subbundle of
the trivial bundle X ×Σk,k+1 over Σk,k+1. Let γk ∈ Hε−1(Σk,k+1) be the first
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Stiefel–Whitney characteristic class of this bundle in the real case and the
first Chern characteristic class in the Hermitian case.

Proposition 2. γk is a generator of Hε−1(Σk,k+1).

Proof. We have to compute the characteristic classes of the restriction
of the bundle Ek → Σk,k+1 to a (ε− 1)-dimensional compact submanifold of
Σk,k+1 whose linking number with S \ Σk,k+1 equals ±1.

We denote by S2 the space of self-adjoint operators B on R2 (in the real
case) or on C2 (in the Hermitian case) such that λ1(B)+λ2(B) = 0, λ2

1(B)+
λ2

2(B) = 1 and set B2 = conv(S2). Then S2 is a (ε − 1)-dimensional sphere
and B2 is a ε-dimensional ball, S2 = ∂B2. Let A− be a self-adjoint operator
on Rk−1 (or on Ck−1) with simple eigenvalues such that λk−1(A−) < −1
and A+ be a self-adjoint operator on Rn−k−1 (or on Cn−k−1) with simple
eigenvalues such that λ1(A+) > 1. Then A−⊕S2⊕A+ is the required (ε−1)-
dimensional submanifold of S. Indeed, A−⊕S2⊕A+ = ∂ (A− ⊕ B2 ⊕ A+) and
(A− ⊕ B2 ⊕ A+) ∩ (S \ Σk,k+1) = (A− ⊕ 0⊕ A+); moreover, the intersection
is transversal. Hence the linking number of A− ⊕ S2 ⊕ A+ and S \ Σk,k+1

equals ±1.
The restriction of the bundle Ek → Σk,k+1 to A−⊕S2⊕A+ splits in the sum

of a trivial vector bundle and a linear bundle over S2 whose fiber at B ∈ S2 is
the eigenspace of the eigenvalue λ1(B). It is easy to see that the map sending
B ∈ S2 to the eigenspace of the eigenvalue λ1(B) is the diffeomorphism of S2

and the projective line (real or complex). This diffeomorphism identifies our
linear bundle with the tautological bundle of the projective line. ¤

Let δ : H i(Σk,k+1) → H i+1(B, Σk,k+1) be the isomorphism induced by the
exact cohomological sequence of the pair (B, Σk,k+1). We set Γk = δ ◦ γk ∈
Hε(B, Σk,k+1). The value of Γk on a relative cycle ξ ∈ Cε(B, Σk,k+1) is the
intersection number of ξ and conv(S \ Σk,k+1).

We conclude this section with an explicit expression for a closed two-form
representing the class γk in the Hermitian case.

Let A be a self-adjoint operator with simple eigenvalues and e1, . . . , en an
orthonormal basis of its eigenvectors such that Aei = λi(A)ei, i = 1, . . . , n.
Then ei are defined up to a complex multiplier of the absolute value 1. Let
〈·, ·〉 denotes the Hermitian product and B be another self-adjoint operator.
It is easy to see that the wedge square over R of the complex number 〈Bei, ej〉
depends only on A,B, i, j and not on the choice of the eigenvectors. In
particular,

∧2
R〈dA ei, ej〉 is a well-defined two-form on the space of self-adjoint
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operators with simple eigenvalues. We have:
∧2
R〈dA ei, ej〉

(
∂

∂B1
, ∂

∂B2

)
=

detR (〈B1ei, ej〉, 〈B2ei, ej〉) , where complex numbers are treated as vectors
in R2.

Proposition 3. The form Ωk =
k∑

i=1

n∑
j=k+1

1
π(λi−λj)2

∧2
R〈dA ei, ej〉 represents

the restriction of γk to the space of self-adjoint operators with simple eigen-
values1.

Sketch of the proof. We have to demonstrate that Ωk represents the
first Chern class of the vector bundle Ek restricted to the space of self-adjoint
operators with simple eigenvalues. This restriction of Ek is the direct sum
of line bundles Li, i = 1, . . . , k, where the fiber of Li at A is the line
Li

A
.
= {z ∈ Cn : Az = λi(A)z}. We have to show that Ωk represents the

class
k∑

i=1

c1(Li).

Consider the associated with Li principal S1-bundle Ci whose fiber at A
is Ci

A
.
= {ei ∈ Cn : ei ∈ Li

A, |ei| = 1}. Given a smooth curve t 7→ A(t) in the
space of self-adjoint operators with simple eigenvalues and ei(0) ∈ Ci

A(0), the

condition 〈ėi(t), ei(t)〉 = 0 defines a canonical lift t 7→ ei(t) of the curve A(·)
to the bundle Ci. These lifts are the parallel translations for a connection
on the bundle Ci along curves in the base space of the bundle. The form of
this connection equals =〈dei, ei〉, where = denotes the imaginary part of a
complex number.

The exterior differential of the form =〈dei, ei〉 is the pullback of the cur-
vature form Ri of the connection. An immediate calculation shows that

Ri

(
∂

∂B1
, ∂

∂B2

)∣∣∣
A

= 2=
〈

∂ei(A)
∂B2

, ∂ei(A)
∂B1

〉
, where ∂ei(A)

∂B
= d

dt
ei(A + tB)

∣∣
t=0

and

t 7→ ei(A+ tB) is parallel along the curve t 7→ A+ tB. The differentiation by
t of the equation 〈(A + tB)ei(A + tB), ej(A)〉 = λi(A+tB)〈ei(A+tB), ej(A)〉
gives:

〈
∂ei(A)

∂B
, ej(A)

〉
= 1

λi(A)−λj(A)
〈Bei(a), ej(A)〉, ∀j 6= i. Hence ∂ei

∂B
=

∑
i 6=j

1
λi−λj

〈Bei, ej〉ej and Ri

(
∂

∂B1
, ∂

∂B2

)
=

∑
j 6=i

2
(λi−λj)2

= (〈B2ei, ej〉〈B1ei, ej〉).
On the other hand =(z1z2) = detR(z2, z1) for any complex numbers z1, z2.

We obtain: Ri =
∑
j 6=i

2
(λi−λj)2

∧2
R〈dA ei, ej〉. Summing up, we get the desired

1The form Ωk is locally bounded in the topology of Σk,k+1. Moreover, any two-
dimensional cycle in Σk,k+1 is homotopic to a cycle in the space of self-adjoint operators
with simple eigenvalues. Hence the form Ωk indeed represents γk.
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expression for the form Ωk = 1
2π

k∑
i=1

Ri representing the class γk. ¤

3 Main Results

We are going to study the filtrations

Mk = {A ∈ S : λ1(A) = λk+1(A)}, Mk = S \Mk, k = 0, . . . , n− 1.

It is easy to see that

Wk
.
= {A ∈ S : λk+1(A) = λn(A)} ⊂ Mk

is deformation retract of Mk. The retraction φk : Mk → Wk changes only
eigenvalues of the operators while the eigenvectors are kept fixed.

The involution A 7→ (−A), A ∈ S, transforms Wk into Mn−k−1; hence
Mk is homotopy equivalent to Mn−k−1. Note also that the map A 7→
A−λ1(A)I, A ∈ S, induces homeomorphism of Mk and the space of nonzero
nonnegative self-adjoint operators of rank < n− k factorized by the equiva-
lence relation A ∼ αA, ∀α > 0.

In what follows, Grk(m) is the Grassmannian of k-dimensional subspaces
of Rm or Cm.

Theorem 1. Mk has homotopy type of the Thom space of a real vector
bundle over the Grassmannian Grk(n−1); the dimension of the bundle equals
k(k+1)

2
+ k − 1 in the real case and k2 + 2k − 1 in the Hermitian case.

Proof. Let e be a unit length vector (in Rn or Cn). We set

Gk(e) = {A ∈ Mk−1 ∩Wk : Ae = λn(A)e}.
Then Gk(e) ∼= Grk(n − 1). Moreover, a neighborhood of Gk(e) in Wk is
a smooth manifold and the normal bundle of Gk(e) in this manifold has

dimension k(k+1)
2

+ k − 1 in the real case and dimension k2 + 2k − 1 in
the Hermitian case. In fact, the normal bundle splits in the sum of two
subbundles. The first one is the normal bundle of Gk(e) in {A ∈ Wk : Ae =
λn(A)e}; it is isomorphic to the bundle of the self-adjoint endomorphisms
with zero trace of the tautological bundle of Grk(n − 1). The second one is
the normal bundle of Gk(e) in Mk−1 ∩ Wk; it is isomorphic to the normal
subbundle of Grk(n− 1) in Grk(n). The theorem is an immediate corollary
of the following

7



Lemma 1. Wk \Gk(e) is a contractible space.

Proof. We’ll contract Wk \ Gk(e) to the point −e∗ ⊗ e ∈ Wk \ Gk(e).
The contraction sends (A, t) ∈ (Wk \Gk(e)) × [0, 1] to φk(At), where At =
(1− t)A− te∗ ⊗ e.

It remains to prove that the contraction is correctly defined, i. e. that
At ∈ Mk and φk(At) does not belong to Gk(e), ∀t ∈ [0, 1]. We have: φk(At) ∈
Gk(e) if and only if At ∈ Mk−1 and e is orthogonal to {x ∈ X : Atx =
λ1(At)x}, where X is Rn (in the real case) or Cn (in the Hermitian case).

Set At = A− t
1−t

e∗⊗e = 1
1−t

At; the positive multiplier does not influence
the multiplicity of the eigenvalues and we will work with At instead of At.
We consider separately two cases.

1. e ⊥ {x ∈ X : Ax = λi(A)x, i = 1, . . . k}. Then e is an eigenvector of
A, Ae = λn(A)e. Hence all At have common eigenvectors. Moreover, (n−1)
eigenvalues of At (counted with the multiplicities) are equal to eigenvalues
of A while the eigenvalue corresponding to the eigenvector e is monotone
decreasing from λn(A) to −∞ as t runs from 0 to 1. Besides that, λ1(A) 6=
λk(A) since A /∈ Gk(e); hence At ∈ Mk.

The equality λ1(A
t) = λk(A

t) is valid for some t ∈ (0, 1] if and only if
λ1(A) = λk−1(A); then Ate = λ1(A

1)e and φk(A
t) /∈ Gk(e).

2. e 6⊥ {x ∈ X : Ax = λi(A)x, i = 1, . . . k}. The restriction of the quadratic
form x 7→ 〈Atx, x〉 to the hyperplane e⊥ does not depend on t. Hence the
minimax principle for the eigenvalues implies:

λ1(A
t) ≤ λ1(A) ≤ λ2(A

t) ≤ · · · ≤ λk(A) ≤ λk+1(A
t).

Assume that λ1(A
t) = λk+1(A

t). Hence

λ1(A) = λk(A) = λ1(A
t) = min

|x|=1
〈Atx, x〉.

At the same time,

〈Atx, x〉 = λ1(A)− t

1− t
〈e, x〉2, ∀x ∈ {x ∈ X : Ax = λ1(A)x}.

We obtain the contradiction with the assumption

e 6⊥ {x ∈ X : Ax = λ1(A)x} = {x ∈ X : Ax = λi(A)x, i = 1, . . . , k}.
Hence At ∈ Mk.
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Now assume that λ1(A
t) = λk(A

t) and e ⊥ {x ∈ X : Atx = λ1(A
t)x}.

Then
λ1(A

t)|x|2 = 〈Atx, x〉 = 〈Ax, x〉 = λ1(A)|x|2,
∀x ∈ {x ∈ X : Atx = λi(A

t)x, i = 1, . . . , k}.
Hence λ1(A) = λk(A) and

{x ∈ X : Atx = λi(A
t)x, i = 1, . . . , k} =

{x ∈ X : Ax = λi(A)x, i = 1, . . . , k}.
We obtain the contradiction with the assumption 2. ¤

Let uk ∈ Hνk(Mk) be the Thom class of the normal bundle of Gk(e) in

Wk, νk = k(k+1)
2

+k−1 in the real case and νk = k2 +2k−1 in the Hermitian
case. Let Gk be the total space of this bundle and Gk(e) ⊂ Gk its zero section.
We have:

H̃ ·(Mk) = H ·(Gk,Gk \Gk(e)), H ·(Gk(e)) = H ·(Gk)

and the cohomology product of the classes from H̃ ·(Mk) and H ·(Gk(e)) is a
well-defined class in H̃ ·(Mk). Then ξ 7→ uk ^ ξ, ξ ∈ H ·(Gk(e)), is the Thom
isomorphism of H(Gk(e)) and H̃(Mk). Recall that uk

∣∣
Gk(e)

∈ Hνk(Gk(e)) is

the Euler class of the bundle Gk → Gk(e).

Lemma 2. uk

∣∣
Gk(e)

= 0.

Proof. The bundle Gk splits in the sum of two subbundles as it was
explained in the proof of Theorem 1. We’ll prove that the first subbundle, i. e.
the bundle of self-adjoint endomorphisms with zero trace of the tautological
bundle of the Grassmannian has zero Euler class. It is sufficient to show that
the induced bundle over the flag space has zero Euler class. This is easy.
Indeed, the bundle over the flag space has natural non-vanishing sections: the
value of such a section at a flag is the self-adjoint operator with prescribed
simple eigenvalues whose eigenspaces are the elements of the flag. ¤

Corollary 1. The cohomology product of any two elements of H̃ ·(Mk) is
zero.
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Proof. Due to the Thom isomorphism, it is sufficient to show that
uk ^ uk = 0, but uk ^ uk is the image of uk

∣∣
Gk(e)

= 0 under the Thom

isomorphism. ¤
Obviously, Mk = Mk−1 ∪ Σk,k+1. We consider the homomorphisms

dk : H ·(B,Mk−1) → H ·(B,Mk), k = 1, . . . , n− 1,

acting by multiplication with the class Γk ∈ Hε(B, Σk,k+1) defined at the end
of Section 2:

dk(ξ) = Γk ^ ξ, ξ ∈ H ·(B,Mk−1).

Recall that ε = 2 in the real case and ε = 3 in the Hermitian case.

Theorem 2.

0 → H ·(B)
d1→ H ·(B,M1)

d2→ · · · dn−2→ H ·(B, Mn−2)
dn−1→ H ·(B,S) → 0 (1)

is an exact sequence.

Proof. We make calculations only for the real case; the Hermitian version
is obtained by obvious modifications.

First note that Γk ^ Γk−1 = 0. Indeed, Γk ^ Γk−1 is an element of
H4(B, Σk−1,k ∪ Σk,k+1) = H4(S, Σk−1,k ∪ Σk,k+1) but

S \ (Σk−1,k ∪ Σk,k+1) = {A ∈ S : λk−1(A) = λk+1(A)}
is a codimension 5 algebraic subset of S (see Proposition 1). Hence dk◦dk−1 =
0 and (1) is a cochain complex. We have to prove that this complex has trivial
cohomology.

Consider the spaces:

Σ1,k,k+1
.
= {A ∈ S : λ1(A) 6= λk(A) 6= λk+1(A)} = Mk−1 ∩ Σk,k+1.

Then φk (Σk,k+1) = Σk,k+1 ∩ Wk and Σk,k+1 ∩ Wk is a deformation retract
of Σk,k+1. Similarly, φk (Σ1,k,k+1) = Σ1,k,k+1 ∩ Wk and Σ1,k,k+1 ∩ Wk is a
deformation retract of Σ1,k,k+1.

The map A 7→ span{x ∈ Rn : Ax = λi(A)x, i = 1, . . . , k} endows the
space Σk,k+1 ∩Wk with the structure of the fiber bundle over Grk(n), where
the fiber at E ∈ Grk(n) is the space of all self-adjoint operators A : E → E

such that
k∑

i=1

λi(A) ≤ 0,
k∑

i=1

λ2
i (A) + 1

n−k

(
k∑

i=1

λi(A)

)2

= 1: such operators
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are uniquely extended to (normalized) operators from Wk. The fiber is thus

a ball of dimension k(k+1)
2

− 1 = νk−1 + 1.
Moreover, (Σk.k+1 \ Σ1,k,k+1)∩Wk is a section of the bundle Σk,k+1∩Wk →

Grk(n), where the value of the section at E ∈ Grk(n) is a scalar operator on
E, “the center of the ball”. Hence “the spherical bundle”

{A ∈ Σk,k+1 ∩Wk :
k∑

i=1

λi(A) = 0}

with a typical fiber Sνk−1 is a homotopy retract of Σ1,k,k+1. Let

S
νk−1

E
.
= {A ∈ Σk,k+1 ∩Wk :

k∑
i=1

λi(A) = 0, Axi = λi(A)xi,

xi ∈ E \ {0}, i = 1, . . . , k} (2)

be the fiber at E of this spherical bundle.

Lemma 3. The restriction uk−1

∣∣
S

νk−1
E

of the class uk−1 ∈ Hνk−1(Mk−1) in-

duced by the inclusion

Mk−1 ⊃ Σ1,k,k+1 ⊃ S
νk−1

E

is the generator of Hνk−1(S
νk−1

E ).

Proof. The value of the Thom class uk−1 on the cycle S
νk−1

E is the in-
tersection number of the cycle φk−1(S

νk−1

E ) with Gk−1(e) in Mk−1 ∩ Wk−1.
Obviously, this number does not depend on E. Take E such that e 6⊥ E.
Then the intersection of φk−1(S

νk−1

E ) and Gk−1(e) is transversal and consists
of one point A0 characterized by the relations

A0 ∈ Gk−1(e), {x ∈ Rn : A0x = λ1(A0)x} = e⊥ ∩ E. ¤

Corollary 2. Let vk−1 = uk−1

∣∣
Σ1,k,k+1

. Then the ring H ·(Σ1,k,k+1) is a free

module over the ring H ·(Grk(n)) with the basis 1, vk−1. Moreover, vk−1 ^
vk−1 = 0.

Proof. The module structure is induced by the bundle structure
Σ1,k,k+1 ∩ Wk → Grk(n). The fact that the module is free follows from
Lemma 3 and the Leray–Hirsch theorem. The equality vk−1 ^ vk−1 = 0
follows from the equality uk−1 ^ uk−1 = 0 (see corollary 1). ¤
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Lemma 4. The inclusions Mk−1 ⊂ Mk and Σk,k+1 ⊂ Mk induce zero ho-
momorphisms of the reduced cohomology groups.

Proof. We have: φk(M
k−1) ⊂ Mk \ Gk(e). Hence Mk−1 is contained in

the contractible subset of Mk and the restriction to Mk−1 makes trivial any
cohomology class from H̃(Mk). Now consider the inclusions

Σ1,k,k+1 ⊂ Σk,k+1 ⊂ Mk.

Corollary 2 implies that the inclusion Σ1,k,k+1 ⊂ Σk,k+1
∼= Grk(n) induces

the injective homomorphism H ·(Σk,k+1) → H ·(Σ1,k,k+1). On the other hand,
φk(Σ1,k,k+1) ⊂ Mk \ Gk(e). Hence the composition of the induced by the
inclusions homomorphisms

H̃ ·(Mk) → H̃ ·(Σk,k+1) → H̃ ·(Σ1,k,k+1)

is zero. We obtain that the homomorphism H̃ ·(Mk) → H̃ ·(Σk,k+1) is zero.
¤

Let X ⊂ S be an open subset of S whose compliment is a neighbor-
hood deformation retract, we denote by δ̂ : H̃ i(X) → H i+1(B, X) natural
isomorphism induced by the exact sequence of the pair B, X.

Now consider the Mayer–Vietoris exact sequence of the pair Σk,k+1, Mk−1:

. . . H i−1(Mk) →
H i−1(Σk,k+1)⊕H i−1(Mk−1)

θ→ H i−1(Σ1,k,k+1)
d→ H i(Mk) . . .

and its relative version:

. . . H i(B,Mk) →
H i(B, Σk,k+1)⊕H i(B,Mk−1)

θ→ H i(B, Σ1,k,k+1)
d→ H i+1(B,Mk) . . . .

Then δ̂ establishes the isomorphism of these two exact sequences. Moreover,
Lemma 4 implies that long exact sequences split in the short ones:

0 → H i−1(Σk,k+1)⊕H i−1(Mk−1)
θ→ H i−1(Σ1,k,k+1)

d→ H i(Mk) → 0 (3)

and similarly for the relative version.

Lemma 5. Let ξ ∈ H ·(Σk,k+1), η ∈ H ·(Mk−1). Then δ̂ξ ^ δ̂η = 0 if and

only if
(
ξ
∣∣
Σ1,k,k+1

^ η
∣∣
Σ1,k,k+1

)
∈ im θ.

12



Proof. The Proposition from the Appendix A implies:

δ̂ξ ^ δ̂γ = δ ◦ d
(
ξ
∣∣
Σ1,k,k+1

^ η
∣∣
Σ1,k,k+1

)
.

Now the statement of the Lemma follows from the fact that δ̂ is an isomor-
phism and the sequence (3) is exact. ¤

The next step is to find im θ. Given ξ ∈ H ·(Σk,k+1), η ∈ H ·(Mk−1), we
have:

θ(ξ ⊕ η) = ξ
∣∣
Σ1,k,k+1

− η
∣∣
Σ1,k,k+1

.

According to Corollary 2, the restriction H ·(Σk,k+1) → H ·(Σk,k+1)
∣∣
Σ1,k,k+1

is

injective and

H ·(Σ1,k,k+1) = H ·(Σk,k+1)
∣∣
Σ1,k,k+1

⊕
(
vk−1 ^ H ·(Σk,k+1)

∣∣
Σ1,k,k+1

)
.

Recall that Mk−1 has the homotopy type of the Thom space of a vector
bundle over Gk−1(e) ⊂ Mk−1 with the Thom class uk−1 ∈ Hνk−1(Mk−1). We
consider the map %k : H ·(Gk−1(e)) → H ·(Σk,k+1), where

vk−1 ^ %k(ζ)
∣∣
Σ1,k,k+1

= πv(uk−1 ^ ζ)
∣∣
Σ1,k,k+1

, ∀ζ ∈ H ·(Gk−1(e)). (4)

The identity (4) uniquely defines %k. Moreover, the map %k is injective and

im θ = H ·(Σk,k+1)
∣∣
Σ1,k,k+1

⊕
(
vk−1 ^ im %k

∣∣
Σ1,k,k+1

)
. (5)

The space Σk,k+1 has the homotopy type of the Grassmannian Grk(n) while
Gk−1(e) is identified with the Grassmannian {F ∈ Grk−1(n) : F ⊂ e⊥} =
Grk−1(n − 1). We are going to explicitly compute the map %k in the bases
provided by the Schubert cells in the Grassmannians.

In what follows, we identify the manifold

Σk,k+1 ∩Mk−1 ∩Wk = (Σk,k+1 \ Σ1,k,k+1) ∩Wk

with the Grassmannian Grk(n), where A ∈ Σk,k+1 ∩Mk−1 ∩Wk is identified
with the subspace {x ∈ Rn : Ax = λ1(A)x}. Obviously, Σk,k+1 ∩Mk−1 ∩Wk

is a homotopy retract of Σk,k+1. In particular, H ·(Σk,k+1) = H ·(Grk(n)).
Let e1 = e, e2, . . . , en be an orthogonal basis of Rn. The closed Schubert

cells in Grk(n) associated to this basis are cycles which give an additive basis
of H·(Grk(n)) (see Appendix B). We also consider the dual Schubert basis
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of H ·(Grk(n)). The Schubert cells of dimension r ≥ 0 are in the one-to-one
correspondence with the partitions of r in no more than k positive integral
summands in such a way that each summand does not exceed n− k.

Similarly, Schubert cells associated to the basis e2, . . . , en of e⊥ = Rn−1

give the Schubert basis of H ·(Grk−1(n − 1)) = H ·(Gk−1(e)). The elements
of dimension r of this basis are in the one-to-one correspondence with the
partitions of r in less than k positive integral summands in such a way that
each summand does not exceed n− k.

Lemma 6. The map %k : H ·(Gk−1(e)) → H ·(Grk(n)) sends the element of
the Schubert basis of H ·(Gk−1(e)) associated to a partition in less than k
summands to the element of the Schubert basis of H ·(Grk(n)) associated to
the same partition!

Proof. We’ll study the adjoint map %∗k : H·(Grk(n)) → H·(Gk−1(e)). We
have to prove that %∗k sends to zero the Schubert classes for H·(Grk(n)) asso-
ciated to the partitions in exactly k summands, while the classes associated
to the partitions in less than k summands are sent to the Schubert classes
for H·(Gk−1(e)) associated to the same partitions.

Let C ⊂ Grk(n) be a Schubert cycle and [C] its homology class. We
set S

νk−1

C =
⋃

E∈C

S
νk−1

E , c.f. (2). Then %∗k[C] is the homology class of the

intersection of φk−1

(
S

νk−1

C

)
with Gk−1(e) = Grk−1(n − 1). In other words,

the map %∗k is essentially determined by the set-valued map rk : Grk(n) 99K
Gk−1(e), where rk(E) = φk−1

(
S

νk−1

E

) ∩Gk−1(e), E ∈ Grk(n).
It is easy to see that rk(E) = {F ∈ Grk−1(n − 1) : F ⊂ E ∩ e⊥}. In

particular, rk is one-valued on {E ∈ Grk(n) : E 6⊥ e}; if E 6⊥ e, then
rk(E) = E ∩ e⊥. The (one-valued) map F 7→ (F + Re), F ∈ Grk−1(n − 1),
is a right inverse of rk.

Let d be a starting from the unit Schubert symbol for Grk(n). Then
rk (Scd

k(n)) = Scd′
k−1(n− 1), where d′ is obtained from d by removing the first

unit. Indeed, e ∈ E, ∀E ∈ Scd
k(n), and the desired equality easily follows

from the definitions.
Now assume that d is a starting from 0 Schubert symbol for Grk(n).

We’ll show that rk (Scd
k(n)) is contained in the union of Schubert cells whose

dimension is smaller than the dimension of Scd
k(n). This fact completes the

proof of Lemma 6.

Let F ∈ Scd
k(n) and F̂ ∈ rk

(
Scd̂

k−1(n− 1)
)
. Recall that

dd
i = min{j : dim(Ej ∩ F ) = i}, i = 1, . . . , k,
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dd̂
i = min{j : dim(Ej+1 ∩ F̂ ) = i}, i = 1, . . . , k − 1,

where Ej = span{e1, . . . , ej}, j = 1, . . . , n. On the other hand,

dim(Ej ∩ Fj)− 1 ≤ dim(Ej ∩ F̂j) ≤ dim(Ej ∩ Fj);

hence dd
i ≤ dd̂

i + 1 ≤ dd
i+1. Moreover, dd

1 > 1, since the symbol d starts from
0. We obtain:

dim Scd̂
k−1(n− 1) =

k−1∑
i=1

(dd̂
i − i) =

k−1∑
i=1

(
(dd̂

i + 1)− (i + 1)
)
≤

k∑
i=2

(dd
i − i) < dim Scd

k(n).

¤

Lemma 7. Let w ∈ H1(Grk(n)) be the first Stiefel–Whitney class of the
tautological bundle and ξ ∈ im%k. Then (w ^ ξ) ∈ im %k if and only if ξ is a
sum of Schubert classes associated to partitions in less than k−1 summands.

Proof. Let Πj be the linear hull of the Schubert classes associated to the
partitions in exactly j summands, j = 0, 1, . . . , k, and ξ the Schubert class
associated to the partition a1 + · · ·+aj. The Pieri formula (see Appendix B)
implies that the difference of w ^ ξ and the Schubert class associated to the
partition 1 + a1 + · · · + aj belongs to Πj. On the other hand, according to

Lemma 6, im%k =
k−1⊕
j=0

Πj. ¤

Now we are ready to compute kerdk and thus complete the proof of
Theorem 2. Let ξ ∈ H ·(Mk−1); then ξ = δ̂(uk−1 ^ ζ) for a unique ζ ∈
H ·(Gk−1(e)). We have:

dk(ξ) = δ̂(γk) ^ δ̂(uk−1 ^ ζ),

where γk ∈ H1(Σk,k+1) was defined in Section 2. According to Lemma 5,
dk(ξ) = 0 if and only if

(uk−1 ^ ζ)
∣∣
Σ1,k,k+1

^ γk

∣∣
Σ1,k,k+1

=
(
vk−1 ^ (%k(ζ) ^ γk)

∣∣
Σ1,k,k+1

)
∈ im θ.

Further, Grk(n) = Σk,k+1 ∩Mk−1 ∩Wk is a homotopy retract of Σk,k+1, and
γk

∣∣
Grk(n)

is the first Stiefel–Whitney class of the tautological bundle of the
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Grassmannian Grk(n), i. e. γk

∣∣
Grk(n)

= w (see Proposition 2). Now the

equality (5) implies that dk(ξ) = 0 if and only if

(%k(ζ) ^ w) ∈ im%k.

It follows from Lemma 7 and the injectivity of %k that dim kerdk is equal
to the number of partitions in no more than k − 2 natural summands in
such a way that each summand does not exceed n − k. In other words,

dim kerdk =

(
n− 2

k − 2

)
. At the same time, the isomorphisms H ·(B, Mk−1) ∼=

H̃ ·(Mk−1) ∼= H ·(Grk−1(n−1)) imply that dim H ·(B,Mk−1) =

(
n− 1

k − 1

)
. The

Pascal triangle identity

(
n− 1

k − 1

)
=

(
n− 2

k − 2

)
+

(
n− 2

k − 1

)
gives:

dim H ·(B,Mk−1) = dim kerdk + dim kerdk+1. ¤

A A property of the cohomological product

Let M be a simplicial complex and X ⊂ M its subcomplex; we denote by
δX : H∗(X) → H∗+1(M,X) the connecting homomorphism in the cohomo-
logical exact sequence of the pair M, X. Let Y ⊂ M be one more subcomplex
and d : H∗(X ∩ Y ) → H∗+1(X ∪ Y ) the connecting homomorphism in coho-
mological Mayer–Vietoris exact sequence of the pair X,Y .

Proposition. Let ξ ∈ H ·(X), η ∈ H ·(Y ); then

δXξ ^ δY η = δX∪Y ◦ d (ξ|X∩Y ^ η|X∩Y ) .

Proof. We set ζ = d(ξ|X∩Y ^ η|X∩Y ). Let x and y be cocycles repre-
senting cohomology classes ξ and η. Any cocycle z such that

z|X = δu, z|Y = δv, u|X∩Y − v|X∩Y = x|X∩Y ^ y|X∩Y (A)

for some cochains u, v is a representive of ζ. We do as follows: extend x
and y to cochain x̂ and ŷ defined on X ∪ Y and set z = x̂ ^ δŷ. Then
conditions (A) are satisfied for u = (−1)dim xx ^ ŷ|X , v = 0 and we have:
δz = δx̂ ^ δŷ. ¤
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B Schubert cells

Schubert cells give cell complex structures of Grassmannians. They are in-
dexed by Schubert symbols. A Schubert symbol d for Grk(n) is a sequence
of zeros and units that contains exactly k units and n − k zeros. The total
number of symbols for Grk(n) (i. e. the number of cells in the cell com-
plex) is

(
n
k

)
. We denote by dd

i the number of ith unit in the sequence; then
1 ≤ dd

1 < · · · < dd
k ≤ n.

We treat simultaneously the real and complex cases. Let e1, . . . , en be a
basis of Rn in the real case and a basis of Cn in the complex case. We set

Ei = span{e1, . . . , ei}, i = 1, . . . , n.

The Schubert cell Scd
k(n) is defined as follows:

Scd
k(n) =

{
F ∈ Grk(n) : dim(F ∩ Edd

i
) = i, dim(F ∩ Edd

i−1) = i− 1
}

.

There is a one-to-one correspondence between Schubert symbols for Grk(n)
and partitions of nonnegative integers in no more than k positive integral
summands in such a way that each summand does not exceed (n− k). The
summands associated to the symbol d are numbers of zeros to the left of each
unit presented in the symbol. In other words, the summands are nonzero
terms of the sequence (dd

i − i), i = 1, . . . , k.
The dimension of the Schubert cell associated to a partition of the number

r is equal to r in the real case and to 2r in the complex case. We thus have:

dim Scd
k(n) = ε

k∑
i=1

(dd
i − i),

where ε = 1 in the real case and ε = 2 in the complex case. The closure
Scd

k(n) is a cycle over Z2 in the real case and a cycle over Z in the complex
case (a Schubert cycle). In both cases, the homology classes of the Schubert
cycles form an additive basis of the total homology group of Grk(n) (over Z2

in the real case and over Z in the complex one). Moreover, in the complex
case the homology groups are free.

The dual basis of the total cohomology group of Grk(n) is called the
Schubert basis. Repeat that the elements of dimension r of this basis, the
r-dimensional Schubert classes, are in the one-to-one correspondence with
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partitions of r in no more than k natural summands, where each summand
does not exceed n− k.

The Stiefel–Whitney (in the real case) and Chern (in the complex case)
characteristic classes of the tautological bundle are Schubert classes associ-
ated to partitions in units. In particular, the Stiefel–Whitney class w1 in the
real case and the Chern class c1 in the complex case are associated to the
unique “partition” of 1.

There is a useful Pieri formula which computes the cohomological product
of the Schubert class associated to a partition with one summand a and the
Schubert class associated to any partition b1 + · · ·+ bj, where b1 ≤ · · · ≤ bj.

The product equals the sum of all Schubert classes of dimension a +
j∑

i=1

bi

associated to the partitions c0 + c1 + · · · + cj such that bi−1 ≤ ci ≤ bi, i =
1, . . . , j, b0 = 0.

See details in [4, Ch.5] and [3, Ch.1.5].
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