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Abstract

We consider a smooth bracket generating control-affine system in
Rd and show that any orientation preserving diffeomorphism of Rd can
be approximated, in the very strong sense, by a diffeomorphism in-
cluded in the flow generated by a time-varying feedback control which
is polynomial with respect to the state variables and trigonometric-
polynomial with respect to the time variable .

1 Introduction

We consider a control-affine system:

q̇ = f0(q) +
m∑
i=1

uifi(q), q ∈ Rd , (1)

with u = (u1, . . . , um) ∈ Rm , where fi are smooth (i. e. C∞) vector fields on
Rd. Moreover, we assume that {f1, . . . , fm} is a bracket generating fam-
ily of vector fields, i. e. Lieq{f1, . . . , fm} = Rd, for any q ∈ Rd, where
Lieq{f1, . . . , fm} is the linear hull of all iterated Lie brackets of the fields
f1, . . . , fm evaluated at q.

Feedback control (or time-invariant feedback control) is a mapping

v = (v1, . . . , vm) : Rd → Rm.

We can put ui = vi(q) and obtain a closed loop system

q̇ = f0(q) +
m∑
i=1

vi(q)fi(q), q ∈ Rd. (2)
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It is very interesting to know what kind of dynamics we can realize by an
appropriate choice of the feedback control. Of course, a smooth or at least
Lipschitz feedback is preferable if we want system (2) to correctly define a
dynamical system. Unfortunately, we cannot expect too much. In particular,
if f0 = 0 then system (2) with a continuous feedback control cannot have
locally asymptotically stable equilibria as it was observed by R. Brockett [2].

J.-M. Coron suggested to use time-varying periodic with respect to time
feedback controls

v : R× Rd → Rd, v(t+ 1, q) = v(t, q), q ∈ Rd, t ∈ R,

for system (1) and proved that asymptotic stability can be successfully achieved
by a C∞ time-varying feedback (see [4, 5] or [6, section 11.2]).

In this paper, we focus on the transformation q(0) 7→ q(1) in virtue of the
system

q̇ = f0(q) +
m∑
i=1

vi(t, q)fi(q), q ∈ Rd . (3)

associated to the time-varying feedback control and demonstrate that prac-
tically any type of discrete-time dynamics can be realized in this way.

More precisely, let Φv : q(0) 7→ q(1) be the transformation of Rd which
sends the initial value of any solution of system (3) to its value at t = 1.
We denote by Diff0Rd the group of orientation preserving diffeomorphisms
of Rd. Let P ∈ Diff0Rd, OP be a C∞-neighborhood of P and N be a positive
integer. We prove (Theorem 8) that there exists a polynomial with respect
to q and trigonometric polynomial with respect to t time-varying feedback
control v such that Φv ∈ OP and theN -jets of Φv and P at the origin coincide.
Moreover, construction of the time-varying feedback v is surprisingly simple.

Let us fix some notations. We denote by Diff(Rd) the group of diffeo-
morphisms of Rd and by Vec Rd the space of vector fields on Rd. We assume
that Diff(Rd),Diff0(Rd),Vec Rd, and C∞(Rd) are endowed with the standard
topology of the uniform convergence of the partial derivatives of any order
on any compact of Rd.
Given a set F of vector fields on Rd, we denote by:

GrF = {et1f1 ◦ · · · ◦ etkfk | ti ∈ R, fi ∈ F , k ∈ N},

the subgroup of DiffRd generated by flows of vector fields in F , and by:

GrSF = {ea1f1 ◦ · · · ◦ eakfk | ai ∈ C∞(Rd), fi ∈ F , k ∈ N},
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respectively the subgroup of DiffRd generated by flows of vector fields in F
rescaled by smooth functions on Rd. We consider time-varying vector fields
Vt(q) on Rd that are smooth with respect to q ∈ Rd and locally integrable
with respect to t ∈ R. All vector fields under consideration are supposed
to satisfy the growth condition Vt(q) ≤ ϕ(t)(1 + |q|), where ϕ is a locally
integrable function. This condition guarantees completeness of the vector
field.
Given a time-varying vector field Vt(q) on Rd, let

Pt : Rd → Rd, t ∈ R ,

be the (non-stationary) flow generated by the differential equation q̇ = Vt(q).
In other words, 

∂Pt
∂t

(q) = Vt(Pt(q)) ,

P0(q) ≡ q .

In the following we will use the “chronological” notation: Pt =
−→
exp

∫ t
0
Vτ dτ ,

to denote such a flow.
Recall that if F is a bracket generating family of vector fields then by
Rashevski–Chow Theorem (see [8, 3]), for every q0, the orbit Oq0 of the
family is the whole space Rd moreover, according to the Orbit Theorem of
Sussmann([9] or [1, chapter 5]), any smooth vector field can be presented as
a linear combination of vector fields from F transformed by diffeomorphisms
from GrF . In particular it is possible to take X1, . . . , Xd linearly independent
at a point q ∈ Rd and such that Xi = P i

∗fi, i = 1, . . . , d with P i ∈ GrF and
fi ∈ F .

The main result proved in this paper is as follows.

Theorem. Let {f1, f2, . . . , fm} be a bracket generating family of vector fields
on Rd. Consider the control system

q̇ = f0(q) +
m∑
i=1

ui(t, q)fi(q), q ∈ Rd, (4)

with controls ui such that:

(i) ui is polynomial with respect to q ∈ Rd;

(ii) ui is a trigonometric polynomial with respect to t ∈ [0, 1];
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for every i = 1, . . . ,m.
Fix positive integers N and k, ε > 0, and B ball in Rd. For any Φ ∈
Diff0(Rd), there exist controls u1(t, q), . . . , um(t, q) such that, if P is the flow
at time 1 of the system, then

JN0 (P ) = JN0 (Φ) and ‖P − Φ‖Ck(B) < ε.

Proof is divided into four sections. In Section 2 we consider a bracket gen-
erating family of vector fields closed under multiplication by smooth functions
on Rd, say F , then we prove that the group of diffeomorphisms generated by
flows of vector fields in this family is dense in the connected component of
the identity of the group of diffeomorphisms. In Section 3 we use classical
Implicit Function Theorem to prove that the N -th jet of a diffeomorphism in
Diff0(Rd) sufficiently close to the identity can be presented as the N -th jet
of an element in GrF . Then using Proposition 2 we can extend this result to
every diffeomorphism in Diff0(Rd). The results of Section 2 and Section 3 are
combined together in Section 4 to prove that it is possible to find an element
in the group GrF with the same N -th jet of a given diffeomorphism and also
close to it in the C∞-topology. This result, as showed in Section 5, implies
the main result in the driftless case, namely f0 ≡ 0, and with controls ui(t, ·)
that are piecewise constant with respect to t. Therefore we use Brouwer
Fixed Point to prove that it is possible to perturb the map

(u1, . . . , um) 7→ JN0

(
−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi(·) dt

)
,

without losing surjectivity. This argument leads to the proof of the Theorem.

2 An approximation result

We start with a simple modification of a standard relaxation result (see [1,
chapter 8] or [7]). Its proof is done in the appendix for convenience of the
reader.

Proposition 1. Let X1, . . . , Xk be smooth vector fields on Rd and A be a
closed subspace of C∞(Rd). Then, for any time-varying vector field of the
form

Vt =
k∑
i=1

ai(t, ·)Xi ,
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where ai(t, ·) ∈ A and 0 ≤ ai(t, q) ≤ ϕ(t) for some locally integrable ϕ, i =
1, . . . , k, there exists a sequence of time-varying, piecewise constant with re-
spect to t, vector fields Zn

t such that

Zn
t ∈ {aXi | a ∈ A, i = 1, . . . , k}, for any t ∈ [0, 1]

and
−→
exp

∫ t

0

Zn
τ dτ −→

−→
exp

∫ t

0

Vτ dτ, as n→∞

in the standard topology and uniformly with respect to t ∈ [0, 1].

Proposition 2 (Approximation). Let F ⊆ Vec Rd be a bracket generating
family of vector fields on Rd such that

af ∈ F for any a ∈ C∞(Rd), f ∈ F . (5)

Then, for any orientation preserving diffeomorphism P of Rd, there exists a
sequence {Pn}n ⊂ GrF such that

Pn −→ P, as n→∞ ,

in the standard topology.

Proof. First, note that any orientation preserving diffeomorphism of Rd is
isotopic to the identity. Indeed, let P be an orientation preserving diffeo-
morphisms of Rd. We can suppose without loss of generality that P fixes the
origin just taking the isotopy H1(t, ·) = P − (1 − t)P (0). Now, rename for
simplicity P := H1(0, ·) and consider another isotopy

H2(t, q) = P (tq)/t, t ∈ (0, 1], and H2(0, q) = lim
t→0

P (tq)/t.

Since P is orientation preserving then H2(0, ·) belongs to the connected com-
ponent of the identity of the group of linear invertible operators on Rd,
GL+(d,R).

Let P t ⊂ Diff0(Rd) be a path such that P 0 = Id and P 1 = P . Consider
the time-varying vector field

Vt =
(
P t
)−1 ◦ d

dt
P t .
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We have
−→
exp

∫ t

0

Vτ dτ = P t

Recall that, since F is bracket generating then it is possible to take
X1, . . . , Xd such that Xi = P i

∗fi with P i ∈ GrF , fi ∈ F , i = 1, . . . , d and

Vt =
d∑
i=1

ai(t, ·)Xi,

where ai(t, ·) ∈ C∞(Rd) for any t ∈ [0, 1].
By Proposition 1 there exists a sequence Zn

t ∈ {αXi |α ∈ C∞(Rd), i =
1, . . . , d} such that

−→
exp

∫ t

0

Zn
τ dτ → P t, as n→∞,

and the convergence is uniform with respect to t ∈ [0, 1].

Let Pn :=
−→
exp

∫ 1

0
Zn
t dt, then

Pn → P, as n→∞.

It remains to prove that Pn ∈ GrF for every n. Since Zn
t is piecewise

constant in t, so, for any fixed n ∈ N, there exist disjoint segments I1, . . . , Ihn
covering [0, 1] and functions α1, . . . , αhn ∈ C∞(Rd) such that

Zn
t = αkXik ∀t ∈ Ik, k = 1, . . . , hn.

Hence

Pn =
−→
exp

∫ 1

0

Zn
t dt,

= e|I1|α1Xi1 ◦ · · · ◦ e|Ihn |αhnXihn

= e|I1|α1P
i1
∗ fi1 ◦ · · · ◦ e|Ih|αhP

ihn
∗ fihn

= (P i1)−1 ◦ e|I1|(α1◦P i1 )fi1 ◦ P i1 ◦ · · ·

◦ (P ihn )−1 ◦ e|Ih|(αhn◦P
ihn )fihn ◦ P ihn , (6)

6



now let βk = |Ik|(αk ◦ P ik), then

Pn = (P i1)−1 ◦ eβ1fi1 ◦ P i1 ◦ · · · ◦ (P ihn )−1 ◦ eβhnfihn ◦ P ihn ,

and Pn ∈ GrF by assumption (5).

In other words we proved that if F is a bracket generating family of
vector fields then GrSF is dense in the connected component of the identity
of DiffRd endowed with the standard C∞-topology.

3 Get the jet

In this section, given a bracket generating family of vector fields F , we find
a diffeomorphism in the group GrSF whose N -th jet is exactly the N -th jet
of a given diffeomorphism on Rd. The main tool used is the classical Implicit
Function Theorem.

Proposition 3. Let F be a bracket generating family of vector fields on Rd

and N > 0 a positive integer.
For any diffeomorphism Φ : Rd → Rd sufficiently close to the identity there
exists P ∈ GrSF such that

JN0 (P ) = JN0 (Φ).

Proof. Consider a frame of vector fields linearly independent in 0 ∈ Rd,
X1, . . . , Xd. Let X be the space of polynomials of degree less or equal than
N in d variables and let Y be the jet-group of N -th order jets at 0 of smooth
orientation preserving diffeomorphisms, i.e. Y = JN0 (Diff0(Rd)). Note that
dim X <∞ and dim Y <∞.
Consider the map

F : Xd −→ Y
(u1, . . . , ud) 7−→ JN0 (eu1X1 ◦ · · · ◦ eudXd) (7)

We want to prove that Implicit Function Theorem applies. Let us compute
the differential of F at 0 ∈ Xd

D0F (a1, . . . , ad) =
∂F

∂u1

∣∣∣
u1=...=ud=0

a1 + · · ·+ ∂F

∂ud

∣∣∣
u1=...=ud=0

ad

= a1J
N
0 (X1) + · · ·+ adJ

N
0 (Xd).
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We claim that D0F : Xd → TIdY is invertible. In fact

TIdY = TIdJ
N
0 (Diff0(Rd)) = JN0 (TId Diff0(Rd)) = JN0 (Vec(Rd)) ,

so for every V ∈ JN0 (Vec(Rd)) there exist b1, . . . , bd such that

V = JN0 (b1X1 + · · ·+ bdXd)

= JN0 (b1)JN0 (X1) + . . .+ JN0 (bd)J
N
0 (Xd).

Every element V ∈ TIdY is image of d polynomials of degree less or equal
than N , ai = JN0 (bi). Therefore there exists O neighborhood of Id in Y
such that F is locally surjective on O. Namely, for every ψ ∈ O, there exist
(u1, . . . , ud) ∈ Xd such that F (u1, . . . , ud) = ψ.

If Φ is sufficiently close to the identity, then JN0 (Φ) ∈ O. Therefore there
exist polynomials v1, . . . , vd ∈ Xd such that

JN0 (ev1X1 ◦ · · · ◦ evdXd) = JN0 (Φ).

It remains to prove that P = ev1X1 ◦ · · · ◦ evdXd ∈ GrSF , but according to
Orbit Theorem, for i = 1, . . . , d, we have that Xi = P i

∗fi, where fi ∈ F and

P i ∈ GrF . Let P i = et
i
1f
i
1 ◦ eti2f i2 ◦ · · · ◦ etisif isi with f ij ∈ F . Therefore

P = ev1P
1
∗ f1 ◦ · · · ◦ evdP d∗ fd

= P 1 ◦ e(P 1)−1(v1)f1 ◦
(
P 1
)−1 ◦ · · · ◦ P d ◦ e(P d)

−1
(vd)fd ◦

(
P d
)−1

= et
1
1f

1
1 ◦ · · · ◦ et1s1f1

s1︸ ︷︷ ︸
P 1

◦e(P 1)−1(v1)f1 ◦ e−t1s1f1
s1 ◦ · · · ◦ e−t11f1

1︸ ︷︷ ︸
(P 1)−1

◦ · · ·

◦ etd1fd1 ◦ · · · ◦ et
d
sd
fdsd︸ ︷︷ ︸

P d

◦e(P d)
−1

(vd)fd ◦ e−t
d
sd
fdsd ◦ · · · ◦ e−td1fd1︸ ︷︷ ︸

(P d)
−1

= ew1g1 ◦ · · · ◦ ew`g` , (8)

with g1, . . . , g` ∈ F and ` = d + 2(s1 + · · · + sd). Therefore P ∈ GrSF and
the proposition follows.

Now consider any diffeomorphism Φ ∈ Diff0(Rd). By Proposition 2 there
exists a sequence {Pn}n ⊂ GrSF that tends to Φ. So for n sufficiently large
last Proposition applies to P−1

n ◦ Φ and we have the following result.

Corollary 4. Let F ⊆ Vec Rd be a bracket generating family of vector fields
and N > 0 a positive integer. For every Φ ∈ Diff0(Rd) there exists P ∈ GrSF
such that

JN0 (P ) = JN0 (Φ).
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4 Geometric statement of the main result

The purpose of this section is to link the results of the last two sections in
order to find an element in the group GrSF with the same N -th jet of a given
diffeomorphism and also close to it in the C∞-topology.

Proposition 5. Let F ⊆ VecRd be a bracket generating family of vector
fields. Let N and k be positive integers, ε > 0, and B ball of Rd. For any
Φ ∈ Diff0(Rd), there exists P ∈ GrSF such that

JN0 (P ) = JN0 (Φ) and ‖P − Φ‖Ck(B) < ε.

Proof. We can suppose that JN0 (Φ) = Id. Indeed, by Corollary 4, there exists
Q ∈ GrSF such that JN0 (Q) = JN0 (Φ). Then we consider, instead of Φ, the
diffeomorphism Ψ = Φ ◦Q−1 which has trivial jet.

The idea of the proof is the same of Proposition 2. Since JN0 (Φ) = Id,
then Φ can be written as

Φ(x) = x+ g(x),

with JN0 (g) = 0. Consider the one parameter family of diffeomorphisms with
trivial jet

Φt(x) = x+ tg(x) .

This is a path in Diff(Rd) from Φ0 = Id to Φ1 = Φ. Let Vt a nonautonomous
vector field such that

Φt =
−→
exp

∫ t

0

Vτ dτ.

Let X1, . . . , Xd be a frame of vector fields linearly independent at 0 such that
Xi = AdP ifi, P

i ∈ GrF , fi ∈ F . Therefore

Vt =
d∑
i=1

ai(t, ·)Xi,

with ai(t, ·) ∈ C∞(Rd) for any t ∈ [0, 1]. Note that, since JN0 (Φt) = Id and
the vector fields Xi are linearly independent, then JN0 (ai(t, ·)) = 0 for any
t ∈ [0, 1].

Now let A be the closed subspace of C∞(Rd) of smooth functions α such
that JN0 (α) = 0. By Proposition 1 there exists a piecewise constant in t
sequence Zn

t ∈ {αXi |α ∈ A, i = 1 . . . , d} such that

−→
exp

∫ t

0

Zn
τ dτ → Φt, as n→∞,
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in the C∞-topology and uniformly with respect to t ∈ [0, 1].

So, if Pn =
−→
exp

∫ 1

0
Zn
τ dτ , then

Pn → Φ, as n→∞,

in the standard topology. Now, for any n, we have that Pn ∈ GrSF for
the chain of equalities (6). Moreover Pn has trivial jet. Indeed, since the
sequence Zn

t is piecewise constant, then there exist intervals I1, . . . , Ih such
that

Zn
t = αiXji for any t ∈ Ii,

with ji ∈ {1, . . . , d}. So

JN0 (Pn) = JN0

(
−→
exp

∫ 1

0

Zn
t dt

)
= JN0

(
e|I1|α1Xj1

)
◦ · · · ◦ JN0

(
e|Ih|αhXjh

)
= e|I1|J

N
0 (α1)JN0 (Xj1 ) ◦ · · · ◦ e|Ih|JN0 (αh)JN0 (Xjh )

= Id ,

and the result is proved.

5 Main Result

In this last section we prove the main result using Proposition 5 and a fixed
point argument. We start giving an equivalent formulation of Proposition 5
in terms of flows of the system:

q̇ =
m∑
i=1

ui(t, q)fi(q), q ∈ Rd . (9)

Suppose that F = {f1, . . . , fm} is a bracket generating family of vector
field on Rd. By Proposition 3 there exist smooth functions a1, . . . , ak such
that

JN0 (Φ) = JN0
(
ea1fi1 ◦ · · · ◦ eakfik

)
, (10)

with ij ∈ {1, . . . ,m}. Now there exist m functions u1(t, q), . . . , um(t, q) piece-
wise constant in t such that

JN0 (Φ) = JN0

(
−→
exp

∫ 1

0

m∑
i=1

ui(t, ·)fi dt

)
. (11)
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We then proved the following Lemma.

Lemma 6. Let {f1, f2, . . . , fm} be a bracket generating family of vector fields
on Rd. Consider the control system

q̇ =
m∑
i=1

ui(t, q)fi(q) , q ∈ Rd , (12)

with controls ui piecewise constant with respect to t ∈ [0, 1] and smooth with
respect to q ∈ Rd, for every i = 1, . . . ,m.
Let N and k be positive integers, ε > 0, and B ball in Rd. For any Φ ∈
Diff0(Rd), there exist controls u1(t, q), . . . , um(t, q) such that, if P is the flow
at time 1 of system (12), then

JN0 (P ) = JN0 (Φ) and ‖P − Φ‖Ck(B) < ε.

What remains is to prove last result adding a drift f0 to system (12).
Moreover we want to have a certain regularity for the controls. Both these
results can be proved with a fixed point argument. Indeed, let U the space
of m-uples of controls u(t, q) piecewise constant in t and smooth with respect
to q. Consider the map

F̃ : U −→ JN0 (Diff0(Rd))

(u1, . . . , um) 7−→ JN0

(
−→
exp

∫ 1

0

∑m
i=1 ui(t, ·)Xi dt

)
.

(13)

This map is continuous and, by last Lemma, it is also surjective. More-
over F̃ has a continuous right inverse. Indeed there is a smooth correspon-
dence between the time-varying feedback controls u1, . . . , um and the func-
tions a1, . . . , ak in (10). By Implicit Function Theorem applied to map F
in (7), we have that the right inverse of F is continuous and so is the right
inverse of F̃ .
In the next Lemma we prove, using a fixed point argument, that every small
perturbation of a continuous surjective map with continuous right inverse
and with finite dimensional target space is surjective too.

Lemma 7. Let X be a topological space, ε > 0, and F : X → Rn a continuous
and surjective with continuous right inverse. If G : X → Rn is continuous
and such that supx∈K |F (x)−G(x)| < ε for any K ⊆ X compact, then G is
surjective.
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Proof. Let F−1 be the right inverse of F and define, for every ȳ in Rn, the map
χȳ(y) = y −G ◦ F−1(y) + ȳ. Let δ = ε+ ‖ȳ‖, then for every y ∈ Bδ = Bδ(0)
we have

‖χȳ(y)‖ ≤ ‖y −G ◦ F−1(y)‖+ ‖ȳ‖
≤ sup

y∈Bδ
‖y −G ◦ F−1(y)‖+ ‖ȳ‖

≤ sup
x∈F−1(Bδ)

‖F (x)−G(x)‖+ ‖ȳ‖

< ε+ ‖ȳ‖
= δ.

So χȳ(Bδ) ⊆ Bδ and, since the map χȳ is continuous, by Brouwer Fixed Point
Theorem, there exists ỹ ∈ Bδ such that

χȳ(ỹ) = ỹ,

namely
G ◦ F−1(ỹ) = ȳ.

We proved that, for every y ∈ Rn, there exists, x ∈ X such that y = G(x).

The Main Result can now be proved.

Theorem 8. Let {f1, f2, . . . , fm} be a bracket generating family of vector
fields on Rd. Consider the control system

q̇ = f0(q) +
m∑
i=1

ui(t, q)fi(q), q ∈ Rd, (14)

with controls ui such that:

(i) ui is polynomial with respect to q ∈ Rd;

(ii) ui is a trigonometric polynomial with respect to t ∈ [0, 1];

for every i = 1, . . . ,m.
Fix positive integers N and k, ε > 0, and B ball of Rd. For any Φ ∈
Diff0(Rd), there exist controls u1(t, q), . . . , um(t, q) such that, if P is the flow
at time 1 of system (14), then

JN0 (P ) = JN0 (Φ) and ‖P − Φ‖Ck(B) < ε.
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Proof. Proof splits into three steps. First prove that it is sufficient to consider
controls that are polynomials with respect to q ∈ Rd, then we add the drift to
the system, and finally we find controls that are trigonometric polynomials
with respect to t by smoothing the time dependence of the piecewise constant
controls. Let us start with the first step and note that, as a consequence of
the density of polynomials in the space of smooth functions on a bounded
set and bu Lemma 7, we can assume that ui(t, q) is a polynomial in q for
every t ∈ [0, 1] and for every i = 1, . . . ,m.

Now set Y = JN0 (Diff0(Rd)) and consider the family of continuous maps

F% : U −→ Y

(u1, . . . , um) 7−→ JN0

(
−→
exp

∫ %
0
%f0 +

∑m
i=1 ui(t, ·)Xi dt

)
.

We claim that, if there exists % > 0 such that F% is surjective then so is F%
for % = 1. Indeed

F%(u1(t, ·), . . . , um(t, ·)) = F1

(
u1(t/%, ·)

%
, . . . ,

um(t/%, ·)
%

)
.

Similarly the map F̃%(u1, . . . , um) = JN0

(
−→
exp

∫ %
0

∑m
i=1 ui(t, ·)Xi dt

)
is sur-

jective for every % > 0 since it is equal to the map F̃ defined in (13) up
to rescalings of the time dependence of the controls ui. We have, for small
% > 0, that F% is a small perturbation of F̃%. So Lemma 7 applies and F1 is
surjective.

Finally, for any control u(t, q) piecewise constant in t and polynomial in
q, we can write

u(t, q) =
N∑
|α|=0

aα(t)qα,

with α multi-index and aα(t) piecewise constant. For every α, the function
aα admits a Fourier expansion of the form

aα(t) =
∞∑
j=0

ηjα cos(2πjt) + ξjα sin(2πjt).

Consider the trigonometric polynomial

anα(t) =
n∑
j=0

ηjα cos(2πjt) + ξjα sin(2πjt),
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then anα(t)→ aα(t) as n→∞ in L1[0, 1]. So let

un(t, q) =
N∑
|α|=0

anα(t)qα,

then
un(t, q)→ u(t, q), as n→∞, (15)

and the convergence is uniform with all derivatives on compact sets of Rd

and in L1[0, 1] with respect to t.
Let Gn be the family of continuous maps

Gn : U −→ Y

(u1, . . . , um) 7−→ JN0

(
−→
exp

∫ 1

0
f0 +

∑m
i=1 u

n
i (t, ·)Xi dt

)
.

By the convergence in (15), Gn → F1 as n→∞ for every (u1, . . . , um) ∈ U,
then there exists n0 integer for which Lemma 7 applies. Therefore the map
Gn0 is surjective and Theorem follows.

Remark 1. Clearly the statement of Theorem 8 holds also if we consider the
jet at a point q ∈ Rd. It is also clear that it is possible to fix a finite number of
points in Rd, say q1, . . . , q`, and find an admissible diffeomorphism, arbitrary
close to a given one, that realize its N -th jet at all the points q1, . . . , q` at
the same time.

6 Appendix

Here we prove Proposition 1. The proof is based on the following well-known
fact (see, for instance, [1, Lemma 8.2]).

Lemma 9. Let Zt and Zn
t for n = 1, 2, . . . and t ∈ [0, 1] be nonautonomous

vector fields on M . If∫ t

0

Zn
τ dτ →

∫ t

0

Zτ dτ, as n→∞,

in the standard C∞ topology and uniformly with respect to t ∈ [0, 1], then

−→
exp

∫ t

0

Zn
τ dτ →

−→
exp

∫ t

0

Zτ dτ, as n→∞,

in the same topology.
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Proof of Proposition 1. First, note that we can suppose, without loss of gen-
erality, that ai(t, ·) is piecewise constant in t for every i = 1, . . . , k. Indeed,
for any i = 1, . . . , k, the sequence

ani (t, q) = n
n∑
j=1

∫ j
n

j−1
n

ai(τ, q) dτ χ
n
j (t), (16)

where χnj (t) is the characteristic function of the interval [ j−1
n
, j
n
], is such that∫ t

0

k∑
i=1

ani (τ, ·)Xi dτ →
∫ t

0

Vτ dτ, as n→∞,

uniformly with respect to t and in the C∞-topology. Therefore Lemma 9
allows us to suppose that ai(t, ·) is piecewise constant in t for every i.

Let ` be a positive integer such that Vt is constant on [ j−1
`
, j
`
] for every

j = 1, . . . , `. We can write

ai(t, q) =
∑̀
j=1

aji (q)χ
`
j(t) , (17)

with aji (q) ≥ 0 for every q ∈ Rd. Let

αj =
k∑
i=1

aji , (18)

and let {εn} a sequence of nonnegative smooth functions of Rd such that
εn(0) = 0 for every n and εn → 0 as n → ∞ in the C∞-topology. Then
αjn = αj + εn is strictly positive on Rd \ {0} for every j and n.
Now, for every positive integer n and j = 1, . . . , `, let bj,in = aji/α

j
n and

consider the family of intervals:

Aj,in =
n−1⋃
m=0

[
j − 1

`
+
m

n`
+
bj,1n + · · ·+ bj,i−1

n

n`
,
j − 1

`
+
m

n`
+
bj,1n + · · ·+ bj,in

n`

)
,

for i = 2, . . . , k, and

Aj,1n =
n−1⋃
m=0

[
j − 1

`
+
m

n`
,
j − 1

`
+
m

n`
+
bj,1n
n`

)
.
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The sequence of vector fields

Zn
t = αjnXi, if t ∈ Aj,in , (19)

is such that ∫ t

0

Zn
τ dτ →

∫ t

0

Vτ dτ, as n→∞.

In the standard topology and uniformly with respect to t ∈ [0, 1]. The
statement then follows from Lemma 9.

References

[1] A. A. Agrachev, Yu. L. Sachkov, Control theory from the geometric view-
point. Springer-Verlag, Berlin, 2004.

[2] R. W. Brockett, Asymptotic stability and feedback stabilization. In: Dif-
ferential Geometric Control Theory (R. W. Brockett, R. S. Millman,
H. J. Sussmann, eds.), Birkhaäuser, Basel, 1983.
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