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Abstract

Given a compact manifold M , we prove that any bracket generating family of
vector fields on M , which is invariant under multiplication by smooth functions,
generates the connected component of the identity of the group of diffeomor-
phisms of M .

Résumé

Soit M une variété compacte, nous montrons que toute famille de champs de
vecteurs satisfaisant la condition du rang et étant invariante par multiplication
par fonctions lisses engendre la composante connexe de l’identité du groupe
DiffM .
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1. Introduction

In this paper we give a simple sufficient condition for a family of flows on a
compact smooth manifold M to generate the group Diff0(M) of all diffeomor-
phisms of M that are isotopic to the identity.

If all flows are available then the result follows from the simplicity of the
group Diff0(M) (see [8]). Indeed, flows are just one-parametric subgroups of
Diff0(M) and all one-parametric subgroups generate a normal subgroup. In
other words, any isotopic to the identity diffeomorphism of M can be presented
as composition of exponentials of smooth vector fields.

In this paper we prove that a stronger result holds for a proper subset of the
space of smooth vector fields on M . Our main result is as follows.

Theorem 1.1. Let F ⊂ VecM be a family of smooth vector fields and let
GrF = {et1f1 ◦ · · · ◦ etkfk : ti ∈ R, fi ∈ F , k ∈ N}.
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If GrF acts transitively on M then there exists a neighborhood O of the identity
in Diff0(M) and a positive integer m such that every P ∈ O can be presented
in the form

P = ea1f1 ◦ · · · ◦ eamfm ,

for some f1, . . . , fm ∈ F and a1, . . . , am ∈ C∞(M).

In particular, if F is a bracket generating family of vector fields then any
diffeomorphism in Diff0(M) can be presented as composition of exponentials of
vector fields in F rescaled by smooth functions. In fact, a stronger result is valid.
The theorem states that every diffeomorphism sufficiently close to the identity
can be presented as the composition of m exponentials, where the number m
depends only on F .

The structure of the paper is the following. In Section 2 we fix the notation
used throughout the paper. Then we make some remark about tools used in
the sequel. In Section 3 we state some simple corollaries of the main result and
explain its meaning for geometric control theory. Then we start the proof of
Theorem 1.1 showing, in Section 4, an auxiliary result concerning local diffeo-
morphisms in Rn. Namely, given n vector fields over Rn, X1, . . . , Xn, linearly
independent at the origin, we find a closed neighborhood V of the origin in Rn
such that the image of the map

φ : (a1, . . . , an) 7→ ea1X1 ◦ · · · ◦ eanXn
∣∣
V

from C∞0 (Rn)n to C∞0 (V )n has nonempty interior. In Section 5 we show how
to reduce the proof of Theorem 1.1 to the mentioned auxiliary fact using a
geometric idea that goes back to the Orbit Theorem of Sussmann [7].

2. Preliminaries

Let M be a smooth n-dimensional compact connected manifold. Throughout
the paper smooth means C∞.
We denote by VecM the Lie algebra of smooth vector fields on M and by Diff0M
the connected component of the identity of the group of diffeomorphisms of M .
If V is a neighborhood of the origin in Rn we set C∞0 (V ) = {a ∈ C∞(V ) :
a(0) = 0}. Similarly, if U is an open subset of M then C∞q (U,M) is the Fréchet
manifold of smooth maps F : U →M such that F (q) = q. All the spaces above
are endowed with the standard C∞ topology.

Given an autonomous vector field f ∈ VecM we denote by t 7→ etf , with
t ∈ R, the flow on M generated by f , which is a one-parametric subgroup of
Diff0M .
If fτ is a nonautonomous vector field, using “chronological” notation (see [1]), we
denote by

−→
exp

∫ t
0
fτ dτ the “nonautonomous flow” at time t of the time-varying

vector field fτ .
Given a family of vector fields F ⊂ VecM we associate to F the subgroup

of Diff0(M)

GrF = {et1f1 ◦ · · · ◦ etkfk : ti ∈ R, fi ∈ F , k ∈ N}.
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LieF is the Lie subalgebra of VecM generated by F and the algebra of vector
fields in LieF evaluated at q ∈M is LieqF = {V (q) : V ∈ LieF}.

Definition 1. A family F ∈ VecM is called bracket generating, or completely
nonholonomic, if

LieqF = TqM for every q ∈M .

A classical result in Control Theory is the Rashevsky–Chow theorem ([6],
[2]) that gives a sufficient condition for controllability.

Theorem 2.1 (Rashevsky–Chow). Let M be a compact connected manifold. If
F is bracket generating then GrF acts transitively on M .

Another classical result, due to Lobry [4], claims that Gr{f1, f2} acts tran-
sitively on M for a generic pair of smooth vector fields (f1, f2). Namely, the set
of pairs of vector field (f1, f2) such that Gr{f1, f2} acts transitively on M is an
open dense (in the C∞ topology) subset of the product space VecM ×VecM .

3. Corollaries of the main result

A direct consequence of Theorem 1.1 is the following.

Corollary 3.1. Let F ⊂ VecM , if GrF acts transitively on M , then

Gr {af : a ∈ C∞(M), f ∈ F} = Diff0M.

Last corollary shows the relation between the Rashevsky–Chow Theorem
and Theorem 1.1. Indeed, if F is a bracket generating family of vector fields,
then, by Rashevsky–Chow Theorem, for every pair of points q0, q1 ∈ M there
exist t1, . . . , tk ∈ R and f1, . . . , fk ∈ F such that

q0 = q1 ◦ et1f1 ◦ · · · ◦ etkfk ,

and, by Corollary 3.1, for every diffeomorphism P ∈ Diff0(M) there exist
a1, . . . , ak ∈ C∞(M) and f1, . . . , fk ∈ F such that

P = ea1f1 ◦ · · · ◦ eakfk .

In other words, we have that controllability of a system of vector fields on the
manifold implies a certain “controllability” on the group of diffeomorphisms.
Namely, if it is possible to join every two points of the manifold M by exponen-
tials of vector field in F then we can realize every diffeomorphism as composition
of exponentials of vector fields in F rescaled by suitable smooth functions.

Let us reformulate Corollary 3.1 in terms of control systems. Consider the
control system on M

q̇ =
k∑
i=1

ui(t, q)fi(q), q ∈M, (1)
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where {f1, . . . , fk} is a bracket generating family of vector fields and u1, . . . , uk
are time varying feedback controls, that is

ui : [0, 1]×M → R,

such that ui(t, q) is piecewise constant in t for every q and smooth with respect
to q for every t. Then Corollary 3.1 states that for every P ∈ Diff0(M) there
exist time-varying feedback controls u1, . . . , uk, such that q(1) = P (q(0)) for
any solution q(·) of system (1); in other words,

P =
−→
exp

∫ 1

0

k∑
i=1

ui(t, ·)fi dt.

Next corollary is stated from a geometric viewpoint, in terms of completely
nonholonomic vector ditributions.

Corollary 3.2. Let ∆ ⊂ TM be a completely nonholonomic vector distribution.
Then every diffeomorphism of M that is isotopic to the identity can be written
as ef1 ◦ · · · ◦ efk , where f1, . . . , fk are sections of ∆.

4. An auxiliary result

Proposition 4.1. Let X1, . . . , Xn ∈ Vec Rn be such that

span{X1(0), . . . , Xn(0)} = Rn .

Then there exist a compact neighborhood V of the origin in Rn and a open subset
V of C∞0 (V )n such that every F ∈ V can be written as

F = ea1X1 ◦ · · · ◦ eanXn
∣∣
V
,

for some a1, . . . , an ∈ C∞0 (Rn).

In order to prove this result we need the following Lemma.

Lemma 4.2. Let X1, . . . , Xn ∈ Vec Rn be such that

span{X1(0), . . . , Xn(0)} = Rn ,

and let U0 be a neighborhood of the identity in C∞0 (Rn)n. Then, there exist
a neighborhood V of the origin in Rn and a neighborhood U of the identity in
C∞0 (V )n such that for every F ∈ U there exist ϕ1, . . . , ϕn ∈ U0 such that

F = ϕ1 ◦ · · · ◦ ϕn
∣∣
V
,

where ϕk preserves the 1-foliation generated by the trajectories of the equation
q̇ = Xk(q) for k = 1, . . . , n.
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Proof. Since X1, . . . , Xn are linearly independent at 0 then there exists a neigh-
borhood of the origin V ⊂ Rn such that

span{X1(q), . . . , Xn(q)} = Rn , for every q ∈ V̄ .

Now, there exists a ball B ⊂ Rn containing 0 ∈ Rn such that, for every q ∈ V ,
the map

(t1, . . . , tn) 7→ q ◦ et1X1 ◦ · · · ◦ etnXn , (2)

is a local diffeomorphism from B to a neighborhood of q. Let

Uε = {F ∈ C∞0 (V )n : ‖F − I‖C1 < ε} ,

where I denotes to identical map and ε is to be chosen later. If ε is sufficiently
small, then, for every F ∈ Uε, F (q) belongs to the image of map (2). Therefore,
given every F ∈ Uε, it is possible to associate with every q ∈ V a n-uple of real
numbers (t1(q), . . . , tn(q)) ∈ B such that

F (q) = q ◦ et1(q)X1 ◦ · · · ◦ etn(q)Xn .

We claim that there exists η(ε) such that η(ε)→ 0 as ε→ 0 and ‖ti‖C1 < η(ε)
for every i = 1, . . . , n and for F ∈ Uε. Indeed, ‖F − I‖C0 < ε implies that
‖ti‖C0 < cε, for i = 1, . . . , n and for some constant c. Moreover, if q ∈ V , for
every ξ ∈ Rn we have

DqFξ =
(
et1(q)X1 ◦ · · · ◦ etn(q)Xn

)
∗
ξ+

n∑
i=1

et1(q)X1 ◦· · ·◦ dti
dq
·ξXi ◦· · ·◦etn(q)Xn .

Therefore ‖DqFξ − ξ‖C0 < ε implies ‖ti‖C1 < η(ε), where η → 0 as ε→ 0.
Now consider, for every k = 1, . . . , n, the map

Φk(q) = q ◦ et1(q)X1 ◦ · · · ◦ etk(q)Xk .

Note that Φ0 = I and Φn = F . For every k, Φk is a smooth diffeomorphism
being smooth and invertible by the Implicit Function Theorem. Indeed, for
every q ∈ V the differential of Φk at q is

DqΦkξ =
(
et1(q)X1 ◦ · · · ◦ etk(q)Xk

)
∗
ξ+

k∑
i=1

et1(q)X1 ◦ · · · ◦ dti
dq
ξXi ◦ · · · ◦etk(q)Xk .

Denote by T (ξ) = DqΦkξ − ξ. If ε is sufficiently small we have ‖T‖0 < 1.
Therefore DqΦk is of the form I + T , with T contraction, and thus invertible.

Finally call U = Uε and define for every k = 1, . . . , n, the smooth maps

ϕk(q) = q ◦ etk(Φ−1
k−1(q))Xk ,

then the statement follows.
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Thanks to last Lemma our problem is to find an appropriate exponential
representation of every of the functions ϕk.

The main idea of the proof of Proposition 4.1 lies in the fact that a linear
diffeomorphism is the exponential of a linear vector field. So, our goal is to
find a change of coordinates that linearizes ϕk along trajectories of the equation
q̇ = Xk(q).

Proof of Proposition 4.1. Let V , U , and U0 as in Lemma 4.2. We denote by Xk
the set of all ϕ ∈ U0 such that ϕ preserves 1-foliation generated by the equation
q̇ = Xk(q). Every F ∈ U can be written as F = ϕ1 ◦ · · · ◦ ϕn

∣∣
V

. Now consider
the open subset of C∞0 (V )n

V ⊆ {F ∈ U : F = ϕ1 ◦ · · · ◦ ϕn
∣∣
V
, ϕk ∈ Xk,

(Dqϕk)Xk(q) 6= Xk(q), q ∈ ϕ−1
k (0), k = 1, . . . , n} .

Since every F ∈ U is close to the identity, then so is ϕk for every k. Moreover,
ϕk(0) = 0 and Xk transversal to the hypersurface ϕ−1

k (0) at any point. There-
fore we may rectify the field Xk in a neighborhood of the origin in such a way
that, in new coordinates, ϕk(x1, . . . , xk−1, 0, xk+1, . . . , xn) = 0 and Xk = ∂

∂xk
.

Set x := xk and y := (x1, . . . , xk−1, xk+1, . . . , xn).
Since the following argument does not depend on k = 1, . . . , n the subscript k
is omitted.

Let α(y) = log( ∂
∂x ϕ(0, y)). Note that by the definition of V we have α(y) 6= 0

for every y. In what follows we treat y as a (n− 1)-dimensional parameter and,
for the sake of readability, we omit it. We will show, step by step, that the
argument holds for every value of the parameter y and all maps and vector
fields under consideration depend smoothly on y. Consider the homotopy from
ϕ to the identity

ϕt(x) = eα(t−1)ϕ(tx)/t, t ∈ [0, 1].

There exists a nonautonomous vector field a(t, x) ∂
∂x such that

ϕt =
−→
exp

∫ t

0

a(τ, ·) ∂
∂x

dτ.

It is easy to see that ∂a
∂x (t, 0) = α. Let a(t, x) = αx + b(t, x)x with b(t, 0) = 0.

We want to find a time-dependent change of coordinates ψ(t, x) that linearizes
the flow generated by a(t, x). Namely if x(t) is a solution of ẋ = a(t, x) and
z(t) = ψ(t, x(t)) then we want ż(t) = αz(t). We can suppose ψ(t, 0) = 0 and
write ψ(t, x) = xu(t, x), where u(0, x) = 1. On one hand we have

d

dt
z =

d

dt
(xu(t, x))

= ẋu(t, x) + xẋ
∂u

∂x
(t, x) + x

∂u

∂t
(t, x)

= a(t, x)u(t, x) + xa(t, x)
∂u

∂x
(t, x) + x

∂u

∂t
(t, x) ,
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and, on the other hand,

d

dt
z = αz

= αxu(t, x) .

Therefore, we can find u by solving

x

(
a(t, x)

∂u

∂x
(t, x) +

∂u

∂t
(t, x) + b(t, x)u(t, x)

)
= 0.

The first-order linear PDE

a(t, x)
∂u

∂x
(t, x) +

∂u

∂t
(t, x) + b(t, x)u(t, x) = 0 (3)

can be solved by the method of characteristics. The characteristic lines of (3)
are of the form ξt = (t, ϕt(x0)) with initial data (0, x0). Note that these char-
acteristic lines depend smoothly on y and are well defined for every y. Along
ξt, equation (3) becomes the linear (parametric with parameter y) ODE

u̇ = −b̃(t)u ,

where b̃(t) = b(ξt). Now we can define u(ξt) = e−
R t
0 b̃(τ)dτ . This formula, being

applied to all characteristics, defines a smooth solution to equation (3). In
particular u(t, 0) = 1 since b(t, 0) = 0.

We have constructed a time-dependent change of coordinates ψ(t, x) such
that

ψ(t, ·)◦ −→exp
∫ t

0

a(τ, ·) ∂
∂x

dτ ◦ ψ(t, ·)−1 = etαx
∂

∂x , for every t ∈ [0, 1] .

Recall that
−→
exp

∫ 1

0
a(τ, ·) ∂

∂x dτ = ϕ. Therefore

ϕ = ψ(1, ·)−1 ◦ eαx ∂
∂x ◦ ψ(1, ·)

= eψ(1,·)∗αx ∂
∂x .

Hence, we provide the desired exponential representation for every of the func-
tions ϕ1, . . . , ϕn from Lemma 4.2 and the Proposition follows.

5. Proof of Theorem 1.1

Set
P = Gr {af : a ∈ C∞(M), f ∈ F} ,

and
Pq = {P ∈ P : P (q) = q}, q ∈M.
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Lemma 5.1. Any q ∈M possesses a neighborhood Uq ⊂M such that the set{
P
∣∣
Uq

: P ∈ Pq
}

(4)

has nonempty interior in C∞q (Uq,M).

Proof. According to the Orbit Theorem of Sussmann [7] (see also the textbook
[1]), the transitivity of the action of GrF on M implies that

TqM = span{P∗f(q) : P ∈ GrF , f ∈ F}.

Take Xi = Pi∗fi for i = 1, . . . , n with Pi ∈ GrF and fi ∈ F in such a way
that X1(q), . . . , Xn(q) form a basis of TqM . Then, for all smooth functions
a1, . . . , an, vanishing at q, the diffeomorphism

ea1X1 ◦ · · · ◦ eanXn = P1 ◦ e(a1◦P1)f1 ◦ P−1
1 ◦ · · · ◦ Pn ◦ e(an◦Pn)fn ◦ P−1

n ,

belongs to the group Pq. The desired result now follows from Proposition 4.1.

Corollary 5.2. The interior of set (4) contains the identical map.

Proof. Let A be an open subset of C∞q (Uq,M) that is contained in (4) and take
P0

∣∣
Uq
∈ A. Then P−1

0 ◦A is a neighborhood of the identity contained in (4).

Definition 2. Given P ∈ DiffM , we set suppP = {x ∈M : P (x) 6= x}.

Lemma 5.3. Let O be a neighborhood of the identity in DiffM . Then for any
q ∈M and any neighborhood Uq ⊂M of q, we have

q ∈ int {P (q) : P ∈ O ∩ P, suppP ⊂ Uq} .

Proof. Consider n vector fields X1, . . . , Xn as in the proof of Lemma 5.1 and
let b ∈ C∞(M) be a cut-off function such that supp b ⊂ Uq and q ∈ int b−1(1).
Then the diffeomorphism

Q(s1, . . . , sn) = es1bX1 ◦ · · · ◦ esnbXn ,

belongs to O∩P for any n-uple of real numbers (s1, . . . , sn) sufficiently close to
0. Moreover suppQ(s1, . . . , sn) ⊂ Uq. On the other hand, the map

(s1, . . . , sn) 7→ Q(s1, . . . , sn)(q) ,

is a local diffeomorphism in a neighborhood of 0.

Next Lemma is due to Palis and Smale (see [5, Lemma 3.1]).

Lemma 5.4. Let
⋃
j

Uj = M be a covering of M by open subsets and let O be a

neighborhood of identity in DiffM . Then the group Diff0M is generated by the
subset {P ∈ O : ∃ j such that suppP ⊂ Uj}.
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Proof. The group Diff0(M) is an path–connected topological group. Therefore
it is generated by any neighborhood of the identity O.

Since M is compact we can assume that the covering {Uj} is finite, namely
U1∪· · ·∪Uk = M . Now let P ∈ O and consider the isotopy H : M × [0, 1]→M
such that H(0, ·) = I and H(1, ·) = P . Consider a partition of unity

{λj : M → R | suppλj ⊂ Uj}

subordinated to the covering {Uj}kj=1. Let suppλj = Vj and let µj : M →
M × [0, 1] the map µj = (I, λ1 + · · · + λj). Consider Qj = H ◦ µj , then
Qk = P and Qj = Qj−1 on M \ Vj . Finally, setting Pj = Qj ◦ Q−1

j−1, we have
P = Pk ◦ · · · ◦ P1 and suppPj ⊂ Uj . Lemma is proved.

Proof of the Theorem. According to Lemma 5.4, it is sufficient to prove that,
for every q ∈ M , there exist a neighborhood Uq ⊂ M and a neighborhood of
the identity O ⊂ DiffM such that any diffeomorphism P ∈ O, whose support
is contained in Uq, belongs to P. Moreover, Lemma 5.3 allows to assume that
P (q) = q. Finally, Corollary 5.2 completes the job.
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