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Abstract. We study Monge’s optimal transportation problem,
where the cost is given by optimal control cost. We prove the ex-
istence and uniqueness of an optimal map under certain regularity
conditions on the Lagrangian, absolute continuity of the measures
with respect to Lebesgue, and most importantly the absence of
sharp abnormal minimizers. In particular, this result is applicable
in the case of subriemannian manifolds with a 2-generating distri-
bution and cost given by d2, where d is the subriemannian distance.
Also, we discuss some properties of the optimal plan when abnor-
mal minimizers are present. Finally, we consider some examples of
displacement interpolation in the case of Grushin plane.

1. Introduction

Let (X , µ), (Y , ν) be probability spaces and let c : X × Y → R ∪
{+∞} be a fixed measurable function. The Monge’s optimal trans-
portation problem is the minimization of the following functional∫

X
c(x, φ(x)) dµ

over all the Borel maps φ : X → Y which pushes forward µ to ν:
φ∗µ = ν. Maps φ which achieve the infimum above are called optimal
maps. In this paper, we will only consider the case when X = Y = M
is a manifold.

In 1942, Kantorovich studied a relaxed version of the Monge’s prob-
lem in his famous paper [14]. However, a huge step toward solving the
original problem is not achieved until a decade ago by Brenier. In [8],
Brenier proved the existence and uniqueness of optimal map in the case
where M = Rn and the cost function c is given c(x, y) = |x−y|2. Later,
this is generalized, by McCann [17], to the case of a closed Riemannian
manifold M with the cost given by the square of the Riemannian dis-
tance c(x, y) = d2(x, y). Recently, Bernard and Buffoni [7] generalized
this further to the case where the cost c is the action associated to a
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Lagrangian function L : TM → R on a compact manifold M . More
precisely, the cost is given by

(1) c(x, y) = inf
x(0)=x,x(1)=y

∫ 1

0

L(x(t), ẋ(t))dt,

where the infimum is taken over all curves joining the points x and
y, and the Lagrangian L is fibrewise strictly convex with superlinear
growth.

In this paper, we consider costs similar to (1). However, instead of
minimizing among all curves, the infimum is taken over a subcollection
of curves, called admissible paths. These paths are given by a control
system and the corresponding cost function is called the optimal control
cost. Roughly speaking, a control system is a smooth fiber-preserving
map F of a locally trivial bundle P → M over the manifold M into
its tangent bundle TM . If the fibres of the bundle P → M are diffeo-
morphic to a set U , then the map F : P → TM can be written locally
as F : (x, u) 7→ F (x, u), where x is in the manifold M and u is in the
set U . We assume that U is a closed subset of a Euclidean space. Ad-
missible controls are measurable bounded maps from [0, 1] to U . And
admissible paths are Lipschitz curves which satisfy the equation

(2) ẋ(t) = F (x(t), u(t)),

where u(·) is an admissible control. Let L : M × U → R be a La-
grangian, then the corresponding cost c is given by

(3) inf
(x(·),u(·))

∫ 1

0

L(x(t), u(t)) dt,

where the infimum is taken over all admissible pairs (x(·), u(·)) : [0, 1] →
M × U such that x(0) = x, y(0) = y.

In the interesting cases, the dimension of U is essentially smaller than
that of M and, nevertheless, any two points of M can be connected by
an optimal admissible path. In other words, the control system works as
a nonholonomic constraint. The shortage of admissible velocities does
not allow us to recover an optimal path from its initial point and initial
velocity and the Euler–Lagrange description of the extremals does not
work well. On the other hand, Hamiltonian approach remains efficient
according to the Pontryagin maximum principle. Another problem is
the appearance of so called abnormal extremals (singularities of the
space of admissible paths) which we are obliged to fight with.

In sections 2 and 3, we will recall some basic notions in optimal
control theory and the theory of optimal mass transportation which
are necessary for this paper.
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In section 4, by using some standard argument in the theory of op-
timal mass transportation and the Pontryagin maximum principle in
optimal control theory, we show the existence and uniqueness of opti-
mal map under some regularity assumptions (Theorem 4.1). All these
conditions are mild except the Lipschitz continuity of the cost function.
However, this is well-known in all of the above cases mentioned. So,
the theorem generalizes the work in [8, 17, 7].

In section 5, we study the Lipschitz continuity of the cost function.
If abnormal minimizers are absent, then the cost is not only Lipschitz
but even semi-concave (see [9]). Unfortunately, abnormal minimizers
are unavoidable in many interesting problems and, in particular, in
all subriemannian problems. It happens, however, that not all abnor-
mal minimizers are dangerous. To keep the Lipschitz property of the
cost, (though not the semi-concavity) it is sufficient that the, so called,
sharp abnormal minimizers are absent. Sharp paths are essentially sin-
gularities of the space of admissible paths whose neighborhoods in the
second order approximations are contained in quadrics with a finite
Morse index. Geometric control theory provides simple effective con-
ditions of the sharpness (see, for instance, [4, 6]). These conditions
allow us to prove Lipschitz continuity for a large class of optimal con-
trol cost. Hence, proving the existence and uniqueness of optimal map
of the corresponding Monge’s problem (Theorem 6.3).

In section 6, we apply the above results to some subriemannian man-
ifolds, where the cost function is given by the square of the subrieman-
nian distance (See section 6 for the basic notions in subriemannian
geometry). In the case of a subriemannian manifold, all the mild reg-
ularity assumptions are satisfied. Using the result in [6] mentioned
above (Proposition 5.2), Lipschitz continuity of the cost can be eas-
ily proven in the case of a step 2 distribution (Corollary 6.2). Hence,
proving existence and uniqueness of optimal map (Theorem 6.3). This
generalizes the corresponding result by Ambrosio and Rigot [1] on the
Heisenberg group.

In section 7 and 8, we show some properties of the optimal plan when
abnormal minimizers are present. In section 7, we consider flows whose
trajectories are strictly abnormal minimizers. We show that these flows
cannot be an optimal plan for all “nice” initial measures if the cost is
continuous. On the contrary, in section 8, we show that these flows are
indeed optimal for an important class of problems with discontinuous
cost.

In section 9, we study two examples on Grushin plane for which the
results in section 3 and 4 apply.
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2. Elementary Optimal Control Theory

In this section, we recall some notions from optimal control theory.
See [4], [13] for detail. Let M be a smooth manifold and let U be a
closed subset in Rm which is called the control set. Let F : M × U →
TM be a Lipschitz continuous function such that Fu := F (·, u) : M →
TM are smooth vector fields for each point u in the control set U .
Assume that the function (x, u) 7→ ∂

∂x
F (x, u) is continuous. Curves

u(·) : [0, 1] → U in the control set U which are locally bounded and
measurable (i.e. u(·) ∈ L∞([0, 1], U)) are called admissible controls.

A control system is the following ordinary differential equations with
parameters varying over all admissible controls.

(4) ẋ(t) = F (x(t), u(t)).

The solutions x(t) to the above control system are called admissible
paths and (x(t), u(t)) are called admissible pairs.

By classical theory of ordinary differential equations, a unique solu-
tion to the system (4) exists locally for almost all time t. Moreover,
the resulting local flow is smooth in the space variable x and Lipschitz
in the time variable t. The control system is complete if the flows of
all control vector fields exist globally.

Let x0 and x1 be two points on the manifold M . Denote by Cx0

the set of all admissible pairs (x(·), u(·)) for which the corresponding
admissible paths x(·) start at the point x0. And denote by Cx1

x0
those

pairs in Cx0 whose admissible paths end at x1. A control system is
called controllable if the set Cx1

x0
is always nonempty for any pair of

points x0 and x1 on the manifold.
Let L : M × U → R be a smooth function, called Lagrangian, and

defined the cost function corresponding to this Lagrangian as follow:

(5) c(x0, x1) =

{
inf

(x(·),u(·))∈C
x1
x0

∫ 1

0
L(x(t), u(t)) dt if Cx1

x0
6= ∅,

+∞ otherwise.

The cost function defined above is said to be complete if given any
pairs of points (x0, x1), there exists an admissible pair which achieves
the infimum above and the corresponding admissible path starts from
x0 and ends at x1.

Remark 2.1. The infimum of the problem in (5) can be equivalently
characterized by taking infimum over all admissible controls u(·) such
that the corresponding admissible paths start at the point x1, end at
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the point x0 of the manifold and satisfy the following control system

ẋ(s) = −F (x(s), u(s)).

This point will become important for the later discussion.

Consider the following minimization problem, commonly known as
the Bolza problem:

Problem 2.2.

inf
(x(·),u(·))∈Cx0

∫ 1

0

L(x(s), u(s)) ds− f(x(1))

Next, we present an elementary version of the Pontryagin maximum
principle which we prove in the appendix for the convenience of readers.
Let π : T ∗M → M be the cotangent bundle projection. For each point
u in the control set U , define the corresponding Hamiltonian function
Hu : T ∗M → R by

Hu(px) = px(F (x, u)) + L(x, u).

If H : T ∗M → R is a function on the cotangent bundle, we denote its

Hamiltonian vector field by
−→
H .

Theorem 2.3. (Pontryagin Maximum Principle for Bolza Problem)
Let (x̃(·), ũ(·)) be an admissible pair which achieves the infimum

in Problem 2.2. Assume that the function f in Problem 2.2 is sub-
differentiable at the point x̃(1). Then, for each α in the sub-differential
d−fx̃(1) of f , there exists a Lipschitz path p̃ : [0, 1] → T ∗M which sat-
isfies the following for almost all time t in the interval [0, 1]:

(6)





π(p̃(t)) = x̃(t),
p̃(1) = −α,
˙̃p(t) =

−→
H ũ(t)(p̃(t)),

Hũ(t)(p̃(t)) = min
u∈U

Hu(p̃(t)).

Remark 2.4. Let ∆ ⊂ TM be a distribution on a n-dimensional mani-
fold M . That is, for each point x in the manifold M , it smoothly assigns
a vector subspace ∆x of the tangent space TxM . Assume that the dis-
tribution ∆ is trivializable, i.e. there exists a system of vector fields
X1, ..., Xk which span ∆ at every point: ∆x = span{X1(x), ..., Xk(x)}.
Consider the following control system:
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(7) ẋ(t) =
k∑

i=1

ui(t)Xi(x(t)),

with initial condition x(0) = x and final condition x(1) = y. Recall
that we denote by Cy

x the set of all admissible pair (x(·), u(·)) such that
the admissible path x(·) satisfies x(0) = x and x(1) = y. Let c be the
cost given by

(8) c(x, y) = inf
(x(·),u(·))∈Cy

x

∫ 1

0

k∑
i=1

u2
i dt.

If the number of vector fields k is equal to the dimension n of the
manifold M and the vector fields X1, ..., Xk are everywhere linearly
independent, then the distribution ∆ is the same as the tangent bun-
dle TM of M and the admissible paths of the control system (7) are
all the paths on M . It also defines a Riemannian metric on M by
declaring that the vector fields X1, ..., Xn are orthonormal everywhere.
The cost function c is the square of the Riemannian distance d: c = d2.
And the minimizers of this system correspond to the length minimizing
geodesics on M . However, this does not work for distributions which
are not trivializable.

To overcome this difficulty, we can modify the general definition of
control system in the following way. Let P be a locally trivial bundle on
M with bundle projection πP : P → M and let F : P → TM be fibre
preserving map. i.e. F (Px) ⊆ TxM . The control system corresponding
to the map F is given by

(9) ẋ(t) = F (v(t)).

The admissible pairs are locally bounded measurable paths v(·) : [0, 1] →
P in P such that its projection to the manifold M is a Lipschitz path:
x(·) = πP (v(·)) is Lipschitz. If we let P be the trivial bundle M × U ,
we get back the system (4). If a Lagrangian L : P → R is fixed, then
the corresponding cost function c is defined by

(10) c(x, y) = inf
v(·)∈Cy

x

∫ 1

0

L(v(t))dt,

where the infimum is taken over all admissible pair v(·) : [0, 1] → V
such that the corresponding admissible path x(·) = πP (v(·)) satisfies
x(0) = x and x(1) = y.
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Let <,> be a Riemannian metric on the manifold M . If P is the
tangent bundle TM of M , the map F is the identity map and the
Lagrangian L : P → R given by L(v) =< v, v >, then the cost function
c is equal to the square of the Riemannian distance. If k < n, then
the admissible paths of the control system (7) are paths tangent to the
distribution ∆. Similar to the Riemannian case, the control system
defines a subriemannian metric <,>S. (See section 6 for the basics
on subriemannian geometry) And the cost (8) is the square of the
subriemannian distance dS: c = d2

S. For general distributions ∆ which
are not trivializable, consider the general control system (9) with V =
∆. And F : ∆ ↪→ TM is the inclusion map. If the Lagrangian L is
defined by L(v) =< v, v >S, then the cost is again the square of the
subriemannian distance.

In this paper (except in section 8), we consider the control systems
of the form (4) in order to avoid heavy notations. All the results have
easy generalization to more general intrinsically defined systems just
introduced.

3. Optimal Mass Transport

The theory of optimal mass transportation is about moving one mass
to another that minimizes certain cost. More precisely, let M be a
manifold and consider a function c : M × M → R ∪ {+∞}, called
the cost function. Let µ and ν be two Borel probability measures on
the manifold M , then the optimal mass transportation is the following
problem:

Problem 3.1. Find a Borel map which achieves the following infimum
among all Borel maps φ : M → M that pushes the probability measure
µ forward to ν

inf
φ∗µ=ν

∫

M

c(x, φ(x)) dµ.

Here, we recall that the push forward φ∗µ is defined by φ∗µ(B) =
µ(φ−1(B)) for all Borel set B in M . In many cases, such a problem
admits solution which is unique (up to measure zero), assuming abso-
lute continuity of the measure µ with respect to the Lebesgue measure.
This unique solution to (3.1) is called the optimal map or the Brenier
map.

The first optimal map was found by Brenier in [8] in the case where
the manifold was Rn and the cost was c(x, y) = |x − y|2. Later, it
was generalized to arbitrary closed, connected Riemannian manifolds
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in [17] with cost given by square of the Riemannian distance. The
case for the Heisenberg group with the cost given by d2 was done in
[1], where d was the subriemannian distance or the gauge distance. In
[7], a much general cost given by the action associated to a Lagrangian
function L : TM → R on a compact manifold M was considered. More
precisely,

(11) c(x, y) = inf
x(0)=x,x(1)=y

∫ 1

0

L(x(t), ẋ(t))dt,

where the infimum is taken over all curves joining the points x and y.
Existence and uniqueness of optimal map with the cost given by (11)

was shown under the following assumptions:

• The Lagrangian L is fibrewise strictly convex, i.e. the map
restriction of L to the tangent space TxM is strictly convex for
each fixed x in the manifold M .

• L has superlinear growth, i.e. L(v)/|v| → 0 as |v| → ∞.
• The cost c is complete, i.e. the infimum (11) is always achieved

by some C2 smooth paths.

Recently, the compactness assumption on the manifold or on the mea-
sures was eliminated by [12, 11].

In this paper, we consider a connected manifold M without boundary
and the cost function c is given by (5). Consider the following relaxed
version of Problem 3.1, called Kantorovich reformulation. Let π1 :
M ×M → M and π2 : M ×M → M be the projection onto the first
and the second component respectively. Let Γ be the set of all joint
measures Π on the product manifold M ×M with marginals µ and ν:
π1∗Π = µ and π2∗Π = ν.

Problem 3.2.

C(µ, ν) := inf
Π∈Γ

∫

M×M

c(x, y) dΠ(x, y)

Remark 3.3. If φ is an optimal map in the problem in (3.1), then
(id× φ)∗µ is a joint measure in the set Γ. Therefore, Problem 3.2 is a
relaxation of the problem in (3.1).

Before we proceed into the existence proof of the optimal map, let us
look at the following dual problem of Kantorovich. See [22] for history
and the importance of this dual problem to optimal transportation.

Let c be a cost function and let f be a function on the manifold M .
The c1-transform of the function f is the function f c1 given by

f c1(y) := inf
x∈M

[c(x, y)− f(x)].
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Similarly, the c2-transform of the function f is defined by

f c2(x) := inf
y∈M

[c(x, y)− f(y)].

The function f is a c-concave function if it satisfies f c1c2 = f . Let
F be the set of all pairs of functions (g, h) on the manifold such that
g : M → R ∪ {−∞} and h : M → R ∪ {−∞} are in L1(µ) and L1(ν)
respectively, and g(x) + h(y) ≤ c(x, y) for all (x, y) ∈ M × M . The
dual problem of Kantorovich is the following maximization problem:

Problem 3.4.

sup
(g,h)∈F

∫

M

gdµ +

∫

M

h dν.

The existence of solution to the above problem is well-known. See
[22] and [23] for the proof.

Theorem 3.5. Assume that there exists two functions c1 and c2 such
that c1 is µ-measurable, c2 is ν-measurable and the cost function c
satisfies c(x, y) ≤ c1(x) + c2(y) for all (x, y) in M × M . If c is also
continuous, bounded below and C(µ, ν) < ∞, then there exists a c-
concave function f such that the function f is in L1(µ), its c1-transform
f c1 is in L1(ν) and the pair (f, f c1) achieves the supremum in Problem
3.4.

The following theorem on the regularity of the dual pair above is
also well-known.

Theorem 3.6. Assume that the cost c(x, y) is continuous, bounded
below and the measures µ and ν are compactly supported. Then the
functions f and f c1 are upper semicontinuous. If the function x 7→
c(x, y) is also locally Lipschitz on a set U and the Lipschitz constant
is independent of y locally, then f can be chosen to be locally Lipschitz
on U .

Proof. Fix ε > 0. Since f(x) = infx∈M [c(x, y) − f c1(y)], there exists
y such that f(x) + ε/2 > c(x, y) − f c1(y). Also, we have f(x′) +
f c1(y) ≤ c(x′, y) for any x′ in M . So, combining the above equations
and continuity of the cost c, we have

f(x′)− f(x) < ε

for any x′ close enough to x. Therefore, f is upper semicontinuous.
Let K be a compact set containing the support of the measures µ

and ν. Let

g(x) =

{
f(x), if x ∈ K
−∞, if x ∈ M \K

, g′(x) =

{
f c1(x), if x ∈ K
−∞, if x ∈ M \K

,
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then the pair (g, g′) achieves the maximum in Problem 3.4. Let h =
(g′)c2 , then the pair (h, hc1) also achieves the maximum. By definition
of g′, we have h(x) = inf

y∈K
[c(x, y) − f c1(y)]. By an argument the same

as the proof of upper semicontinuity, for any x and x′ in the compact
subset K ′ of U , we can find y in K such that

h(x′)− h(x) < c(x, y)− c(x′, y) + ε/2.

By the assumption of the cost c, the above inequality becomes

h(x′)− h(x) ≤ kd(x, x′) + ε/2

for some constant k > 0 which is independent of x on K ′. By switching
the roles of x and x′, the result follows. ¤

The following theorem about minimizers of the Problem 3.2 is well-
known. See, for instance, [22].

Theorem 3.7. If we make the same assumption as in Theorem 3.5,
then Problem 3.2 admits a minimizer. Moreover, the joint measure Π
in the set Γ achieve the infimum in Problem 3.2 if and only if Π is
concentrated on the set

{(x, y) ∈ M ×M |f(x) + f c(y) = c(x, y)}.

4. Existence and Uniqueness of Optimal Map

In this section, we show that Monge’s problem with cost given by
an optimal control cost (3) can be solved under certain regularity as-
sumptions. Let H : T ∗M → R be the function defined by

H(px) = max
u∈U

(px(F (x, u))− L(x, u)) .

If H is well-defined and C2, then we denote its Hamiltonian vector

field by
−→
H and let et

−→
H be its flow. Let f be the function defined in

Theorem 3.5 which is Lipschitz for µ-almost all x. Consider the map

ϕ : M × [0, 1] → M defined by ϕ(x, t) = π(et
−→
H (−dfx)).

Theorem 4.1. The map x 7→ ϕ1(x) := ϕ(x, 1) is the unique (up to
µ-measure zero) optimal map to the problem (3.1) with cost c given by
(5) under the following assumptions:

(1) The measures µ and ν are compactly supported and µ is abso-
lutely continuous with respect to the Lebesgue measure.

(2) c is bounded below and c(x, y) is also locally Lipschitz in the x
variable and the Lipschitz constant is independent of y locally.
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(3) The cost c is complete, i.e. given any pairs of points (x0, x1)
in the manifold M , there exists an admissible pair (x(·), u(·))
such that the pair achieves the infimum in (5), u(·) is locally
bounded measurable, x(0) = x0 and x(1) = x1.

(4) The Hamiltonian function H defined in (16) is well-defined and
C2.

(5) The Hamiltonian vector field
−→
H is complete, i.e. global flow

exists.

The rest of this section is devoted to the proof of Theorem 4.1. Let C̃y

be the set of all admissible pairs such that the corresponding admissible
paths x(·) starts from the point y: x(0) = y and satisfies the following
control system:

(12) ẋ(t) = −F (x(t), u(t)).

Let C̃x
y be the set of all those pairs in C̃y such that the corresponding

admissible paths x(·) end at the point x: x(1) = x.
First, we have the following simple observation.

Proposition 4.2. Let x be a point which achieves the infimum f c1(y) =

inf
x∈M

(c(x, y)− f(x)) and let (x̃, ũ) be an admissible pair in C̃x
y such that

the corresponding admissible path x̃ minimizes the cost given by

c(x, y) = inf
(x(·),u(·))∈C̃x

y

∫ 1

0

L(x(t), u(t)) dt,

then (x̃(·), ũ(·)) achieves the following infimum

(13) f c1(y) = inf
(x(·),u(·))∈C̃y

∫ 1

0

L(x(s), u(s)) ds− f(x(1)).

If x̂(t) = x̃(1− t), then x̂ achieves the following infimum

(14) f c1(y) = inf
(x(·),u(·))∈Cy

∫ 1

0

L(x(s), u(s)) ds− f(x(0)),

where Cy denotes the set of all admissible pairs (x(·), u(·)) satisfying
the following control system:

ẋ(t) = F (x(t), u(t)), x(1) = y.

Let ũ(·) be as in the above Proposition and let û(t) = ũ(1− t). Let
Ht : T ∗M → R be given by Ht(px) = px(F (x, û(t))) − L(x, û(t)). The
following is a consequence of Theorem 2.3.
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Proposition 4.3. Let x̃ be a curve that achieves the infimum in (13)
and let x̂(t) = x̃(1−t). Assume that α is contained in the subdifferential
of the function f at the point x̂(0), then there exists a Lipschitz curve
p̂ : [0, 1] → T ∗M in the cotangent bundle such that the followings are
true for almost all time t in the interval [0, 1]:

(15)





π(p̂(t)) = x̂(t),
˙̂p(t) =

−→
H t(p̂(t)),

p̂(0) = −α,
Ht(p̂(t)) = max

u∈U
(p̂(t)(F (x̂(t), u))− L(x̂(t), u))

Proof. By Theorem 2.3, there exists a curve p̃ : [0, 1] → T ∗M in the
cotangent bundle T ∗M such that





π(p̃(t)) = x̃(t),
p̃(1) = −α,

˙̃p(t) =
−→̃
H ũ(t)(p̃(t)),

H̃ũ(t)(p̃(t)) = min
u∈U

(−p̃(t)(F (x̃(t), ũ(t))) + L(x̃(t), ũ(t))) ,

where H̃ũ(p) = min
u∈U

(−p̃(F (x̃, ũ(t))) + L(x̃, ũ(t))).

Let p̂(t) = p̃(1 − t) and û(t) = ũ(1 − t), then the equations above
become





π(p̂(t)) = x̂(t),
p̂(0) = −α,
˙̂p(t) =

−→
H û(t)(p̂(t)),

Hû(t)(p̂(t)) = max
u∈U

(p̂(t)(F (x̂(t), û(t)))− L(x̂(t), û(t))) .

¤

Assume that the Hamiltonian function H : T ∗M → R defined by

(16) H(px) = max
u∈U

(px(F (x, u))− L(x, u))

is well-defined and C2. Let
−→
H be the Hamiltonian vector field of the

function H and let et
−→
H be its flow. The function f defined in The-

orem 3.5 is Lipschitz and so it is differentiable almost everywhere by
Rademacher Theorem. Moreover, the map df : M → T ∗M is measur-
able and locally bounded. So, if we let ϕ : M × [0, 1] → M be the map

defined by ϕ(x, t) = π(et
−→
H (−dfx)), then the map ϕ is a Borel map.
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Proposition 4.4. Under the assumptions of Theorem 4.1, the follow-
ing is true for µ-almost all x: Given a point x in the support of µ, there
exists a unique point y such that

f(x) + f c1(y) = c(x, y).

Moreover, the points x and y are related by y = ϕ(x, 1).

Proof. We first claim that the infimum f(x) = infy∈M [c(x, y)− f c1(y)]
is achieved for µ almost all x. Indeed, by assumption, we have f(x) +
f c1(y) ≤ c(x, y) for all (x, y) in M × M . Also, let Π be the measure
defined in Theorem 3.7, then f(x) + f c1(y) = c(x, y) for Π-almost
everywhere. Since the first marginal of the measure Π is µ, the following
is true for µ almost all x: Given a point x in the manifold M , there
exists y in M such that f(x) + f c1(y) = c(x, y). This proves the claim.

Fix a point x for which the infimum infy∈M [c(x, y)−f c1(y)] is achieved
and let y be the point which achieves the infimum. By the proof of the
above claim, x achieves the infimum f c1(y) = infx∈M [c(x, y) − f(x)].
Therefore, by completeness of the cost c and Proposition 4.2, there ex-
ists an admissible path x̂ such that x̂(0) = x, x̂(1) = y and x̂ achieves
the infimum (14).

Since f is Lipschitz on a bounded open set U containing the support
of µ and ν, it is almost everywhere differentiable on U by Rademacher
Theorem. Since µ is absolutely continuous with respect to the Lebesgue
measure, f is also differentiable µ-almost everywhere. By Theorem 4.3,
for µ-almost all x, there exists a curve p̂ : [0, 1] → T ∗M in the cotangent
bundle T ∗M such that




˙̂p(t) =
−→
H t(p̂(t)),

p̂(0) = −dfx,
π(p̂(t)) = x̂(t),
Ht(p̂(t)) = max

u∈U
(p̂(t)(F (x̂(t), u))− L(x̂(t), u)) ,

where Ht is the function on the cotangent bundle T ∗M given by Ht(px) =
pxF (x, u(t))− L(x, u(t)).

By the definition of H, we have H(p̂(t)) = Ht(p̂(t)). But, we also
have H(p) ≥ Ht(p) for all p ∈ T ∗M . Since both H and Ht are C2, we

have dH(p̂(t)) = dHt(p̂(t)). Hence,
−→
H t(p̂(t)) =

−→
H (p̂(t)) for almost all

t. The result follows from uniqueness of solution to ODE. ¤

The rest of the arguments for the existence and uniqueness of optimal
map follow from Theorem 3.7.
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Proof of Theorem 4.1. As mentioned above, Problem 3.2 is a relaxation
of Problem 3.1. We can recover the later from the former by restricting
the minimization to joint measures of the form (id × φ)∗µ, where φ is
any Borel map pushing forward µ to ν. Therefore, the results follow
from Theorem 3.7 and Proposition 4.4. ¤

5. Regularity of Control Costs

In Theorem 4.1, we prove existence and uniqueness of optimal maps
under certain regularity conditions on the cost. Most of the conditions
in the theorem are easy to verify except condition (2) and (3). In this
section, we will give simple conditions which guarantee this regularity.
This includes the completeness and the Lipschitz regularity of the cost.
First, we recall some basic notions in the geometry of optimal control
problems, see [2] and reference therein for details.

Fix a point x0 on the manifold M and assume that the control set U
is Rk. In this section, we violate our previous convention on admissible
control. From now on, admissible controls are mappings in L1([0, 1], U)
rather than L∞([0, 1], U). Denote by Cx0 the set of all admissible pairs
(x(·), u(·)) such that the corresponding admissible paths x(·) starts at
x0. Moreover, we assume that the control system is of the following
form:

(17) ẋ(t) = X0(x(t)) +
k∑

i=1

ui(t)Xi(x(t)),

where u(t) = (u1(t), ..., uk(t)) and X0, X1, ..., Xk are fixed smooth vec-
tor fields on the manifold M . The Cauchy problem for system (17) is
well-posed for any locally integrable vector-function u(·). We assume,
throughout this section, that system (17) is complete, i. e. all solutions
of the system are defined on the whole semi-axis [0, +∞). This com-
pleteness assumption is automatically satisfied if one of the following
is true: (i) if M is a compact manifold, (ii) M is a Lie group and the
fields Xi are left-invariant, or (iii) if M is a closed submanifold of the
Euclidean space and |Xi(x)| ≤ c(1 + |x|), i = 0, 1, . . . k.

Define the endpoint map Endx0 : L1([0, 1],Rk) → M by

Endx0(u(·)) = x(1),

where (x(·), u(·)) is the admissible pair corresponding to the control
system (17) with initial condition x(0) = x0. It is known that the map
Endx0 is a smooth mapping. The critical points of the map Endx are
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called singular controls. Admissible paths corresponding to singular
controls are called singular paths.

We also need the Hessian of the mapping Endx0 at the critical point.
(See [4] for detail.) Let E be a Banach space which is an everywhere
dense subspace of a Hilbert space H. Consider a mapping Φ : E → Rn

such that the restriction of this map Φ
∣∣
W

to any finite dimensional

subspace W of the Banach space E is C2. Moreover, we assume that the
first and second derivatives of all the restrictions Φ

∣∣
W

are continuous
in the Hilbert space topology on the bounded subsets of E. In other
words,

Φ(v + w)− Φ(v) = DvΦ(w) +
1

2
D2

vΦ(w) + o(|w|2), w ∈ W,

where DvΦ is a linear map and D2
vΦ is a quadratic mapping from E to

Rn. Moreover, Φ(v), DvΦ
∣∣
W

and D2
vΦ

∣∣
W

depend continuously on v in
the topology of H while v is contained in a ball of E.

The Hessian HessvΦ : ker DvΦ → cokerDvΦ of the function Φ is the
restriction of D2

vΦ to the kernel of DvΦ with values considered up to
the image of DvΦ. Hessian is a part of D2

vΦ which survives smooth
changes of variables in E and Rn.

Let p be a covector in the dual space Rn∗ such that pDvΦ = 0, then
pHessvΦ is a well-defined real quadratic form on ker DvΦ. We denote
the Morse index of this quadratic form by ind(pHessvΦ). Recall that
the Morse index of a quadratic form is the supremum of dimensions of
the subspaces where the form is negative definite.

Definition 5.1. A critical point v of Φ is called sharp if there exists a
covector p 6= 0 such that pDvΦ = 0 and ind(pHessvΦ) < +∞.

Needless to say, the spaces E, H and Rn can be substituted by
smooth manifolds (Banach, Hilbert and n-dimensional) in all this ter-
minology.

Going back to the control system (17), let (x(·), u(·)) be an admissi-
ble pair for this system. We say that the control u(·) and the path x(·)
are sharp if u(·) is a sharp critical point of the endpoint map Endx(0).

One necessary condition for controls and paths to be sharp is the, so
called, Goh condition.

Proposition 5.2. (Goh condition) If p(Hessu(·)Endx(0)) < +∞, then

p(t)(Xi(x(t))) = p(t)([Xi, Xj](x(t))) = 0 i, j = 1, . . . , k, 0 ≤ t ≤ 1,

where p(t) = P ∗
t,1p and Pt,τ is the local flow of the control system (20)

with control equal to u(·).
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See [4, 6] and references therein for the proof and other effective
necessary and sufficient conditions of the sharpness.

Now consider the optimal control problem

(18) c(x, y) = inf
(x(·),u(·))∈Cy

x

∫ 1

0

L(x(t), u(t)) dt,

where the infimum ranges over all admissible pairs (x(t), u(t)) corre-
sponding to the control system (17) with initial condition x(0) = x and
final condition x(1) = y.

Let H : T ∗M → R be the Hamiltonian function defined in (16). For
simplicity, we assume that the Hamiltonian is C2. A minimizer x(·) of
the above problem is called normal if there exists a curve p : [0, 1] →
T ∗M in the cotangent bundle T ∗M such that π(p(t)) = x(t) and p(·)
is a trajectory of the Hamiltonian vector field

−→
H . Singular minimizers

are also called abnormal. According to this, not so perfect, terminology
a minimizer can simultaneously be normal and abnormal. A minimizer
which is not normal is called strictly abnormal.

The following theorem gives simple sufficient conditions for com-
pleteness of the cost function defined in (18). It is a combination of
the well-known existence result (see [20]) and necessary optimality con-
ditions (see [4]).

Theorem 5.3. (Completeness of costs) Let L be a Lagrangian function
which satisfies the following:

(1) L is bounded below and there exist constants K > 0 such that

the ratio |u|
L(x,u)+K

tends to 0 as |u| → ∞ uniformly on compact

subsets of M ;
(2) for any compact C ⊂ M there exist constants a, b > 0 such that

|∂L
∂x

(x, u)| ≤ a(L(x, u) + |u|) + b, ∀x ∈ C, u ∈ Rk;
(3) the function u 7→ L(x, u) is a strongly convex function for all

x ∈ M .

Then, for each pair of points (x, y) in the manifold M which satisfy
c(x, y) < +∞, there exists an admissible pair (x(·), u(·)) achieving the
infimum in (18). Moreover, the minimizer x(·) is either a normal or a
sharp path.

Remark 5.4. Theorem 5.3 gives lots of examples that satisfy condition
(3) in Theorem 4.1. In particular, this applies to the case where the

control set U = Rk and the Lagrangian is L(x, u) =
∑k

i=1 u2
i .
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Remark 5.5. It was shown that the optimal controls in Theorem 5.3
that are normal are locally bounded. (See [20]) This allows us to restrict
the endpoint map to L∞([0, 1], U) in Theorem 5.6 below.

Next, we proceed to the main result of of this section which concerns
with the Lipschitz regularity of the cost function. This takes care of
condition (2) in Theorem 4.1.

Theorem 5.6. (Lipschitz regularity) Assume that the system (7) does
not admit sharp controls and the Lagrangian L satisfies conditions of
Theorem 5.3, then the set D = {(x,Endx(u(·)))|x ∈ M, u ∈ L∞([0, 1],Rk)}
is open in the product M ×M . Moreover, the function (x, y) 7→ c(x, y)
is locally Lipschitz on the set D, where the cost c is given by (5).

Remark 5.7. In the case where the endpoint map is a submersion,
there is no singular control. Therefore, Theorem 5.6 is applicable. In
particular, this theorem, together with Theorem 4.1 and 5.3, can be
used to treat the cases considered in [8, 17, 7]. In section 5, we will
consider a class of examples where the endpoint map is not necessarily
a submersion, but Theorem 5.6 is still applicable.

The rest of the section is devoted to the proof of Theorem 5.6.

Definition 5.8. Given v in the Banach space E, we write IndvΦ ≥ m
if

ind(pHessvΦ)− codim imDvΦ ≥ m

for any p in Rn∗ \ {0} such that pDvΦ = 0.

It is easy to see that {v ∈ E : IndvΦ ≥ m} is an open subset of
E for any integer m. Let Bv(ε), Bx(ε) be radius ε balls in E and Rn

centered at v and x respectively. The following is a qualitative version
of openness of a mapping Φ and any mapping C0 close to it.

Definition 5.9. We say that the map Φ : E → Rn is r-solid at the
point v of the Banach space E if for some constant c > 0 and any
sufficiently small ε > 0, there exists δ > 0 such that Φ̃(Bv(ε)) ⊃
BΦ̃(v)(cε

r) for any Φ̃ : Bv(ε) → Rn such that sup
w∈Bv(ε)

|Φ̃(w)−Φ(w)| ≤ δ.

Implicit function theorem together with Brouwer fixed point theorem
imply that Φ is 1-solid at any regular point.

Lemma 5.10. If IndvΦ ≥ 0 then Φ is 2-solid at v.



18 ANDREI AGRACHEV AND PAUL LEE

Proof. This lemma is a refinement of Theorem 20.3 from [4]. It can
be proved by a slight modification of the proof of the cited theorem.
Obviously, we may assume that v is a critical point of Φ. Moreover, by
an argument in the proof of the above cited theorem, we may assume
that E is a finite dimensional space, v = 0 and Φ(0) = 0.

Let E = E1 ⊕ E2, where E2 = ker D0Φ. For any w ∈ E we write
w = w1 + w2, where w1 ∈ E1, w2 ∈ E2. Now consider the mapping

Q : v 7→ D0Φv1 +
1

2
D2

0Φ(v2), v ∈ E.

It is shown in the proof of Theorem 20.3 from [4] that Q−1(0) contains
regular points in any neighborhood of 0. Hence ∃ c > 0 such that
the image of any continuous mapping Q̃ : B0(1) → Rn sufficiently
close (in C0-norm) to Q

∣∣
B0(1)

contains B0(c). Now we set Φε(v) =
1
ε2 Φ(ε2v1 + εv2); then Φε(v) = Q(v) + o(1) as ε → 0 and the desired
property of Φ is reduced to the already established property of Q. ¤

The minimization problem (18) can be rephrased into a constrained
minimization problem in an infinite-dimensional space. For simplicity,
consider the case where M = Rn. Let (x(·), u(·)) be an admissible pair
of the control system (17) and let ϕ : Rn × L∞([0, 1],Rk) → R be the
function defined by

ϕ(x, u(·)) =

∫ 1

0

L(x(t), u(t))dt.

Let Φ : Rn × L∞([0, 1],Rk) → Rn × Rn be the map

Φ(x, u(·)) = (x,Endx(u(·))).
Finding the minimum in (18) is now equivalent to minimizing the func-
tion ϕ on the set Φ−1(x, y).

Due to the above discussion, we consider the following general set-
ting. Consider a function ϕ : E → R on the Banach space E such
that ϕ|W is a C2-mapping for any finite dimensional subspace W of E.
Assume that the function ϕ as well as the first and second derivatives
of the restrictions ϕ|W are continuous on the bounded subsets of E in
the topology of H. Assume that K is a bounded subset of E that is
compact in the topology of H and satisfies the following property:

ϕ(v) = min{ϕ(w)|w ∈ E, Φ(w) = Φ(v)}
for any v in the set K.

We define a function µ on Φ(K) by the formula µ(Φ(v)) = ϕ(v), v ∈
K.
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Lemma 5.11. If IndvΦ ≥ 2 for any v ∈ K, then µ is locally Lipschitz.

Proof. Given v in K, there exists a finite dimensional subspace W of the

Banach space E such that Indv

(
Φ

∣∣
W

) ≥ 2. Then Indv

(
Φ

∣∣
W∩ker Dvϕ

)
≥

0. Hence Φ
∣∣
W∩ker Dvϕ

is 2-solid at v and

Φ (Bv(ε) ∩W ∩ ker Dvϕ) ⊃ BΦ(v)(cε
2)

for some c and any sufficiently small ε.
Let x = Φ(v) and |x − y| = cε2, then y = Φ(w) for some w ∈

Bv(ε) ∩W ∩ ker Dvϕ. We have:

µ(y)− µ(x) ≤ ϕ(w)− µ(x) = ϕ(w)− ϕ(v) ≤ c′|w − v|2 ≤ c′ε2.

Moreover, the compactness of K allows to chose unique c, c′ and the
bound for ε for all v ∈ K. In particular, we can exchange x and y in
the last inequality. Hence |µ(y)− µ(x)| ≤ c′

c
|y − x|. ¤

Proof of Theorem 5.6. We perform the proof only in the case M = Rn

in order to simplify the language. Generalization to any manifold is
straightforward. We set

E = Rn × L∞([0, T ],Rk), H = Rn × L2([0, T ],Rk),

Φ(x, u(·)) = (x,Endx(u(·))), ϕ(x, u(·)) =

∫ 1

0

L(x(t), u(t)) dt

and apply the above results.
First of all, Ind(x,u(·))Φ = Indu(·)Endx = +∞ for all (x, u(·)) since

our system does not admit sharp controls. Lemma 5.10 implies that Φ
is 2-solid and D = Φ(E) is open.

Now let B be a ball in E equipped with the weak topology of H. The
endpoint mapping Φ is continuous as a mapping from B to R2n. Strict
convexity of L implies that there is some constant c > 0 such that

ϕ(xn, un(·))− ϕ(x, u(·)) ≥ c‖un(·)− u(·)‖2
L2 + o(1)

as xn → x, un(·) ⇀ u(·) and (xn, un(·)) ∈ B. Therefore, lim
n→∞

ϕ(xn, un(·)) ≥
ϕ(x, u(·)) and lim

n→∞
ϕ(xn, un(·)) = ϕ(x, u(·)) if and only if (xn, un(·))

converges to (x, u(·)) in the strong topology of H.
Assume that ϕ(xn, un(·)) = µ(Φ(xn, un(·))) for all n. Inequality

ϕ(x, u(·)) < lim
n→∞

ϕ(xn, un(·)) would imply that

µ(Φ(x, u(·))) < lim
n→∞

µ(Φ(xn, un(·))).
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On the other hand, the openness of the map Φ implies that

µ(Φ(x, u(·))) ≥ lim
n→∞

µ(Φ(xn, un(·))).
Hence lim

n→∞
ϕ(xn, un(·)) = ϕ(x, u(·)) and (xn, un(·)) converges to (x, u(·))

in the strong topology of H.
Let C be a compact subset of D and

K = {(x, u(·)) ∈ E : Φ(x, u(·)) ∈ C, ϕ(x, u(·)) = µ(Φ(x, u(·)))} .

Then K is contained in some ball B. Recall that B is equipped with
the weak topology; it is compact. Now calculations of previous 2 para-
graphs imply compactness of K in the strong topology of H. Finally,
we derive the Lipschitz property of µ|C from Lemma 5.11. ¤

6. Applications: Mass Transportation on Subriemannian
Manifolds

In this section, we will apply the results in the previous sections to
some subriemannian manifolds. First, let us recall some basic defini-
tions.

Let ∆ and ∆′ be two (possibly singular) distributions on a manifold
M . Define the distribution [∆, ∆′] by

[∆, ∆′]x = span{[v, w](x)|v is a section of ∆, w is a section of ∆′}.
Define inductively the following distributions: [∆, ∆] = ∆2 and ∆k =
∆k−1 + [∆, ∆k−1]. A distribution ∆ is called k-generating if ∆k = TM
and the smallest such k is called the degree of nonholonomy. Also, the
distribution is called bracket generating if it is k-generating for some
k.

If ∆ is a bracket generating distribution, then it defines a flag of
distribution by

∆ ⊂ ∆2 ⊂ ... ⊂ TM.

The growth vector of the distribution ∆ at the point x is defined by
(dim ∆x, dim ∆2

x, ..., dim TxM). The distribution ∆ is called regular if
the growth vector is the same for all x. Let x(·) : [a, b] → M be an
admissible curve, that is a Lipschitz curve almost everywhere tangent
to ∆. The following classical result on bracket generating distributions
is the starting point of subriemannian geometry.

Theorem 6.1. (Chow and Rashevskii) Given any two points x and y
on the manifold M with a bracket generating distribution, there exists
an admissible curve joining the two points.
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Using Chow-Rashevskii Theorem, we can define the subriemannian
distance d. Let <,> be a fibre inner product on the distribution ∆,
called subriemannian metric. The length of an admissible curve x(·)
is defined in the usual way: length(x(·)) =

∫ b

a

√
< ẋ(t), ẋ(t) >dt. The

subriemannian distance d(x, y) between two points x and y is defined
by the infimum of the length of all admissible curves joining x and
y. There is a quantitative version of Chow-Rashevskii Theorem, called
Ball-Box Theorem, which gives Hölder continuity of the subriemannian
distance. See [19] for detail.

Corollary 6.2. Let dS be the metric of a complete subriemannian space
with distribution ∆. Function d2

S is locally Lipschitz if and only if the
distribution is 2-generating.

Proof. The systems with 2-generating distributions do not admit sharp
paths because these systems are not compatible with the Goh condi-
tion. On the other hand, constant paths (points) are sharp minimizers
in the case of distributions whose nonholonomy degree is greater than
2 and the ball-box theorem implies that d2 is not locally Lipschitz at
the diagonal in this case. ¤

Combining Corollary 6.2 with Theorem 4.1, we prove the existence
and uniqueness of optimal map for subriemannian manifold with 2-
generating distribution.

Theorem 6.3. Let M be a complete subriemannian manifold defined
by a 2-generating distribution, then there exists a unique (up to µ-
measure zero) optimal map to the Monge’s problem with the cost c
given by c = d2

S. Here dS is the subriemannian distance of M .

Remark 6.4. The locally Lipschitz property of the distance d out of the
diagonal is guaranteed for much bigger class of distribution. In partic-
ular, it is proved in [3] that generic distribution of rank > 2 does not
admit non-constant sharp trajectories. In the class of Carnot groups,
the following estimates are valid: Generic n-dimensional Carnot group
with rank k distribution does not admit nonconstant sharp trajectories
if n ≤ (k − 1)k + 1 and has nonconstant sharp length minimizing tra-

jectories if n ≥ (k−1)(k2

3
+ 5k

6
+1). Recall that a simply-connected Lie

group endowed with a left-invariant distribution V1 is a Carnot group
if the Lie algebra g is a graded nilpotent Lie algebra such that it is Lie
generated by the block with lowest grading (i.e. g = V1⊕ V2⊕ ...⊕ Vk,
[Vi, Vj] = Vi+j, Vi = 0 if i > k and V1 Lie-generates g).
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Clearly, if the cost is locally Lipschitz out of the diagonal, then the
statement of Theorem 4.1 remains valid with the extra assumption
that the supports of the initial µ and the final measures ν are disjoint:
supp(µ) ∩ supp(ν) = ∅.

7. Normal minimizers and Property of Optimal Map with
Continuous Optimal Control Cost

According to Theorem 5.6, it remains to study the case where sharp
controls exist. In this section, we will prove a property of optimal
map when the cost is continuous. Normal minimizers will play a very
important role.

We continue to study optimal control problem (20), (21). As we
already mentioned, strictly abnormal minimizers must be sharp. In
addition, if X0 = 0, then optimal control cost is continuous. According
to the discussion at the end of the previous section, we expect strictly
abnormal minimizers mainly for generic rank 2 distributions on the
manifold of dimension greater than 3 and for generic Carnot groups of
big enough corank. In these situations, strictly abnormal minimizers
are indeed unavoidable.

The existence of strictly abnormal minimizers for subriemannian
manifolds is first done in [18]. In [21] and [15], it is shown that there
are many strictly abnormal minimizers in general for subriemannian
manifolds. (See, for instance, Theorem 7.1 below.) Finally, a general
theory on abnormal minimizers for rank 2 distributions is developed
in [5]. See [19] for a detail account on the history and references on
abnormal minimizers.

Here is a sample result in [21] which is of interest to us.

Theorem 7.1. (Liu and Sussman) Let M be a 4-dimensional manifold
with a rank 2 regular bracket generating distribution ∆ and subrieman-
nian metric <,>. Let X1 and X2 be two global sections of ∆ such
that

(1) X1 and X2 are everywhere orthonormal,
(2) X1, X2, [X1, X2] and [X2, [X1, X2]] are everywhere linearly de-

pendent,
(3) X2, [X1, X2] and [X2, [X1, X2]] are everywhere linearly indepen-

dent.

Then any short enough segments of the integral curves of the vector
field X2 are strictly abnormal minimizers.
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We call a local flow a strictly abnormal flow if the corresponding tra-
jectories are all strictly abnormal minimizers. An interesting question
is whether time-1 map of an abnormal flow is an optimal map. The
following theorem shows that this is not the case for any reasonable
initial measure and continuous cost.

Theorem 7.2. Assume that the cost c in (3.1) is continuous, bounded
below and the support of the measure µ is equal to the closure of its
interior. If ϕ : M → M is a continuous map such that (id × ϕ)∗µ
achieves the infimum in Problem 3.2, then x and ϕ(x) are connected
by a normal minimizer on a dense set of x in the support of µ.

Proof. By Theorem 3.5, there exists a function f : M → R ∪ {−∞}
such that f and its c1-transform achieve the supremum in Problem
3.4. Moreover, by Theorem 3.6, the functions f and f c1 are upper
semicontinuous. By Theorem 3.7,

(19) f(x) + f c1(ϕ(x)) = c(x, ϕ(x))

for µ-almost all x. By upper semicontinuity of f and f c1 ,

f(x) + f c1(ϕ(x)) ≥ c(x, ϕ(x)).

But f(x) + f c(y) ≤ c(x, y) for any x, y in the manifold M . So, (19)
holds for all x in the support U of µ. Therefore, x achieves the infimum
f c1(φ(x)) = infz∈M [c(z, φ(x)) − f c1(z)] for all x in the support of µ.
Moreover, using (19), it is easy to see that the function f is continuous
on U . In particular, it is subdifferentiable on a dense set of U . By
Proposition 4.2 and Theorem 4.3, x and ϕ(x) is connected by a normal
minimizer if f is subdifferentiable at x. This proves the theorem. ¤

8. Optimal Maps with Abnormal Minimizers

In this section, we describe an important class of control systems
which admit smooth optimal maps built essentially from abnormal min-
imizers. Recall that abnormal minimizers are singular trajectories of
the control system whose definition does not depend on the Lagrangian.

Let ρ : M
G−→ N be a smooth principal bundle where the structural

group G is a connected Abelian Lie group. Let X1, . . . , Xk be the
vertical vector fields which generate the action of G. Consider the
following control system
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(20) ẋ(t) = X0(x(t)) +
k∑

i=1

ui(t)Xi(x(t)),

where X0 is a smooth vector field on M , and the re-scaled systems

(21) ẋ(t) = εX0(x(t)) +
k∑

i=1

ui(t)Xi(x(t))

for ε > 0.
We define the Hamiltonian H : T ∗N → R by

(22) H(px) = max{px(dρ(X0(y))|y ∈ ρ−1(x)}
where px is a covector in T ∗N . We assume that the maximum above
is achieved for any p in T ∗N and is finite.

Typical example is the Hopf bundle φ : SU(2)
S1−→ S2 and a left-

invariant vector field F0. Then H(p) = α|p|, where α is a constant and
|p| is the length of the covector p with respect to the standard (constant
curvature) Riemannian structure on the sphere. (See [4, Section 22.2])

Consider the following control system on N with admissible pair

y(·) contained in the G-bundle ρ : M
G−→ N and admissible trajectory

x(t) = ρ(y(t)) (See Remark 9):

(23) ẋ(t) = dρ(X0(y(t))).

The function H in (22) is the Hamiltonian of the time-optimal problem
of the control system (23). (Recall that the time optimal problem is
the following minimization problem: Fix two points x0 and x1 in N
and minimize the time t1 among all admissible trajectories x(·) of the
control system (23) such that x(t0) = x0 and x(t1) = x1.)

System (23) is the reduced system associated to system (20) ac-
cording to the reduction procedure described in [4, Chapter 22]. In
particular, ρ transforms any admissible trajectory of system (20) to
the admissible trajectory of system (23). Also, the smooth extremal
trajectories of the time-optimal problem for system (23) are images
under the map ρ of singular trajectories of system (20).

For any ε > 0 and any C2 smooth function a : N → R, we introduce
the map

Φε
a : N → N, Φε

a(x) = π(eε ~H(dxa)), x ∈ N,

where π : T ∗N → N is the standard projection and t 7→ et ~H is the
Hamiltonian flow of H. Set

D = {p ∈ T ∗N : H(p) > 0, H is of class C2 at p}.
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Assume that Φε
a pushes the measure µ′ forward to another measure

ν ′ on N . Consider some “lifts” µ and ν of the measures µ′ and ν ′:
ρ∗µ = µ′, ρ∗ν = ν ′. Let Ψ : M −→ M be an optimal map pushing
forward µ to ν, then the following theorem says that Ψ is a covering of
Φε

a: ρ ◦ Ψ = Φε
a ◦ ρ. By the discussion above, we see that x and Ψ(x)

are connected by singular trajectories as claimed.

Theorem 8.1. Let K be a compact subset of N and a ∈ C2(N). As-
sume that da|K ⊂ D. Let µ and ν be Borel probability measures such
that supp(ρ∗(µ)) ⊂ K. Then, for any sufficiently small ε > 0 and any
optimal Borel map Ψ : M → M of the control system (21) with any
Lagrangian L, the following is true whenever ρ∗(ν) = Φε

a∗(ρ∗(µ)):

ρ ◦Ψ = Φε
a ◦ ρ.

Proof. We start from the following.

Definition 8.2. We say that a Borel map Q : K → N is ε-admissible
for system (21) if there exists a Borel map ϕ : K → L∞([0, ε], G) such
that

Q(x0) = x (ε; ϕ(x0)(·)) , ∀x0 ∈ K,

where t 7→ x (t; ϕ(x0)(·)) is an admissible trajectory of the reduced
control system (23) with initial condition x (0; ϕ(x0)(·)) = x0.

We are going to prove that Φε
a is an admissible map, unique up to

a ρ∗(µ)-measure zero set, which transforms ρ∗(µ) into ρ∗(ν). This fact
implies the statement of the theorem.

Inequality H(dxa) > 0 implies that dπ( ~H(dxa)) is transversal to the
level hypersurface of a through x. Hence the map Φε

a is invertible on
a neighborhood of K for any sufficiently small ε. Moreover, the curve
t 7→ Φt

a(y), 0 ≤ t ≤ ε, is a unique admissible trajectory of system
23 which starts at the hypersurface a−1(a(x)) and arrives at the point
Φε

a(x) at time moment not greater than ε. The last fact is proved by a
simple adaptation of the standard sufficient optimality condition (see
[4, Chapter 17]).

Now we set
aε(x) = a

(
(Φε

a)
−1(x)

)
+ ε,

then aε is a smooth function defined on a neighborhood of K.
Optimality property of Φε

a implies that

aε(Q(x)) ≤ aε (Φε
a(x))

for any ε-admissible map Q and any x ∈ K, and the inequality is strict
at any point x where Q(y) 6= Φε

a(x). In particular, if

ρ∗(µ) ({x ∈ K : Q(x) 6= Φε
a(x)}) > 0,
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then ∫
aε d(Q∗(ρ∗(µ))) =

∫
aε ◦Qd(ρ∗(µ)) <

∫
aε ◦ Φε

a d(ρ∗(µ)) =

∫
aε d(ρ∗(ν)).

Hence Q∗(ρ∗(µ)) 6= ρ∗(ν). ¤

9. Example: the Grushin plane

Grushin plane is the subriemannian space with base space R2 and
a singular distribution defined by the span of the following vectors
{∂x1 , x1∂x2} in each tangent space. In other word, the fibre of this
distribution is the whole tangent space of R2 if x1 6= 0 and it is spanned
by ∂x1 otherwise. We define a subriemannian metric by declaring that
the two vector fields above are orthonormal. The control system is
given by

ẋ1 = u1, ẋ2 = u2x1.

The subriemannian distance d is given by d(x, y) = inf
Cy

x

∫ 1

0

√
u2

1 + u2
2 dt.

In this section, we consider the optimal transport problem with cost c
given by c = d2.

There is no abnormal minimizer for this problem, so we consider its
Hamiltonian H given by

H(x1, x2, p1, p2) =
1

2
(p2

1 + x2
1p

2
2).

The corresponding Hamiltonian equation is

ẋ1 = p1, ẋ2 = x2
1p2, ṗ1 = −x1p

2
2, ṗ2 = 0.

For simplicity, we consider the case x1(0) = 0 = x2(0). And we let
p1(0) = a and p2(0) = b. In this case, the solutions give geodesics
emanating from a point (0, δ) on the y-axis. They are parameterized
by (a, b) and are given by

(24) x1(t) =
a

b
sin(bt), x2(t) =

a2

4b2
(2bt− sin(2bt)) + δ

if b 6= 0 and given by

(25) x1(t) = at, x2(t) = δ

if b = 0. A geodesic is length minimizing if and only if −π/b ≤ t ≤ π/b.
Next, we consider the mass transport problem. Let d be the subrie-

mannian distance of the Grushin plane and consider Problem 3.1with
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Figure 1. Some displacement interpolations
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Figure 2. Graph of the function f

cost c given by square of the subriemannian distance d2. We also spe-
cialize to the case where the target measure ν is equal to the delta mass
supported at the origin. In this case, the optimal map is clearly given
by the constant map x 7→ (0, 0). We are interested in the displacement
interpolation corresponding to this optimal map. Recall that displace-
ment interpolation is the one parameter family of maps φt such that φt

is the optimal map with the cost ct given by the following:

ct(x, y) = inf

∫ t

0

L(x(s), u(s)) ds

where the infimum ranges over all admissible pairs (x(·), u(·)) of the
control system (4) with initial condition x(0) = x and final condition

x(t) = y. It is easy to see that if φ1 = π(e
−→
H (−df)) as in Theorem

4.1, then the displacement interpolation φt is given by π(et
−→
H (−df)).

Moreover, the displacement interpolation is related to the Hamilton-
Jacobi equation via the method of characteristics. See [7] and [10] for
details.

To do this, we first evaluate the equations (24) and (25) at t = 1.
Then we solve a and b in terms of x1(1) and x2(1). If f : (−π, π) → R
is the function defined by f(b) = 2b−sin(2b)

4 sin2(b)
, then f is invertible. A
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computation shows that

a =
f−1

(
x2(1)−δ
x1(1)2

)
x1(1)

sin
(
f−1

(
x2(1)−δ
x1(1)2

)) , b = f−1
(x2(1)− δ

x1(1)2

)
.

Therefore, the displacement interpolation is given by

ϕt(x1, x2) =
(a

b
sin(b(1− t)),

a2

4b2
(2tb− sin(2(1− t)b) + δ

)
,

where a = a(x1, x2) and b = b(x1, x2) are given by

a(x1, x2) =
f−1

(
x2−δ

x2
1

)
x1

sin
(
f−1

(
x2−δ

x2
1

)) , b(x1, x2) = f−1
(x2 − δ

x2
1

)
.

10. Appendix

This appendix is devoted to the prove of Theorem 2.3. The first
step is to reduce the problem into a simpler one. Recall that the Bolza
problem is the following minimization problem:

inf
(x(·),u(·))∈Cx0

∫ 1

0

L(x(s), u(s)) ds− f(x(1))

where the infimum is taken over all admissible pair (x(·), u(·)) satisfying
the control system

ẋ(s) = F (x(s), u(s))

and initial condition x(0) = x0.
Let x = (x, z) be a point in the product manifold M×R and consider

the following extended control system on it:

(26) ẋ = F (x, u) := (F (x, u), L(x, u)).

Note that x(·) = (x(·), z(·)) satisfies this extended system and initial
condition x(0) = (x0, 0) if and only if x(·) satisfies the original control
system in the Bolza problem with the initial condition x(0) = x0 and

z(t) =
∫ t

0
L(q(s), u(s)) ds. Therefore, Problem 2.2 is equivalent to the

following problem.

Problem 10.1.

(27) inf
(x(·),u(·))∈C(x0,0)

(z(1)− f(x(1))) ,

where the infimum is taken over all admissible pair satisfying the ex-
tended control system (26).
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Problem 10.1 is an example of the Mayer problem. Let g : N → R be
a function on the manifold N and the Mayer problem is the following
minimization problem:

Problem 10.2.
inf
Cx0

g(x(1))

where the infimum is taken over all admissible pair (x(·), u(·)) satisfying
the control system

ẋ = F (x, u)

on N and initial condition x(0) = x0.

For each point u in the control set U , define the corresponding Hamil-
tonian function Hu : T ∗N → R by

Hu(px) = px(F (x, u)).

Theorem 10.3. (Pontryagin Maximum Principle for Mayer Problem)

Let (x̃(·), ũ(·)) be an admissible pair which achieve the infimum in
Problem 10.2. Assume that the function g in Problem 10.2 is super-
differentiable at the point x̃(1) and let α be in the super-differential
d+gx̃(1) of g. Then there exists a Lipschitz path p̃(·) : [0, 1] → T ∗N
which satisfies the following for almost all time t in the interval [0, 1]:

(28)





π(p̃(t)) = x̃(t),
p̃(1) = α,

˙̃p(t) =
−→
H ũ(t)(p̃(t)),

H ũ(t)(p̃(t)) = min
u∈U

Hu(p̃(t))

Proof. Fix a point v in the control set and a number τ in the interval
[0, 1]. For each small positive number ε > 0, let uε be the admissible
control defined by

uε(t) =

{
ũ(t), if t /∈ [τ − ε, τ ];
v, if t ∈ [τ − ε, τ ].

Since the optimal control ũ is locally bounded, the new control uε

defined above is also locally bounded. Let P ε
t0,t1

: N → N be the time-
dependent local flow of the following ordinary differential equation

ẋ(t) = F (x(t), uε(t)).

Here, P ε
0,t(x) denotes the image of the point x in the manifold N under

the local flow P ε
0,t at time t. It has the property that P ε

t2,t3
◦ P ε

t1,t2
=



32 ANDREI AGRACHEV AND PAUL LEE

P ε
t1,t3

. Also, recall that P ε
t0,t1

depends smoothly on the space variable,
Lipschitz with respect to the time variables.

Since x̃(1) = P 0
0,1(x0) and the function g is minimizing at x̃(1), the

following is true for all ε > 0:

(29) g(P ε
0,1(x0)) ≥ g(P 0

0,1(x0)).

Let α be a point in the super-differentiable d+gx̃(1) at the point x̃(1),

then there exists a C1 function φ : N → R such that dφx̃(1) = α and

g−φ has a local maximum at x̃(1). Combining this with (29), we have

g(P 0
0,1(x0))− φ(P ε

0,1(x0)) ≤
g(P ε

0,1(x0))− φ(P ε
0,1(x0)) ≤ g(P 0

0,1(x0))− φ(P 0
0,1(x0)).

Simplifying this equation, we get

(30)
φ(P ε

0,1(x0))− φ(P 0
0,1(x0))

ε
≥ 0.

If Rt denotes the flow of the vector field F v, then

(31) P ε
0,1 = P 0

τ,1 ◦Rε ◦ P 0
0,τ−ε.

So, if we assume that τ is a point of differentiability of the map
t 7→ P 0

0,t which is true for almost all time τ in the interval [0, 1], then
P ε

0,1 is differentiable with respect to ε at zero. Therefore, we can let ε
goes to 0 in (30) and obtain

(32) α

(
d

dε

∣∣∣
ε=0

P ε
0,1

)
≥ 0.

If we differentiate equation (31) with respect to ε and set it to zero,
it becomes

d

dε

∣∣∣
ε=0

P ε
0,1 = (P 0

τ,1)∗(F v − F ũ(τ)) ◦ P 0
0,1.

Substitute this equation back into (32), we get the following:

(33) ((P 0
τ,1)

∗α)(F v(x̃(τ))− F ũ(τ)(x̃(τ))) ≥ 0.

Define p̃ : [0, 1] → T ∗N by p̃(t) = (P 0
t,1)

∗α, then the first two asser-
tions of the theorem are clearly satisfied.

The following is well known (See [4] or [16]).
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Lemma 10.4. Let θ = pdq be the tautological 1-form on the cotangent
bundle of the manifold N , then for each diffeomorphism P : N → N ,
the pull back map P ∗ : T ∗N → T ∗N on the cotangent bundle of the
manifold preserves the 1-form θ.

Let Wt be the time-dependent vector field on the cotangent bundle
of the manifold which satisfies

d

dt
(P 0

t,1)
∗ = Wt ◦ (P 0

t,1)
∗

for almost all time t in [0, 1]. If LV denotes the Lie derivative with
respect to a vector field V , then, by Lemma 10.4, the following is true
for almost all time t in [0, 1]:

LWtθ = 0.

If ω = −dθ is the canonical symplectic 2-form on the cotangent
bundle, then, by using Cartan’s formula, we have

iWtω = d(θ(Wt)).

Therefore, the vector field Wt is a Hamiltonian vector field with Hamil-
tonian given by

H ũ(t)(p) = p(F (x, ũ(t))).

The third assertion of the theorem follows from this. The last assertion
follows from (33). ¤

Going back to Problem 10.1, we can apply Pontryagin Maximum
Principle for Mayer problem. Let (x̃(·), z̃(·)) be an admissible pair
which minimizes Problem 10.1 and let H t : T ∗M × R → R be the
function defined by

H t(p, l) = p(F (x, ũ(t))) + l · L(x, ũ(t)).

By Theorem 10.3, there exists a curve (p̃(·), l̃(·)) : [0, 1] → T ∗
x̃M × R

such that x̃(t) = π(p̃(t)) and

(34)





( ˙̃p,
˙̃
l) =

−→
H t(p̃, l̃),

(p̃(1), l̃(1)) = (−α, 1),

H t(p̃(t), l̃(t)) = min
u∈U

(
p̃(t)(F (x̃(t), u)) + l̃(t) · L(x̃(t), u)

)
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From the first equation in (34), we get
˙̃
l = 0. So, l̃(t) ≡ 1. Therefore,

(34) is simplified to

(35)





˙̃p =
−→
H ũ(p̃),

p̃(1) = −α,

Hũ(p̃(t), P̃ (t)) = min
u∈U

(p̃(t)(F (x̃(t), u)) + L(x̃(t), u)) .

This finishes the proof of Theorem 2.3.

Acknowledgment

The second author would like to express deep gratitude to his su-
pervisor, Boris Khesin, who suggested to him the problem of optimal
mass transportation on subriemannian manifolds.

References

[1] L. Ambrosio, S. Rigot: Optimal mass transportation in the Heisenberg group,
J. Func. Anal. 208(2004), 261-301

[2] A. A. Agrachev: Geometry of Optimal Control Problems and Hamiltonian
Systems, Lecture Noes, 2004

[3] A. A. Agrachev, J.P. Gauthier, On the subanalyticity of Carnot-Caratheodory
distances, Ann. I. H. Poincaré – AN 18, (2001), 359–382
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