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Abstract

The curvature and the reduced curvature are basic differential in-
variants of the pair: (Hamiltonian system, Lagrange distribution) on
the symplectic manifold. We show that negativity of the curvature
implies that any bounded semi-trajectory of the Hamiltonian system
tends to a hyperbolic equilibrium, while negativity of the reduced cur-
vature implies the hyperbolicity of any compact invariant set of the
Hamiltonian flow restricted to a prescribed energy level. Last state-
ment generalizes a well-known property of the geodesic flows of Rie-
mannian manifolds with negative sectional curvatures.

1 Regularity and Monotonicity

Smooth objects are supposed to be C'*° in this note; the results remain valid
for the class C* with a finite and not large k but we prefer not to specify
the minimal possible k.

Let M be a 2n-dimensional symplectic manifold endowed with a sym-
plectic form o. A Lagrange distribution A C TM is a smooth vector sub-
bundle of TM such that each fiber A, = ANT, M, = € M, is a Lagrange
subspace of the symplectic space T, M; in other words, dimA, = n and
0:(§,m) =0V n € A,

Basic examples are cotangent bundles endowed with the standard sym-
plectic structure and the “vertical” distribution:

M =T*N, A, = T,(T/N), Vz€T/N, g€ N. (1)

Let h € C°°(M); then h € VecM is the associated to h Hamiltonian
vector field: dh = o(-,h). We assume that h is a complete vector field,
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i.e. solutions of the Hamiltonian system & = E(a:) are defined on the whole
time axis. We may assume that without a lack of generality since we are
going to study dynamics of the Hamiltonian system on compact subsets of
M and may reduce the general case to the complete one by the usual cut-off
procedure. B

The generated by h Hamiltonian flow is denoted by et", t € R. Other
notations: A C VecM is the space of sections of the Lagrange distribution
A; [v1,v2] € VecM is the Lie bracket (the commutator) of the fields vy, vo €
VecM, [v1,v2] = v1 0 v — v2 0 V.

Definition 1 We say that h is reqular at x € M with respect to the Lagrange
distribution A if {[h,v](z) :v € A} = T, M.

An effective version of Definition 1 is as follows: Let v; € A, i =1,....n
be such that the vectors vi(z), ..., v,(z) form a basis of A,; then h is regular
at xwith respect to A if and only if the vectors

v1(z), ..., on(z), [h,1](), ..., [h,vn)(x)

form a basis of T, M. o
We define a bilinear mapping ¢" : A x A — C*(M) by the formula:

-

g"(v1,v2) = o([h,v1],v2).

Lemma 1 ¢"(ve,v1) = ¢"(v1,v2), Yv1,v2 € A and g"(vi,v2)(x) depends
only on vi(x),va(x).

Proof. Hamiltonian flows preserve o and o vanishes on A. Using these
facts, we obtain:

0=o(v1,v2) = (eth*a> (v1,v2) = o(evy, etuy).

Differentiation of the identity 0 = (e vq, el'vy) with respect to t at t = 0
gives: 0 = o ([h, v1],v2) + o(v1, [k, v2]). Now the anti-symmetry of o implies
the symmetry of g". Moreover, g" is C°°(M)-linear with respect to each
argument, hence ¢g"(v1,v2)(z) depends only on vy (x),vo(x). O

Let x € M, & € Ay, & = vi(x), v; € A, i =1,2. We set g'(&,&) =
g"(v1,v2)(x). According to Lemma 1, g” is a well-defined symmetric bilinear
form on A,. It is easy to see that the regularity of h at x is equivalent to
the nondegeneracy of g/



If M = T*N and A is the vertical distribution (see (1)),
then ¢" = D%(h|T;N), where z € T/N. The last equation can be eas-
ily checked in local coordinates. Indeed, local coordinates defined on a
neighborhood O C N provide the identification of T*N|, with R" x R" =
{(p,q) : p,q € R"} such that TN is identified with R™ x {g}, the form

n . n
o is identified with > dp; A dg; and the field h with (g; 8?1, — g; 8(;).
i=1 i=1 v Lo

The fields 8%1_ form a basis of the vertical distribution and ¢" ( 8?%’ %) =

n
_ A Oh 0 _ oh 0 9 _ _9h
<dq3’ Lg (31%' dg;  Og; api) ) 31%’] > ~ OpiOp;°

Definition 2 We say that a reqular Hamiltonian field h is monotone at
x € M with respect to A if gl is a sign-definite form.

2 The Curvature

Let X, X2 be a pair of transversal n-dimensional subspaces of T, M, then
T.M = X; & Xy. We denote by 7,(X1, Xs) the projector of T,,M on Xs
parallel to X;. In other words, 7,(X7, X2) is a linear operator characterized
by the relations 7, (X1, X2)|y, = 0, m(X1, Xo2)|y, = 1.

Now consider the family of subspaces J,(t) = e, tﬁAetﬁ @) C T, M, where

h is a regular Hamiltonian field; in particular, J:(0) = A,. It is easy to
check that the regularity of & implies the transversality of J,(t) and Jy(7)
for ¢ # 7, if t and 7 are close enough to 0. Hence 7, (Jz(t), Jz(7)) is well-
defined and smooth with respect to (¢,7) in a neighborhood of (0,0) with
the removed diagonal t = 7. The mapping (¢,7) +— m5(Jz(t), Jz(7)) has
a singularity at the diagonal, but this singularity can be controlled. In
particular, the following statement is valid:

Lemma 2 (see [1]). For any regular field h,

2
73(367 (me(Jo(®), J(T)a,)| =t 1+ RE+O(t) ast—0,

7=0

where R € gl(A,) is a self-adjoint operator with respect to the scalar product
gy, i-e. gr(RRE1, &) = gh(&1, L&), V1,6 € A,

We set r(¢) = gh(RlE, €).
h

Definition 3 Operator R" and quadratic form r" are called the curvature
operator and the curvature form of h at x with respect to A. We say that



h has a negative (positive) curvature at x if (€)gh(€,€) < 0 (> 0), V€ €

Az \ {0}

It follows from the definition that only monotone fields may have neg-
ative or positive curvature. If h is monotone at x, then R has only real
eigenvalues and negativity (positivity) of the curvature is equivalent to the
negativity (positivity) of all eigenvalues of R”.

Let us give a coordinate presentation of R?. Fix local coordinates
(p,q), p,q € R™ in a neighborhood of x in M in such a way that A, =

{(p,0) : p € R™}. Let (p(t;po),q(t;po)) be the trajectory of the é‘ie(zld é_i with
q(t;p .
8p00 ‘po=0’

regularity of h s equivalent to the nondegeneracy of the n X n-matrix
Sy = %‘t:O' The curvature operator is presented by the matrix Schwartzian
derivative:

the initial conditions p(0;qo) = po, q(0;p9) = 0. We set S; =

RI=1/255" §o —3/4(S55 150).

Examples:

n
1. Natural mechanical system, M = R" xR", o =} dp; Ndg;, A, q) =

=1
2
(R",0), h(p,q) = 1/2|lp|* + U(q); then R, = L.

2. Riemannian geodesic flow, M = T*N and h]T; ~ 1s a positive quadratic
form VYq € N; then h is actually a Riemannian structure on N which
identifies the tangent and cotangent bundles and we have: R!'¢ =
R(2',&)a’, where R is the Riemanian curvature tensor and z/,& €
Ty, M are obtained from x,§ € T/ M by the “raising of the indices”.

3. Mechanical system on a Riemannian manifold, M = T*N and h is the
sum of the Riemannian Hamiltonian from Example 2 and the function
U om, where 7w : T*N — N is standard projection and U is a smooth
function on N. Then R!¢ = R(x,&)z + Ve(VU), where V¢ is the

Riemannian covariant derivative.

Now we introduce a reduced curvature form ffg defined on A, Nkerd,h
and related to the restriction of the Hamiltonian system on the prescribed
energy level. To do that, we need some notations. Symplectic form o, on
T, M induces a nondegenerate pairing of A, and T,M/A,. Hence there
exists a unique linear mapping G, : A, — T, M/A, such that g,(&1,&2) =
0:(Gzé1,&2), V€1,& € A,. The mapping G, is invertible since the form g,
is nondegenerate. Let 11, : T,M — T,M/A, be the canonical projection.
We set v(z) = G5 I h(z); then v is a smooth section of A, i.e. v € A.



Assume that & is a monotone field and h(z) ¢ A,; the reduced curvature
form is defined by the formula:

30’x([ﬁa []_7:7 ’UH(I’), 5)2
49, (v(z),v(x))

In Ex. 1, we obtain: f&q)(f) = r?p’q)(f) + |p\2<dq )2, In Ex. 2, #1(¢) =

rP(€). Finally, in Ex. 3 (which includes both Ex. 1 and Ex. 2) we have:

AI = (dqU,
FLE) = rh€) + sy Ty where ¢ = m(x)

We say that h has a negative (positive) reduced curvature at x if
PhE)gh(€,€) < 0 (> 0), V& € Ay Nkerdyh \ {0}

&) =rl() + . e A, Nkerd,h.

3 Main Results

Theorem 1 Let I be a monotone field and xo € M. Assume that the semi-

trajectory {e'"(zo) : t > 0} has a compact closure and h has a negative

curvature at each point of its closure. Then there exists xoo = . liin e (xg),
— T 00

where h(xs) = 0 and Dy h is hyperbolic (i.e. Dy h has no eigenvalues on
the imaginary axis).

Remark. Monotonicity of h is equivalent to the monotonicity of —h and
R;" = R"; hence Theorem 1 can be applied to the negative time semi-
trajectories of the field h as well.

Example. Consider a natural mechanical system (Ex. 1 in Sec. 2) where
U(q) is a strongly concave function, then any bounded semi-trajectory of h
satisfies conditions of Theorem 1.

Theorem 2 Let h be a monotone field, S be a compact invariant subset

of the flow e contained in a fix level set of h, S C h™(c), and h(z) ¢
A, Vr e S. Ifh has a negative reduced curvature at each point of S, then S

is a hyperbolic set of the flow eth 1) (see [2, Sec. 17.4] for the definition
—(c

of a hyperbolic set).

Example. Mechanical system on a Riemannian manifold (Ex. 3 in Sec. 2).

Let k4 be the maximal sectional curvature of the Riemannian manifold N

at ¢ € N. Then any compact invariant set S of the flow eth‘ ) such that

o)
the projection of S to N is contained in the domain

{geN:rs<0, 2max{HV2UH/|/¢q], IV U} <e—U(g)}



is hyperbolic. In particular, if N is a compact Riemannian manifold of a

negative sectional curvature, then et” is an Anosov flow for any big

C
enough c. Last statement generalizes a cla(s)sical result on geodesic flows.
Both theorems are based on the structural equations derived in [1]. These
equations are similar to the standard linear differential equation for Jacobi
vector fields in Riemannian Geometry with the curvature operators R” play-
ing the same role as the Riemannian curvature. In particular, the proof of
Theorem 2 simply simulates the proof of the correspondent classical result
on geodesic flows. Theorem 1 describes a new phenomenon, which is not
performed by geodesic flows. Indeed, if the curvature is negative, then the
operators R" are nondegenerate, while in the Riemannian case (Ex. 2 in
Sec. 2) we have Rle(x) = 0, where e is the Euler field (i.e. the field gener-
ating homothety of the fibers T/ V).
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