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Abstract

The curvature and the reduced curvature are basic differential in-
variants of the pair: 〈Hamiltonian system, Lagrange distribution〉 on
the symplectic manifold. We show that negativity of the curvature
implies that any bounded semi-trajectory of the Hamiltonian system
tends to a hyperbolic equilibrium, while negativity of the reduced cur-
vature implies the hyperbolicity of any compact invariant set of the
Hamiltonian flow restricted to a prescribed energy level. Last state-
ment generalizes a well-known property of the geodesic flows of Rie-
mannian manifolds with negative sectional curvatures.

1 Regularity and Monotonicity

Smooth objects are supposed to be C∞ in this note; the results remain valid
for the class Ck with a finite and not large k but we prefer not to specify
the minimal possible k.

Let M be a 2n-dimensional symplectic manifold endowed with a sym-
plectic form σ. A Lagrange distribution ∆ ⊂ TM is a smooth vector sub-
bundle of TM such that each fiber ∆x = ∆ ∩ TxM, x ∈ M, is a Lagrange
subspace of the symplectic space TxM ; in other words, dim ∆x = n and
σx(ξ, η) = 0 ∀ξ, η ∈ ∆x.

Basic examples are cotangent bundles endowed with the standard sym-
plectic structure and the “vertical” distribution:

M = T ∗N, ∆x = Tx(T ∗q N), ∀x ∈ T ∗q N, q ∈ N. (1)

Let h ∈ C∞(M); then ~h ∈ VecM is the associated to h Hamiltonian
vector field: dh = σ(·,~h). We assume that ~h is a complete vector field,
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i.e. solutions of the Hamiltonian system ẋ = ~h(x) are defined on the whole
time axis. We may assume that without a lack of generality since we are
going to study dynamics of the Hamiltonian system on compact subsets of
M and may reduce the general case to the complete one by the usual cut-off
procedure.

The generated by ~h Hamiltonian flow is denoted by et~h, t ∈ R. Other
notations: ∆̄ ⊂ VecM is the space of sections of the Lagrange distribution
∆; [v1, v2] ∈ VecM is the Lie bracket (the commutator) of the fields v1, v2 ∈
VecM, [v1, v2] = v1 ◦ v2 − v2 ◦ v1.

Definition 1 We say that ~h is regular at x ∈ M with respect to the Lagrange
distribution ∆ if {[~h, v](x) : v ∈ ∆̄} = TxM .

An effective version of Definition 1 is as follows: Let vi ∈ ∆̄, i = 1, . . . , n
be such that the vectors v1(x), . . . , vn(x) form a basis of ∆x; then ~h is regular
at xwith respect to ∆ if and only if the vectors

v1(x), . . . , vn(x), [~h, v1](x), . . . , [~h, vn](x)

form a basis of TxM .
We define a bilinear mapping gh : ∆̄× ∆̄ → C∞(M) by the formula:

gh(v1, v2) = σ([~h, v1], v2).

Lemma 1 gh(v2, v1) = gh(v1, v2), ∀v1, v2 ∈ ∆̄ and gh(v1, v2)(x) depends
only on v1(x), v2(x).

Proof. Hamiltonian flows preserve σ and σ vanishes on ∆̄. Using these
facts, we obtain:

0 = σ(v1, v2) =
(
et~h∗σ

)
(v1, v2) = σ(et~h

∗ v1, e
t~h
∗ v2).

Differentiation of the identity 0 = σ(et~h∗ v1, e
t~h∗ v2) with respect to t at t = 0

gives: 0 = σ([~h, v1], v2) + σ(v1, [~h, v2]). Now the anti-symmetry of σ implies
the symmetry of gh. Moreover, gh is C∞(M)-linear with respect to each
argument, hence gh(v1, v2)(x) depends only on v1(x), v2(x). ¤

Let x ∈ M, ξi ∈ ∆x, ξi = vi(x), vi ∈ ∆, i = 1, 2. We set gh
x(ξ1, ξ2) =

gh(v1, v2)(x). According to Lemma 1, gh
x is a well-defined symmetric bilinear

form on ∆x. It is easy to see that the regularity of h at x is equivalent to
the nondegeneracy of gh

x .

2



If M = T ∗N and ∆ is the vertical distribution (see (1)),
then gh

x = D2
x(h|T ∗q N ), where x ∈ T ∗q N . The last equation can be eas-

ily checked in local coordinates. Indeed, local coordinates defined on a
neighborhood O ⊂ N provide the identification of T ∗N |O with Rn × Rn =
{(p, q) : p, q ∈ Rn} such that T ∗q N is identified with Rn × {q}, the form

σ is identified with
n∑

i=1
dpi ∧ dqi and the field ~h with

n∑
i=1

(
∂h
∂pi

∂
∂qi

− ∂h
∂qi

∂
∂pi

)
.

The fields ∂
∂pi

form a basis of the vertical distribution and gh
(

∂
∂pi

, ∂
∂pj

)
=

−
〈

dqj ,

[
n∑

i=1

(
∂h
∂pi

∂
∂qi

− ∂h
∂qi

∂
∂pi

)
, ∂

∂pi

]〉
= ∂2h

∂pi∂pj
.

Definition 2 We say that a regular Hamiltonian field ~h is monotone at
x ∈ M with respect to ∆ if gh

x is a sign-definite form.

2 The Curvature

Let X1, X2 be a pair of transversal n-dimensional subspaces of TxM , then
TxM = X1 ⊕ X2. We denote by πx(X1, X2) the projector of TxM on X2

parallel to X1. In other words, πx(X1, X2) is a linear operator characterized
by the relations πx(X1, X2)|X1

= 0, πx(X1, X2)|X2
= 1.

Now consider the family of subspaces Jx(t) = e−t~h∗ ∆
et~h(x)

⊂ TxM , where
~h is a regular Hamiltonian field; in particular, Jx(0) = ∆x. It is easy to
check that the regularity of ~h implies the transversality of Jx(t) and Jx(τ)
for t 6= τ , if t and τ are close enough to 0. Hence πx(Jx(t), Jx(τ)) is well-
defined and smooth with respect to (t, τ) in a neighborhood of (0, 0) with
the removed diagonal t = τ . The mapping (t, τ) 7→ πx(Jx(t), Jx(τ)) has
a singularity at the diagonal, but this singularity can be controlled. In
particular, the following statement is valid:

Lemma 2 (see [1]). For any regular field ~h,

∂2

∂t∂τ

(
πx(Jx(t), Jx(τ))|∆x

)∣∣∣
τ=0

= t−21 + Rh
x + O(t) as t → 0,

where Rh
x ∈ gl(∆x) is a self-adjoint operator with respect to the scalar product

gh
x, i.e. gh

x(Rh
xξ1, ξ2) = gh

x(ξ1, R
h
xξ2), ∀ξ1, ξ2 ∈ ∆x.

We set rh
x(ξ) = gh

x(Rh
xξ, ξ).

Definition 3 Operator Rh
x and quadratic form rh

x are called the curvature
operator and the curvature form of ~h at x with respect to ∆. We say that
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~h has a negative (positive) curvature at x if rh
x(ξ)gh

x(ξ, ξ) < 0 (> 0), ∀ξ ∈
∆x \ {0}.

It follows from the definition that only monotone fields may have neg-
ative or positive curvature. If ~h is monotone at x, then Rh

x has only real
eigenvalues and negativity (positivity) of the curvature is equivalent to the
negativity (positivity) of all eigenvalues of Rh

x.
Let us give a coordinate presentation of Rh

x. Fix local coordinates
(p, q), p, q ∈ Rn in a neighborhood of x in M in such a way that ∆x

∼=
{(p, 0) : p ∈ Rn}. Let (p(t; p0), q(t; p0)) be the trajectory of the field ~h with
the initial conditions p(0; q0) = p0, q(0; p0) = 0. We set St = ∂q(t;p0)

∂p0
|p0=0;

regularity of ~h is equivalent to the nondegeneracy of the n × n-matrix
Ṡ0 = dSt

dt |t=0. The curvature operator is presented by the matrix Schwartzian
derivative:

Rh
x = 1/2Ṡ−1

0

...
S0 −3/4(Ṡ−1

0 S̈0)2.

Examples:

1. Natural mechanical system, M = Rn×Rn, σ =
n∑

i=1
dpi ∧ dqi, ∆(p,q) =

(Rn, 0), h(p, q) = 1/2‖p|2 + U(q); then Rh
(p,q) = d2U

dq2 .

2. Riemannian geodesic flow, M = T ∗N and h|T ∗q N is a positive quadratic
form ∀q ∈ N ; then h is actually a Riemannian structure on N which
identifies the tangent and cotangent bundles and we have: Rh

xξ =
R(x′, ξ′)x′, where R is the Riemanian curvature tensor and x′, ξ′ ∈
TqM are obtained from x, ξ ∈ T ∗q M by the “raising of the indices”.

3. Mechanical system on a Riemannian manifold, M = T ∗N and h is the
sum of the Riemannian Hamiltonian from Example 2 and the function
U ◦ π, where π : T ∗N → N is standard projection and U is a smooth
function on N . Then Rh

xξ = R(x, ξ)x + ∇ξ(∇U), where ∇ξ is the
Riemannian covariant derivative.

Now we introduce a reduced curvature form r̂h
x defined on ∆x ∩ ker dxh

and related to the restriction of the Hamiltonian system on the prescribed
energy level. To do that, we need some notations. Symplectic form σx on
TxM induces a nondegenerate pairing of ∆x and TxM/∆x. Hence there
exists a unique linear mapping Gx : ∆x → TxM/∆x such that gx(ξ1, ξ2) =
σx(Gxξ1, ξ2), ∀ξ1, ξ2 ∈ ∆x. The mapping Gx is invertible since the form gx

is nondegenerate. Let Πx : TxM → TxM/∆x be the canonical projection.
We set v(x) = G−1

x Πx
~h(x); then v is a smooth section of ∆, i.e. v ∈ ∆̄.
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Assume that ~h is a monotone field and ~h(x) /∈ ∆x; the reduced curvature
form is defined by the formula:

r̂h
x(ξ) = rh

x(ξ) +
3σx([~h, [~h, v]](x), ξ)2

4gx(v(x), v(x))
, ξ ∈ ∆x ∩ ker dxh.

In Ex. 1, we obtain: r̂h
(p,q)(ξ) = rh

(p,q)(ξ) + 3
|p|2 〈dU

dq , ξ〉2. In Ex. 2, r̂h
x(ξ) =

rh
x(ξ). Finally, in Ex. 3 (which includes both Ex. 1 and Ex. 2) we have:

r̂h
x(ξ) = rh

x(ξ) + 3gx(dqU,ξ)2

2(h(x)−U(q)) , where q = π(x).

We say that ~h has a negative (positive) reduced curvature at x if
r̂h
x(ξ)gh

x(ξ, ξ) < 0 (> 0), ∀ξ ∈ ∆x ∩ ker dxh \ {0}.

3 Main Results

Theorem 1 Let ~h be a monotone field and x0 ∈ M . Assume that the semi-
trajectory {et~h(x0) : t ≥ 0} has a compact closure and ~h has a negative
curvature at each point of its closure. Then there exists x∞ = lim

t→+∞ et~h(x0),

where ~h(x∞) = 0 and Dx∞
~h is hyperbolic (i.e. Dx∞

~h has no eigenvalues on
the imaginary axis).

Remark. Monotonicity of ~h is equivalent to the monotonicity of −~h and
R−h

x = Rh
x; hence Theorem 1 can be applied to the negative time semi-

trajectories of the field ~h as well.

Example. Consider a natural mechanical system (Ex. 1 in Sec. 2) where
U(q) is a strongly concave function, then any bounded semi-trajectory of ~h
satisfies conditions of Theorem 1.

Theorem 2 Let ~h be a monotone field, S be a compact invariant subset
of the flow et~h contained in a fix level set of h, S ⊂ h−1(c), and ~h(x) /∈
∆x ∀x ∈ S. If ~h has a negative reduced curvature at each point of S, then S

is a hyperbolic set of the flow et~h
∣∣∣
h−1(c)

(see [2, Sec. 17.4] for the definition

of a hyperbolic set).

Example. Mechanical system on a Riemannian manifold (Ex. 3 in Sec. 2).
Let κq be the maximal sectional curvature of the Riemannian manifold N

at q ∈ N . Then any compact invariant set S of the flow et~h
∣∣∣
h−1(c)

such that

the projection of S to N is contained in the domain
{
q ∈ N : κq < 0, 2max{‖∇2

qU‖/|κq|, |∇qU |2} < c− U(q)
}
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is hyperbolic. In particular, if N is a compact Riemannian manifold of a
negative sectional curvature, then et~h

∣∣∣
h−1(c)

is an Anosov flow for any big

enough c. Last statement generalizes a classical result on geodesic flows.

Both theorems are based on the structural equations derived in [1]. These
equations are similar to the standard linear differential equation for Jacobi
vector fields in Riemannian Geometry with the curvature operators Rh

x play-
ing the same role as the Riemannian curvature. In particular, the proof of
Theorem 2 simply simulates the proof of the correspondent classical result
on geodesic flows. Theorem 1 describes a new phenomenon, which is not
performed by geodesic flows. Indeed, if the curvature is negative, then the
operators Rh

x are nondegenerate, while in the Riemannian case (Ex. 2 in
Sec. 2) we have Rh

xe(x) = 0, where e is the Euler field (i.e. the field gener-
ating homothety of the fibers T ∗q N).
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