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Abstract

A Carnot algebra is a graded nilpotent Lie algebra L = L; @ --- & L,
generated by Li. The bi-dimension of the Carnot algebra L is the pair
(dim Lq,dim L). A Carnot algebra is called rigid if it is isomorphic to any
of its small perturbations in the space of Carnot algebras of the prescribed
bi-dimension. In this paper we give a complete classification of rigid
Carnot algebras. Besides free nilpotent Lie algebras there are two infinite

series and 29 exceptional rigid algebras of 16 exceptional bi-dimensions.

1 Introduction

One main motivation to study Carnot algebras is their role as local nilpotent
approximations of regular vector distributions.

Let M be a (C*°-) smooth n-dimensional manifold and F C VecM be a set
of smooth vector fields on M. Given ¢ € M and an integer [ > 0 we set

Al = span {[f1, [+, [fic1, fil (@) : fy € F, 1 <4 <i, i <1} ST, M.

Of course, Aé C A7 for I < m. The set F is called bracket generating (or
completely nonholonomic) at ¢ if there exists r such that Ay = Ty;M. The
minimal among these r is called the degree of nonholonomy of F at q. The set

F is called bracket generating if it is bracket generating at every point.

Definition 1 We say that F C VecM is reqular at g0 € M if dim Af} is constant
in a neighborhood of qo, Vi > 0.

Let F be regular at go and dimA} = d. Take fi,...,fs € F such that
vectors f1(qo),- -, fa(qo) form a basis of Aéo. Then fi1(q),..., fa(g) form a



basis of Aé for any ¢ from a neighborhood of ¢y. Hence, for any f € F there

d
exist smooth functions ay, ..., aq such that f(q) = 3 a;(q)fi(q) for any ¢ from
i=1
the same neighborhood. It follows that

Aé: span {[fzu[vfu]](Q) : ISZ] Sd}+Ai]71’ l:1727

The regularity implies that one can select vector fields from the collection
{lIfir, .-+, fi]l---)(@) : 1 < i; < d} in such a way that the values of the se-
lected fields at ¢ form a basis of Afl / Af;l for all ¢ close enough to qy. With

these bases in hands we easily obtain the following well-known fact:

Lemma 1 Assume that F C VecM is reqular at qo, vi,v; € VecM, v;(q) €
Al wi(q) € A) Vg, and vi(go) = 0. Then [v;,v;](qo) € ALTI~1,

It follows immediately from this lemma that the Lie brackets of the vector
fields with values in Af], 1=1,2,..., induce the structure of a graded Lie alge-
bra on the space Y Al /A!~!. We denote this graded Lie algebra by Lieg,F.

i>0

Obviously, Liey, F is generated by Aéﬂ. In particular, Liey, J is a Carnot alge-
bra.

Moreover, any Carnot algebra L can be realized as Liey, F for some F.
Indeed, let M be a Lie group with Lie algebra L and g¢ be the unit element of
this group. Then L, is a regular bracket generating set of left-invariant vector
fields on M and L = Liey, L;.

We now turn to the generic case. Let L£; be the free Lie algebra with d

generators (all algebras in this paper are over R); in other words, L4 is the

0 .
Lie algebra of commutator polynomials of d variables. We have L4 = € L,

i=1
where £} is the space of degree i homogeneous commutator polynomials. Then

£g) = @D L)) @ L) is the free nilpotent Lie algebra of “length” r. We set
j=1 j=r+1
£4(i) = dim £}, Zg') = > 44(i) = dim [Zg'). The classical recursion expression
i=1
of Ed(l) is: zﬁd(z) =d — Z]Ed(])
gli
Any Carnot algebra of bi-dimension (d,n) is a factor-algebra of ,C((in) with
respect to some graded ideal of codimension n. These algebras can be realized
as follows. Any surjective linear mapping A : E((i") — R™ induces a filtration of

k , _
R™ by the subspaces EX = > ALY, k=1,...,n. We set Ay : Lk — Ef‘/E’jl_l,
i=1



— n —
the composition of A| ck with the canonical factorization, and A = @ A, the
k=1

induced mapping of the graded linear spaces.

Let 2A(d,n) C Hom(ﬁgn),R”) be the set of all surjective linear mappings
A £ — R" such that ker A is an ideal of £J”. If A € (d,n), then
E((i") / ker A is a Carnot algebra and any Carnot algebra can be realized in this

way. Of course, different ideals may provide isomorphic Carnot algebras.

Definition 2 A Carnot algebra L of bi-dimension (d,n) is called rigid if the
set of A € A(d,n) such that L = Eg”)/ ker A is an open subset of A(d,n).

Here symbol 2 denotes the isomorphism relation for Carnot algebras.

So a Carnot algebra is rigid if it does not admit deformations: any admissible
small perturbation of A gives an isomorphic Carnot algebra. As a first step
towards the classification of rigid cases we describe a more general class of
“generic” A which characterizes Carnot algebras Lieg, {f1,..., fa} for generic
germs of d-tuples of vector fields.

Proposition 1 Let Ao(d,n) be the set of all surjective linear mappings

B 0 f(i)
A: ﬁgn) — R™ such that ker A; = { . gé) i " Then Ao(d,n) C A(d,n)
d ta =T

and Ao(d,n) is an open everywhere dense subset of Hom(ﬁfin),R").

Proof. Let r = min{i : E((ji) >n}. Then A € Ay(d,n) if and only if Al s
Ly
i=1

an injective map and A

- is a surjective map. Surely, these properties are
ri

A d
=1

valid for an open dense subset of Hom(ﬁ&"),R”). Moreover, if A € 205(d, n) then

ker A= (ker 4,) @A ( ) Eé). In other words, ker A is the direct sum of
i=r+1

n .
a linear subspace of £}, and A < &P ) LQ). Obviously, any such a subspace is
i=r+

an ideal of E((in). O

Corollary 1 Any rigid Carnot algebra of bi-dimension (d,n) is isomorphic to
£g)/E, where r = min{ : ES) >n} and E is a (ffir) — n) -dimensional subspace
of LY.

We set m = Eg«) — n. Rigid Carnot algebras of bi-dimension (d,n) are
thus characterized by mm-dimensional subspaces of L£]. Let Grg(L}) be the
Grassmannian of m-dimensional subspaces of L. Of course, not any £ €



Gr;7(L£]) gives a rigid Carnot algebra. Moreover, not any bi-dimension admits
a rigid Carnot algebra.

Definition 3 A bi-dimension (d,n) is called rigid if there exists a rigid Carnot

algebra of bi-dimension (d,n).

Two Carnot algebras C&T)/Ei, E; € Gry(L]), @ = 1,2, are isomorphic if
and only if there exists an automorphism of Eg) which transforms FE; into
FE5. The automorphisms of the free nilpotent Lie algebra E((ir) are in one-to-one

correspondence with linear transformations of R? = L}. More precisely, the rule
(@) def 1
1% [1‘17[71‘1]] = [Vxl,[,Vxl]], xl,...,$i€£d,

provides a canonical extension of V € GL(R?) to the automorphism V) @ .- @
V) of L’g). In particular, we obtain a canonical action V — V(") of GL(RY)
on L}; Carnot Lie algebras ,Cf[) /E;, i = 1,2 are isomorphic if and only if there
exists V € GL(R?) such that V(W E; = E.

Let ®(V) : Grap(L5) — Gry (L), V € GL(RY), be the induced action of
GL(R?) on the Grassmannian so that ®(V)(E) = VWE, E € Gry(L}). The
Carnot algebra Eg) /E is rigid if and only if F belongs to a full-dimensional orbit
of the action ®. In particular, the bi-dimension (d, n) is rigid if and only if there
exists a full-dimensional orbit of ®. Moreover, such orbits are actually in one-
to-one correspondence with the isomorphism classes of rigid Carnot algebras.

The action ® is algebraic; this implies the following

Corollary 2 Let (d,n) be a rigid bi-dimension. Then the set of E € Grsz (L))
such that ££lr)/E is rigid is a Zarisski open (in particular, open dense) subset
of Gryz, (L) and there is only a finite number of mutually nonisomorphic rigid

Carnot algebras of the bi-dimension (d,n).

In the next theorem we list all rigid bi-dimensions. It is convenient to give
special names to some infinite series of bi-dimensions. For d = 2,3,4,..., the
bi-dimensions (d, E((;)), i=1,2,3,..., are called free; the bi-dimension (d,d + 1)
is called Darboux bi-dimension, and the bi-dimension (d, (d — 1)(d + 2)/2) is

called dual Darboux bi-dimension.

Theorem 1 All free, Darbouz, and dual Darbouz bi-dimensions are rigid; any
of these bi-dimensions admits a unique up to an isomorphism rigid Carnot al-

gebra. Besides that, there are 16 exceptional Tigid bi-dimensions:
(27 4)17 (2a 6)2a (2a 7)2a (47 6)2; (47 7)27 (47 8)2;



(5,71, (5,8)2, (5,9)3, (5,11)3, (5,12)2, (5,13)1,

(6,8)2, (6,19)2, (7,9)1, (7,26)1,
where index j in the expression (d,n); indicates the number of isomorphism
classes of rigid Carnot algebras for the given bi-dimension (d,n).

All other bi-dimensions are not rigid.

In the rest of the paper we will prove this theorem: in Section 2 we will give
a necessary condition for a bi-dimension to be rigid. We obtain that only free
bi-dimensions are rigid if the degree of nonholonomy r is bigger than 4. Few
following sections are devoted to the analysis of bi-dimensions corresponding to
r = 2,3,4: Section 3 for r = 2, Section 4 for » = 3 and Section 5 for r = 4. We
present a canonical basis and the multiplication table for any isomorphism class
of rigid Carnot algebras. These multiplication tables are then used in Section 6

to give the normal forms for all possible rigid Lie algebras of vector fields.

2 Rigidity: Necessary Condition
We have the following:
Proposition 2 Let (d,n) be a rigid bi—-dimension; then
d? > (L4(r) —m)m. (1)

Proof. It was shown in the previous section that to rigid Carnot algebras
there correspond full-dimensional orbits of the action of GL(R?) on Gr,(L5).
Let us compair the dimensions. We have dim GL(R?) = d2, £, = RYa(r)
dim Grz (L£]) = m(€y(r) — m). Taking into account that scalar multiples of
the identity matrix from GL(R?) act trivially on the Grassmannian, we obtain

that a necessary condition for the existence of a full-dimensional orbit is:
d*> —1> (L4(r) — m)m

and the proposition is proved. O
First of all we observe that condition (1) is trivially satisfied when m = 0.
Moreover, the condition is satisfied for some m if and only if it is satisfied for
m = Lq(r) — m.
For r = 1 we have £4(1) = d, hence, by definition of /m, it must be m = 0.
These cases correspond to the free bi-dimension (d, d).
For r = 2, since ¢4(2) = 3d(d — 1), condition (1) is verified for all m =
0,1,...,04(2) —1if d < 4, for m = 0,1,...,64(2) — 1, with m # 5,if d =5



and for all m = 0,1,2,04(2) — 2,¢4(2) — 1 if d > 6. Notice that bi-dimensions
corresponding to m = 0,1,£4(2) — 1 are respectively free, dual Darboux and
Darboux bi—-dimensions.

For 7 =3, £4(3) = 3(d* — d) and condition (1) holds for m = 0,1 = (4(3) — 1 if
d =2 and for m = 0,1,¢4(3) — 1 if d = 3. The bi-dimensions corresponding to
m = 0 are free.

Finally, for r = 4, £4(4) = 1(d* — d*) and condition (1) holds for all m =
0,1,...,0q(4) — 1ifd = 2.

For r > 4 condition (1) is never satisfied for m > 0.

In synthesis, beside the free bi-dimensions, we have the following cases to

analyse:
r=2|d=3 m=1,2
d=14 m=1,2,3,4,5
d=5 m=1,2,3,4,6,7,8,9
d>6 | m=1,2042)—204(2) — 1
r=3|d=2 m=1
d=3 m=1,7
r=4|d=2 m=1,2

Let m = £4(r) — m and £} be the adjoint space to £. The involution
E +— E* sends m-dimensional subspaces of L}, into m-dimensional subspaces
of L. Denote by ® the corresponding action of GL(R?) on Gr,, (L] ); it acts
according to the rule: ®(V)(E+1) = (®(V)E)* .

In forthcoming sections we deal with the action ® on Grm(ﬁg) rather than
with the action ® on Gry;(L]); this makes shorter the way from the classification
of subspaces to the tables of products of the Lie algebras. Moreover, we mainly

work in a fixed Hall basis of £]; and do not make difference between L, and ﬁg*.

3 Cases with r =2

The following proposition allows us to reduce the analysis of possibly rigid bi-

dimensions for r = 2.

Proposition 3 If r = 2 then the bi—dimension (d, 5271 + m) is rigid if and
only if the dual bi-dimension (d,¢, —m) is rigid. Moreover the number of
isomporphism classes of rigid algebras for the bi-dimension (d, 52_1 +m) and
the dual bi-dimension (d,{; —m) is the same.



Proof. Let ® be the action on Gry,(£32) as in Section 1. Fix E € Gr,,(£3) and
consider the following maps

v: GLRY) — Gr,, (L£3)
1% = ®(V)(E)

¥: GL(RY) — Gryye)_m(L?)
1% - O(V)(EY)

Let V € GL(R?), and denote by V=7 = (VT)~!. We show that for all V €
GL(RY), B(V-T) = (¥(V))* so that a one to one correspondence between the
image of ¥ and that of U is established and the proposition is proved.

Let V € GL(RY), V = (va)?,_, and gi(q) = X0, va(a) fia), i =1,....d.

Then
Vit Vg
l9.95] = ®(V)[fi, f5] = det PO e )
1<k Vit Vik
Hence, ®(VT) = (®(V))T and ®(V1V2) = ®(V1)®(V3) for all V, V4, Vo € GL(RY).
It follows that ®(V~T) = (®(V))~7T and for all w; € E,w; € B+,

<OV Nwy, ®(V)wy >= wl (®(V))1d(V)wy =< wo, w; >= 0,

which proves that W(V-T) = (¥(V))*. O

Assume that we know a multiplication table for some m then we obtain the
dual multiplication table as follows.

Let f™, i =1,...,4(2), be Lie brackets of order 2 which are linearly in-
dependent with respect to the Jacobi identity. Assume that the multiplication
table gives: f™ = Z;":l Xijf7, for i = m+1,...,64(2), i.e. Af = 0 where
A=[A] = Loy ml,

)\(m-i—l)l T )‘(m—i-l)m
Ag21 T Aea@)m

and f = [f™,...,f"a®]. Then At = [I,,|AT]f represents the orthogonal
space to that generated by A and the dual multiplication table is given by AL f,
ie. fM = — Zfi(i)-u Xij f™, for j = 1,...,m. As example, in this paper we
will give the dual multiplication table and the corresponding normal form for

m = 1. The other dual cases may be obtained as seen so far.

The space £2 is identified with the wedge square A\°R?. Hence any E €
Gr,,, (L£2) is identified with an m-dimensional vector space of d x d antisymmetric



matrices. In order to fix notations we next describe this identification (and the
corresponding action of GL(R?)) in more detail.

Fix f1,..., fa generators for £} and let f™,..., f™ be such that they form
a basis of E € Gr,,,(£3). Then we can write [fy, fx] = Y, wp f™. Notice
that, since [fi, fx] = —[fs, fi], for all h = 1,...,m, w" = {Wh}p isadxd
antisymmetric matrix. For a different choice of the set {f™ 6 h = 1,...,m},

that is f™ = > xp; f™, we have

m
s 6] = @i /™ (2)
i=1
where &' = >, Thiw™.
Consider the space generated by w", h = 1,...,m and write any element
of the space under consideration as w(z) = Y, z;w', © = (z1,...,%y). Let

V € GL(R?). Then
S(V)[fi, f] = Zvizvjk[fh frl = Z Zvizvjszhkf” = Z(VWhVT)ijfﬂh~
Ik b ik h

Hence ®(V)w(z) = Vw(z)VT.
Next we analyse all the possibly rigid bi—dimension for r = 2 up to duality:
d,d + 1) for any d, corresponding to m = 1, section 3.1;

( )

(d,d + 2) for d > 4, corresponding to m = 2, section 3.2;

(d,d+ 3) for d = 4 and d = 5 corresponding to m = 3, section 3.3;
( )

d,d + 4) for d =5 corresponding to m = 4, section 3.4.

3.1 The case m =1

In this case we have a 1 dimensional space of antisymmetric d x d matrices. A
generic d x d antisymmetric matrix w can be written as w = VDV where V is

nonsingular and D is block diagonal matrix with blocks D; as described next.
e If wis adx d matrix with d even then D;,i =1,...d/2 are all 2 x 2 of
tvpe 0 1
yp 1 0|’
e if wis a d x d matrix with d odd then D;,i =1,...(d —1)/2 are all 2 x 2

of type [
block.

1
0 ] and D; for i = (d—1)/2+ 1 is the zero 1-dimensional



Then we have:

Proposition 4 The Darbouzx bi-dimension (d,d + 1) is rigid with unique iso-
morphism class. The representing family F is completely described by the fol-
lowing multiplication table for d even (d odd):

[fi.fo]  ifj=2i . d d—1

— 1L S fordoodd) (3
0 otherwise ’ 2( 2 for d odd ) (3)

[f2i717fj] = {

By duality, also the dual Darbouz bi—dimension (d, (d—1)(d+1)/2) is rigid with

unique isomorphism class. The multiplication table is:

[f1, fa] = { Zi%é2[f2i717f2i] if d is even "

S 2 [faicts foi] ifdis odd

The normal forms are given in Section 6, equations (34) and (35), for the Dar-

boux and dual Darboux bi—dimension, respectively.

3.2 The case m =2

If m = 2, then any E € Gr,,(£3) is identified with a 2-dimensional subspace of
the vector space /\2 R? of d x d antisymmetric matrices . We distinguish among
d even or odd.

Assume first that d is even and that Pf (w) is the Pfaffian of the d x d
antisymmetric matrix w. Recall that Pf is a degree % homogeneous polynomial
such that ( Pf (w))? = det (w).

Let w!,w? € /\2 R form a basis of the subspace E under consideration so
that any element of the subspace can be written as w(z1,x2) = 1w + T2w?.
Consider the polynomial p(z1,22) = Pf (w(x1,22)). A change of the basis of F
induces a linear change of variables of the polynomial p(z1,z2) and the trans-
formation w +— VTwV, V € GL(R?) preserves p(z1,x2) up to a scalar multiplier
since Pf(VTw(zy,29)V) = det V Pf (w(z1,22)). The following holds:

Proposition 5 If d is even then the codimension of any orbit of the action ®
in Gro(L3) is no less than 4 — 3.

Proof. The space of degree g homogeneous polynomials of 2 variables has
dimension % + 1 and the group GL(2) of linear changes of variables in the plane
is 4-dimensional. The polynomials p(x1,z2) = Pf (w(x1,22)) are invariant by

the action ® up to linear changes of variables. We have % +1—-4= % —3. What



remains to show is that any polynomial of degree g is realized as Pf (w(x1,x2)).

This is easy. Consider for example

J 0 -+ 0 aJ 0 -+ 0
0 J 0 0 o 0
wl = g w? = . ,
0 0 J 0 0 a%J
. . . 1
where by J we denote the 2 x 2 antisymmetric matrix 10 1 .
We have that Pf (w(z1,22)) = (aoz1 + a1x2)(apr1 + aoxe) - -+ (apry + a%xg),

d

2

suitably choosing ag, a1, o, ..., a. O
2

hence any polynomial of degree & in the variables x1,z2 can be obtained by

Corollary 3 Let d be even and (d,d + 2) be rigid; then d < 8.

By Corollary 3 we only have to analyse the cases with d < &8, that is d = 4
and d = 6. For these cases we have the following:

Proposition 6 For d =4 and d = 6 the bi-dimension (d,d + 2) is rigid with
two isomorphism classes distinguished by the sign of the discriminant of the

polynomial Pf (w(z1,x2)).
Proof. Observe that the roots of
Pf (w(z1,22)) =0 (5)
can be:
d = 4: either real or complex conjugate.
d = 6: either three real or one real and two complex conjugate.

Next we provide the multiplication table for a representing family F for each
of the above cases. This will show that the bi-dimensions (d,d 4 2) are rigid
and the isomorphism class is uniquely reconstructed from the number of real

roots of equation (5).

d = 4, real case

Consider a generic 2 dimensional subspace of A>R?. Then equation (5) has

simple roots and to form a basis of the subspace under consideration we can

10



choose two corank 2, 4 x 4 antisymmetric matrices, w!' and w?, with transversal

kernel. Let eg,es,e3,e4 € R*, be linearly independent and such that ej,e; €

2

ker w? with efwles = 1 and e3,e4 € ker w! with elw?ey = 1. By writing the

equation (2) in these coordinates we obtain the following multiplication table:

[f1, fo] = f™
[f3, fa] = ™ (6)
[fi, fi] =0 otherwise.

The normal form for F is reported in Section 6 equation (36).

d = 4, complex case

Let (x1,1), (Z1,1) a pair of conjugate complex solutions to equation (5). Then
1

wt = 210" + &% and w? = ;@' + @2 are two corank 2, 4 x 4 antisymmetric
matrices with complex coefficients such that

wl +w? = 2R(w!)

wl —w? = 23 (wh).

Observe that it is sufficient to find a normal form for R(w!) and J(w?), indeed
TR T = (R + 3@ + (R — 13w =
(R(w) +03(wh) (S + 1727 ) + (R(wh) — 1S (wh) (27 + 2 )
= () +13@) (07 + ) + o = )

FR(w) = oS@h) (§(F + =) = b - )
= 1 (RN + ) = S@H(F - fr))
3 (R = S(@h) f™ + 5 (R + S(w") f.
Let p=p1 +1p2, ¢ =ps +1ps € kerw', with piR(w')ps = 1, poJ(w')ps = 1.
Then, in the coordinates p1, p2, p3, p4, we can write:

0 0 1 1 0 0 -1 1
1 -1 1 1
R(w!) = 0 0 S(wl) = 0 0
-1 -1 0 O 1 -1 0 0
-1 1 0 O -1 -1 0 0

Finally, writing the equation w = w' f’” + w? f’r’" in the new coordinates, we
obtain the following multiplication table:

[fr: fal = [fs; fa] = 0,
[f1, f3] = =2, f4] =~f7”’ (7)
[f1, fa] = [fa, f3] = f™.

The normal form for F is reported in Section 6 equation (37).

11



d = 6, real case

Consider a generic 2 dimensional subspace of A>R?. Then equation (5) has
simple roots: (z1,1), (z2,1) and (z3,1). Let A1, A2,A3 # 0 be such that
A(21,1) + Aa(x2,1) = A3(x3,1). Hence w® = \;@! + \@?, for i = 1,2,3,
are 6 x 6 antisymmetric matrices such that w® = w! +w?. Moreover, by generic
assumptions, we also have that the kernels of the above matrices are transver-
sal. Then let p;, i = 1,...,6 € RS be linearly independent, with p;,ps € ker w?,
p3,ps € ker w! and ps,ps € ker w? such that pyw'py = 1 and psw?py = 1. In
these coordinates we can write

J 0 0 0 0 0 J 0 0
wr=10 0 0 |, w?=]0 J 0], w3=]0 J 0
0 0 —J 0 0 J 0 0 0

Finally, equation (2) gives the following multiplication table for F:

[f5’f6] = _[flan] + [fg,f4]
[fi, f;] =0 otherwise.

The normal form is given in Section 6, equation (39).

d = 6, complex case

Let (x1,1), (x2,1) and (x3, 1) be the three solutions to equation (5) with x3 € R
and xo = %7, where by T we denote the conjugate of x. There exists A1, A2, Az €
C, with Ao = A; and A3 € R, such that w® = \jz;&' + \;@2, for i = 1,2,3, is
antisymmetric with

wl +w? = 2R(wh)

wl —w? = 23 (wh)

w? = w! +w? = 2R(wh).

Let p1,p2 € ker (w3) with p;S(w!)pe = 1 and pa, ..., ps orthogonal to the 2
dimensional space generated by {S(w!)p;, i = 1,2}. In these coordinates we

0 0 J 0
%(”1>:[0 %(wlml %(“’1):[0 %(w%]’

write:

where R(w!)az and J(w!)ae are 4 x 4 antisymmetric matrices with R(w!)aq +

13 (w')a2 of corank 2. Therefore we are reduced to consider the complex case

12



for d = 4 and, with the same arguments, we can write

00 0 0 0 O 0o 1 0 0 0 O
00 0 0 0 O -10 0 0 0 O
0 0 O 0 1 1 0 0 0 0 -1 1
Rw') = ,S(wh) =
0 0 O 0 1 -1 0 0 0 0 1 1
00 -1 -1 0 0 0 0 1 -1 0 O
L0 0 -1 1 0 0 | | 0 0 -1 -1 0 0 |
and
1 1 1\\ fm 1 1 1\\ fm
W= 2R ~ S+ 3R + 3w
Finally we obtain the following multiplication table:
(i, f2] = f™ — fm, )
[f3af5]:7[f4;f6] :~fﬂ1a (9)
[f3, fol = [fa, f5] = f™,
[fi, fj] =0 otherwise.
The normal form for F is reported in Section 6 equation (40). O

To complete the analysis for m = 2 it remains to study the cases where d is
odd.

Proposition 7 Let d = 2k+1. Then the codimension of any orbit of the action
® on Gro(L32) is no less than k — 3.

Proof. Consider the action (V;(w!,w?)) — (VIW'V,VTw?V) of the group
GL(R?) on the space of pairs of d x d antisymmetric matrices. It is enough to
show that the codimension of orbits of this action is no less than k. Indeed,
the space of bases (w1,ws) of a fixed 2-dimensional subspace is 4-dimensional,
but the difference of the codimensions of the given orbit in the space of pairs of
matrices and in the Grassmannian cannot be greater than 3 since the action of

scalar matrices V = ¢l on (wy,ws) does not change the subspace.

Let w' € \* R+ with w! = [ it i where @' € \?R2",
0 0
0 J 0
~1 _
0 0 J

13



The subspace of Q(2k + 1) C GL(R?**1) which preserves w! is given by the

V9o
v |1

mations, and v € R?*. The codimension of the orbit of the pair (wy,ws) is equal

matrices V = , where V e Sp(k), the group of symplectic transfor-

to the codimension of the orbit of a matrix w? € /\2 R2%+1 under the action of
@2 —VT
v 0
orbit of w? under the action of (2k + 1) is no less than the codimension of &2
under the action of Sp(k). Indeed, let Stab(@?) C Sp(k) be the stabilizer of &2.

Stab(©?) | 0

Q(2k +1). We have w? = , v € R?. The codimension of the

Then is contained in the stabilizer of w? under the action of

Q(2k+ 1) and the codimension of Sp(k) in 2(2k + 1) equals the codimension of
/\2 R2* in /\2 R2k+1

On the other hand, the codimension of the orbit of &2 under the action of
Sp(k) equals the codimension of the orbit of the pair (@', ®?) under the action
of GL(R?*). The codimension of the last orbit is no less than & since the action
of GL(R?*) leaves invariant the Pfaffian p(z1,22) = Pf (210! + 29w?), up to a
scalar multiplier. (cf. the proof of Proposition 5). O

As corollary of the above proposition we have that (d, d + 2) is not rigid for
all d > 8. Then the only bi-dimensions to analyse are (5,7) and (7,9). Next we

show the following;:

Proposition 8 Letd =5 ord = 7. Then the bi-dimensions (d,d+ 2) are rigid

with only one isomorphism class.

Proof.

d=5

Consider a pair of 5 x 5 antisymmetric matrices, w!' and w?. Recall that d x d
antisymmetric matrices with d odd, have always corank at least 1 therefore we
take p; € ker w! and py € ker w?. By generic assumptions we have that p; and

po are linearly independent. In these coordinates we write

1 w%l Ul 2 w%l UQ
W= T y W= T
-v; 0 —vy 0
where vy, vy € R? and, for i = 1,2, w!; is the first 4 x 4 principal submatrix of

w’ and has corank 2. Hence, using the same arguments as for the real case with

14



d = 4, we can assume the w' and w? have the following form:

J 0 ;
w=1 00| |,
L ! 0 -
00 | 1
Wi=| 0 J |
—vf 0 |
P 0 N
Let now P = 0 P , where P; and P, are 2 x 2 matrices with
0 1
determinant equal to 1 and o € R*. We have that
o ) -
(PYToY(Py=1 0 0 | ' | and
ECHER
F 0 o / d
- Vs
(P)Yre*(P)=| 0 J ;
| —(w3)" | 0 |
where _ .. -
P 0 J 0
/ 1
= + d
v 0PI ( 0 0 e vl> an
g oo ]o o'aﬂ
2 0o Pf 0 J 2]
For a suitable choice of o, P; and P,, we can write v; = [0, 0, 1, O]T, vh =
[1,0,0,0]" and ) )
0
J 0
0
wh = 1 ,
0 0
0
00 -1 0] 0
_ .
0 0
0
2 _ 0
“ 0 J
0
| -1 0 0 0 0 |
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Equation (2) in these coordinates gives the following multiplication table for a
representative family F:

[f3, f5] = [f1, fo] = f™
[f1, f5] = [f3, fa] = f72 (10)
[fi, f;] =0 otherwise.

The normal form for F is reported in Section (6), equation (38).
d=717

With the same arguments as for the previous case, we can reduce to the case of
a pair of d x d antisymmetric matrices of the form:

J 0 0
1 0O 0 O U1
w =
0o 0 —J
L —oT 0
[0 0 0
2 O J O V2
w =
0o 0 J
L —vd 0
P 0 O
. 0 P2 0 « .
By letting P = , where Py, P, and P5 are 2 X 2 matrices
0 0 P
0 1

with determinant equal to 1 and o € R® we obtain, for suitable choices of
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Py, Py, P3 and o, v}, = [0, 0, 1,0, 1,0]" and v, = [1, 0, 0, 0, 0, 1]",

0
J 0 0
0
0 0 0 !
wl = 0 and
1
0 0 —J
0
| 00 -1 0 -1 0 0 ]
- =
0 0 0
0
0
5 0 J 0
w* = 0
0
0 0 J
1
| -1 0000 -1 0 ]
Finallay we have the following multiplication table:
[f3: f2] = fs, fo] = [f1, o] = f™
[f1, f2] = [fe, fo] = [fs, fa] = f™ (11)
[fs: fol = =™ + ™
[fis [;] = 0 otherwise.
See Section (6), equation (41) for the normal form. O

3.3 The case m =3

In this case we deal with a three dimensional space of d x d antisymmetric

matrices.

Proposition 9 The bi—dimension (4,7) is rigid with two isomorphism classes

distinguished by the signature of the quadratic form Pf (zjw! + mow? + 2303).
Proof. The equation Pf (z1w! + xow? + z3w3) = 0 can be rewritten as:
[x17x27x3]A[x1ax27x3]T :07 (12)

with A a 3x3 symmetric matrix. Depending on the signature of A we either have
real roots (corresponding to non definite A) or complex roots (corresponding to

sign definite A). Next we provide the multiplication table for a representing
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family F for each of the above cases. This will show that the bi-dimensions
(d,d+3) are rigid and the isomorphism class is uniquely reconstructed from the

number of real roots of equation (12).

d = 4, real case

Consider a generic 3 dimensional subspace of /\2 R?. Then the matrix A of
equation (12) is non degenerate one. If A is not sign definite, then we can

assume that
0

A= 0

O O N

0
1
2
0

Hence the real solutions to equation (12) are

(@11, 221, 231] = [1,0,0],
[I1271‘22,$32] = [07 17 ]a and
[(Elg, xr23, 1'33] = [a, b, C], with ab + 62 =0.

Then w! = @', w? = @2 and w3 = a@' +b0?+ 3, with ab+c? = 0, have corank

2. Moreover, under generic assumptions, we have that the kernels of w', w? and
w? are transversal. In the coordinates py,ps € ker (w?), p3,ps € ker (w!), with

prwlps =1 and psw?py = 1, we write:

0 1 00 00 0 O

Wl — -1 0 0 0 W2 00 0 O

0 00 0]’ 00 0 1

0 0 0 O 0 0 -1 0

and
wd = ad! +b? + 3 =

0 a + cwio cwi3 CwW14

—a — cwio 0 Cwa3 CWay
—cw13 —Cwas 0 b+ cwszy

—Ccwig —cwyy  —b— cwsy 0

where w;; are the components of @®. Since w® has corank 2, the following
condition holds true, for all a, b, ¢ such that ab+ ¢ = 0:

0= (CL + C’wlg)(b + cw34) — 62(’(U13’LU24 — w23w14). (13)
By equation (13) it follows that wis = w34 = 0 and

W13W24 — W23W14 = —1. (14)

18



In particular, setting @ = 1,b = —1,c = 1, w? has the form:
(@)12
N —J

where by (©?);; we denote the (ij)-th, 2 x 2 block of the block matrix decom-
position of @. Let now P; = (&)75 . Then, by equation (14), det (P;) = —

P
and, setting P = 1 0 , we get
0 I
-J 0 0 0
(P)TwlP = , (P)Tw?P = and
0 0 0o J
7o (15)
(P)TwPP=| 2
-, —J
Finally,
0 -1 0 0 00 0 0]
1
w 0 0 0 g 00 0 O fr2
0o 0 00 00 0 1
0o 0 00 0 0 -1 0 |
0 -1 1
1 0 0 1
+ ™
-1 0 0 -1 /
0 -1 1 0 |
which gives the following multiplication table
[f1, fo] = —f™ — fm2
_ fm2 _ f73
e e 5)
[f15f3]:[f2af4]*f 3
[f1, fal = [f2, fs] =0

The normal form is given in Section 6 equation (42).

d = 4, complex case

A positive definite matrix A can be put in the following form:

1
A=10
0

S = O

0
0
1
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Consider the complex solutions [z11, Z21, 31] = [1,4, 0], [T12, Z22, T32] = [1, —1, 0]
and [713, %93, 733] = [a,b,c], with a? + b* + ¢ = 0. With this choice, w! =
O 4102, w? = @' —1@? and W3 = ad! + bO? + c@?, with a® + b% + ¢® = 0, have
corank 2. Moreover, following the same arguments as for the complex case with
m = 2 and d = 4, we can write

0 0o 1 1
0 0 1 -1
§R((JJ1) = CDI = )
-1 -1 0 0
-1 1 0 0 |
[0 0 —1 1]
0 0 1 1
Jwh) =02 =
1 -1 0
| -1 -1 0 0 |
In the same coordinates we write
wd = aw! +b? + cd =
0 cwia a—b+cwis a-+b+ cwiy
—cwia 0 a+b+cwyz —a+b+ cwoy
—a+b—cwiz —a—0b— cwsg 0 CWs3y ’
—a—b—cwiy a+b—cwoy —CWsy 0

where w;; are the components of @3, Since w? has corank 2, the following
condition holds true for all a,b, ¢ such that a? + b> 4+ ¢ = 0:

2((12 +b2) +bc("w23 +w14+w24 7’1013) +ac(w23 +w14 710244”(1)13) +02\/ det ((:)3)

(17)
By equation (17) it follows that w1z = wag, wez = —wi4 and 4/ det (w3) = 1,
hence wiawsy — w?y — w3y, = 1. Let now P, = —(&)3)1_11 (@%)12, where by (@3);;

we denote the (ij)-th, 2 x 2-block of the block matrix decomposition of &, and

17 /1015 P
p=| vor? w2 . Then we get:
0 Vwizls
J 0
(P)YT&3P = ,
0 J

while @; and @y remain invaried. In particular, by setting a = 0,b = 12,¢ = 1,
we have
(P)TwsP = o(P)T &P + (P) 03P

20



and

0 0 1 1 0 0 -1 1
0 0 1 0 11
= T T2
Y121 210 00 ol
11 0 0 1 -1 0 0
01 0 0
10 0 0
n s,
0o 0o o 1|7
0 0 -1 0

The corresponding multiplication table is:

[f1 fo = s, fa] = f7
[f1: fal = =[fo, fu] = f7 = f™ (18)
[fu, fa] = f2, f5] = f™ + f7.

The normal form is reported in Section 6, equation (43). O

Let now d = 5 and recall that an antisymmetric matrix can be seen as a skew
form of degree 2, we consider the wedge products v¥ = w’ A w’ for i < j which
are 4-forms in R®. We then have that v*/, i < j, i,j = 1,2, 3 are 6 vectors in R,
Let a;; € R,i < 4,4 =1,2,3 such that > a;;0% = 0. Taking @ = 2221 Thiw”
gives 0j; = Y .1 ThiThjVhk and app = Y4 ThiTk;j®i;. That is the symmetric
matrix A of coefficients a;;,

app g AR
—_ (o7 (6%
A= 212 Q99 223
(e} «
=532 ags

is mapped to z=T Az~! where

Tl T21 T31
T = T2 T2z T32
T13 T23 33
Matrix A is defined up to a nonzero scalar multiplier, hence the transformation

A — —A is also allowed. We have the following

Proposition 10 The bi—dimension (5,8) is rigid with two isomorphism classes

distinguished by the signature of the symmetric matriz A.
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Proof. Observe first that w A w € ker w, if corank (w) =1, and w Aw = 0, if
corank (w) > 1. Then VIwV (V- lwAw) = VTw(w Aw) = 0. Now, since

(r1w! + 2ow? + 230°) A (210! 4 2ow? 4 230°%) = E ziz;w' Aw = E Tl V55,
i ij

we have that, under the action of V € GL(R®), each vector v;; is mapped into
V_lvij. Hence the coeflicients «;; of A remain invaried under the action of
GL(R%). This fact shows that the signature of the symmetric matrix A is an
invariant for the bi-dimension (5, 8).

Under generic assumptions the matrix A is non degenerate and the possibly
arising signatures of A are +++ and ++ —. Next we provide the multiplication
table for a representing family F for each of the two cases. Thus we will show
that (5, 8) is a rigid bi-dimension with two isomorphism class.

We can assume that A has either the form

1 0
A=101 0
0 -1
or the form
1 00
A=10 1 0|,
0 0

depending on the signature of A. Recalling the geometric meaning of the coef-
ficients of A, we have v17 + va2 = v33 or v11 + v9y = —wv33, in the first and in
the second case respectively. Choose first a coordinate systems as for the case

m =2 and d = 5. Then we can write

_ 0
J 0
0
wl = 1 | and
0O 0
0
_00—10 0_
_ L
0O O
0
w? = 0
0o J
0
_—1000 0_
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In these coordinates v1; = [0,0,0,1,0] and vee = [0,1,0,0,0]. Therefore, de-
pending if we are in the first or in the second case, vs3 = +[0,1,0,1,0]. Being

w3vgs = 0, we have that w> has the form:

0 w12 w1z —Wi2 W15
—wWi2 0 w23 0 was
w? = | —wiz —wy 0 we3z W35 |,
W12 0 —wo3 0 —Was
—wis —W25 —W35 W25 0

with wiawss + wiswas — wizwas = +1. Computing now the v;;’s, for i < j
gives: v12 = [0,0,0,0, —1], vi3 = %[0, —w12, —was, —ws3s — W12, we3) and viy =
*[was, —was — was, 0, —was, wia).

By taking P = \/5]725[1)11, V92, V12, U13, V23] We obtain:

0 0 0 00
0 0 0 01
PTwlP={0 0 0 1|0 |,
0 0 -1 010
0 -1 0 00
000 —-1]0
000 010
PTw?P=10 0 0 0 |-1
1 00 010
001 010
and, either
0 0 1 o] o0 ]
0 0 -1 0] 0
PTWw3pP=|-11 0 0|0 |,
0 0 0 0]-1
0 0 0 1|0 |
if the first case holds, or
0 0 1 0 |0]
0 0 -1 010
PlwdP=| -1 1 0 o0 |0],
0 0|1
I 0 ~1/0 |

23



if the second case holds. Finally, by

0 0 0 010 0 00 —-1|0
0 0 0 O0]1 000 010
w=|0 0 0 1|0 ([f™"4+]0 0 0 0 |—=1/[fm™
0 0 -1 010 10 0 O
0 -1 0 010 0 01 0 |
00 1 010 ]
0 0 -1 010
+] -1 1 0 0|0 [f™
0 0 0 |F1
0 0 +1] 0 |
we have the following multiplication table:
[vafS} = [fdaf4] = fTrl
[f17f4]:[f35f5]:_f7r2 (19)
[f1, f3] = =[fe, fa] = Ffa, fs] = f™
[f1, fo] = [f1. fs] = [f2, fa] = 0.
The normal forms are shown in Section 6, equation (44). g

3.4 The case m =4

Recall that, for m = 4, the only case to analyse is that with d = 5. A simple
calculation shows that the submanifold of rank 2 antisymmetric 5 x 5 matrices
has codimension 3 in the projectivized space /\2 RS of all antisymmetric 5 x 5
matrices. Let x = [x1, x2, x5, 24] and

w(z) = 2w' + Tow? + 303 + 240?

be a generic 4-dimensional vector subspace (or 3-dimensional projective sub-
space) of A’R®. Then w(z) meets the submanifold of rank 2 matrices in a
finite number of points. We’ll show that the bi-dimension (5,9) is rigid with
isomorphism classes distinguished by the number of these points which we are
going to locate effectively.

First of all, we may assume without lack of generality that w = Z?:l(xiwi)lg
does not vanish in rank 2 points. Provided that w # 0, we can assume the
following block matrix decomposition (Schur theorem):

w(z) = l wn (@) 0 ] ;

0 w292 (Z‘)
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where w1 (2) = wJ is 2 X 2 nonsingular antisymmetric matrix and

] 0 ds dy
waz(z) = " —ds 0 ds
—dy —dz 0

is 3 x 3 antisymmetric with d; = d;(w(z)) being the Pfaffian of the i—th principal
minor of order 4 of w(x). Then we have that w(x) has rank 2 if and only if ds, d4
and ds are zero, that is if x is the root of 3 homogeneous polynomials of degree
2, with the additional condition that w # 0. Of course, d; and ds also vanish

at such a root (otherwise w(x) would have rank 4).

Proposition 11 The bi-dimension (5,9) is rigid with three classes of isomor-
phism distinguished by the number of real solutions of the system d; = 0, i =
1,...,5.

Proof. As in the proof Proposition 10 we have that under the action of V €
GL(R%), each vector v;; is mapped into ¥;; = V ~1v;;. Then

dy = dp(VTw(@)V) = 3 i (0ig)k = 345 @i (3, (V" )k (vig)n) =
Sn (Va5 iz (vig)n) = 30, (V™) kndy,
where by (v)g (resp. (V)rn) we denote the k—th (resp. (kh)-th) component
of the vector v (resp. matrix V'); thus we obtain that dy, belongs to the linear
space generated by di,...,ds. This shows that such linear space is invariant by
the action of ®.

Assume now that w',w? and w? are in the normal form obtained for m = 3
and d = 5, then w(x) =

0 T4wi2 T3+ Tawiz  —Tg + T4wig T4w1s
—T4W12 0 —Z3 + T4Wa3 T4W24 1 + x4w2s
—I3 — T4W13 T3 — T4Wa3 0 T1+ Tawze  —T2 + T4wss
Ty — T4W14 —Tqw2y —T1 — T4W34 0 tws + Tawys
—T4wWis —T1 — T4Wa5 T2 — T4W3s  FT3 — TaW4s 0

where the w;;’s are the coefficients of w*. The computation of d;, for i = 3,4, 5,
gives:

dg = d3(w4)xi —+ (—U)141'1 + Wo5T2 + ’U.)12(E3)£L'4 + 1T

dy = dy(wh)af 4+ (—wizwy — wi2x2 — (a5 + Wis)23)Ts — T1T3

ds = ds(wh)a] 4 (w1221 — wasy — (Wos + W1a)T3) 24 + L33
Generically there are 8 solutions to the system d; = 0, 7 = 3,4,5. Notice that,
3 out of the 8 solutions correspond to solutions with x4 = 0. Since such kind
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of solution violates the condition w # 0, it must be discarded. There remains 5
solutions. We may have:

1) five real solutions;
2) three real and two complex conjugate solutions;
3) one real and two pairs of complex conjugate solutions.

Next we provide the multiplication table for a representing family F for each
of the above cases. This will show that (5,9) is a rigid bi-dimension with three
isomorphism classes.

Case 1)

Assume that the 5 solutions 2 = [x1;, Z9;, T3, T4i], i = 1,...,5, are all real and,
since w(x) is a generic subspace, 4 by 4 linearly independent. Let A1,..., A5 #0
be such that

4
E )\ifﬁl = )\51‘5.
i=1

Let @' = w(\;x'). By the choice of the \;’s we have that

4
> @i =s.
i=1
Assume now that, for all i = 1,...,4, @ has rank 2 and denote by V; its
kernel, which is a 3-dimensional space, and by v;; the 1-dimensional space
Vi NV (recall that generically V; are transversal). With this notation we have
that
V1= {U12,U13,U14}7
Vo = {1)12,1)23,7)24}7
V3 = {v13,v23,v34} and
Vi = {v14, v24, v34}.

Let now P = [v12, V13, U14, V23, V24], Where the v;;’s are suitably rescaled. Then
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we obtain

000 0 0 0 0 00 0
000 0 0 0 0 1 00
pPo*tp=l0 00 0 01}, Pfa*P=|0 -1 0 0 0|,
000 0 1 0 0 00 0
(000 -1 0 (0 0 00 0
[0 0 1 0 1 0 b 010
0 0 0 00 —b 0 ¢ 0
PTRP=| -1 0 0 0 a PTo*P=|1 0 0 0 0 0
00 0 00 -1 —¢ 0 0 0
| -1 0 —a 0 0 0 0 000
Since
0o b 1 1 1
—-b 1 c 0
PlosP=| -1 =1 0 0 a
-1 —¢ O 0 1
-1 0 —a -1 0
has also rank 2 it must be a = —b = ¢ = 1. Finally we have
000 0 O] [0 0 0 0 0
000 0 0 0 0 1 00
w=31 @ fi=1000 0 0|f"+|0 -1 00 0]f=+
000 0 1 0 0 00 0
000 -1 0 0 0 00 0
00 1 0 1] I 1010
0 0 0 00 1 0 01 0
+1 =10 0 0 1|f=+] 0 0 0 0 0]fm™
0 0 0 00 -1 -1 0 0 0
-10 -1 0 0 | 0 0 00 0
and the following multiplication table
[fa ]=:’”
[f2, f3] = [ i
[fh 3] = [f1, f5] = [f3,f5]:fﬂf (20)
—[f1, fo] = [f1, fa] = [fo, fa] = f™
[f2, f5] = [fs, fa] = 0.

The normal form is reported in Section 6 equation (45).
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Case 2)

2 are complex conju-

Consider next the generic case where two solutions z!,x
gate and 22,24 2° are real with R(z!), $(2!),2%,2* and 2°, 4 by 4 linearly

independent as points of R*. Then we can choose Aj, ..., s 7& 0 such that
4 .
MR + XS (2h) + D Nia' = Asa®

With this choice, @' = w(AR(z!)), @? = w(AS(zh)) and & = w(\x?), for
1 = 3,4,5, are such that
4
oo
i1

Notice that
v =R (w()\lxl)) and @O =S (W()\QJIQ)) )

Now w()\lxl) has rank 2 and, if vy, vo,v3 are three independent vectors of the
kernel, then, the conjugate vectors v, 72,73, are independent vectors of the
kernel of w(Agx?).

Observe that for any aj,as, as € C3, wAzh) (X aw;) = w(haz?)(3 ;) =
0. On the other hand, there exist oy, i 1,2,3, such that v = Y «a,u; =
S (Ra)R(vi) — (i) S(v;)) + 0> (R(e)S(vi) + ()R (v;)) is a vector with
real coefficients, i.e. > (R(a;)S(vi) + S(ay)R(v;)) = 0. Therefore there exist

v € R such that w(A\z)v = w(A22?)v = 0 and, in particular, &'

v=a%=0.
Then we take vg,v3 and v; = v as base for the kernel of w()\lxl).
Let V; be the space generated by {vy, Rva, Rvs} and V3, V4 the kernels of &3,

&* respectively. Then we denote, for j = 3,4, v1; = V1 NV}, and 91, the vectors
such that w(Az!)(vi; + 101;) = 0. Finally, letting P = (vq v13 v14 913 014), We
obtain

§R (w()\lxl)) ’Ulj = % (w()\lxl)) ’01j

§R (w(/\lml)) f)lj = —% (w(>\1$1)) U1j

from which

’0%}% (w()\lgjl )’Ulj = Uﬂ% (w )\13; )ﬁlj =0,
05 (w(hah) vy = R (W(hizh)) vy

1
=0}, (w(hah)) 61y = —0LR (w(hizh)) D1y,
@ES (W(Allﬂl)) V15 = U%;g% (w()\lx )) V15
=—v[;S ( (At )) vy = oI R (w()\lxl)) V1.
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Therefore,

0O 0 0 O

0 0 a O b
PTR (wz) )P=]0 —a 0 —b

0 0 b —a

0 —b 0 a 0

and

0 0 0 0 O

0 0 =b 0 a
PIS (waz'))P=]0 b 0 -a 0

0 0 a 0 b

0 —a 0 -0 O

In analogous way we obtain a form for R (w(A22?)) and S (w(A22?)). Moreover,
by suitably choosing the lenghts of the columns of P, we have:

0 0 0 0
0 0 1 0
PTo'P = PTR (w(Az"))P=]0 -1 0 -1 ,
0 0 1 0 -1
(0 -1 0 1 0 |
[0 0 0 0|
0 0 -1 0 1
PT’P=PrS(whea?))P=10 1 0 -1 0 |,
00 1 0 1
0 -1 0 -1 0|
0 0 1 a a
0 0 0 0 0
Pr@)P=| -1 0 0 a3 a4
—a;1 0 —ag 0 as
_—CLQ 0 —a4 —0as 0
and _
0 by 0 by b3
—bl 0 0 b4 b5
PreYHYP={1 0 0 0 0 0
~by —by 0 0 bg
| —bs —b; 0 —bs O
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Since @® and @* and @°® = > @' have rank 2 we have a5 = aja4 — asas,
b1b6 = b2b5 — b3b4 and, dZ(JJ5) = 0, for all i = 1, ey 5, ie.:

— _ba
bl - ?27 2
— asz— 2
b4 - as )
by = _ 2az+aqbs

az

We now set, for all i < j, 0;; = (PT&'P) A (PT@7 P). In particular we have that
511 = 322 = [2,0,0,0,0] and 3 = #* = 32 = [0,0,0,0,0].
By choosing Py = [013014023024034] (and suitably rescaling it) we obtain

0 3 0 -1 0
-+ 0 1 o0 o
(PPN (PP)=| 0 -3 0o -1 ,
i 0 4+ 0 -1
0 0 -1 1 0 |
0o L o0 L 1]
-+ 0 -1 o0 1
(pP)"&*(PP)=| 0 1 0 -%i 0 [,
-3 0 3 0 0
1 -1 0 0 0 |
(0000 0 0]
000 -1 0
(PP)T?PP)=]10 0 0 0 0 | and
010 0 0
(000 0 0]
[0 01 0 0]
0 00 0 0
(PP)TO*(PP)=1| -1 0 0 0 0
0 0000
| 0 0 0 0 0|
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Finally, equation (2) gives the following multiplication table:

[f3, fs] = —[fa, f5] = f™
—[f1, fs] = [fa, f5] = f™

—[fo, fa] = f™ 91
[f1, f3] = f™ )
[f1, fo] = =[fs, fa] = S(f™ + f™2)

[f1, fa] = =[fos f3] = 5(= ™ + f™).

The normal form is given in Section 6, equation (46).

Case 3)

Consider, finally, the case where we have two distinct pairs of complex conjugate
solutions and only one real solution. We denote these solutions by z!, 22 = z!
23, 2% = 72 and x5 € R*. Moreover, generically, there exist Ai,..., A5 # 0 such
that

MR + XS (@) + AR(2®) + \S(2?) = As2®,

hence, by denoting y1 = A1 +1Ae, Y2 = 1, Y3 = A3 + 1\g, ya = §3 and y5 = A5,

Therefore,
ot +0° =
where
5 = R(w(ma").
@? = S(w(ya')),
& = R(w (),
ot = S(w(yzr?)),
@° = w(yses)

Moreover &' +10? and &3 4+1@* are two complex, rank 2, antisymmetric matrices.
By the same arguments as for the previous case, there exist v, v € R® such
that &'v; = @%v; = 0 and @3vy = @4vs = 0. Complete vy, vy to a base for R?.

Then, in these coordinates we can write:

and



where (01)22, (©?)22, (©3)11 and (@%)17 are some 4 x 4 antisymmetric matrices
with determinant 1. Indeed, since &! + 202 has rank 2, we can write

0= (@' +10*) A (@' +10?) = (@' A — D% AD?) + 2(0F A D),
which implies that
(22)

Hence, from the second of equations (22), 1/ det ((©1)22) = / det ((©2)22). The
same relation holds true for (@%)1; and (@%)1;.

Now recall that ©° = @' + @3 is a real rank 2 antisymmetric matrix. Then
0=°ANP =" NG+ D3 NG + 201 A3,
hence 1
@1A@3=—§(@1A@1+d)3/\d)3). (23)
Finally, denoting v;; = &' A&, for all 4 < j, we have that v11 = va2, V33 = Va4,
vi2 = 0, v34 = 0 (by equations (22)) and 2v15 + v11 + ve2 = 0 (by equation

(23)). Then the matrix P = [v1] v14 Va3 V24 Vs3], suitably rescaled, transforms
@' as follows:

[0 0 0 0 0 ] [0 0 0 0 0]
00 -1 0 O 0 O 0 0 1
PTo'P=10 1 0 0 0 , PT’P=|0 0 0o 1 0],
00 0 0 -1 0O 0 -1 00
L 00 0 1 0 ] i 0O -1 0 0 0 ]
[0 0 0 1 0] [0 0 -1 0 0]
0 0O 1 0 O 0 0 0 1 0
PTB*P=] 0 -1 0 0 0|, P'&*P=|1 0 0 0 0
-1 0 0 0 O 0O -1 0 0 0
| 0 0O 0 0 O ] i 0 0 0 0 0 ]
Finally we have the following multiplication table:
(s f5] =
[f2, fs] = [f3, fa] = f™2
[f17f4] f i (24)
_[flaf3]:[f2af4]:f 4
[f2, f3] = —f™ + f™
[flaf?] = [f17f5} = [f37f5] = 0.
The normal form is given in Section 6, equation (47). O
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4 Cases with r =3

We only have to consider the cases with
i) d=2and m=1

ii) d=3andm=1

iii) d=3 and m = 7.

First we observe that i) corresponds to the Engel algebra: the growth vector is
(2,3,4). Tt is known that there is only one isomorphism class for this case. For
completeness we report its normal form in Section 6, equation (48). For ii) and
iii), the following propositions allow us to reduce the analysis of iii) to that of

ii).

Proposition 12 Any E € Gr,,(L£3) can be identified with an m dimensional
subspace of the space T'(3) of 3 x 3 matrices v such that trace (Cvy) = 0, where

0 0 1
C=10 -1 0
1 0 0

Proof. Fix fi, f2, f3 generators for £3 and and let f™ be generators of E €
Gr,,(£3). Then we can write [fi, [fj, fr]] = Y5ty vi5.f™ . Notice that, since

[fla [f23f3] = [an [f17f3“ - [f37 [flan]]a it holds that ’7{7‘23 = 7313 - 75}37‘12' By
denoting

7{112 ’7312 7:?12
7= 7{113 7313 7:?13

7{7’23 7323 ’7?23
we have that trace (Cy") = 0 for all h = 1,...,m. Moreover if we choose a
different set of generators for E, that is f™ =" xpi f, then [fi, [, fn]] =
S AFT where 41 = SO7' zpy", and trace (CF) = 3, ap trace (CH) =
0. Then F can be described by an m dimensional subspace in I'(3) generated
by ", h=1,...,m. O

Proposition 13 If r = 3 then the bi-dimension (d, "' + 1) is rigid if and
only if the dual bi-dimension (d, ¢}, — 1) is rigid.

Proof. Now in I'(3) we define the bilinear symmetric product

I'(3)xT(3) =R

33



by (7,m) + trace (ynT). Then if E is generated by 4", h = 1,...,m, we define
E* to be the set of v such that (y,7") =0 forall h=1,,...,m.

Consider now the maps

U: GLRY) —  Grn(L£3)
V.o = 3(V)(E)
¥: GLRY) — Gry,(3)-m(L3)
Vo= ((V)(EY

We show that for all V € GL(R?), ¥(V-T) = (¥(V))! so that a one to one
correspondence between the image of ¥ and that of U is established and the
proposition is proved.

The induced action of ®(V) on v € I'(3) is computed as follows.

(I)(V)[fia [fjv fk” [Zl 1 va f1, [Zr 1 U_]?"f?"v Zi 1 Uksfs”
= Zlg,s,rzl ViV Oks [ fiy [frs 5] = Zz 1 Vil (Ze vt VirVks S0, [fr, fs“)
=50 i (5o (0jrvks — sk iy [frs £5]])

from which we write
(V) =cv-TcTyhyT, h=1,...,m.

Notice that trace (V-TCTyVT) = trace (VIV-TCTy) = trace (CT+). There-
fore,
B(V): T(3) - T(3),

for all V € GL(R?). Moreover

(®(V)y,d(V-T)p) = trace (CV-TCTAVT)(CVCTyV—1)T)

(
(C TCT’)/VT)(V T?’]TCVTCT))
(

(
= trace (
= trace ( CVTC’T)(C'V ToTyynT)
= trace (ynT) =
for all v € E and n € E*. O

We next analyse the case with m = 1.
Let ®(V) : CTT(3) — CTT(3), with (V) = CTo®(VT)oC, ie. ®(V)(CTH) =
CTCV-1CTyV = V-1CT4V. The dimension of the orbit of ® and that of ®
coincide. We have the following:

Lemma 2 The codimension of any orbit of ® in T'(3) is greater or equal than
2.
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Proof. The characteristic polynomial of Cy is an invariant of the action of ®;
indeed

p(\) = det (V7ICTHV — \I3) = det (CTy — \I3).
Since trace (CT+) = 0 we have that p()\) is determined by 2 coefficients and
the codimension of any orbit of ® is no less than 2. O

From Proposition 13 and Lemma 2 it immediately follows:

Proposition 14 The bi-dimensions (3,7) and (3,13) are not rigid.

5 Cases with r =4

For r = 4 we only have to consider the cases with d =2 and m = 1,2. For d =2
and r = 4 we have ¢5(4) = 3 brackets of degree 4 which are linearly independent
with respect to the Jacobi identity:

U U U 2] s U, s £2]l) and [ fa, [f2, [fas fol]]-
Let now E C Gr,,(£3) and f™, h =1,...,m be generators of E. Then E
can be identified with an m-dimensional space of 2 X 2 symmetric matrices.
Indeed, for all I,s = 1,2 we can write [fi, [fs, [f1, f2]]] = Dopey gt f™. Let
Q" be the matrix with coefficients ¢. Since

AMlf U U f2lll + Aelfes [fe, [f1, f2ll] = [fes [fas [ folll-

we have that Q" are symmetric of order 2. Moreover if f™ = 2211 Thi f Ti then
[flv [f57 [fla f2]]] = quisfﬂiv
i=1

where Q% = 27", 2, Q™.
Next we compute the induced action of ®(V), V € R? on the space S,,(2)
of symmetric matrices of order 2 corresponding to E. From

(I)(V)[fla [fsa [fla f]]“ = [Zr vlrfra [Zm Usmfm; det (V)[fla fQ]]]
det (V) [Zr 'UleTa [Zm Usmfﬂ’u [fh f2]]]
= det (V) Zrm Ulrvsm[fra [fm7 [fla f2]]]
we obtain ®(V)Q" = det (V)VQ"VT. Therefore the degree 2 homogeneous
polynomial

det (Z Q") (25)
h

in the m variables z1, ..., z,, is invariant by the action ® up to a positive scalar
multiplier.

For m = 1 we have the following;:
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Proposition 15 The bi-dimension (2,6) is rigid with two isomorphism classes
distinguished by the sign of the determinant (25).

Proof. For m = 1 equation (25) reduces to det (Q) whose sign is invariant
by the action ®. A generic symmetric form @ can either be sign definite or
indefinite (corresponding respectively to det (@) > 0 or det (Q) < 0). For each
of these cases we will give the multiplication table thus showing that (2,6) is

rigid with two isomorphism classes.

m =1, ) positive definite

Assume that @ is positive definite and of the form:

2 1
Then we have the following multiplication table:

[f27 [fla [fl; f2m = [0’ 1]Q[170]Tf7r1 = fm
[fi, [f, [, folll = [1,0Q[1, 0] f = 2™ (26)
[fa, [f2, [f1, f2]]] = [0,1]Q[0, 1] ™ = 2f™

The normal form is given in Section 6, equation (49).

m =1, () non definite

Assume that Q non definite and of the form:

[21]

Then we have the following multiplication table

[f1, [f2, [f1, 2]l = [1,01Q[0, 1] fm = fm
[f1, [f1s s 2]l = [1,01Q[1, 017 f™ =0 (27)
[f27 [f27 [fh f2m = [0’ 1]@[07 1]Tf7r1 =0

The normal form is given in Section 6, equation (27). O

For m = 2 we have the following

Proposition 16 The bi-dimension (2,7) is rigid with two isomorphism classes

distinguished by the sign of the discriminant of the polynomial (25).
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Proof. (25) is a homogeneous polynomial of degree 2 in two variables whose

coefficients are invariant by the action of ®. Then the equation
det (2:Q" + 22Q%) =0 (28)

has two solutions that can either be real or complex conjugates. For each of
these cases we will give the multiplication table thus showing that (2, 7) is rigid

with two isomorphism classes.

Remark. The sign of the poynomial (25) could serve as an extra invariant in the

complex case, but a simple analysis shows that this sign is unavoidably negative.

m = 2, real case

Assume that equation (28) has real solutions. Under generic assumptions we
can assume that they are distinct and that there exist Q' and @2, in the linear
space Sy(2) of 2 x 2 symmetric matrices of order two corresponding to E, of
corank 1 with transversal kernel. By letting p; and ps to be eigenvectors relative

to the zero eigenvalue of Q2 and @ respcetively, we have that P = [py, p2], the
10
0 0

0 0
0 1|

Finally, we obtain the following multiplication table:

matrix of columns p; and ps, is such that

Ql = PT(Ql)P =

and

Q2 = PT(Q2)P =

[fl’ [fl’ [f17f2]]] = [1’0](6:21fm + Q?fﬂQ)[laO]T = fm
[F2 [fo, [f1s F21l) = [0, 1(Quf™ + Q2f )10, " = fr (29)
[f2, U1, [f1s f2)l] = [0, 1)(Q1f™ 4+ Q2/™)[1,0] = 0.

The normal form is reported in Section 6, equation (51).

m = 2, complex case

If there is a pair of complex conjugate solution to equation (28) then we can
assume that Q7 and Qs in S3(2) are complex conjugate. Let now p; and ps be
such that p = p; +1ps € ker @4, i.e.

0= R(Q1) +:3(Q1))p = (R(Q1)p1 — S(Q1)p2) + 2 (R(Q1)p2 + I(Q1)p1),
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hence, by setting P = [p1, p2] we obtain

R(Q1) = PT(R(Q)P =

and
() T (cx 71 ]-
S(Q1) = P (S(@Q)P = 11
By denoting
fﬂ‘l — % fﬂ‘l +Zfﬂz
fre = (77— ofm).

we have that Q™ + Qof™ = R(Q1)f™ — I(Q1)f™ and obtain the following
multiplication table:

i

s L L, £l = [1,0](RQOF™ = $(Q)f™)[1,07 = = +
os Ufos [, £l = [0, 1(R(QUF™ — QU F™)[0.1]7 = = — = (30)
oo [frs s folll = [0, 1(RQ1F™ = (@) f™)[L,0]" = f= — f=
The normal form is reported in Section 6, equation (52). O

6 Normal Forms

To compute the normal form of a set of smooth vector fields F, once known their
multiplication table, it is sufficient to apply the Campbell-Hausdorff formula.
Indeed, assume that F = {f1,..., fa} is regular at ¢o and Lie algebra LieF is
n-dimensional with the basis f?, i = 1,...,n. Then the exponential mapping

n . Pn k3
o infl > goe =17

is smoothly invertible in a neighbourhood of 0 € LieF = R"™ and defines local
coordinates in a neighbourhood of ¢g.
Let ¢ — qet’, t € R, be the flow on M generated by the field f7. If

qg=2a (Z xifi>, then
i=1

tfj P, xfz tfj In ep‘fL:l Iifiﬁtfj P JCfL tfj
qe’” = qpe =17 et = qpe :<I>(ln(e i=1%i) e )),

where the product under the logarithm is an element of the ‘abstract’ Lie group

generated by Lie algebra F. Hence the coordinate representation of the flow
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q+— get?” is as follows:

n . P, i o pd
> aift I (e im @il tf )
i=1

and the coordinate representarion of the vector field f7 as a vector function of

P o
x 9 In (6 ;l:lmfletf]) .
Ot |t=0

By the Campbell-Hausdorff formula we can write

x=(x1,...,2,) is:

In(efetf’) =
FAHt+ 500t + (U Ut = (6, [, t670]) — o5 U 67, U e 7)) +
(31)
from which
L (el ety = 14 21+ S0 P+ (32)
dt|i—o N 2+ 12477

Notice that in equation (31) the brackets of order 4 appear only as a O(t?) term.
Hence in equation (32) the brackets of order 4 disappear. Substituting in (32)
the expression of f gives:

o Ineler) = Zwl £ 3l P e 3
and, finally, substituting the expressions for [f?, f/] and [f?,[f", f/]] as in the
multiplication tables, gives the expression for f7 in the coordinates G%f at the
point x. /

Next we give the resulting expressions of the f7’s, for each multiplication
table. Consider first the rigid bi-dimension (d,d + 1) corresponding to r = 2
and m = 1. From the multiplication table given in (3), we have f! = f; for
i= ,d and f9! = [f1, f2]. Then equation (33) reads:

9 1
— Totfiy— £. 1 = s
B In(e/ e'f7) f3+2;x1[f“fj]’

hence, in the coordinates % we have
J

+ 33 0 if 7 is even
fj:{ IR (34)

1 o ep s s
ax] LIS if 7 is odd.
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For the dual case, the multiplication table is given in (4). By choosing f7, for

j=1,...,n, as follows:
fi=f,i=1,....d
fa=1ti [f2z 1, fai], i = 2,,,%
FiOts O = [ R, k>,

where (i) = 2 + 1(=1)"*! 4+ 142 + i and d=difdisevenord=d—1ifd is

odd, we have the corresponding normal form:

(l
2 1 6}
fi=7> — 1ao Z 2 - 22%ige
901 2 i= a-Ld 144 =22 ald+g—z(1>+7ﬁ
B 0y 9
fo= amz + 371 ZZ 2 Ozg_it1 =2 21'@330

2d+ 4 —1(2)+i

) J=2 z; ) Ti1 ) _yd g el
f] — Oxj + Zi:l 2 Oz, 5 o + 2 Oz, 4 Zi:jJrl 2 Ox 5 o
id+d—1(i)+j d—%+1 Jd+4—1()+i

if 7 is even or

_ 0 i-1a; o Tig1 0 4 L o
=S e — e Y Ye o —
9z, ¢ 2 amiﬁ%ﬂ(i)ﬂ' 2 axd*%“ IR azjd*%*“j)“
if j is odd.

(35)

Consider now the bi-dimensions (d, d+2) corresponding to r = 2 and m = 2.

Rigid cases are for d = 4,6 each with two isomorphism classes and for d = 5,7

with one isomorphism class. For d = 4 and the multiplication table as in

equation (6), by setting f* = f; for i = 1,...,4, f> = [f1,f2] = f™ and
f¢ = [f3, f1] = f™, we have that the normal form is:

_ 0 o O
f =500 = 5 om

_ 0 x1 O
f2_87x2+?18x5 (36)
f_i_ﬂi

3_85133 28(126

_ 0 3 O

fo=g0 + 5 ons

For d = 4 and the multiplication table as in equation (7), by setting f* = f; for
i=1,...,4, f> = [f1, fs] = =[fo, ful = f™ and f® = [f1, fu] = [f2, f3] = [,
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we have that the normal form is:

f= 0 _z3 0 _ x4 O
1= 811 2 8I5 2 a:tg
fo= 9 4 24 O z3 8
2 = Bz, 2 Oxs 2 Oxg (37)
fs = 9 @ 8 4 x2 O
3= 8:173 2 8I5 2 8I6
_ 0 T2 o ] o
f4 - 814 2 ams + 2 61‘6'

For d = 5, considering the multiplication table (10), and setting f¢ = f; for
1= 17"'757 f6 = [flvf?] = [f37f5] = fTrl and f7 = [f37.f4] = [flaf5] = f7r27 we

obtain

=l -z 20
gl fage 2 Oxr
f2= 50 T S a0
=g~ 5o~ $om (38)
f4:8%4+%3ag7
fom o+ 3

For d = 6, with multiplication table as in (8), by setting f* = f; fori = 1,...,6,
[flafZ] = f7 and [f37f4] = f87 we have:

-9 _ 1, 9
fl_azl 2$28£E7

_ 0 1 o
fo =55 T 3715,
_ 0 1 0
f3 = 305 = 3%45,;
f T
4 614
o 1
f5*87m5
_ 0 1 o Lol
f6—376—5335(377—378)-

|
_|_
N
)
w
Q|
)
©

|

+
N

8

=)
—
¥
8 (Q
3
Yo
o
S~—"

For d = 6 with multiplication table as in (9) and setting f* = f; fori =1,...,6,
[T =1fs, fs] = —[fa, fo] = f™ and f® = [f3, f6] = [fa, fs] = f™, we have:

_ 0 1 9 9
R amly — o)
_ 1
fa=go; T 271(50; — 5a5)
3]

o) 1
f3 - 8I3 - §x5 8I7 - §x6 8%8

o)
—

PR TR o T
_ 9 1. 9 1. 9

fs =5+ 5739, T 3T45,,
_ 1, 8 1. d

fo = 5o — 2%, T 27354,

Finally for d = 7, whose multiplication table is given in (11), by setting f = f;

for i = L...,7, fs = [flan] = [f33f7] = [f57f7] = fﬁl and fg = [f37f4] =
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[f1, f7] = [fs, fz] = f™, we have the following normal form:

_ 9 1. 9 1,. 8.
1= ga7 — 3%255; — 2%755,
-9 41 X
f278x2+2x 19zs
f3 9 1 9 1 el

8$3 2 78w8 - 5.’1;4 ng

f4 = 6:&4 + 13629 (41)
1 ) 1.. 8

fs = g% + 5(w6 — 7)oz — 376555
p) I 1 a

fo = 876 — 9T55,, T 5 (x5 — $7)379

fr= 677 + 3 (3 —i—:cs)a%g + 3 (1 +x6)6%9

Next we consider the bi-dimensions (d,d + 3) corresponding to r = 2 and
m = 3. We have seen that such bi—dimensions are rigid for d = 4 and d = 5
with two isomorphism classes.
For d = 4 and multiplication table (16), by setting f* = f; for i = 1,...,4
and f° = f™ = —[f1, fo] = f™, fO = f™ = [f3, fa] + f™ and f7 = [fl,f:a] =
[f2, fa] = f™, we obtain:

fi= 8%1 + %3023%5 + %(962 —963)3%7
R ”
3= a% — %ua% + 1 (2 +x4)8%7
fi= 3% + 3wage + (12— w3) 52

For d = 4 and multiplication table (18), by setting f* = f; for i = 1,...,4,
fo=fm, fO = fm and f7 = [f1, fo] = [f3, fa] = [, we obtain:

fi= aiwl — %(.233 +$4)% + %(1‘3 - 1‘4)8%06 — %xgaiw?
fzzaim—%(xg—m)ais %($3+!E4)%+%$13%7 (43)
fgzaim‘i’%(xl +LE2)825 %(l'lflrg)ai%féleaix?
f4=8iw4+%($1—$2)825 + %(1‘14-1‘2)3%554—%%‘38%07

For d = 5 and multiplication table (19), by setting f¢ = f; for i = 1,...,5,
f6 = [f27f5] = [f37f4] = fﬂla f7 = 7[f17f4} = 7[f37f5] = f7r2 and f8 =
[f1, f3] = =[fa, f3] = Ff4, 5] = f™, we have:

0 8 1 9

fl 6x1+ .T4 ) 3618

_ o 1 o 3
R i .
f3—%—§x4376+*$53m +§(x1—x2)378

2] 1 o 1 1
f4_8x4+§x383c672 183:7:t 50368
_ _0 1 el el 1 1ol
f5 - 8:E5 + 2:1:2 89:6 23’:3 6217 q: 2x4 6228'

We consider now the bi-dimension (d,d + 4) corresponding to r = 2, m = 4.

This bi-dimension is rigid with three isomorphism classes for d = 5. First
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consider the multiplication table as in (20) and set f* = f; for i = 1,...,5,

JO=1fafs] = 1™, 7 = [fa, fa] = £, f3 = [f1, f3] = [f1, f5) = [fs, fs] = /7
and £ = —[f1, f2] = [f1, f1] = [f2, f1] = f™. The normal form is

fi= 6%1 - %(fza +fﬂ5)3i + %(582 —564)6%9
) 1,9 1
fQZTxg_Ex?’aTw_i(
Fu= g+ hrag 4 3oy 23) (49
fa = 7o — 375755 T 3
fs = g5 + 3@agl; + 3
Next, for the multiplication table as in (21), setting f* = f; for i = 1,...,5,
f6 = [f3 f5] = _[f4 f5] = fﬂ'lv f7 = _[flaf5] = [anf5] = fﬂ-Qv f8 = _[anf4] =

f™ and f° = [f1, f3] = f™, we have the following normal form:

f1:a% %(@*M)a%*i($2+$4*2$5)3%*%$33%

f2 = % + i(l‘l — I3)8726 + i(ﬂ?l + x3 — 2‘%5)% + %334#28

fz= %+i($2+$4—2$5)886 —i($2—$4)%+%$1£9 (46)
f4:a% i(fl +x3 — 2x5 )3264-&(301—%)3%7—%%2%

fs = oo+ 5(ws — 2a) g — 521 — @2) 50

Finally, for the multiplication table as in (24), setting f* = f; for i = 1,...,5,

fo = ~lfafsl = [ T = fo, fs] = [fas fa] = 72, f5 = [f1, fa] = f™ and
2 = ~[f1, f3] = [fo, fa] = f™, we obtain the normal form:

_ 0 _1 9 1 6]
fl* Oxq x48x + x?’axg
_ 9 _1 el _l o) 1 o _ 9o
f2 — Oz 2 58w 2 48z + 2'2:3(8;% axg)
_ 0 _ 9 _l o _ 1 o 98
f3 ~ Ox3 2 Lag- Oxr 2 8:1:9 21’2( Oxg Oxg ) (47)
_ _0 l 9 l 6 lé) 1 lé)
f4 T Oxy + 2 5 g + 2 + Qxlaxg + 2x28rg
) _l 9 1 8
fs = a5 = 3%agg; + 23320307'

For r = 3 the only rigid case is the Engel algebra. The multiplication table

is given by f' = fi, i = 1,2, f* = [f1, fol, f* = [f1, /] = [fe, f%). The normal
form of F is:

o] 1 2
= — 5T25.— — 75(6
fi D 2725, j( xr3 + 120 + 1‘2) (48)
12

9
_ 0 1 o) 2 8
f2 = Bas +§.’IJ1% — (6:1;‘3 —mlxg—xl)a—.

For r = 4 the only rigid bi-dimensions are (2,6) and (2,7), corresponding
tod =2, m=1and d=2, m = 2 respectively. For n = 6,7 we compute the
brackets [f, f;] by setting f* = f; for i = 1,2 and f3 = [f1, f2], f* = [f1, f?]
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and f° = [fz, f%]:

[f, Al =2 @lfi, fi]
= +xalfo, f1] + x3([f1, fo], fi] + 2allf1, (1, S]], fo] + 25([f2, 1, fol] fu
= —z2[f1, fo] — xslfr, [f1, foll — walfy, [fr, [f1s L2ll] — s f, [ fo, [ fo]lls
[f,  fol = 30 @il fis fol
= Fx1[f1, fol + 3([f1, fol, fol + mal[f1, [f1, foll, fo] + 5[ f2, [f1, fol], fol
= ta1lf1, fo] — @3 fe, [f1, fol] — walfo, [f1, [f1, foll] — @5 f2, [fos [f1, f2l],
s Ufs All = —z2 (@ilf1, [f1, foll + 22l fa, [ f1, f2]])
—x3 (x1[f1, [f1, [f1, f2]]] + 22 fa, [f1, [frs f2]]])
s [f, foll = 4z (@1 f1, 1, fol] + @2lfos [f1, f2]])
—zz (1 [f1, [f2, [fr, foll] + 2ol f2, [fos [f1, f2]) -

According to the multiplication table (26) for m = 1, and setting f¢ = [fa, f4] =

f™ ., we then have:
fi =% = S(@ag + w352 + (224 + 25) 52
,%(gjﬂ:l% + x%ai% + (2z321 + xgxg)ai%)
1,29

-9 _ 1. 90 _ 1 o _ 1
— 01 2%2 Ox3 12 (61‘3 + 1‘1132)(%”4 1272525 Oxs

—1—12(12334 + 6x5 + 22123 + $2$3)%

fr = 8%2 + %(a;la%S - 3:38%5 — (x4 + 2x5)6%5)
"’%(351 9z, T T17T2 ai — (z3m1 + 2373@)8%6)
— 2 dei + ot - h(6n - nuan)

—1—12(12:155 + 6x4 + 22023 + xlxg)i

81’6 :

For the multiplication table (27), setting f% = [f1, f°] = f™, we have instead
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the following normal form:

-0 _1 90 0 0y _ 1 0 2_0 0
fl — 0z 2 (1‘2 Ox3 t a3 Ox4 ts 8r6) 12 ($2CE1 Oz + T2 Oxs + 2322 8::76)
-0 _ 1, 0 _ 1 0 _ 1,2 _ 1 9
= Bur — 2725,; — 13073 + 2122) 557 — 1503 15 (025 + 223) 5
-0 41 9o _ .. 0 _ . 0 1 (.2 0 0 _ 0
f2  Oxo + 2(501 Oxs3 L3 Oxs T4 89:6) + 12 (xl Oxy + T122 Oxs L13 0.’,85)

-9 41, 0 , 1,290 _ 1 _ 90 _ 1 9
= 15 T 2%, T 120102, — 12 (623 xlm?)axs 13 (624 + 2123) 5 z5

(50)
For m = 2 and the multiplication table (29) and setting f¢ = [f1, 4] = f™
and f7 [f27f5]:f7r27we have

=0 _l(p O 0 0 y_ L ) 2.0 0
f]' - 8901 2(.7/'2 8:103 + 1‘3 814 + :I:4 8{136) 12 (xzml 6(114 + x2 0:E5 + 1‘31;1 8306)

o — %(6373 +$1$2)8im4 - % gé)i — %(6%4 +$(11$3)6i16

-0 4 lp 0 4. 0 L 0 (2 0 B
f2 - 812 + 2(1'1 8{1}3 xd 81‘5 :L.S 8I7) + 12 (:L.l 81’4 + xle 8{1}5 xde 8:1,’7)

_ 0 1., .8 1,208 _ 1(a. _ a1 R

= 323 + §‘T137z3 + 157132, i3 (6%3 xlxg)—a% i3 (6£U5 + x2$3)6m7 .

(51)
Finally, for the multiplication table (30) and setting f® = f™ and f7 = f72,
we have:

1 1o} o) 2] o) 2]
f1 714_,(_%2873_1-374_‘% (76_’_77)_%5(76_77))

— 90 _ 1, 0 _ 1 o _ 1,2 09
= 2z; — 27204, 15 (623 + xlmQ)a 12712925

— L (6z4 + 635 + 2123 + xgxg)a%ﬁ + (=624 + 625 — T123 + 1’21‘3)%

_ 0 1 o o o a o) o
o = g5 tamigy — w35 —valay — a.0) — 25(— 55 — 3.7))

+ﬁ(ﬁaix4 + 1‘1I23ixs - ZE:33J”1(%6 - 3707) - 1’3352(*% - 3757))

_ 9 4 1.9 . 1.29 _ 1 _ 9
= 9e5 T 201505 T 3% 80, — 12(073 — 2122) 5

1 2
—15 (624 — 625 + 2173 — T273) 55—

o + %(6334 + 6x5 + 173 + .732%‘3)%

(52)
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