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called flat at the point τ ∈ I, if the function t �→ Λτ (t) satisfies

Λτ(t) = Λ0(τ) +
−1∑

i=−l(τ)

Qi(τ)(t − τ)
i. (1.1)

Definition 2. The curve Λ : I �→ L(W ) of constant (finite) weight is
called flat if it is flat at any point of I.

First, consider the regular curves (recall that the curve Λ(·) is said to be
regular if the velocity Λ̇(t) is a nondegenerate quadratic form for any t, see
Sec. I.3 for details). In this case the function t �→ Λτ(t) has a simple pole
at t = τ for any τ . Then, by definition, the regular curve Λ(·) is flat at τ iff

Λτ(t) = Λ0(τ) +Q−1(τ)
1

t− τ
. (1.2)

The coordinate version of (1.2) is

(St − Sτ )
−1 = A0(τ) +

Ṡ−1
τ

t − τ
, (1.3)

where Λ(t) = {(x, Stx) : x ∈ Rm} (see relation (3.2) of Part I). Suppose
that the positive index of Λ̇(t) is equal to p (this index is constant, since
the rank is constant). Denote by I±p,s the following matrix

I±p,s =

(
Ip 0
0 −Is

)
, (1.4)

where In is the n× n-identity matrix. One can choose the coordinates such
that Sτ = 0, A0(τ) = 0, and Ṡτ = I±p,m−p. Substituting this in (1.3), we
obtain the following lemma.

Lemma 1.1. If the regular curve Λ : I ∈ R �→ L(W ) with the positive
index p of Λ̇(t) is flat at some τ ∈ I, then the curve Λ(t) has the coordinate
representation St, Λ(t) = {(x, Stx) : x ∈ Rm} such that

St = I
±
p,m−p(t − τ). (1.5)

This lemma implies the following proposition.

Proposition 1. If the regular curve Λ : I ∈ R �→ L(W ) with the positive
index p of Λ̇(t) is flat at some τ ∈ I, then it is flat. Moreover, the curve
Λ(t) has the coordinate representation St, Λ(t) = {(x, Stx) : x ∈ Rm} such
that

St = I
±
p,m−pt. (1.6)
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Proof. Obviously, it is sufficient to prove the proposition in the case where
the sign + appears in (1.10). By construction, Λ(·) is a rank 1 curve.
Therefore, it is weight is not less than m2 (see, for example, Lemma I.6.1).
On the other hand, by (1.9) the function (t, τ) �→ det(Fm(t) − Fm(τ) is a
polynomial of order not greater than m2. This implies that the weight of
Λ(·) at any point is equal to m2 and by the definition of the weight the

function X(t, τ) =
det(Fm(t)− Fm(τ))

(t − τ)m2
is smooth. Being the fraction of

two polynomials of the same degree, X(t, τ) has to be constant, i.e.,

det(Fm(t)− Fm(τ)) = C(t− τ)
m2 . (1.11)

Moreover, it is clear that all entries of the adjacency matrix of the matrix
Fm(t) − Fm(τ) are polynomials of degree less than m2. This together with
(1.11) implies that for any τ the matrix function t �→ (Fm(t) − Fm(τ))−1

coincides with the principal part of its Laurent expansion at τ . But this is
exactly the coordinate version of (1.1), which implies that Λ(·) is flat.

Definition 3. The curve Λ : I �→ L(W ) is said to be strongly flat if it
can be represented as a direct sum of curves of the form (1.10).

Later on we will prove that the rank 1 flat curves of the form (1.10) are
the only flat curves of rank 1, up to a symplectic transformation. Therefore,
the strong flat curves are the curves which can be represented as direct sums
of r rank 1 flat curves.

Remark 2. From (1.6) it follows that if a regular curve is flat then it is
strongly flat.

It is not clear yet, whether in general any flat curve is strong flat (this is
a part of our general conjecture formulated below).

Now we will prove three general propositions related to the flat curves.

Proposition 3. Let Λ : I �→ L(W ) be a flat curve of weight k. Then the
function g(t, τ) is identically equal to zero for any t, τ ∈ I, or, equivalently,
the remarkable identity

det ([Λ(t0),Λ(t1),Λ(t2),Λ(t3)]) = [t0, t1, t2, t3]
k (1.12)

holds for any four parameters t0, t1, t2, t3 ∈ I.

Proof. From Lemma I.4.2, it follows (see relations (4.19) and (4.23) of
Part I) that

tr

(
∂

∂t
Λτ(t) ◦ Λ̇(τ)

)
= −

k

(t− τ)2
− g(t, τ). (1.13)
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On the other hand, by assumption, relation (1.1) holds for all τ ∈ I. There-
fore,

tr

(
∂

∂t
Λτ(t) ◦ Λ̇(τ)

)
=

=
−2∑

i=−l−1

(i+ 1)tr
(
Qi+1(τ) ◦ Λ̇(τ)

)
(t− τ)i. (1.14)

This and (1.13) imply that

g(t, τ) = 0 ∀t, τ ∈ I. (1.15)

The proof of the proposition is completed.

Proposition 4. Let Λ : I �→ L(W ) be a flat curve. Then the derivative
curve Λ0(·) of the curve Λ(·) is constant, i.e.,

Λ̇0(τ) = 0 ∀τ ∈ I. (1.16)

Proof. Take τ̄ ∈ I. Let St, Λ(t) =
{
(x, St x) : x ∈ Rm

}
, be a coordinate

representation of the germ of Λ(t) at t = τ̄ such that Λ0(τ̄) = 0 ⊕ Rn. By
the assumption,

(St − Sτ )
−1 =

0∑
i=−l

Ai(τ)(t− τ)
i, (1.17)

and by construction,

A0(τ̄) = 0. (1.18)

Differentiating both sides of (1.17) w.r.t. τ at τ = τ̄ , comparing free terms
of the corresponding expansions and using (1.18), we obtain Ȧ0(τ̄) = 0 (see
also recursive formula (2.4) from Part I in the case i = 0). But this means
that Λ̇0(τ̄) = 0.

From Propositions 2, 3, and 4 it immediately follows that

Proposition 5. For strong flat curves Λ : I �→ L(W ), identities (1.12)
and (1.16) are valid.

Now we will prove that for the regular and rank 1 curves all properties
of flat curves mentioned above are equivalent.

Theorem 1. Let curve Λ : I �→ L(W ) be a regular curve or rank 1
curve of constant (finite) weight. Then the following five statements are
equivalent :

(1) the curve Λ(·) is flat at some τ ∈ I;
(2) the curve Λ(·) is flat ;
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(3) the function g(t, τ) is equal identically to zero for any t, τ ∈ I, or,
equivalently, the remarkable identity

det
(
[Λ(t0),Λ(t1),Λ(t2),Λ(t3)]

)
= [t0, t1, t2, t3]

k (1.19)

holds for any four parameters t0, t1, t2, t3 ∈ I, where k is the weight

of the curve (k =
1

2
dim W in the regular case and k =

(1
2
dim W

)2
in the rank 1 case);

(4) the derivative curve Λ0(·) of the curve Λ(·) is constant, i.e.,

Λ̇0(t) = 0 ∀t ∈ I; (1.20)

(5) the curve Λ(·) is strongly flat.

Before starting the proof of the Theorem 1 we give several its direct
consequences. As in [1], let

β0,i(τ) =
1

i!

∂ig

∂τ i
(t, τ)

∣∣∣
t=τ
. (1.21)

Recall that Theorem I.2 states that the coefficients β0,2k(τ), 0 ≤ k ≤ m−1,
constitute a complete system of symplectic invariants of the curve Λ(τ) of
rank 1 and constant weight, i.e., determine Λ(τ) uniquely, up to a symplectic
transformation.

Corollary 1. The rank 1 curve Λ : I �→ L(W ) of constant weight is flat
iff all functions β0,2k(τ) with 0 ≤ k ≤ m − 1 are identically equal to zero,
i.e., rank 1 flat curves are the curves with vanishing complete system of
symplectic invariants.

Proof. Indeed, if the curve Λ(·) is flat then by Theorem 1, g(t, τ) ≡ 0, which
trivially implies that β0,2k(τ) ≡ 0, 0 ≤ k ≤ m− 1. On the other hand, by
Proposition 5 and Theorem I.2 the strong flat curves are the only curves
with β0,2k(τ) ≡ 0, 0 ≤ k ≤ m− 1, which proves sufficiency.

Remark 3. By Corollary 1, the invariants β0,i(τ) play the role of curva-
tures: the curve is flat iff all these invariants vanish.

Corollary 2. There is an embedding of the real projective line RP1 into
L(W ) as a closed rank 1 flat curve endowed with the canonical projective
structure; the Maslov index of this curve equals m. All other rank 1 flat
curves are images under symplectic transformations of L(W ) of the seg-
ments of this unique one rank 1 flat curve.
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Proof. By Theorem 1 any rank 1 flat curve Λ : I �→ L(W ) is strongly flat,
i.e., in some coordinates it satisfies (1.10). Equation (1.10) defines the flat
extension Λ̄(·) of Λ(·) to the whole R. By Proposition 5, the derivative
curve of Λ̄(·) is constant. Suppose that Λ̄0(t) ≡ Λ0. From the proof of
Proposition 2 it immediately follows that Λ0 = 0 ⊕ Rm. This and the fact
that limt→∞ Fm(t) =∞ imply that

lim
t→∞

Λ(t) = Λ0, (1.22)

i.e., the curve Λ̄ can be extended continuously to (closed) curve defined
on RP1. We will denote this extension also by Λ̄(·). Note that from def-
inition it easily follows that if Λ : I �→ L(W ) is a flat curve, then any
its reparametrization by a Möbius transformation is also flat, i.e., for any
Möbius transformation ϕ(τ) the curve τ �→ Λ(ϕ(τ)) is flat on ϕ−1(I). In

particular, the curve t �→ Λ̄
(1
t

)
is flat and, therefore, by Theorem 1, is also

strongly flat on R\0. This implies that Λ̄ defines a smooth embedding of
RP

1 into L(W ). Obviously, Maslov index of this embedding equalsm. Also,
we note also that the original parameter on Λ̄ is projective w.r.t. the canon-
ical projective structure on Λ̄(·), since by Corollary 1 the Ricci curvature of
rank a 1 flat curve is equal to zero. This completes the proof.

Since any strong flat curve is a direct sum of rank 1 flat curves, we have
the following corollary.

Corollary 3. There is an embedding of the real projective line RP1 into
L(W ) as a strongly flat closed curve endowed with the canonical projective
structure; the Maslov index of this curve equals m. All other strongly flat
curves are images under symplectic transformations of L(W ) of the seg-
ments of this unique strongly flat curve.

Remark 4. Obviously, item 2 of Theorem 1 implies item 1. Proposition 3
means that 2 ⇒ 3. Proposition 4 means that 2 ⇒ 4. Proposition 5 means
that 5 ⇒ 2. Theorem 1 will be proved, if one proves, for example, that
1⇒ 5, 4⇒ 2 (or 5), and 3⇒ 2.

Proof of Theorem 1.
1. The case of regular curves. Recall that the curvature operator

R(t) : Λ(t)→ Λ(t) of the curve Λ(·) is defined as follows:

R(t) = −Λ̇0(t) ◦ Λ̇(t). (1.23)

By (1.23) and Proposition 4, for any flat curve Λ(t) the curvature operator
is identically equal to zero. For the regular curves, the opposite statement
is true.
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Lemma 1.2. If the curvature operator of a regular curve is identically
equal to zero, then the curve is flat.

Proof. According to Sec. 3 of [1] (see also [2]), for any coordinate represen-
tation St of the curve Λ(t), the matrix

S(St) =
d

dt

(
(2Ṡt)

−1S̈t

)
−
(
(2Ṡt)

−1S̈t

)2
(1.24)

represents the curvature operator R(t) in some basis. Therefore, R(t) ≡ 0
iff S(St) ≡ 0. Note that S(St) is a matrix analog of the Schwarz derivative
and it has a similar property: S(St) ≡ 0 iff St = (C + Dt)(A + Bt)−1,

where

(
A B
C D

)
∈ GL(2m) (see, e.g., [7], p. 205). One can suppose in the

beginning that Sτ = 0 for some parameter τ . Then C = −Dτ and

(St − Sτ )
−1 =

1

t− τ
(A+ Bt)D−1,

which implies the flatness of Λ(·) at τ and, therefore, by Proposition 1,
flatness of Λ(·).

Using the previous lemma one can easily prove that 4 ⇒ 2. Indeed, if
Λ̇(t)0 ≡ 0, then by (1.23) R(t) ≡ 0 and, therefore, by Lemma 1.2 the curve
Λ(·) is flat. Also, Remark 2 means that 1 ⇒ 5. By Remark 4, in order to
prove Theorem 1 in the regular case it remains to show that 3⇒ 2. It turns
out that the following even more strong statement holds.

Lemma 1.3. If Λ : I �→ L(W ) is a regular curve such that its Ricci
curvature and fundamental form are identically equal to zero, then the curve
Λ(·) is flat.

Proof. If the Ricci curvature of a regular curve Λ(t) is identically equal to
zero, then by (4.27) from Part I the curvature operator R(t) of Λ(t) satisfies

trR(t) ≡ 0. (1.25)

If also the fundamental form of the regular curve Λ(t) is identically equal
to zero, then substituting (1.25) into (5.12) from Part I, we obtain

tr
(
R(t)2

)
≡ 0. (1.26)

Note that by definition, R(t) : Λ(t) �→ Λ(t) is a linear operator, symmetric
w.r.t. (pseudo)-Euclidean structure, defined by the quadratic form Λ̇(t).
Therefore, Eq. (1.26) implies that

R(t) ≡ 0.

Hence, by Lemma 1.2, the curve Λ(·) is flat.
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The proof of Theorem 1 in the case of regular curves is completed.

2. The case of rank 1 curves. Without loss of generality, it can be
assumed that the curve Λ(·) is nondecreasing.

2.1. The proof of implications 3 ⇒ 2 and 1 ⇒ 5. As in Sec. I.6, we
denote by w(t, τ) the vector in Λ(τ) such that for any v ∈ Λ(τ)∗〈

v,
∂

∂t
Λτ(t)v

〉
= −〈v, w(t, τ)〉2. (1.27)

Let wi(t, τ) be the i-th component of w(t, τ) w.r.t. the canonical basis
e1(τ), . . . em(τ) of the subspace Λ(τ) (see formulas (6.2)–(6.5) from Part I
for the definition of the canonical basis; see also Proposition I.4 which cor-
responds to the case of the curve of constant rank). From Proposition I.4
and Corollary I.2 it follows that the functions wi(t, τ) have the form

wi(t, τ) =
1

(t− τ)m−i+1
+ ϕi(t, τ), (1.28)

where ϕi(t, τ) are smooth functions. We prove the following lemma.

Lemma 1.4. If Λ : I �→ L(W ) is a rank 1 curve, which is flat at τ ∈ I,
then the functions t �→ wi(t, τ) satisfy

wi(t, τ) =
1

(t− τ)m−i+1
. (1.29)

Proof. Using the same arguments as in the proof of Proposition 3 (formulas
(1.13) and (1.14)), we obtain that if τ ∈ I is a parameter such that (1.1)
holds, then

g(t, τ) = 0 ∀t ∈ I. (1.30)

Recall that the functions g(t, τ) and wm(t, τ) are related by the following
identity (see Lemma I.7.1):

w2
m(t, τ) =

1

(t − τ)2
+

1

m2
g(t, τ). (1.31)

Hence, by (1.30),

wm(t, τ) =
1

t − τ
. (1.32)

Let St, Λ(t) = {(x, St x) : x ∈ Rm}, be a coordinate representation of a
germ of Λ(t) at t = τ such that the canonical basis e1(τ), . . . , em(τ) is a
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standard basis of Rm. Since Λ(t) is flat, we have the following coordinate
version of expansion (1.1):

(St − Sτ )
−1 =

0∑
i=−l

Ai(τ)(t− τ)
i. (1.33)

Therefore,

∂

∂t
(St − Sτ )

−1 =
−2∑

i=−l−1

(i+ 1)Ai+1(τ)(t− τ)
i. (1.34)

On the other hand,(
∂

∂t
(St − Sτ )

−1

)
i,j

= −wi(t, τ)wj(t, τ). (1.35)

Therefore,(
∂

∂t
(St − Sτ )

−1

)
m,i

= −
1

t − τ

(
1

(t− τ)m−i+1
+ ϕi(t, τ)

)
=

= −
1

(t − τ)m−i+2
−
ϕi(t, τ)

t− τ
. (1.36)

Comparing (1.34) and (1.36), one can easily conclude that ϕi(t, τ) = 0 for
any t ∈ I, which implies (1.29). The proof of the lemma is completed.

From the proof of the previous lemma it follows that if g(t, τ) ≡ 0, then
relations (1.29) are valid for any t, τ ∈ I, which, in turn, implies that (1.1)
holds for any τ ∈ I (see, e.g., (1.27) and (1.35)). By this, we actually have
proved that item 3 of Theorem 1 implies item 2.

To show that 1⇒ 5, we prove first the following lemma.

Lemma 1.5. If Λ : I �→ L(W ) is nondecreasing rank 1 curve, which is
flat at τ ∈ I, then in some coordinates the curve Λ(·) has the form

Λ(t) = {(x, Fm(t − τ)x)x ∈ R
m}, (1.37)

where Fm(t) is defined by (1.9).

Proof. We take again some coordinate representation St, Λ(t) = {(x, St x) :
x ∈ Rm}, of the germ of Λ(t) at t = τ such that the canonical basis
e1(τ), . . . , em(τ) is a standard basis of Rm. Then, obviously, Sτ = 0. By
the previous lemma,(

(St)
−1
)
i,j

=
1

(2m− i− j + 1)(t− τ)2m−i−j+1
. (1.38)
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Then, referring to the formulas (6.16) and (6.17) from Part I (with ki = i−1
which corresponds to the case of constant weight), we have

(St)i,j =

t∫
τ

vi(ξ)vj(ξ) dξ, (1.39)

where

vi(t) = ci(t − τ)
m−i, ci �= 0. (1.40)

It is easy to see that if S̄t, Λ(t) = {(x, S̄t x) : x ∈ Rm}, is a coor-
dinate representation of the germ of Λ(t) at t = τ such that the ba-

sis
(em(τ)
cm

,
em−1(τ)

cm−1
, . . . ,

e1(τ)

c1

)
is a standard basis of Rm, then S̄t =

Fm(t− τ). This completes the proof.

Therefore, if Λ : I �→ L(W ) is a nondecreasing rank 1 curve, which
is flat at τ ∈ I, then formula (1.37) defines the extension Λ̄(·) of Λ(·) to
the whole R. Hence from Proposition 2 it easily follows that for the curve
Λ̄(·), relation (1.1) holds for all real τ . Therefore, one can use the previous
Lemma for all τ , in particular, for τ = 0. Therefore, there exists a coordinate
representation of Λ(·) satisfying (1.10), i.e., the curve Λ(·) is strongly flat.
We have proved that item 1 of Theorem 1 implies item 5.

2.2. The proof of the implication 4 ⇒ 5. According to Remark 4, in
order to complete the proof of Theorem 1 for rank 1 curves it is sufficient
to prove that 4⇒ 5.

Let β0,k(t) be as in (1.21). Note that in order to prove that the curve is
strongly flat it is sufficient to show that

β0,2i(t) ≡ 0, 0 ≤ i ≤ m− 1. (1.41)

Indeed, by Proposition 5 and Theorem I.2 the strongly flat curves are the
only curves, satisfying (1.41). Therefore, the implication 4⇒ 5 follows from
the following proposition.

Proposition 6. If a rank 1 curve Λ : I �→ L(W ) of constant weight
satisfies

Λ̇0(t) ≡ 0, (1.42)

then relations (1.41) are valid.

The rest of the section is devoted to the proof of Proposition 6.
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Proof of Proposition 6. Let, as before, (e1(τ), . . . , em(τ)) be a canoni-
cal basis of Λ(t) and (f1(t), . . . , fm(τ)) be a basis of Λ0(t) dual to
(e(τ), . . . , em(τ)), i.e., σ(fi(τ), ei(τ)) = δi,j (in Sec. I.7 the basis
(e1(τ), . . . , em(τ), f1(τ), . . . , fm(τ)) of W was called the canonical moving
frame associated with the curve Λ(·)). Let S0

t be the coordinate represen-
tation of the derivative curve Λ0(t), Λ0(t) = {(x, S0

t x) : x ∈ R
m} such that

(f1(τ), . . . , fm(τ)) is a standard basis of Rm ⊕ 0 and (e1(τ), . . . , em(τ)) is
a standard basis of 0⊕Rm.

It is convenient to introduce the following notation: for given tuple
{ψi(t)}Ni=1 of smooth functions on I we will denote by Pol

(
{ψi(τ)}Ni=1

)
any

function on I, which can be expressed as a polynomial without free term
w.r.t. the functions ψi(τ), 1 ≤ i ≤ N , and their derivatives. We claim that
in order to prove (1.41), it is sufficient to prove the following two lemmas.

Lemma 1.6. The (i, j)th entry
(
Ṡ0
τ

)
i,j

of the matrix Ṡ0
τ with even i+ j

can be represented in the form(
Ṡ0
τ

)
i,j

= ci,jβ0,2(m− i+j2 )(τ) + Pol

(
{β0,2s(τ)}

m− i+j2 −1
s=0

)
, (1.43)

where ci,j is some constant.

Lemma 1.7. The constant ci,j from (1.43) can be chosen such that

cm,j �= 0, 2 ≤ j ≤ m, m+ j is even, (1.44)

ci,2 �= 0, 2 ≤ i ≤ m− 1 is even, (1.45)

c1,1 �= 0. (1.46)

Indeed, assume that (1.42) holds. Recall that the velocity Λ̇0(τ) can
be considered as a self-adjoint linear mapping from Λ0(τ) to Λ0(τ)∗. Fix-
ing a basis

(
f1(τ), . . . , fm(τ)

)
in Λ0(τ), we identify this mapping with a

symmetric matrix. Then under this identification

Λ̇0(τ) = −Ṡ0
τ . (1.47)

If Lemma 1.6 holds, then from (1.42), (1.43), and (1.47) it follows that

ci,jβ0,2(m− i+j2 )(τ) + Pol

(
{β0,2s(τ)}

m− i+j2 −1
s=0

)
= 0. (1.48)

If Lemma 1.7 also holds, then applying (1.48) first for i = j = m and
using (1.44), we obtain β0,0(τ) ≡ 0. It is obvious that if β0,2s(τ) ≡ 0 for all

0 ≤ s ≤ m−
i+ j

2
− 1, then

Pol

(
{β0,2s(τ)}

m− i+j2 −1
s=0

)
≡ 0.
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Using this fact and one of relations (1.44)–(1.46), we obtain from (1.48) by
induction that β0,2s(τ) ≡ 0 for all 0 ≤ s ≤ m− 1. Therefore, Lemmas 1.6
and 1.7 imply Proposition 6.

Remark 5. Actually, we believe that for all pairs of indices (i, j) with
even i + j one can take constants ci,j �= 0 in (1.43) but for our purposes
it was sufficient to verify that for any 0 ≤ k ≤ m − 1 among all pairs of
indices {(i, j) : 2m− i− j = 2k} there exists at least one (ik, jk) such that
cik,jk �= 0. In Lemma 1.7 we verify the last assertion by choosing pairs
(ik, jk) for which the calculation of cik,jk is relatively easy.

Now we prove Lemmas 1.6 and 1.7.

Proof of Lemma 1.6. Let St be the coordinate representation of the curve
Λ(t), St = {(x, Stx) : x ∈ Rm} such that (e1(τ), . . . , em(τ)) is a standard
basis of Rm ⊕ 0 and (f1(τ), . . . , fm(τ)) is a standard basis of 0⊕Rm. Sup-
pose, as in Sec. I.2 that the function t �→ (St − Sτ )−1 has the Laurent
expansion

(St − Sτ )
−1 ≈

∞∑
i=−l

Ai(τ)(t − τ)
i (1.49)

at t = τ . Applying recursive formula (2.4) from Part I for i = 0, one can
express Ṡ0

τ as follows:

Ṡ0
τ =

d

dτ
A0(τ) = A1(τ) +

+
−1∑
n=−l

(
An(τ)ṠτA−n(τ) +A−n(τ)ṠτAn(τ)

)
. (1.50)

On the other hand,

(
(St − Sτ )

−1
)
i,j

= −

t∫
wi(ξ, τ)wj(ξ, τ)d ξ. (1.51)

Therefore, by (1.28), the order l of the pole in (1.49) satisfies l = 2m− 1.
Recall that, according to (7.3) from Part I,

(Ṡτ ))i,j =

{
0 (i, j) �= (m,m),

m2 (i, j) = (m,m).
(1.52)

Using formulas (1.50)–(1.52), we will compute Ṡ0
τ . First, by (1.52), we

obtain

(An(τ)ṠτA−n(τ))i,j = m
2(An)i,m(A−n)m,j . (1.53)
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Substituting (1.53) into (1.50), we obtain(
Ṡ0
τ

)
i,j

= (A1)i,j +

+m2
−1∑

n=1−2m

(
(An)i,m(A−n)m,j + (A−n)i,m(An)m,j

)
. (1.54)

Let ϕi(t, τ) be as in (1.28). Denote

ϕi,j(τ) =
1

j!

∂j

∂tj
ϕi(t, τ)

∣∣∣
t=τ

(1.55)

From (1.51) and (1.28) it is not difficult to obtain the following three
relations:

(A−n)m,j =


0, j > m− n+ 1,
1

n
, j =m− n+ 1,

1

n
, ϕm−n−j 1 ≤ j < m− n+ 1,

(1.56)

where 1 ≤ n ≤ 2m− 1,

(An)i,m = −
1

n
(ϕm,n+m−i + ϕi,n)−

1

n

n−1∑
k=0

ϕi,kϕm,n−1−k, (1.57)

where n ≥ 1, and

(A1)i,j = −ϕj,m−i+1 − ϕi,m−j+1. (1.58)

Also, we note that from (1.51) it follows that the coefficient of
1

t− τ
in

the expansion of t �→ wi(t, τ)wj(t, τ), 1 ≤ i, j ≤ m, in the formal Laurent
series at t = τ is equal to zero, otherwise the expansion of t �→ (St − Sτ )−1

contains a logarithmic term. Hence we have the relation

ϕi,m−j + ϕj,m−i = 0 (1.59)

which will be used in the sequel.
Substituting (1.56)–(1.58) in (1.54), we have

(Ṡ0
τ )i,j = Υi,j(τ) + Θi,j(τ), (1.60)

where

Υi,j = −

(
1 +

m2

(m− i+ 1)2

)
ϕj,m−i+1 −

(
1 +

m2

(m− j + 1)2

)
ϕi,m−j+1 −

−m2

(
1

(m− i+ 1)2
+

1

(m− j + 1)2

)
ϕm,2m−i−j+1 (1.61)
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and

Θi,j(τ) = −m
2

(
1

(m− j + 1)2

m−j∑
k=0

ϕi,kϕm,m−j−k +

+
1

(m− i+ 1)2

m−i∑
k=0

ϕi,kϕm,m−i−k +

+

m−j∑
n=1

1

n2

(
ϕm,n+m−1 + ϕi,n +

+
n−1∑
k=0

ϕi,kϕm,n−1−k

)
ϕm,m−n−j +

+

m−j∑
n=1

1

n2

(
ϕm,n+m−1 + ϕj,n +

+
n−1∑
k=0

ϕj,kϕm,n−1−k

)
ϕm,m−n−i

)
. (1.62)

Similarly to the proof of Theorem I.2 in Sec. I.7, we denote

ui(t, τ) = (t− τ)m−i+1wi(t, τ). (1.63)

Let

ui,k(τ) =
1

k!

∂k

∂tk
ui(t, τ)

∣∣∣
t=τ

(1.64)

Note that by (1.28),

ui,0(τ) ≡ 1, 1 ≤ i ≤ m, (1.65)

ui,k(τ) ≡ 0, 1 ≤ k ≤ m− i, 1 ≤ i ≤ m. (1.66)

We claim that in order to prove Lemma 1.6 it is sufficient to show that

ui,k(τ) =


Pol

({
um,2s(τ)

}min{[k2 ],m}
s=1

)
, k /∈ {2s : 1 ≤ s ≤ m}, k > 0,

µi,kum,k(τ)+

+ Pol
({
um,2s(τ)

}k
2−1

s=1

)
, k ∈ {2s : 1 ≤ s ≤ m},

(1.67)

where µi,k are some constants.
Indeed, from (1.55) and (1.64) it immediately follows that

ϕi,j(τ) = ui,m−i+j+1(τ). (1.68)



182 A. AGRACHEV and I. ZELENKO

The last relation together with (1.67) implies

Υi,j = −

(
1 +

m2

(m− i+ 1)2

)
uj,2m−i−j+2−

−

(
1 +

m2

(m− j + 1)2

)
ui,2m−i−j+2 −

−m2

(
1

(m− i+ 1)2
+

1

(m− j + 1)2

)
um,2m−i−j+2 =

= χi,jum,2(m− i+j2 +1) + Pol

({
um,2s(τ)

}m− i+j2
s=1

)
, (1.69)

where χi,j are some constants. Also, from (1.62) and (1.68) it easily follows
that

Θi,j(τ) =

Pol
({
ul,k(τ) : l ∈ {i, j,m}, m− l+ 1 ≤ k < 2m− i− j + 2

})
.

This together with (1.67) implies that

Θi,j(τ) = Pol
(
{um,2s(τ)}

m− i+j2
s=1

)
. (1.70)

Substituting (1.69) and (1.70) into (1.60), we obtain

(Ṡ0
τ )i,j = χi,jum,2(m− i+j2 +1) + Pol

({
um,2s(τ)

}m− i+j2
s=1

)
. (1.71)

Using (1.68), we can rewrite (1.71) in the form

(Ṡ0
τ )i,j = χi,jϕm,2(m− i+j2 +1)−1 +

+Pol

({
ϕm,2s−1(τ)

}m− i+j2
s=1

)
. (1.72)

From (1.28) and (1.31) it follows that(
1

t− τ
+ ϕm(t, τ)

)2

=
1

(t− τ)2
+

1

m2
g(t, τ), (1.73)

which easily implies

ϕm,0(τ) ≡ 0 (1.74)

and

ϕm,k(τ) =
1

2m2
β0,k−1 + Pol

(
{β0,s(τ)}

k−2
s=0

)
, k ≥ 1 (1.75)
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(relation (1.74) also follows from (1.59) if we set i = j = m). From (1.66)
and (1.74) it follows that

ui,1(τ) ≡ 0, 1 ≤ i ≤m. (1.76)

Substituting (1.75) into (1.72) and using Lemma I.4.1, we finally have(
Ṡ0
τ

)
i,j

= ci,jβ0,2(m− i+j2 )(τ) + Pol

(
{β0,2s(τ)}

m− i+j2 −1
s=0

)
,

where

ci,j =
χi,j
2m2

. (1.77)

Therefore, in order to prove Lemma 1.6 it remains to prove formula
(1.67). For this we refer to the proof of Theorem I.2 in Sec. I.7. Let αi,j(t)
be as in relation (7.19) from Part I. Then from item 3 of Lemma I.7.3,
(1.74), and (1.68) it follows that for i ≤ j ≤ m− 1,

αj,i(τ) = Pol
({
ϕm,k(τ)

}j−i
k=1

)
= Pol

({
um,k(τ)

}j−i+1

k=2

)
(1.78)

(actually, this implies that

αi,i(τ) ≡ 0, 1 ≤ i ≤ m− 1, (1.79)

in addition to Lemma I.7.3). Using (7.43), (7.44), and item 2 of Lemma I.7.3,
it is not difficult to obtain that, similarly to (7.45) from Part I, the functions
ui,k(τ) satisfy the following linear system of equations:

ζi(k)ui−1,k(τ) + ηi(k)ui,k(τ) + θi(k)um,k(τ) =

= Ψ̃i,k, 1 ≤ i ≤m, (1.80)

where

ζi(k) =
(k + i−m− 1)(i− 2m− 1)(i− 1)

m− i+ 1
,

ηi(k) = (k + i− 1)(k + i− 2m− 1),

θi(k) =
k + 2i− 2− 2m

m− i+ 1
m2,

(1.81)

and

Ψ̃i,k = Pol
({
ul,n(τ) : l ∈ {i,m}, 1 ≤ n < k

})
+

+
m−1∑
j=i

αj,i(τ)Pol
({
us,n(τ) : l ∈ {j,m}, 0 ≤ n < k

})
.

(1.82)
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Combining (1.82) with (1.76) and (1.78), one can obtain that

∀k > m− i Ψ̃i,k = Pol
({
ul,n(τ) : i ≤ l ≤ m, 2 ≤ n < k

})
. (1.83)

From identity (7.47) of Part I it follows that for nonnegative k the deter-
minant of the matrix corresponding to the linear system (1.80) is zero iff
k ∈ {2s : 1 ≤ s ≤ m}. Also, from (1.81) it easily follows that first (m− 1)
columns of this matrix are always linearly independent. Therefore,

ui,k(τ) =


Lin
({

Ψ̃j,k(τ)
}m
j=1

)
, k /∈ {2s : 1 ≤ s ≤ m}

µi,kum,k(τ)+

+ Lin
({

Ψ̃j,k(τ)
}m
j=1

)
, k ∈ {2s : 1 ≤ s ≤ m},

(1.84)

where by Lin(. . . ) we denote some linear combination of the functions, con-
tained in the brackets, and µi,k are some constants.

Note that, by (1.66), ui,k(τ) ≡ 0 for 1 ≤ i ≤ m − k. This implies that
for max{m− k + 1, 1} ≤ i ≤ m we have

ui,k(τ) =


Lin
({

Ψ̃j,k(τ)
}m
l=max{m−k+1,1}

)
, k /∈ {2s : 1 ≤ s ≤ m},

µi,kum,k(τ)+

+ Lin
({

Ψ̃j,k(τ)
}m
l=max{m−k+1,1}

)
, k ∈ {2s : 1 ≤ s ≤ m},

(1.85)

Then, taking into account (1.83), we obtain

(1) for k /∈ {2s : 1 ≤ s ≤ m}

ui,k(τ) =

= Pol
({
ul,n(τ) : max{m− k + 1, 1} ≤ l ≤ m, 2 ≤ n < k

})
;

(1.86)

(2) for k ∈ {2s : 1 ≤ s ≤ m}

ui,k(τ) = µi,kum,k(τ) +

+ Pol
({
ul,n(τ) : max{m− k + 1, 1} ≤ l ≤ m, 2 ≤ n < k

})
.

(1.87)
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Finally, by induction on k, starting from k = 2, we obtain

ui,k(τ) =


Pol
({
um,n(τ)

}min{k−1,m}

n=2

)
, k /∈ {2s : 1 ≤ s ≤ m}, k > 2

µi,kum,k(τ)+

Pol
({
um,n(τ)

}k−1

n=2

)
, k ∈ {2s : 1 ≤ s ≤ m},

(1.88)

which implies (1.67) (see, e.g., Lemma I.4.1). The proof of Lemma 1.6 is
completed.

As a consequence of (1.67) and (1.83) we obtain that

∀k > m− i Ψ̃i,k = Pol

({
um,2s(τ)

}[k−12 ]

s=1

)
. (1.89)

Proof of Lemma 1.7. From (1.77), it follows that in order to prove that one
can take ci,j �= 0 in (1.43), it is sufficient to show that one can take χi,j �= 0
in (1.71). For simplicity of the notation in expressions of the form

cui,2k(τ) + . . . ,

by . . . we denote some functions of the type Pol

({
um,2s(τ)

}k−1

s=1

)
.

1. Let us prove (1.44). By (1.69),

Υm,j = −(m
2 + 1)uj,m−j+2 −

−

(
m2 + 1 +

2m2

(m− j + 1)2

)
um,m−j+2. (1.90)

Apply (1.80) for i = j and k = m− j + 2. Then

ζj(m− j + 2)uj−1,m−j+2(τ) + ηj(m− j + 2)uj,m−j+2(τ) +

+ θj(m− j + 2)um,m−j+2(τ) = Ψ̃j,m−j+2. (1.91)

From (1.59) and (1.68), it follows that

ui,2m−i−j+1 = −uj,2m−i−j+1, 1 ≤ i, j ≤ m.

In particular,
uj−1,m−j+2 = −um,m−j+2.

Substituting this into (1.91) and using (1.81) and (1.89), we have

uj,m−j+2 =
ξj(m− j + 2)− θj(m− j + 2)

ηj(m− j + 2)
um,m−j+2 + . . . =

= −
j2 − (m2 + 2m+ 2)j +m3 + 2m+ 1

(m2 − 1)(m− j + 1)
um,m−j+2 + . . .
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Substituting this into (1.90), one can easily obtain

Υm,j = χm,jum,m−j+2 + . . . , (1.92)

where

χm,j = (m2 + 1)

(
j2 − (2m+ 3)j + 3m+ 2

)
−m2

(m2 − 1)(m− j + 1)
−

−
2m2

(m− j + 1)2
. (1.93)

We claim that χm,j < 0 for 2 ≤ j ≤ m, which implies (1.44) by (1.77). By
(1.93), for this it is sufficient to prove that the polynomial j2− (2m+3)j +
3m+2 is negative for 2 ≤ j ≤ m, but this can easily be done by estimating
the roots of this polynomial.
2. Let us prove (1.45). By (1.69),

Υi,2 = −

(
1 +

m2

(m− i+ 1)2

)
u2,2m−i −

(
1 +

m2

(m− 1)2

)
ui,2m−i −

−

(
m2

(m− i+ 1)2
um,m−j+2 +

m2

(m− 1)2

)
um,2m−i. (1.94)

Let us express ui,2m−i and u2,2m−i in terms of um,2m−i and up,n with n <
2m− i.

We start from ui,2m−i. Note that ηi(2m − i + 1) = 0. Hence, we have
from (1.80)

ξi(2m− i+ 1)ui−1,2m−i+1 + θi(2m− i+ 1)um,2m−i+1 = Ψ̃i,2m−i+1

for k = 2m− i+1. Replacing i by i+1 and using (1.81) and (1.89) one can
easily obtain that

ui,2m−i = −
θi+1(2m− i)

ξi+1(2m− i)
um,2m−i + . . . =

=
m

2m− i
um,2m−i + . . . (1.95)

To analyze u2,2m−i, we consider the first and second equations of sys-
tem (1.80) with k = 2m− i. Then by a direct calculation,

u2,2m−i =
θ1(2m− i)ξ2(2m− i) − η1(2m− i)θ2(2m− i)

η1(2m− i)η2(2m− i)
um,2m−i + . . . =

= −m
(1 − 3m)i2 + (4m2 + 3m− 1)i− 4m2

(m− 1)(i− 1)(2m− i+ 1)(2m− i)
um,2m−i + . . .

(1.96)
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Substituting (1.95) and (1.96) into (1.94), one can obtain by a direct
calculation that

Υi,2 = χi,2um,2m−i + . . . , (1.97)

where

χi,2 =
mpi(m)

(2m− 1)(2m− i+ 1)(m− i+ 1)(m− 1)2
(1.98)

with

pi(x) = (8i− 6)x3 − (4i2 − 8i+ 6)x2 + (i3 − 4i2 + 4i− 1)x+ i− 1.

We claim that m is not a root of the polynomial pi(x) for 2 ≤ i ≤ m −
1. Assuming the contrary, we obtain that m has to divide i − 1 which
contradicts the assumption that i ≤ m− 1. Hence χi,2 �= 0, which together
with (1.77) implies (1.45).
3. Let us prove (1.46). By (1.69),

Υ1,1 = −4u1,2m− 2um,2m + . . . (1.99)

Consider the linear system (1.80) for k = 2m. Note that the coefficients
of the first equation of this system vanish. Taking the remaining m − 1
equations and using the Kramer formula, one can easily obtaion

u1,2m = (−1)m−1

(( m∑
j=2

(−1)j+m
θj(2m)

ξj(2m)

j−1∏
i=2

ηi(2m)

ξi(2m)

)
+

+
m∏
i=2

ηi(2m)

ξi(2m)

)
um,2m + . . .

Then from (1.81) it is not difficult to obtain

u1,2m = Cum,2m + . . . , (1.100)

where

C =

 m∑
j=2

2m2

(m+ j − 1)(2m− j + 1)

j−1∏
i=2

(2m+ i− 1)(m− i+ 1)

(m+ i− 1)(2m− i+ 1)

+

+
m∏
i=2

(2m+ i− 1)(m− i+ 1)

(m+ i− 1)(2m− i+ 1)
> 0. (1.101)

Therefore, by (1.99),
Υ1,1 = χ1,1um,2m + . . . ,

where χ1,1 = −4C − 2 < 0. This together with (1.77) implies (1.46). The
proof of Lemma 1.7 and Proposition 6 is completed.
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Conjecture 1. Let Λ : I �→ L(W ) be the curve of constant weight k. Then
all items 1, 2, 3, 4, and 5 of Theorem 1 are equivalent.

Theorem 1 says that Conjecture 1 is true for regular and rank 1 curves.
Note that the regular curves are the only curves such that the order of pole
l in the Laurent expansion of t �→ Λτ (t) at t = τ is equal to 1, while the
rank 1 curves of constant weight in L(W ) with dimW = m are the only
curves of constant weight in L(W ) with l = 2m − 1 (all other curves of
constant weight in L(W ) satisfy l < 2m−1). It is not difficult to show that
l has to be an odd number. We also have proved a part of the Conjecture,
namely, that item 4 of the Theorem 1 implies strong flatness for curves of
the constant rank and weight if the order of pole l equals 3 or 5, but the
proof consists of very long calculations and it is not clear yet, how to extend
it for other l. Therefore, we postpone the presentation of this proof to the
further publications.

2. Comparison theorems

2.1. Preliminaries. Recall that the points t0 �= t1 are said to be
conjugate for the curve Λ(·) in the Lagrange Grassmannian L(W ) if
Λ(t0)∩Λ(t1) �= 0. In this case we will say also that the point t1 is conjugate
to t0 w.r.t. the curve Λ(·). The notion of conjugate points is very important
in the investigation of certain optimality properties of extremals.

The dimension of Λ(t0) ∩ Λ(t1) is called a multiplicity of the conjugate
pair t0, t1. It is clear that if Λ : I �→ L(W ) is a nondecreasing ample curve
defined on some compact interval I ⊂ R, then every t ∈ I is conjugate
to a finite number of points. The natural and important problem is to
estimate the number of points conjugate to the given point on the given
interval in terms of symplectic invariants of the curve. In order to obtain
such estimates, we will use two distinct approaches, described by Theorems
2 and 3 below. We will apply both approaches in more details to the rank 1
curves of constant weight in L(W ) with dimW = 4.

The first approach uses the properties of the derivative curve and gives
the following simple sufficient condition for absense of the points conjugate
to the given point.

Theorem 2. Let Λ : I �→ L(W ) be an ample nondecreasing curve such
that its derivative curve Λ0(t) is nonincreasing. Then for any point τ0 ∈ I
there is no point τ ∈ I conjugate to τ0.

Proof. The method of the proof is a direct generalization of the method used
in the proof of the theorem from [2] on p. 374. Obviously, it is sufficient to
prove that for a given τ0 ∈ I there is no τ > τ0 conjugate to τ0. One can
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introduce coordinates in W , W = Rm ⊕ Rm = {(x, y) : x, y ∈ Rm}, such
that the symplectic form σ has a standard form,

σ((x1, y1), (x2, y2)) = 〈x2, y1〉 − 〈x1, y2〉, (2.1)

the subspace Λ(τ0) satisfies Λ(τ0) = R
m ⊕ 0 and Λ0(τ0) = {(x, S0x) : x ∈

R
m}, where S0 is a positive definite symmetric matrix (for brevity we will

write S0 > 0). Let ∆ = 0⊕ Rm. Let Sτ , S0
τ be the matrices corresponding

to Λ(τ) and Λ0(τ) in the chosen coordinates. Note that, in general, the
matrix Sτ (S

0
τ ) is defined if the subspace Λ(τ) (Λ0(τ)) belongs to ∆�. By

construction, Sτ0 = 0, S0
τ0 = S

0 > 0, i.e.,

S0
τ0 − Sτ0 > 0. (2.2)

Recall that from the construction of the derivative curve it follows that
Λ(τ) ∩ Λ0(τ) = 0 for any τ . Therefore,

det(S0
τ − Sτ ) �= 0. (2.3)

Further, by the assumptions,

Ṡτ ≥ 0 Ṡ0
τ ≤ 0. (2.4)

Relations (2.3) and (2.4) hold until Λ(τ) and Λ0(τ) remain in ∆�. However,
from (2.2)–(2.4) and the assumption that the curve Λ(·) is ample it follows
that

0 < Sτ ≤ S
0
τ ≤ S

0
τ0
.

Hence Λ(τ) and Λ(τ0) do not leave the set ∆� at all. This completes the
proof of the theorem.

The second approach to the estimation of conjugate points is based on
the following, simplified for our purposes, version of the multidimensional
generalization of the classical Sturm theorems about zeros of solutions of
second order differential equations (for more general formulation and proof
see [4] and [5]).

Theorem 3. Let hτ and Hτ be quadratic nonstationary Hamiltonians on
W such that for any 0 ≤ τ ≤ t the quadratic form Hτ − hτ is nonnegative
definite. Let Pτ , P̃τ ∈ Sp(W ) be linear Hamiltonian flows on W , generated

by the Hamiltonian fields 8hτ and 8Hτ :

∂

∂τ
Pτ = 8hτPτ ,

∂

∂τ
P̃τ = 8Hτ P̃τ , P0 = P̃0 = id .

Finally, let Λ(τ) and Λ̃(τ) be nondecreasing ample trajectories of the corre-
sponding flows on L(W ):

Λ(τ) = PτΛ(0), Λ̃(τ) = P̃τ Λ̃(0), 0 ≤ τ ≤ t.
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Then, for any Λ1 ∈ L, which is transversal to the endpoints of the curves
Λ(·) and Λ̃(·), the inequality∑

0≤τ≤t

dim (Λ(τ) ∩ Λ1) −
1

2
dimW ≤

∑
0≤τ≤t

dim
(
Λ̃(τ) ∩ Λ1

)
(2.5)

is valid.

Here, as in the introduction to [1], the Hamitonian field 8h corresponding

to the Hamiltonian h is defined by the identity σ(8h, ·) = dh(·).
Assume that Λ : R �→ L(W ) is a nondecreasing curve of rank 1 and con-

stant weight. Let again
(
e1(τ, . . . , em(τ), f1(τ), . . . , fm(τ)

)
be the canonical

moving frame associated with the curve Λ(τ). As in the proof of Theo-
rem I.2, denote by E(τ) and F (τ) the tuples of vectors (e1(τ), . . . , em(τ))
and (f1(τ), . . . , fm(τ)) respectively, arranged in the columns. Let us fix
the bases E(τ) and F (τ) in Λ(τ) and Λ0(τ) respectively, let St be the ma-
trix, corresponding to the linear mapping 〈Λ(τ),Λ(t),Λ0(τ)〉, and let S0

t be
the matrix, corresponding to the linear mapping 〈Λ0(τ),Λ0(t),Λ(τ)〉 (see
Sec. I.2 for notation).

First note that, by (1.47), Theorem 2 can be formulated in the following
form.

Corollary 4. Let Λ : I �→ L(W ) be a nondecreasing rank 1 curve of con-
stant weight such that for any τ ∈ I the matrix Ṡ0

τ is nonnegative definite.
Then for any point τ0 ∈ I there is no point τ ∈ I conjugate to τ0.

Hence, if one finds an explicit expression for matrix Ṡ0
τ in terms of the

complete system of invariants of the curve Λ(τ) (existence of such expression
follows from the proof of Theorem I.2), then, by Corollary 4, one can obtain
explicit sufficient conditions for absence of conjugate points in terms of the
complete system of invariants of the curve Λ(τ).

Now we will explain how to estimate the number of conjugate points, for
example, to the point 0 w.r.t. the curve Λ(·), using Theorem 3. It is easy
to see that the structural equation for the canonical moving frame has the
following form: (

Ė(τ)

Ḟ (τ)

)
=

(
Ω(τ) Ṡτ
Ṡ0
τ −ΩT (τ)

)(
E(τ)
F (τ)

)
(2.6)

(here Ω(τ) is anm×m matrix with the (i, j)th entry equal to αi,j(τ), where
αi,j(τ) is defined by (7.19) from Part I with ∆ = Λ0(τ)). Denote by B(τ)
the matrix in the structural equation (2.6), namely,

Bτ =

(
Ω(τ) Ṡτ
Ṡ0
τ −ΩT (τ)

)
.
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Fixing the basis e1(0), . . . , em(0), f1(0), . . . , fm(0) inW , we identifyW with
R
m⊕Rm = {(x, y) : x, y ∈ Rm} such that Λ0(0) = 0⊕Rm and the symplectic

form σ has the standard form (2.1). Denote by Fτ the 2m×2m matrix such
that its ith column is equal to the coordinates of ei(τ) for 1 ≤ i ≤m and to
the coordinates of fi(τ) for m+ 1 ≤ i ≤ 2m (the coordinates are w.r.t. the
chosen basis e1(0), . . . , em(0), f1(0), . . . , fm(0)). One can look at Fτ at on
the linear flow on W (which in turn, generates the flow on L(W )). Then,
by construction, Λ(τ) = FτΛ(0), and from the structural equation (2.6) it
follows that

d

dτ
Fτ = FτB

T
τ , F0 = id .

Denote Pτ = F
−1
−τ and let h

1
τ be the following nonstationary Hamiltonian:

h1τ ((x, y)) =
1

2

(
〈Ṡ−τx, x〉 − 2〈Ω(−τ)T x, y〉 − 〈Ṡ0

−τy, y〉
)
. (2.7)

Then it is easy to show that Pτ is a linear Hamiltonian flow onW , generated
by the Hamiltonian vector field 8h1τ :

∂

∂τ
Pτ = B

T
−τPτ =

8h1τPτ , P0 = id . (2.8)

Moreover, if Υ(·) is the trajectory of the flow Pτ , starting from Λ(0), i.e.,

Υ(τ) = PτΛ(0), (2.9)

then

dim(Υ(τ) ∩Υ(0)) = dim(F−1
−τΛ(0) ∩ Λ(0)) =

= dim(Λ(0) ∩F−τΛ(0) = dim(Λ(0) ∩Λ(−τ)).
(2.10)

This yields that the point τ1 is conjugate to the point 0 w.r.t. the curve Υ(·)
iff the point −τ1 is conjugate to 0 w.r.t. the original curve Λ(·). Also, we
note that by construction, the curve Υ(·) is a nondecreasing ample curve.
Therefore, we can deal with the curve Υ(·) instead of Λ(·).

The scheme for the estimation of the numbers of conjugate points is as
follows: first, one can express the structural equation (2.6) (and, therefore,
also the Hamiltonian h1τ ) in terms of the complete system of invariants of the
curve. Then one can compare h1τ with some simple (for example, stationary)
Hamiltonian h0 on W such that for the trajectories of the corresponding
linear Hamiltonian field 8h0 the pairs of conjugate points can be computed
explicitly. Finally, one can use an inequality of type (2.5) to obtain the
estimates for the number of conjugate points for the original curve.

In the both approaches we have to know the expression for the structural
equation (2.6) in terms of the complete system of invariants of the curve.
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The problem is that in general such expression is rather complicated. There-
fore, from now we restrict ourselves to curves of rank 1 and constant weight
for m = 2, i.e., dimW = 4.

2.2. Structural equation in the case r = 1, m = 2. In this case the
complete system of invariants consists of the pair of functions (ρ(t), β0,2(t))
or (ρ(t), A(t)), where A(t) is the density of the fundamental form A (see
also (5.8) from Part I).

Proposition 7. The canonical moving frame
(
e1(τ), e2(τ), f1(τ), f2(τ)

)
of the curve Λ(·) satisfies the following structural equation:

ė1(τ)
ė2(τ)

ḟ1(τ)

ḟ2(τ)

 =

=



0 3 0 0
1

4
ρ(τ) 0 0 4

−

(
35

36
A(τ)−

1

8
ρ(τ)2 +

1

16
ρ′′(τ)

)
−

7

16
ρ′(τ) 0 −

1

4
ρ(τ)

−
7

16
ρ′(τ) −

9

4
ρ(τ) −3 0

×

×


e1(τ)
e2(τ)
f1(τ)
f2(τ)

 . (2.11)

As a direct consequence of Corollary 4 and Proposition 7, we obtain the
following theorem.

Theorem 4. Let Λ : I �→ L(W ) be a rank 1 curve of constant weight
with the Ricci curvature ρ(·) and density A(·) of the fundamental form. If
the following symmetric matrix−

(
35

36
A(τ) −

1

8
ρ(τ)2 +

1

16
ρ′′(τ)

)
−

7

16
ρ′(τ)

−
7

16
ρ′(τ) −

9

4
ρ(τ)


is nonnegative definite, then for τ0 ∈ I there is no point τ ∈ I conjugate to
τ0.

Sketch of the proof of Proposition 7. Here we give the main steps of the
computation leaving the details to the reader. We use the notations of (2.6)
with Ω(τ) = (αij(τ))1≤i,j≤2. First, from item 2 of Lemma I.7.3 it follows
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that α1,2 = 3. Using identity (1.31) and the fact that β0,2(τ) =
1

2
ρ′(τ) (see

(4.18) of Part I), it is easy to obtain the following expansion for w(t, τ):

w2(t, τ) =
1

(t− τ)
+
1

8
ρ(τ)(t − τ) +

1

16
ρ′(τ)(t− τ)2 +

+ a2(τ)(t− τ)
3 +O((t− τ)4), (2.12)

where

a2(τ) =
1

8
β0,2(τ)−

1

128
ρ(τ)2. (2.13)

This implies, in particular, that ϕ2(τ, τ) = 0, where the function ϕ2(t, τ)
is as in (1.28). Therefore, the function Φ2(t, τ), defined by (7.26) from
Part I, satisfies also Φ2(τ, τ) = 0 (or, in the notation of (7.31) from Part I,
c0(τ) = 0). Then, by (7.38) of Part I, we have

α1,1(τ) = c0(τ) + 2ϕ2(τ, τ) +
∂

∂t
ϕ2(t, τ)

∣∣∣
t=τ

= 0. (2.14)

Further, by Eq. (7.39) of Part I, we have for m = i = 2

∂Y1
∂t

= −
1

3

(
∂2

∂t∂τ
(lnw2) + 4w2

2

)
, (2.15)

where Y1 =
w1

w2
(to obtain (2.15) from (7.38) of Part I, we have used that

Y2 ≡ 1). Then, by a direct computation, one can obtain from (2.12) the

following expansion for
∂Y1

∂t
:

∂Y1

∂t
= −

1

(t− τ)2
−
1

4
ρ(τ) −

1

8
ρ′(τ)(t − τ)−

−

(
1

16
ρ′′(τ)−

4

3
a2(τ) +

5

96
ρ(τ)2

)
(t − τ)2 +

+O((t − τ)3). (2.16)

Hence

w1(t, τ) = Y1(t, τ)w2(t, τ) =

(
1

t − τ
+ C −

1

4
ρ(τ)(t − τ)−

−
1

16
ρ′(τ)(t − τ)2 −

1

3

( 1

16
ρ′′(τ) −

4

3
a2(τ) +

5

96
ρ(τ)2

)
(t− τ)2 +

+ O((t− τ)4)
)( 1

(t− τ)
+
1

8
ρ(τ)(t − τ) +

1

16
ρ′(τ)(t− τ)2 +

+ a2(τ)(t − τ)
3 + O((t− τ)4)

)
. (2.17)
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By our construction, the coefficient of
1

t− τ
in the expansion of t→ w1(t, τ)

into the Laurent series at t = τ vanishes. Opening brackets in (2.17), we
find that the constant C is equal to zero. Moreover, the expansion of w1

has the following form:

w1(t, τ) =
1

(t− τ)2
−

1

8
ρ(τ) + a1(τ)(t − τ)

2, (2.18)

where

a1(τ) =
13

9
a2(τ)−

1

48
ρ′′(τ)−

7

144
ρ(τ)2. (2.19)

Remark 6. Note that the asymptotic of w1 up to O((t − τ)2) can be
obtained easier, using the fact that the expansions of t �→ w1(t, τ)wi(t, τ),
i = 1, 2, into the Laurent series at t = τ do not contain the terms of the type
c

t− τ
(otherwise the expansions of

(
(St − Sτ )−1)

)
1i
=
t∫
τ

w1(ξ, τ)wi(ξ, τ)dξ

contain logarithmic terms).

To find α2,1(τ) and α2,2(τ), we use relation (I.7.52) from Part I and the

sentence after it: the function α2,i(τ) is equal to the coefficient of
1

t− τ
in

the expansion of

t �→ −4w2(t, τ)

t∫
w2(ξ, τ)wi(ξ, τ) dξ

into the Laurent series at t = τ . This coefficient can easily be obtained from
(2.12) and (2.18), namely,

α2,1(τ) =
1

4
ρ(τ), α2,2 = 0. (2.20)

By (2.6) it remains to find the matrix Ṡ0
τ . Using relation (7.50) from

Part I and expansions (2.12) and (2.18), the reader will have no difficulty
to show that

Ṡ0
τ =

−4a2(τ) + 1

64
ρ(τ)2 − 2a1(τ) −

7

16
ρ′(τ)

−
7

16
ρ′(τ) −

9

4
ρ(τ)

 . (2.21)

Finally, combining formulas (5.8) of Part I, (2.13), and (2.19), one can easily
obtain that (

Ṡ0
τ

)
1,1

= −

(
35

36
A(τ)−

1

8
ρ(τ)2 +

1

16
ρ′′(τ)

)
. (2.22)

This completes the proof of the proposition.
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Remark 7. From (2.11) it can be shown by a direct calculation that the
curvature operator R(τ) : Λ(τ) → Λ(τ) of the curve Λ(·) of rank 1 and
constant weight has the following matrix in the basis (e1(τ), e2(τ)):

R(τ) = −Ṡ0
τ Ṡτ =

(
0

7

4
ρ′(τ)

0 9ρ(τ)

)
, (2.23)

i.e., R(τ) depends only on ρ(τ). From this and Corollary 1 it follows that
in contrast to the regular curves (see Lemma 1.2), for rank 1 curves the fact
that the curvature operator of the curve is identically equal to zero does not
imply that the curve is flat.

As you see from (2.11), even for m = 2 the structural equation is com-
plicated, for example, it contains the derivatives of ρ(t) up to the second
order. It is not so clear with what simple Hamiltonian system it can be
compared. Therefore, to apply Theorem 3, first we obtain the comparison
theorems in the case where ρ(τ) ≡ 0, i.e., where τ is a projective param-
eter. To obtain the comparison theorems for an arbitrary parameter, we
will make reparametrization to a projective parameter. The invariant A(t)
is more convenient than β0,2, since it has a simpler reparametrization rule.

2.3. The case of the projective parameter. First suppose that the
Ricci curvature ρ(τ) of the curve Λ(τ) is identically equal to zero, i.e., τ is
a projective parameter. Then structural equation (2.11) has the following
simple form:


ė1(τ)
ė2(τ)

ḟ1(τ)

ḟ2(τ)

 =


0 3 0 0
0 0 0 4

−
35

36
A(τ) 0 0 0

0 0 −3 0



e1(τ)
e2(τ)
f1(τ)
f2(τ)

 . (2.24)

In this case the Hamiltonian h1τ , defined by (2.7), has the form

h1τ(x, y) =
1

2

(
35

36
A(−τ)y21 − 6x1y2 + 4x22

)
, (2.25)

where x = (x1, x2) and y = (y1, y2).

We will compare this Hamiltonian with the following stationary Hamil-
tonian hA0 :

hA0(x, y) =
1

2

(
A0

36
y21 − 6x1y2 + 4x22

)
(2.26)
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for some constant A0. The corresponding Hamiltonian system has the form
ẋ1 = −

A0

36
y1,

ẋ2 = 3x1,

ẏ1 = −3y2,

ẏ2 = 4x2.

(2.27)

Let Γ(τ) be the trajectory of the flow generated on L(W ) by the system
(2.27) such that Γ(0) = Λ(0). It is easy to see that Γ(τ) is ample non-
decreasing curve. By a direct computation one can obtain the following
lemma.

Lemma 2.1. If A0 ≤ 0, then there are no points τ �= 0 conjugate to 0
w.r.t. the curve Γ(τ). If A0 > 0, then the point τ1 is conjugate to 0 w.r.t.
Γ(τ) iff τ1 is a solution of the equation

cos(ωτ) cosh(ωτ) = 1, (2.28)

where ω = 4
√
A0. In addition, if τ1 �= 0 is conjugate to 0, then the multi-

plicity of the conjugate pair (τ0, τ1) is equal to 1.

Denote by p1 the first positive solution of the equation

cos τ cosh τ = 1. (2.29)

Note that p1 ≈ 4.73004. Using Theorem 3 and Lemma 2.1, one can obtain
the following theorem

Theorem 5 (Comparison theorem in the projective parameter).
Let Λ(τ) be a curve of rank 1 and constant weight in L(W ) defined on the
interval I ⊆ R such that its Ricci curvature ρ(τ) is identically equal to zero
on I (in other words τ is a projective parameter). Then the following three
statements are valid :

(1) if A(τ) ≤ 0, then for any point τ0 ∈ I there are no points τ �= τ0
conjugate to τ0;

(2) if A(τ) ≤
A0

35
for some constant A0 > 0, then for any τ0 ∈ I there

are no points conjugate to τ0 in the interval
(
τ0, τ0 +

p1
4
√
A0

)
;

(3) if A(τ) ≥
A0

35
for some constant A0 > 0, then for any pair of

consequent conjugate points τ0, τ1 in I the inequality |τ1 − τ0| ≤
p1
4
√
A0

holds.
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Proof. First we can suppose that I = R (otherwise, we can extend somehow
the function A(τ) to the whole R, preserving its upper bound (or lower
bound), and work with the Hamiltonian h1τ defined by (2.25) for all τ ∈ R).
Without loss of generality, one can also suppose that τ0 = 0 (otherwise,
one can work with the curve τ �→ Λ(τ + τ0) instead of Λ(τ)). As before,
let Γ(·) and Υ(·) be the trajectories of the flows generated on L(W ) by the

Hamiltonian vector fields 8hA0 and h1τ , respectively, such that Γ(0) = Υ(0) =
Λ(0).

First we prove items 1 and 2 of the theorem. Suppose that A(τ) ≤
A0

35
.

For some numbers ε and c such that c > ε > 0, we consider two curves

Γ̃(τ) = Γ(τ − c), Υ̃(τ) = Υ(τ − c+ 2ε)

on the interval 0 ≤ τ ≤ c − ε. The first curve is again a trajectory of
the flow generated on L(W ) by the stationary Hamiltonian vector field
8hA0 . The second curve is a trajectory of the flow generated on L(W ) by

the nonstationary Hamiltonian vector field 8h1(τ−c+2ε). By assumptions and

(2.25) and (2.26), the quadratic form hA0−h1(τ−c+2ε) is nonnegative definite

for any τ . In the case A0 > 0 suppose also that c ≤
p1
4
√
A0

. Then in both

cases by the previous lemma the curve Γ̃(τ), 0 ≤ τ ≤ c−ε, belongs to Λ(0)
|∩

.
Obviously, the subspaces Υ̃(0) and Υ̃(c− ε) are also transversal to Λ(0) for
sufficiently small ε > 0. Therefore, one can apply Theorem 3 to the curves
Γ̃(·) and Υ̃(·) on the interval [0, c− ε]:∑

0≤τ≤c−ε

Υ̃(τ) ∩ Λ(0)− 2 ≤
∑

0≤τ≤c−ε

Γ̃(τ) ∩ Λ(0) = 0. (2.30)

On the other hand, by definition Υ̃(c− 2ε) = Υ(0) = Λ(0). Therefore,∑
0≤τ≤c−ε

Υ̃(τ) ∩ Λ(0) ≥ 2.

This together with (2.30) implies that
∑

0≤τ≤c−ε
Υ̃(τ) ∩ Λ(0) = 2. But this

means that for any τ �= 0 such that 2ε− c ≤ τ ≤ ε we have Υ(τ)∩Λ(0) = 0.
By (2.10) this is equivalent to the fact that for any τ �= 0 such that −ε ≤
τ ≤ c − 2ε we have Λ(τ) ∩ Λ(0) = 0. Since ε > 0 is arbitraril small, we
can conclude that there are no points conjugate to 0 w.r.t. the curve Λ(·)
in the interval (0, c). Let us recall that in the case A0 > 0 we can take

0 ≤ c ≤
p1
4
√
A0

. This completes the proof of item 2 of the theorem. In the

case A0 ≤ 0 any positive number can be taken as c. Hence any positive τ
is not conjugate to 0 w.r.t. Λ(·). By the arguments given in the beginning
of the proof, we obtain that for any τ0, all τ > τ0 are not conjugate to τ0
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w.r.t. Λ(·). But then also all τ < τ0 are not conjugate to τ0 w.r.t. Λ(·),
since the notion of the conjugate points is symmetric. This completes the
proof of item 1 of the theorem.

Now we prove third item of the theorem. Suppose that A(τ) ≥
A0

35
> 0.

Again for some numbers ε and c such that c > ε > 0 consider two curves

Γ̄(τ) = Γ(τ − c + 2ε), Ῡ(τ) = Υ(τ − c)

on the interval 0 ≤ τ ≤ c − ε. The first curve is again a trajectory of the
flow generated on L(W ) by the stationary Hamiltonian vector field 8hA0 .
The second curve is a trajectory of the flow generated on L(W ) by the

nonstationary Hamiltonian vector field 8h1(τ−c). By assumptions and (2.25)

and (2.26), the quadratic form h1(τ−c) − h
A0 is nonnegative definite for any

τ . Suppose also that c− 2ε >
p1
4
√
A0

and ε <
p1
4
√
A0

. Note that Γ(0) = Λ(0).

From the previous lemma there exists at least one point conjugate to 0 w.r.t.
the curve Γ(·) in the interval (2ε− c, 0). Therefore, we have∑

0≤τ≤c−ε

Γ̄(τ) ∩ Λ(0) =
∑

2ε−c≤τ≤ε

Γ(τ) ∩ Λ(0) ≥ 3. (2.31)

Also, we note that the subspaces Ῡ(0) and Ῡ(c − ε) are transversal to
Λ(0) for sufficiently small ε > 0. Hence, using Theorem 3 and (2.31), we
obtain the following inequality:∑

−c≤τ≤−ε

Υ(τ) ∩ Λ(0) =
∑

0≤τ≤c−ε

Ῡ(τ) ∩ Λ(0) ≥

≥
∑

0≤τ≤c−ε

Γ̄(τ) ∩ Λ(0)− 2 ≥ 1. (2.32)

This together with (2.10) implies that there is at least one point conjugate
to 0 w.r.t. the curve Λ(·) in the interval (ε, c). Taking into account that

ε > 0 is arbitraril small and c >
p1
4
√
A0

+2ε, we can conclude that there is at

least one point conjugate to 0 w.r.t. the curve Λ(·) in the interval
(
0,

p1
4
√
A0

]
.

The proof of the third part of the theorem is completed.

2.4. The case of an arbitrary parameter. Now we suppose that the
Ricci curvature ρ(t) of the curve Λ(t) is not identically equal to zero. The
method proposed here is in essence a reduction to the previous case by
making reparametrization τ = ϕ(t) to some projective parameter τ . From
(5.4) of Part I it follows that τ = ϕ(t) is a reparametrization to a projective
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parameter iff the function ϕ(t) satisfies the equation

S (ϕ(t)) =
3ρ(t)

4
, (2.33)

where S (ϕ(t)) is the Schwartzian of the function ϕ(t) and ρ(t) is the Ricci
curvature (note that in the considered case the weight k of the curve Λ(t)
is equal to 4). By a direct calculation we can obtain the following lemma
that will be also useful in the sequel.

Lemma 2.2. The monotone increasing function ϕ(t) satisfies Eq. (2.33)

iff the function y(t) =
1√
ϕ′(t)

satisfies the Hill equation

y′′ +
3ρ(t)

4
y = 0. (2.34)

Also, let us recall that the density Ā(τ) of the fundamental form in the
new parameter τ satisfies

Ā(τ) =
A(t)

ϕ′(t)4
. (2.35)

Using (2.35), Lemma 2.2, and Theorem 5 we obtain a series of comparison
theorems according to the different bounds of ρ(t) and A(t). We consider
separately three cases corresponding to the three items of Theorem 5.

2.4.1. The case A(t) ≤ 0. In this case we have the following theorem.

Theorem 6. Let Λ : I �→ L(W ) be a curve of rank 1 and constant weight
defined on the interval I ⊆ R such that A(t) ≤ 0 for all t ∈ I. Then the
following statements are valid :

(1) if ρ(t) ≤ 0, then for any point t0 there are no points t �= t0 conjugate
to t0;

(2) if ρ(t) ≤
4

3
R for some constant R > 0, then for any t0 there are no

points conjugate to t0 in the interval
(
t0, t0 +

π
√
R

)
.

Proof. From the classical Sturm comparison theorem it follows that
Eq. (2.34) has positive solutions on the whole R if ρ(t) ≤ 0 or on the

interval
[
t0, t0 +

π
√
R

)
for any given t0 if ρ(t) ≤

4

3
R with R > 0. Then, by

Lemma 2.2, Eq. (2.33) has a monotone increasing solution ϕ(t) on the whole

R in the first case and on the interval
[
t0, t0+

π
√
R

)
in the second case. Let

Λ̄(τ) = Λ(ϕ−1(τ)), τ0 = ϕ(t0). By construction, the curve Λ̄(τ) has vanish-
ing Ricci curvature. By assumptions and (2.35), the corresponding density
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Ā(τ) ≤ 0. Then by Theorem 5 there are no points τ �= τ0 conjugate to
τ0 w.r.t. the curve Λ̄(τ). But this is equivalent to the statement of the
theorem.

2.4.2. The case A(t) ≤
A0

35
, A0 > 0. First we prove the following auxiliary

lemma.

Lemma 2.3. Let τ = ϕ(t) be a reparametrization of the curve Λ(t) to the
projective parameter τ such that the function ϕ(t) is monotone increasing.

Assume that A(t) ≤
A0

35
and the inequality

ϕ(t0 + s) − ϕ(t)

min
t0≤t≤t0+s

ϕ′(t)
≤

p1
4
√
A0

(2.36)

holds for some s > 0. Then there are no points conjugate to t0 w.r.t. Λ(t)
in the interval (t0, t0 + s).

Proof. Let Λ̄(τ) = Λ(ϕ−1(τ)), τ0 = ϕ(t0), and τs = ϕ(t0 + s). By con-
struction, the curve Λ̄(τ) has vanishing Ricci curvature. Denote by Ā(τ)
the density of the fundamental form A, corresponding to the parameter τ .

If A(t) ≤
A0

35
, then by (2.35) Ā(τ) satisfies the following inequality

Ā(τ) =
A(t)(
ϕ′(t)
)4 ≤ A0

min
t0≤t≤t0+s

(
ϕ′(t)
)4 (2.37)

on the interval [τ0, τs].
Then according to the second statement of Theorem 5, there are no points

conjugate to τ0 w.r.t. the curve Λ̄(τ) in the interval (τ0, τs) if the following
inequality holds:

p1
4
√
A0

min
t0≤t≤t0+s

ϕ′(t) ≥ τs − τ0 = ϕ(t0 + s) − ϕ(t0).

But this inequality is equivalent to (2.36). This concludes the proof of the
lemma.

Assume that

4

3
r ≤ ρ(t) ≤

4

3
R. (2.38)

Let yq,c(t) be the solution of the following equation with given initial con-
ditions

y′′(t) + qy(t) = 0, y(0) = 1, y′(0) = c,
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namely,

yq,c(t) = cos
√
q t +

c
√
q
sin
√
q t =

=


cosh

√
−q t+

c
√
−q

sinh
√
−q t, q < 0,

cos
√
q t+

c
√
q
sin
√
q t, q > 0,

1 + ct, q = 0.

(2.39)

Let Mc be the minimal positive zero of the function yR,c(t) if such zero
exists and Mc =∞ otherwise. We denote

DR =
{
(s, c) : 0 < s < Mc

}
. (2.40)

In the domain DR, we define the following function:

K(s, c) =

(
max
0≤t≤s

yr,c(t)

)2
s∫

0

dt

y2
R,c

(t)
. (2.41)

It is easy to show that the function s �→ K(s, c) is a well-defined monotone
increasing function on [0,Mc) which obtains on this set all nonnegative
values. Thus, for any c there exists a unique solution s = SA0(c), 0 <
SA0(c) < Mc, of the equation

K(s, c) =
p1
4
√
A0

. (2.42)

Then the following lemma holds.

Lemma 2.4. For any t0, there are no points conjugate to t0 w.r.t. Λ(t)
in the interval

(
t0, t0 + sup

c∈R
SA0(c)

)
.

Proof. Let τ = ϕ(t) be a reparametrization of Λ(t) to the projective pa-
rameter τ such that ϕ′(t0) = 1 and ϕ′′(t0) = −2c. Then according to

Lemma 2.2, the function y(t) =
1√
ϕ′(t)

satisfies the Hill equation with the
prescribed initial conditions

y′′ +
3ρ(t)

4
y = 0, y(t0) = 1, y′(t0) = c.

By the classical Sturm comparison theorem about the Hill equation, we
have

yR,c(t− t0) ≤
1√
ϕ′(t)

≤ yr,c(t − t0) (2.43)
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for any t ∈ [t0, t0 +Mc). Therefore, for 0 ≤ s < Mc we obtain

ϕ(t0 + s) − ϕ(t)

min
t0≤t≤t0+s

ϕ′(t)
=

(
max

t0≤t≤t0+s

1

ϕ′(t)

)(
ϕ(t0 + s)− ϕ(t)

)
≤

≤

(
max
0≤t≤s

yr,c(t)

)2
s∫

0

dt

y2
R,c

(t)
= K(s, c).

Consequently, for s = SA0(c)

ϕ(t0 + s) − ϕ(t)

min
t0≤t≤t0+s

ϕ′(t)
≤

p1
4
√
A0

.

Hence, according to Lemma 2.3 there are no points conjugate to t0 w.r.t.

Λ(t) in the interval
(
t0, t0+SA0(c)

)
. This concludes the proof of the lemma,

since an arbitrary real number can be taken as c.

Lemma 2.4 shows that in order to find the lower bound for the length
of the interval without conjugate points, one can find the maximum of the

function SA0(c) given implicitly by the equation K(s, c) =
p1
4
√
A0

. It is not

difficult to find the expressions for the function K(s, c). It is convenient to
write theem in terms of trigonometric functions. Namely,

(1) if r > 0, then

K(s, c) =



(
cos(

√
r s) +

c
√
r
sin(

√
r s)
)2

√
R cot (

√
Rs) + c

,

0 ≤ s ≤
1
√
r
arctan

(
c
√
r

)
; (2.45a)

1 + c2

r√
R cot (

√
Rs) + c

,

s >
1
√
r
arctan

(
c
√
r

)
, c ≥ 0; (2.45b)

1
√
R cot(

√
Rs) + c

,

c < 0; (2.45c)
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(2) if r ≤ 0, then

K(s, c) =



(
cos(

√
r s) + c√

r
sin(

√
r s)
)2

√
R cot (

√
Rs) + c

,

c ≥ −
√
|r| tanh

(√|r| s
2

)
; (2.46a)

1
√
R cot (

√
Rs) + c

,

c < −
√
|r| tanh

(√
|r| s

2

)
. (2.46b)

Note that for negative values of r and R the trigonometric functions
with imaginary arguments can be replaced in the above formulas by the
corresponding hyperbolic functions with real arguments and if r = 0 (or
R = 0), then the above formulas above are replaced by their limits as r (or
R) tends to zero.

Consider the cases of positive and nonnegative r separately.

2.4.3. (a) The case r > 0. On the domain DR define the function

K1(s, c)
def
=

1 +
c2

r√
R cot (

√
Rs) + c

. (2.47)

For any c let s = S1,A0(c) be the minimal positive solution of the equation

K1(s, c) =
p1
4
√
A0

,

i.e.,

S1,A0(c) =
1
√
R
arccot

(
4
√
A0

p1
√
R

(
1 +

c2

r
−

p1
4
√
A0
c
))
. (2.48)

It is clear that in the considered case, the following inequality holds

K(c, s) ≤ K1(c, s)

on the domain DR. Hence we obtain S1,A0(c) ≤ SA0(c) and

sup
c∈R

S1,A0(c) ≤ sup
c∈R

SA0(c). (2.49)

From (2.48), it easily follows that

max
c∈R

S1,A0(c) =
1
√
R
arccot

1
√
R

(
4
√
A0

p1
−

p1r

4 4
√
A0

)
. (2.50)
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Applying Lemma 2.4 and (2.49), we obtain the following theorem.

Theorem 7. Let Λ : I �→ L(W ) be a curve of rank 1 and constant weight
defined on the interval I ⊆ R. Suppose that for any t ∈ I its invariants ρ(t)
and A(t) satisfy the inequalities

0 <
4

3
r ≤ ρ(t) ≤

4

3
R, A(t) ≤

A0

35
, A0 > 0.

Then for any t0 in the interval(
t0, t0 +

1
√
R
arccot

(
1
√
R

( 4
√
A0

p1
−

p1r

4 4
√
A0

)))
(2.51)

there are no points conjugate to t0 w.r.t. the curve Λ(t).

Considering the function

K2(s, c)
def
=

(
cos(

√
r s) + c√

r
sin(

√
r s)
)2

√
R cot (

√
Rs) + c

(2.52)

from (2.45a), one can try to improve the previous theorem. For a given s
consider the following equation w.r.t. c:

K2(s, c) =
p1
4
√
A0

. (2.53)

This equation is equivalent to the quadratic equation with the discriminant

D(s) =
p1
4
√
A0

(
p1
4
√
A0

− Lr,R(s)

)
, (2.54)

where

Lr,R(s)
def
= 4

(
cos(

√
rs) −

√
R

r
sin(

√
r s)cot

(√
Rs
)) sin(

√
r s)

√
r

.
(2.55)

It is not difficult to show that in the considered case (R > r > 0) the function

Lr,R(s) is monotone increasing on the interval
(
0,

π
√
R

)
and obtains all

positive values on this interval and, therefore, the inverse function L−1
r,R :

(0,∞) �→
(
0,

π
√
R

)
is well defined. This together with (2.54) implies that
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the maximal value of s for the points (s, c) on the level set K2(s, c) =
p1
4
√
A0

is attained at the point (s̃, c̃) such that

s̃ = L−1
r,R

(
p1
4
√
A0

)
, (2.56)

c̃ =
√
r cot
(√
r s̃
)
− 2
√
R cot

(√
R s̃
)
. (2.57)

If at the same time

s̃ <
π

2
√
r

(2.58)

and

c̃ >
√
r tan(

√
r s̃), (2.59)

then it is easy to see that sup
c∈R

SA0(c) = s̃ > sup
c∈R

S1,A0(c) (see (2.45)).

In this case we will improve Theorem 7 by setting in (2.51) s̃ instead of
max
c∈R

S1,A0(c). Indeed, if we denote

Nr,R(s)
def
=
√
r cot
(√
r s
)
− 2
√
R cot

(√
Rs
)
−
√
r tan
(√
r s
)
, (2.60)

then we have the following theorem in addition to Theorem 7.

Theorem 8. Let Λ : I �→ L(W ) be curve of rank 1 and constant weight
defined on the interval I ⊆ R. Suppose that for any t ∈ I its invariants ρ(t)
and A(t) satisfy the inequalities

0 <
4

3
r ≤ ρ(t) ≤

4

3
R, A(t) ≤

A0

35
, A0 > 0.

Suppose also that

L−1
r,R

(
p1
4
√
A0

)
<

π

2
√
r

(2.61)

and

Nr,R

(
L−1
r,R

( p1
4
√
A0

))
> 0. (2.62)

Then for any t0 there are no points conjugate to t0 w.r.t. Λ(t) in the interval(
t0, t0 + L

−1
r,R

( p1
4
√
A0

))
.
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Note that if
π

2
√
r
≥

π
√
R
, i.e., R ≥ 4 r, then condition (2.61) holds

automatically. Also, one can directly verify that in this case the function

Nr,R(s) is monotone increasing on the interval
(
0,

π
√
R

)
and obtains all real

values there. Therefore, for sufficiently small positive A0 condition (2.62)
also holds. Hence for R ≥ 4 r and sufficiently small positive A0 Theorem 8
improves Theorem 7.

If R < 4 r, then the function Nr,R(s) tends to −∞ at the points 0 and
π

2
√
r
. If

R

r
is sufficiently close to 4, then Nr,R(s) is positive on some subin-

terval of
(
0,

π

2
√
r

)
and Theorem 8 is relevant for A0 with L

−1
r,R

( p1
4
√
A0

)
lying

in this subinterval. But there exists α ∈ (1, 4) such that for 1 ≤
R

r
< α

the function Nr,R(s) obtains only negative values on
(
0,

π

2
√
r

)
. In this case

Theorem 8 is not relevant.

2.4.4. (b) The case r ≤ 0. Suppose that the functions K2(s, c) and Lr,R(s)
are as in (2.52) and (2.55) respectively. It is not difficult to show that in the
considered case (r < 0, r < R) the function Lr,R(s) is monotone increasing

and obtains all positive values on
(
0,

π
√
R

)
if R > 0, and on (0,∞), if R ≤ 0.

Therefore, the inverse function L−1
r,R is well defined on (0,∞) (with values

in
(
0,

π
√
R

)
if R > 0, and in (0,∞) if R ≤ 0). As in the previous case, the

maximal value of s for the points (s, c) on the level set K2(s, c) =
p1
4
√
A0

is

attained at the point (s̃, c̃), satisfying (2.58) and (2.59). Also, we note that
for any s the function

K3(s, c)
def
=

1
√
R cot (

√
Rs) + c

,

which appears in (2.45b), is a monotone decreasing function of c. Therefore,

if c̃ > −
√
r tan
(√r s̃

2

)
, then sup

c∈R
SA0(c) = s̃ and if c̃ ≤ −

√
r tan
(√r s̃

2

)
,

then s = sup
c∈R

SA0(c) satisfies the following equation:

K3(s,−
√
|r| tanh

(√|r| s
2

)
=

p1
4
√
A0

(2.63)

(see relations (2.45)).
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Denote

Qr,R(s)
def
= K3(s,−

√
|r| tanh

(√
|r| s

2

)
=

=
1

√
R cot (

√
Rs) −

√
|r| tanh

(√
|r| s

2

) (2.64)

and

Nr,R(s)
def
=
√
r cot
(√
r s
)
− 2
√
R cot

(√
Rs
)
+

+
√
|r| tanh

(√|r| s
2

)
, r ≤ 0. (2.65)

Obviously, the function Qr,R(s) is monotone increasing and obtains all pos-
itive values on some interval of the form (0, S3). We obtain the following
theorem.

Theorem 9. Let Λ : I �→ L(W ) be curve of rank 1 and constant weight
defined on the interval I ⊆ R. Suppose that for any t ∈ I its invariants ρ(t)
and A(t) satisfy the inequalities

4

3
r ≤ ρ(t) ≤

4

3
R, r ≤ 0, A(t) ≤

A0

35
, A0 > 0.

Then the following two statements hold :

(1) if

Nr,R

(
L−1
r,R

(
p1
4
√
A0

))
> 0, (2.66)

then for any t0 there are no points conjugate to t0 w.r.t. Λ(t) in the
interval (

t0, t0 + L
−1
r,R

(
p1
4
√
A0

))
; (2.67)

(2) if

Nr,R

(
L−1
r,R

(
p1
4
√
A0

))
≤ 0 (2.68)

then for any t0 there are no points conjugate to t0 w.r.t. Λ(t) in the
interval (

t0, t0 +Q
−1
r,R

( p1
4
√
A0

))
. (2.69)
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It is not difficult to show that for r ≤ 0 the function Nr,R(s) is monotone

increasing on
(
0,

π
√
R

)
if R > 0, and on (0,∞) if R ≤ 0. Moreover, for

R > 0 the functionNr,R(s) obtains all real values on
(
0,

π
√
R

)
and for R ≤ 0

the function Nr,R(s) obtains on (0,∞) all real values less than 2(
√
|r| −√

|R|), which is a positive number. Therefore, in both cases sufficiently
small positive A0 correspond to the first item of the previous theorem,
whenever sufficiently large A0 correspond to the second item.

2.4.5. The case A(t) ≥
A0

35
> 0. First, by analogy with Lemma 2.3, we

prove the following auxiliary lemma.

Lemma 2.5. Let τ = ϕ(t) be a reparametrization of the curve Λ(t) to the
projective parameter τ such that the function ϕ(t) is monotone increasing.

Assume that A(t) ≥
A0

35
and that the inequality

ϕ(t0 + s) − ϕ(t)

max
t0≤t≤t0+s

ϕ′(t)
≥

p1
4
√
A0

(2.70)

holds for some s > 0. Then there exists at least one point conjugate to t0
w.r.t. Λ(t) in the interval (t0, t0 + s].

Proof. Let Λ̄(τ) = Λ(ϕ−1(τ)), τ0 = ϕ(t0), τs = ϕ(t0 + s). By construction,
the curve Λ̄(τ) has vanishing Ricci curvature. Denote by Ā(τ) the density of

the fundamental form A, corresponding to the parameter τ . If A(t) ≥
A0

35
,

then by (2.35) Ā(τ) satisfies the inequality

Ā(τ) =
A(t)(
ϕ′(t)
)4 ≥ A0

max
t0≤t≤t0+s

(
ϕ′(t)
)4 (2.71)

on the interval [τ0, τs]. Then according to item 3 of Theorem 5, there exists
at least one point conjugate to τ0 w.r.t. the curve Λ̄(τ) in the interval (τ0, τs]
if the following inequality holds:

p1
4
√
A0

max
t0≤t≤t0+s

ϕ′(t) ≤ τs − τ0 = ϕ(t0 + s) − ϕ(t0).

But this inequality is equivalent to (2.70). This concludes the proof of the
lemma.

Assume again that

4

3
r ≤ ρ(t) ≤

4

3
R (2.72)
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and that yq,c(t) is as in (2.39). As before, let Mc be the minimal positive
zero of the function yR,c(t) if such a zero exists and Mc = ∞ otherwise.
Also, let DR be as in (2.40). On the domain DR we define the function

K(s, c) =

(
min
0≤t≤s

yR,c(t)

)2
s∫

0

dt

y2r,c(t)
. (2.73)

By analogy with Lemma 2.4, we have the following lemma.

Lemma 2.6. If for some s > 0 there exists c such that (s, c) ∈ DR and

K(s, c) ≥
p1
4
√
A0

, (2.74)

then for any t0 there exists at least one point conjugate to t0 w.r.t. Λ(t) in
the interval (t0, t0 + s].

Proof. Let τ = ϕ(t) be a reparametrization of Λ(t) to the projective pa-
rameter τ such that ϕ(t0) = 1 and ϕ′(t0) = −2c. Then, using (2.43), we
have

ϕ(t0 + s) − ϕ(t)

max
t0≤t≤t0+s

ϕ′(t)
=

(
min

t0≤t≤t0+s

1

ϕ′(t)

)(
ϕ(t0 + s)− ϕ(t)

)
≥

≥

(
min

0≤t≤s
yR,c(t)

)2
s∫

0

dt

y2r,c(t)
= K(s, c).

Consequently, if K(s, c) ≥
p1
4
√
A0

, then

ϕ(t0 + s) − ϕ(t)

max
t0≤t≤t0+s

ϕ′(t)
≥

p1
4
√
A0

.

Hence, according to Lemma 2.5 there exists at least one point conjugate to
t0 w.r.t. Λ(t) in the interval (t0, t0 + s). This concludes the proof of the
lemma.

Lemma 2.6 shows that in order to find the upper bound for the next
conjugate point, one can find the minimum of the function s = SA0(c)

given implicitly by the equation K(s, c) =
p1
4
√
A0

, where 0 < s < Mc. In

contrast to the case considered in Subsec. 8.4.2 (where we analyze the level

sets of the function K(s, c)), the level sets K(s, c) =
p1
4
√
A0

can be empty for

sufficiently small positive A0 and in this case we are not able to estimate
the next conjugate point. Also, in general, the function SA0(c) for some c
is not defined or can be multivalued.
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It is not difficult to find the expressions for the function K(s, c). Namely,

(1) if R < 0, then

K(s, c) =



(
cosh(

√
|R| s) + c√

|R|
sinh(

√
|R| s)

)2
√
|r| coth (

√
|r| s) + c

,

c ≤ −
√
|R| tanh(

√
|R| s); (2.75a)

1 + c2

R√
|r| coth (

√
|r| s) + c

,

−
√
|R| tanh

√
|R|s ≤ c ≤ 0; (2.75b)

1√
|r| coth(

√
|r| s) + c

,

c > 0; (2.75c)

(2) if R ≥ 0, then

K(s, c) =



(
cos(

√
Rs) + c√

R
sin(

√
Rs)
)2

√
r cot (

√
r s) + c

,

c ≤
√
R tan

(√
Rs

2

)
; (2.76a)

1
√
r cot (

√
r s) + c

,

c >
√
R tan

(√
Rs

2

)
; (2.76b)

Consider the cases of negative and nonnegative R separately.

2.4.6. (a) The case of R < 0.

Theorem 10. Let Λ : I �→ L(W ) be a curve of rank 1 and constant
weight defined on the interval I ⊆ R. Suppose that for any t ∈ I its invari-
ants ρ(t) and A(t) satisfy the inequalities

4

3
r ≤ ρ(t) ≤

4

3
R < 0, A(t) ≥

A0

35
> 0.

Suppose also that the bounds A0, r, and R satisfy the relation

2√
|r|+

√
|r| − |R|

>
p1
4
√
A0

. (2.77)
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Then for any t0 there exists at least one point conjugate to t0 w.r.t. the
curve Λ(t) in the interval(

t0, t0 +
1√
|r|

arccoth

(
1√
|r|

(
4
√
A0

p1
−

p1R

4 4
√
A0

))]
. (2.78)

Proof. On the domain DR, we define the following function:

K1(s, c)
def
=

1 +
c2

R√
r cot (

√
r s) + c

=
1 +

c2

R√
|r| coth (

√
|r| s) + c

. (2.79)

From the elementary properties of the hyperbolic functions one can obtain
the following inequality:

K(s, c) ≥ K1(s, c). (2.80)

Therefore, if the point (s, c) ∈ DR and belongs to the level set

K1(s, c) =
p1
4
√
A0

, (2.81)

then by Lemma 2.6, for any t0 there exists at least one point conjugate to
t0 w.r.t. Λ(t) in the interval (t0, t0 + s]. First, by a direct computation, one
can easily show that

sup
DR

K1(s, c) =
2√

|r|+
√
|r| − |R|

(2.82)

(but at the same time K1(s, c) <
2√

|r|+
√
|r| − |R|

for all (s, c) ∈ DR).

Hence the level set (2.81) is not empty iff the bounds A0, r, and R satisfy
inequality (2.77).

Now suppose that (2.77) holds and for a given c consider the equation
(2.81) as the equation w.r.t. s. Obviously, this equation is equivalent to the
following one:

coth(
√
|r|s) =

4
√
A0

p1
√
|r|

(
1 +

c2

R
−

p1
4
√
A0

c

)
. (2.83)

Denote the right-hand side of the last equation by σ(c). Since for x > 0 the
function coth(x) is monotone decreasing, Eq. (2.83) has a minimal positive

solution smin for c =
p1R

2 4
√
A0

, corresponding to the global maximum of the

function σ(c). It is easy to see also that

maxσ(c) =
1√
|r|

(
4
√
A0

p1
−

p1R

4 4
√
A0

)
.
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Inequality (2.77) holds then

smin =
1√
|r|

arccoth

(
1√
|r|

(
4
√
A0

p1
−

p1R

4 4
√
A0

))
. (2.84)

Further from (2.80) it follows that if condition (2.77) holds, then we have

K

(
smin,

p1R

2 4
√
A0

)
≥K1

(
smin,

p1R

2 4
√
A0

)
=

p1
4
√
A0

.

Therefore, by Lemma 2.6 there exists at least one point conjugate to t0 w.r.t.
Λ(t) in the interval (t0, t0 + smin ]. This together with (2.84) completes the
proof of the theorem.

Remark 8. It is not difficult to show that the relation

sup
Dr

K(s, c) = sup
DR

K1(s, c)

holds. In addition, the minimal value of s for the points (s, c) on the level set

K(s, c) =
p1
4
√
A0

is equal to the minimal value of s for the points (s, c) on the

level set K1(s, c) =
p1
4
√
A0

. This shows that in spite of the inequality (2.80),

the replacement of the function K(s, c) by the function K1(s, c) in the proof
of the previous theorem leads to the same estimate for the length of intervals
containing conjugate points.

2.4.7. (b) The case R ≥ 0. On the interval
(
0,

π
√
R

)
, we define the function

Qr,R(s)
def
= K

(
s,
√
R tan

(√
Rs

2

))
=

=
1

√
r cot (

√
r s) +

√
R tan

(
√
Rs
2

) . (2.85)

Note that Qr,R(s) > 0 on the interval
(
0,

π
√
R

)
. Also, Qr,R(s) −→

s→0
0 and

Qr,R(s) −→
s→ π√

R

0. Therefore, there exists smax ∈
(
0,

π
√
R

)
such that Qr,R(s)

attains its maximum at s = smax. Moreover, it is not difficult to show
that on the interval (0, smax] the function Qr,R(s) is monotone increasing.

Therefore, the inverse function Q
−1

r,R : (0, Qr,R(smax)] �→ (0, smax] (or the

branch of the multi-valued function inverse to Qr,R that obtains its values
on (0, smax]) is well defined.
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Theorem 11. Let Λ : I �→ L(W ) be a curve of rank 1 and constant
weight defined on the interval I ⊆ R. Suppose that for any t ∈ I its invari-
ants ρ(t) and A(t) satisfy the inequalities

4

3
r ≤ ρ(t) ≤

4

3
R, R ≥ 0, A(t) ≥

A0

35
> 0.

Suppose also that the bounds A0, r, and R satisfy the relation

max
0<s< π√

R

Qr,R(s) ≥
p1
4
√
A0

. (2.86)

Then for any t0 there exists at least one point conjugate to t0 w.r.t. the
curve Λ(t) in the interval(

t0, t0 +Q
−1

r,R

(
p1
4
√
A0

)]
. (2.87)

Proof. Note that in our case the domain DR has the form

DR =
{
(s, c) : c > −

√
R cot(

√
Rs)
}
.

For given s, 0 < s <
π
√
R
, consider the function c �→ K(s, c), where c >

−
√
R cot(

√
Rs). From relations (2.76) it follows that K(s, c) −→ 0 as

c → −
√
R cot(

√
Rs) or c → ∞. Also, we note that for 0 < s <

π
√
R

the

inequality
√
R tan

(√
Rs

2

)
> −

√
R cot

(√
Rs
)

holds. Obviously, the function c �→ K(s, c) is monotone decreasing for

c >
√
R tan

(√Rs
2

)
. Also, by a direct calculation we can easily obtain that

the function c �→ K(s, c) is monotone increasing for −
√
R cot(

√
Rs) < c <

√
R tan

(√Rs
2

)
. Hence for all (s, c) ∈ DR we have the following relation:

K(s, c) ≤ K

(
s,
√
R tan

(√
Rs

2

))
= Qr,R(s). (2.88)

Consequently,

sup
DR

K(s, c) = max
0<s< π√

R

Qr,R(s),

which implies that the level set K(s, c) =
p1
4
√
A0

is not empty iff the bounds

A0, r, and R satisfy inequality (2.86).
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Now suppose that (2.86) holds. If s < Q
−1
r,R

( p1
4
√
A0

)
, then from mono-

tonicity of Qr,R on the interval (0, smax) and relation (2.88) it follows that

K(s, c) < Qr,R(s) <
p1
4
√
A0

.

On the other hand, if s = Q
−1
r,R

( p1
4
√
A0

)
, then K

(
s,
√
R tan

(√Rs
2

))
=

p1
4
√
A0

. Therefore, s = Q
−1

r,R

( p1
4
√
A0

)
is the minimal value of s for the points

(s, c) on the level set K(s, c) =
p1
4
√
A0

. Our theorem follows now from

Lemma 2.6.
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