ON THE SUBANALYTICITY OF CARNOT–CARATHEODORY DISTANCES

Andrei AGRACHEV a,b, Jean-Paul GAUTHIER c

^a S.I.S.S.A., Via Beirut 2-4, 34013 Trieste, Italy
^b Steklov Mathematical Institute, ul. Gubkina 8, 117966 Moscow, Russia
^c Lab. d'analyse appliquée et optimisation, Univ. de Bourgogne, Département de Mathématiques,
B.P. 47870, 21078 Dijon, France

Received 15 March 2000, revised 29 July 2000

1. Introduction

Let M be a C^{∞} Riemannian manifold, $\dim M = n$. A distribution on M is a smooth linear subbundle Δ of the tangent bundle TM. We denote by Δ_q the fiber of Δ at $q \in M$; $\Delta_q \subset T_qM$. The number $k = \dim \Delta_q$ is the rank of the distribution. We assume that 1 < k < n. The restriction of the Riemannian structure to Δ is a sub-Riemannian structure.

Lipschitz integral curves of the distribution Δ are called *admissible paths*; these are Lipschitz curves $t \mapsto q(t), \ t \in [0, 1]$, such that $\dot{q}(t) \in \Delta_{q(t)}$ for almost all t.

We fix a point $q_0 \in M$ and study only admissible paths starting from this point, i.e. meeting the initial condition $q(0) = q_0$. Sections of the linear bundle Δ are smooth vector fields; we set

$$\bar{\Delta} = \{ X \in \text{Vec } M \colon X(q) \in \Delta_q, \ q \in M \},$$

the space of sections of Δ . Iterated Lie brackets of the fields in $\bar{\Delta}$ define a flag

$$\Delta_{q_0} \subset \Delta_{q_0}^2 \subset \cdots \subset \Delta_{q_0}^m \cdots \subset T_q M$$

in the following way:

$$\Delta_{q_0}^m = \operatorname{span}\{[X_1, [X_2, [\ldots, X_m] \ldots](q_0): X_i \in \bar{\Delta}, i = 1, \ldots, m\}.$$

A distribution Δ is bracket generating at q_0 if $\Delta_{q_0}^m = T_{q_0}M$ for some m > 0. If Δ is bracket generating, then according to the classical Rashevski-Chow theorem (see [11, 18]) there exist admissible paths connecting q_0 with any point of an open neighborhood of q_0 . Moreover, applying a general existence theorem for optimal controls [12] one

obtains that for any q_1 in a small enough neighborhood of q_0 there exists a shortest admissible path connecting q_0 to q_1 . The Riemannian length of this shortest path is the *sub-Riemannian distance* or *Carnot-Caratheodory distance* between q_0 and q_1 .

In the remainder of the paper we assume that Δ is bracket generating at the given initial point q_0 . We denote by $\rho(q)$ the sub-Riemannian distance between q_0 and q. It follows from the Rashevsky–Chow theorem that ρ is a continuous function defined on a neighborhood of q_0 . Moreover, ρ is Hölder-continuous with the Hölder exponent 1/m, where $\Delta_{q_0}^m = T_{q_0}M$.

We study mainly the case of real-analytic M and Δ . The germ at q_0 of a Riemannian distance is the square root of an analytic germ. This is not true for a sub-Riemannian distance function ρ . Moreover, ρ is never smooth in a punctured neighborhood of q_0 (i.e. in a neighborhood without the pole q_0). It may happen that ρ is not even subanalytic. The main results of the paper concern subanalyticity properties of ρ in the case of a generic real-analytic Δ .

We prove that, generically, the germ of ρ at q_0 is subanalytic if:

$$n \leq (k-1)k+1$$
 (Theorem 7),

and is not subanalytic if:

$$n \ge (k-1)\left(\frac{k^2}{3} + \frac{5k}{6} + 1\right)$$
 (Theorem 10).

The balls $\rho^{-1}([0, r])$ of small enough radius are subanalytic if $n > k \ge 3$ (Theorem 9). This statement about the balls is valid not only generically, but up to a set of distributions of codimension ∞ .

In particular, if $k \ge 3$, $n \ge (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$, then (generically!) the balls $\rho^{-1}([0, r])$ are subanalytic but ρ is not!

This paper is a new step in a rather long research line, see [1,5,6,9,10,15,17,20]. The main tools are the nilpotent approximation, Morse-type indices of geodesics, both in the normal and abnormal cases, and transversality techniques.

We finish the introduction with some conjectures on still open questions.

- (1) Small balls $\rho^{-1}([0,r])$ for $k=2, n \geqslant 4$. A natural conjecture is that they are, generically, not subanalytic.
- (2) The germ of ρ at q_0 for $(k-1)k+1 < n < (k-1)(\frac{k^2}{3}+\frac{5k}{6}+1)$. The bound $n \le (k-1)k+1$ for "generically subanalytic dimensions" is, perhaps, exact, while the bound $n \ge (k-1)(\frac{k^2}{3}+\frac{5k}{6}+1)$ for "generically nonsubanalytic dimensions" may, probably, be improved. For a wide range of dimensions, the subanalyticity and nonsubanalyticity of the germ of ρ should be both typical (i.e. valid for open sets of real-analytic distributions).

2. Nilpotentization

Nilpotentization or nilpotent approximation is a fundamental operation in the geometric control theory and sub-Riemannian geometry; this is a real nonholonomic analog of the usual linearization (see [2,3,7,8,19]).

Given nonnegative integers k_1, \ldots, k_l , where $k_1 + \cdots + k_l = n$, we present \mathbb{R}^n as a direct sum $\mathbb{R}^{k_1} \oplus \cdots \oplus \mathbb{R}^{k_l}$. Any vector $x \in \mathbb{R}^n$ takes the form

$$x = (x_1, ..., x_l), \quad x_i = (x_{i1}, ..., x_{ik}) \in \mathbb{R}^{k_i}, \quad i = 1, ..., l.$$

The differential operators on \mathbb{R}^n with smooth coefficients have the form

$$\sum_{\alpha} \frac{a_{\alpha}(x)\partial^{|\alpha|}}{\partial x^{\alpha}},$$

where $a_{\alpha} \in C^{\infty}(\mathbb{R}^n)$ and α is a multi-index:

$$\alpha = (\alpha_1, \ldots, \alpha_l), \quad \alpha_i = (\alpha_{i1}, \ldots, \alpha_{ik_i}), \quad |\alpha_i| = \sum_{i=1}^{k_i} \alpha_{ij}, \quad i = 1, \ldots, l.$$

The space of all differential operators with smooth coefficients forms an associative algebra with composition of operators as multiplication. The differential operators with polynomial coefficients form a subalgebra of this algebra with generators $1, x_{ij}, \frac{\partial}{\partial x_{ij}}, i = 1, \ldots, l, \ j = 1, \ldots, k_i$. We introduce a \mathbb{Z} -grading into this subalgebra by giving the weights ν to the generators: $\nu(1) = 0, \ \nu(x_{ij}) = i$, and $\nu(\frac{\partial}{\partial x_{ij}}) = -i$. Accordingly,

$$\nu\left(x^{\alpha}\frac{\partial^{|\beta|}}{\partial x^{\beta}}\right) = \sum_{i=1}^{l} (|\alpha_{i}| - |\beta_{i}|)i,$$

where α and β are multi-indices.

A differential operator with polynomial coefficients is said to be v-homogeneous of weight m if all the monomials occurring in it have weight m. It is easy to see that $v(D_1 \circ D_2) = v(D_1) + v(D_2)$ for any v-homogeneous differential operators D_1 and D_2 . The most important for us are differential operators of order 0 (functions) and of order 1 (vector fields). We have v(Xa) = v(X) + v(a), $v([X_1, X_2]) = v(X_1) + v(X_2)$ for any v-homogeneous function a and vector fields X, X_1 , X_2 . A differential operator of order N has weight at least -Nl; in particular, the weight of nonzero vector fields is at least -l. Vector fields of nonnegative weights vanish at 0 while the values at 0 of the fields of weight -i belong to the subspace \mathbb{R}^{k_i} , the ith summand in the presentation $\mathbb{R}^n = \mathbb{R}^{k_1} \oplus \cdots \oplus \mathbb{R}^{k_l}$.

We introduce a dilation $\delta_t : \mathbb{R}^n \to \mathbb{R}^n$, $t \in \mathbb{R}$, by the formula:

$$\delta_t(x_1, x_2, \dots, x_l) = (tx_1, t^2 x_2, \dots, t^l x_l). \tag{1}$$

 ν -homogeneity means homogeneity with respect to this dilation. In particular, we have $a(\delta_t x) = t^{\nu(a)} a(x)$, $\delta_{t*} X = t^{-\nu(X)} X$ for any ν -homogeneous function a and vector field X.

Now let $X = \sum_{i,j} a_{ij} \frac{\partial}{\partial x_{ij}}$ be an arbitrary smooth vector field. Expanding the coefficients a_{ij} in a Taylor series in powers of x_{ij} and grouping the terms with the same weights, we get an expansion $X \approx \sum_{m=-l}^{+\infty} X^{(m)}$, where $X^{(m)}$ is a ν -homogeneous field

of weight m. This expansion enables us to introduce a decreasing filtration in the Lie algebra of smooth vector fields $\text{Vec } \mathbb{R}^n$ by putting:

$$\operatorname{Vec}^{m}(k_{1}, \dots, k_{l}) = \{ X \in \operatorname{Vec} \mathbb{R}^{n} : X^{(i)} = 0 \text{ for } i < m \}, \quad -l \leq m < +\infty.$$

It is easy to see that:

$$[\text{Vec}^{m_1}(k_1,\ldots,k_l), \text{Vec}^{m_2}(k_1,\ldots,k_l)] \subseteq \text{Vec}^{m_1+m_2}(k_1,\ldots,k_l).$$

It happens that this class of filtrations is in a sense universal. We will need the following theorem which is a special case of general results proved in [2,8].

Set
$$\Delta_{q_0}^0 = \{0\}_{q_0}, \ \hat{\Delta}_{q_0}^1 = \Delta_{q_0}.$$

THEOREM 1. – Assume that $\dim(\Delta_{q_0}^i/\Delta_{q_0}^{i-1})=k_i$, $i=1,\ldots,l$. Then there exists a neighborhood O_{q_0} of the point q_0 in M and a coordinate mapping $\chi:O_{q_0}\to\mathbb{R}^n$ such that

$$\chi(q_0) = 0, \quad \chi_*|_{T_{q_0}M}(\Delta_{q_0}^i) = \mathbb{R}^{k_1} \oplus \cdots \oplus \mathbb{R}^{k_i}, \quad 1 \leqslant i \leqslant l,$$

and
$$\chi_*(\bar{\Delta}) \subset \operatorname{Vec}^{-1}(k_1, \dots, k_l)$$
.

The mapping $\chi: O_{q_0} \to \mathbb{R}^n$ from the theorem is called an *adapted coordinate map*. It is obtained from arbitrary coordinates by a polynomial change of variables and the construction is quite effective. For any $X \in \bar{\Delta}$ we have $\chi_*(X) \approx \chi_*(X)^{(-1)} + \sum_{j \geqslant 0} \chi_*(X)^{(j)}$, where $\chi_*(X)^{(m)}$ is a ν -homogeneous field of weight m. The field $\widehat{X} = \chi_*^{-1}(\chi_*(X)^{(-1)})$ is called the *nilpotentization of* X (relative to the adapted coordinate mapping χ).

PROPOSITION 1. – Assume that $\chi = (\chi_1, ..., \chi_l), \ \chi_j : O_{q_0} \to \mathbb{R}^{k_j}, \ j = 1, ..., l$, is an adapted coordinate map, $X_1, ..., X_i \in \bar{\Delta}$, and \widehat{X}_i is the nilpotenization of X_i , i = 1, ..., i. Then:

$$X_1 \circ \cdots \circ X_i \chi_i(q_0) = 0 \quad \forall j > i,$$

$$X_1 \circ \cdots \circ X_i \chi_i(q_0) = \widehat{X}_1 \circ \cdots \circ \widehat{X}_i \chi_i(q_0).$$

Proof. – We have:

$$X_1 \circ \cdots \circ X_i \chi_j(q_0) = (\chi_* X_1) \circ \cdots \circ (\chi_* X_i) x_j|_0$$

=
$$\sum_{m_1 + \cdots + m_i = -i} (\chi_* X_1)^{(m_1)} \circ \cdots \circ (\chi_* X_i)^{(m_i)} x_j|_0,$$

since any monomial of positive weight vanishes at 0. Hence:

$$X_1 \circ \cdots \circ X_i \chi_j(q_0) = 0$$
 for $i < j$,

$$X_1 \circ \cdots \circ X_i \chi_i(q_0) = (\chi_* X_1)^{(-1)} \circ \cdots \circ (\chi_* X_i)^{(-1)} \chi_i|_0 = \widehat{X}_1 \circ \cdots \circ \widehat{X}_i \chi_i(q_0).$$

3. The endpoint mapping

We are working in a small neighborhood O_{q_0} of $q_0 \in M$, where we fix an orthonormal frame $X_1, \ldots, X_k \in \text{Vec } O_{q_0}$ of the sub-Riemannian structure under consideration. Admissible paths are thus solutions of the Cauchy problem:

$$\dot{q} = \sum_{i=1}^{k} u_i(t) X_i(q), \quad q \in O_{q_0}, \ q(0) = q_0, \tag{2}$$

where $u = (u_1(\cdot), \dots, u_k(\cdot)) \in L_2^k[0, 1]$.

Below $||u|| = (\int_0^1 \sum_{i=0}^k u_i^2(t) dt)^{1/2}$ is the norm in $L_2^k[0, 1]$. We also set $||q(\cdot)|| = ||u||$, where $q(\cdot) = q(\cdot; u)$ is the solution of (2). Let:

$$U_r = \{ u \in L_2^k[0, 1] : ||u|| = r \},$$

be the sphere of radius r in $L_2^k[0,1]$. Solutions of (2) are defined for all $t \in [0,1]$, if u belongs to a sphere of radius r, small enough. In this paper we implicitly take u only in such spheres. The length $l(q(\cdot)) = \int_0^1 (\sum_{i=1}^k u_i^2(t))^{1/2} dt$ is well-defined and satisfies the inequality:

$$l(q(\cdot)) \leqslant ||q(\cdot)|| = r. \tag{3}$$

The length does not depend on the parametrization of the curve while the norm ||u|| depends. We say that u and $q(\cdot)$ are normalized if $\sum_{i=1}^{k} u_i^2(t)$ does not depend on t. For normalized u, and only for them, the inequality (3) becomes an equality.

We consider the *endpoint mapping* $f: u \mapsto q(1)$. It is a well-defined smooth mapping of a neighborhood of the origin of $L_2^k[0,1]$ into M. Clearly, $\rho(q) = \min\{\|u\|: u \in L_2^r[0,1], f(u)=q\}$ and the minimum is attained at a normalized control. A normalized u is called *minimal* for the system (2) if $\rho(f(u)) = \|u\|$.

Remark. – The notations $\|q(\cdot)\|$ and $l(q(\cdot))$ reflect the fact that these quantities do not depend on the choice of the orthonormal frame X_1, \ldots, X_k and are characteristics of the trajectory $q(\cdot)$ rather than the control u. The L_2 -topology in the space of controls is the H_1 -topology in the space of trajectories.

Let $\chi: O_{q_0} \to \mathbb{R}^n$, be an adapted coordinate map and \widehat{X}_i be the nilpotentization of X_i , $i = 1, \dots, k$. The system:

$$\dot{x} = \sum_{i=1}^{k} u_i(t) \chi_* \hat{X}_i(x), \quad x \in \mathbb{R}^n, \ x(0) = 0,$$
 (2)

is the nilpotentization of the system (2) expressed in the adapted coordinates.

We define the mapping $\hat{f}: L_2^k[0,1] \to \mathbb{R}^n$ by the rule $\hat{f}: u(\cdot) \mapsto x(1)$, where $x(\cdot) = x(\cdot; u)$ is the solution of $(\hat{2})$. The following proposition is an easy corollary of the fact that $\chi_* \hat{X}_i$ are ν -homogeneous of weight (-1) (see [2] for details).

PROPOSITION 2. – Let $\chi = (\chi_1, ..., \chi_l), \ \chi_j : O_{q_0} \to \mathbb{R}^{k_j}, \ j = 1, ..., l$. Then the following identities hold for any $u(\cdot) \in L^k_2[0, 1], \ \varepsilon \in \mathbb{R}$:

$$\hat{f}(u(\cdot)) = \left(\int_{0}^{1} \sum_{i=1}^{k} u_{i}(t) \hat{X}_{i} \chi_{1}(q_{0}) dt, \dots, \right.$$

$$\int \dots \int \sum_{0 \leqslant t_{1} \leqslant \dots \leqslant t_{l} \leqslant 1} \sum_{i_{j}=1}^{k} u_{i_{1}}(t_{1}) \dots u_{i_{l}}(t_{l}) \hat{X}_{i_{1}} \circ \dots \circ \hat{X}_{i_{l}} \chi_{l}(q_{0}) dt_{1} \dots dt_{l}\right);$$

 $\hat{f}(\varepsilon u(\cdot)) = \delta_{\varepsilon} \hat{f}(u(\cdot))$, where δ_{ε} is the dilation (1).

We set $f_{\varepsilon}(u) = \delta_{\frac{1}{\varepsilon}} \chi(f(\varepsilon u))$. Then f_{ε} is a smooth mapping from a neighborhood of 0 in $L_2^k[0,1]$ to \mathbb{R}^n . Moreover, any bounded subset of $L_2^k[0,1]$ is contained in the domain of f_{ε} for ε small enough.

THEOREM $2. - f_{\varepsilon} \to \hat{f}$ as $\varepsilon \to 0$ in the C^{∞} topology of the uniform convergence of the mappings and all their derivatives on the balls in $L_2^k[0, 1]$.

Proof. – We have:

$$\delta_{\frac{1}{\varepsilon}}\chi(f(v)) = \left(\frac{1}{\varepsilon}\chi_1(f(v)), \dots, \frac{1}{\varepsilon^l}\chi_l(f(v))\right),$$

$$\begin{split} \chi_{j}(f(v)) &= \int_{0}^{1} \sum_{i=1}^{k} v_{i}(t) X_{j} \chi_{j}(q(t)) dt = \int_{0}^{1} \sum_{i=1}^{k} v_{i}(t) X_{j} \chi_{j}(q_{0}) dt \\ &+ \int_{0}^{1} \int_{0}^{t_{2}} \sum_{i_{1}=i_{2}=1}^{k} v_{i_{1}}(t_{1}) v_{i_{2}}(t_{2}) X_{i_{1}} \circ X_{i_{2}} \chi_{j}(q(t_{1})) dt_{1} dt_{2} \\ &= \int_{0}^{1} \sum_{i=1}^{k} v_{i}(t) X_{j} \chi_{j}(q_{0}) dt \\ &+ \int_{0}^{1} \int_{0}^{t_{2}} \sum_{i_{1}=i_{2}=1}^{k} v_{i_{1}}(t_{1}) v_{i_{2}}(t_{2}) X_{i_{1}} \circ X_{i_{2}} \chi_{j}(q_{0}) dt_{1} dt_{2} \\ &+ \int_{0 \leqslant t_{1} \leqslant t_{2} \leqslant t_{3}} \int_{i_{j}=1}^{k} v_{i_{1}}(t_{1}) v_{i_{2}}(t_{2}) v_{i_{3}}(t_{3}) X_{i_{1}} \circ X_{i_{2}} \circ X_{i_{3}} \chi_{j}(q(t_{1})) dt_{1} dt_{2} dt_{3} \\ &= \cdots \end{split}$$

Now, Proposition 1 implies:

$$\frac{1}{\varepsilon^{j}}\chi_{j}(f(\varepsilon u)) = \int_{0 \leq t_{1} \leq \cdots \leq t_{j} \leq 1} \sum_{i_{j}=1}^{k} u_{i_{1}}(t_{1}) \cdots u_{i_{j}}(t_{j}) \widehat{X}_{i_{1}} \circ \cdots \circ \widehat{X}_{i_{j}} \chi_{j}(q_{0}) dt_{1} \cdots dt_{j}$$

$$+ \varepsilon \int_{0 \leqslant t_1 \leqslant \cdots \leqslant t_{j+1} \leqslant 1} \sum_{i_j=1}^k u_{i_1}(t_1) \cdots u_{i_{j+1}}(t_{j+1}) X_{i_1} \circ \cdots$$

$$\circ X_{i_{j+1}} \chi_j (q(t_1; \varepsilon u)) dt_1 \cdots dt_{j+1}.$$

It remains to apply Proposition 2 and to note that the mappings $v\mapsto q(t;v)$ are uniformly bounded with all their derivatives on a small enough ball in $L_2^k[0,1]$ for $0\leqslant t\leqslant 1$. \square

Recall that $\rho(q) = \min\{\|u\|: f(u) = q, u \in L_2^k[0, 1]\}$ is the sub-Riemannian distance function. We set:

$$\rho_{\varepsilon}(x) = \min\{\|u\|: f_{\varepsilon}(u) = x, u \in L_2^k[0, 1]\} = \frac{1}{\varepsilon} \rho\left(\chi^{-1}(\delta_{\varepsilon}x)\right)$$

and

$$\hat{\rho}(x) = \min\{\|u\|: \hat{f}(u) = x, u \in L_2^k[0, 1]\}.$$

Thus $\hat{\rho}$ is the sub-Riemannian distance for the nilpotentization of the original system.

LEMMA 1. – The family of functions $\rho_{\varepsilon}|_{K}$ is equicontinuous for any compact $K \subset \mathbb{R}^{n}$.

Proof. – The function $\rho(q)$ is the sub-Riemannian distance between q_0 and q for the sub-Riemannian structure with the orthonormal frame X_1, \ldots, X_k . Hence $\rho_{\varepsilon}(x)$ is the sub-Riemannian distance between 0 and x for the structure with the orthonormal frame:

$$\varepsilon(\delta_{\varepsilon}^{-1})_{*}\chi_{*}X_{1}, \dots, \varepsilon(\delta_{\varepsilon}^{-1})_{*}\chi_{*}X_{k}. \tag{4}$$

Let $d_{\varepsilon}(x, y)$ be the distance between x and y for this sub-Riemannian structure so that $\rho_{\varepsilon}(x) = d_{\varepsilon}(0, x)$. Clearly, $|\rho_{\varepsilon}(x) - \rho_{\varepsilon}(y)| \le d_{\varepsilon}(x, y)$. We are going to prove that:

$$d_{\varepsilon}(x, y) \leqslant c|x - y|^{1/2^{l}}$$
.

First we introduce an auxiliary operation on families of control functions. Suppose that $u_s(\cdot)$, $v_s(\cdot) \in L_2^k[0, 1]$, $s \in \mathbb{R}$, $u_0(\cdot) = v_0(\cdot) = 0$; we define:

$$[u,v]_s(t) = \begin{cases} u_{|s|^{1/2}}(4t), & 0 \leqslant t < \frac{1}{4}, \\ v_{|s|^{1/2}}(4t-1), & \frac{1}{4} \leqslant t < \frac{1}{2}, \\ u_{|s|^{1/2}}(3-4t), & \frac{1}{2} \leqslant t < \frac{3}{4}, \\ v_{|s|^{1/2}}(4-4t), & \frac{3}{4} \leqslant t \leqslant 1, \end{cases}$$

where we take a branch of $|s|^{1/2}$ such that $s|s|^{1/2} \ge 0$.

For any control $u(\cdot)$ and a system:

$$\dot{x} = \sum_{i=1}^{k} u_i(t) Z_i(x), \quad x \in \mathbb{R}^n,$$
 (5)

we define a diffeomorphism $\mathfrak{Z}_u: \mathbb{R}^n \to \mathbb{R}^n$ by the rule $\mathfrak{Z}_u(x(0)) = x(1)$, where $t \mapsto x(t)$ is a solution of the differential equation (5). Then

$$\mathfrak{Z}_{[u,v]_s} = \mathfrak{Z}_{v_{|s|}^{1/2}}^{-1} \circ \mathfrak{Z}_{u_{|s|}^{1/2}}^{-1} \circ \mathfrak{Z}_{v_{|s|}^{1/2}} \circ \mathfrak{Z}_{u_{|s|}^{1/2}}.$$

If $(s,x)\mapsto \mathfrak{Z}_{u_s}(x)$, $(s,x)\mapsto \mathfrak{Z}_{v_s}(x)$ are C^1 -mappings and $\frac{\partial}{\partial s}\mathfrak{Z}_{u_s}|_{s=0}=X$, $\frac{\partial}{\partial s}\mathfrak{Z}_{v_s}|_{s=0}=Y$, $X,Y\in \text{Vec }\mathbb{R}^n$, then $(s,x)\mapsto \mathfrak{Z}_{[u,v]_s}(x)$ is also C^1 and $\frac{\partial}{\partial s}\mathfrak{Z}_{[u,v]_s}|_{s=0}=[X,Y]$. Let ς_s^i be the constant control with the ith coordinate equals s and all other coordinates equals s. We set $\varsigma[i_1\ldots i_m]_s=[\varsigma^{i_1},[\ldots,\varsigma^{i_m}]\ldots]_s$ and obtain $\frac{\partial}{\partial s}\mathfrak{Z}_{\varsigma[i_1\ldots i_m]_s}|_{s=0}=[Z_1,[\ldots,Z_m]\ldots]$. Note that $\|\varsigma[i_1\ldots i_m]_s\|=s^{1/2^m}$.

Now we go back to the vector fields (4) and set $Z_i^{\varepsilon} = \varepsilon \delta_{\varepsilon *}^{-1} \chi_* X_i$, i = 1, ..., k. We have $\delta_{\varepsilon *}^{-1} \chi_* X_i = \frac{1}{\varepsilon} \chi_* \widehat{X}_i + R_i^{\varepsilon}$, where R_i^{ε} is a family of vector fields smooth with respect to ε (see Section 2). Hence $Z_i^{\varepsilon} = \chi_* \widehat{X}_i + \varepsilon R_i^{\varepsilon}$.

The bracket generating assumption implies that a basis of \mathbb{R}^n can be formed by vectors:

$$[X_{i_1^1}, [\ldots, X_{i_{m_1}^1}] \ldots](q_0), \ldots, [X_{i_1^n}, [\ldots, X_{i_{m_n}^n}] \ldots](q_0),$$

where $1 \le m_1 \le \cdots \le m_n \le l$. It follows from Proposition 1 that the vectors:

$$ig[\widehat{X}_{i_1^1}, [\ldots, \widehat{X}_{i_{m_1}^1}] \ldots ig](q_0), \ldots, ig[\widehat{X}_{i_1^n}, [\ldots, \widehat{X}_{i_{m_n}^n}] \ldots ig](q_0),$$

form a basis of \mathbb{R}^n . Indeed, the difference:

$$ig[X_{i_1^j}, [\dots, X_{i_{m_i}^j}] \dots ig](q_0) - ig[\widehat{X}_{i_1^j}, [\dots, \widehat{X}_{i_{m_i}^j}] \dots ig](q_0),$$

belongs to $\Delta_{q_0}^{m_j-1}$. We apply the diffeomorphism χ and obtain that the vectors:

$$\chi_* [\widehat{X}_{i_1^1}, [\dots, \widehat{X}_{i_{m_1}^1}] \dots] (x), \dots, \chi_* [\widehat{X}_{i_1^n}, [\dots, \widehat{X}_{i_{m_n}^n}] \dots] (x), \tag{6}$$

form a basis of \mathbb{R}^n for any x from a neighborhood of 0. Moreover, the vectors (6) form a basis of \mathbb{R}^n for any $x \in \mathbb{R}^n$ thanks to the ν -homogeneity of $\chi_* \widehat{X}_i$.

Take a compact $K \subset \mathbb{R}^n$. There exists $\varepsilon_K > 0$ such that the vectors:

$$\left[Z_{i_1^1}^{\varepsilon}, [\ldots, Z_{i_{m_1}^1}^{\varepsilon}] \ldots\right](x), \ldots, \left[Z_{i_1^n}^{\varepsilon}, [\ldots, Z_{i_{m_n}^n}^{\varepsilon}] \ldots\right](x),$$

form a basis of \mathbb{R}^n for any $(x, \varepsilon) \in D_K = \{(x, \varepsilon) | x \in K, |\varepsilon| \le \varepsilon_K \}$.

Finally, we define a family of controls $w_{\bar{s}}$, $\bar{s} = (s_1, \dots, s_n)$, $s_j \in \mathbb{R}$, $j = 1, \dots, n$, by the rule:

$$w_{\bar{s}} = \begin{cases} n \zeta [i_1^1 \dots i_{m_1}^1]_{s_1} (\frac{t}{n}), & 0 \leqslant t < \frac{1}{n}, \\ \dots & \dots \\ n \zeta [i_1^n \dots i_{m_n}^n]_{s_n} (\frac{t}{n}), & \frac{n-1}{n} \leqslant t \leqslant 1. \end{cases}$$

Let the mapping $\mathfrak{Z}_u^{\varepsilon}$ be defined similarly to \mathfrak{Z}_u , replacing the field Z_i by the field Z_i^{ε} . Then:

$$\left. \frac{\partial}{\partial s_i} \mathfrak{Z}_{w_{\bar{s}}}^{\varepsilon} \right|_{\bar{s}=0} = \left[Z_{i_1^j}^{\varepsilon}, [\dots, Z_{i_{m_j}^j}^{\varepsilon}] \dots \right].$$

In particular, the mapping $\Phi_x^{\varepsilon}: \bar{s} \mapsto (\mathfrak{Z}_{w_{\bar{s}}}^{\varepsilon}(x) - x)$ is a submersion at 0 for any $x \in K$, $|\varepsilon| \leq \varepsilon_K$; $\Phi_x^{\varepsilon}(0) = 0$.

Recall that the family of mappings Φ_x^ε is smooth with respect to the parameters (ε, x) , and (ε, x) belongs to the compact set D_K . Hence the inverse mapping $(\Phi_x^\varepsilon)^{-1}$ is well defined on a ball $\{z \in \mathbb{R}^n \colon |z| \le \delta\}$, the radius δ of which does not depend on (x, ε) . Clearly, $(\Phi_x^\varepsilon)^{-1}(z) \le c'|z|$ for some constant c'. Hence the equation $\mathfrak{Z}_{w_{\bar{s}}}^\varepsilon(x) = y$ has a solution \bar{s} such that $|s| \le c'|x-y|$ if $x \in K$, $|x-y| \le \delta$, and $|\varepsilon| \le \varepsilon_K$. It follows that $d_\varepsilon(x,y) \le \|w_{\bar{s}}\| \le c''|s|^{1/2^l} \le c|x-y|^{1/2^l}$. \square

THEOREM 3. $-\rho_{\varepsilon} \to \hat{\rho}$ uniformly on compact subsets of \mathbb{R}^n as $\varepsilon \to 0$.

Proof. – Thanks to the equicontinuity of the family of functions $\rho_{\varepsilon}|_{K}$ (Lemma 1) it is enough to prove the pointwise convergence $\rho_{\varepsilon} \to \hat{\rho}$ as $\varepsilon \to 0$.

Take $x \in \mathbb{R}^n$; there exists $\hat{u} \in U_{\hat{\rho}(x)}$ such that $\hat{f}(\hat{u}) = x$. Let $x_{\varepsilon} = f_{\varepsilon}(\hat{u})$. We have $\rho_{\varepsilon}(x_{\varepsilon}) \leq ||\hat{u}|| = \hat{\rho}(x)$. Hence:

$$\rho_{\varepsilon}(x) = \rho_{\varepsilon}(x_{\varepsilon}) + \rho_{\varepsilon}(x) - \rho_{\varepsilon}(x_{\varepsilon}) \leqslant \hat{\rho}(x) + |\rho_{\varepsilon}(x) - \rho_{\varepsilon}(x_{\varepsilon})|.$$

According to Theorem 2, $x_{\varepsilon} \to x$ as $\varepsilon \to 0$. Now Lemma 1 implies the inequality $\limsup_{\varepsilon \to 0} \rho_{\varepsilon}(x) \leqslant \hat{\rho}(x)$.

For any ε small enough, there exists $u_{\varepsilon} \in U_{\rho_{\varepsilon}(x)}$ such that $f_{\varepsilon}(u_{\varepsilon}) = x$. The equicontinuity of ρ_{ε} and the identity $\rho_{\varepsilon}(0) = 0$ imply that $||u_{\varepsilon}|| = \rho_{\varepsilon}(x)$ are uniformly bounded. Let $\hat{x}_{\varepsilon} = \hat{f}(u_{\varepsilon})$. We have $\hat{\rho}(\hat{x}_{\varepsilon}) \leq \rho_{\varepsilon}(x)$. Hence:

$$\hat{\rho}(x) = \hat{\rho}(\hat{x}_{\varepsilon}) - \hat{\rho}(\hat{x}_{\varepsilon}) + \hat{\rho}(x) \leqslant \rho_{\varepsilon}(x) + |\hat{\rho}(\hat{x}_{\varepsilon}) - \hat{\rho}(x)|.$$

It follows from Theorem 2 that $\hat{x}_{\varepsilon} \to x$ as $\varepsilon \to 0$. The continuity of $\hat{\rho}$ implies the inequality $\hat{\rho}(x) \leqslant \liminf_{\varepsilon \to 0} \rho_{\varepsilon}(x)$.

Finally, $\lim_{\varepsilon \to 0} \rho_{\varepsilon}(x) = \hat{\rho}(x)$.

The following proposition is a modification of a result by Jacquet [17].

PROPOSITION 3. – Let $\mathcal{M}_r = \{u \in U_r : \exists \alpha \in (0, 1] \text{ s.t. } \alpha u \text{ is minimal for } (2)\}$. Then $\overline{\mathcal{M}}_r$ is a compact subset of the Hilbert sphere U_r and $\hat{f}(\overline{\mathcal{M}}_r \setminus \mathcal{M}_r) \subset \hat{\rho}^{-1}(r)$; in particular, any element of $\overline{\mathcal{M}}_r \setminus \mathcal{M}_r$ is a minimal control for system $(\hat{2})$.

Proof. – First of all, the mappings f and \hat{f} are weakly continuous; this is a standard fact, see [1] for a few lines proof. Let $v_n \in \mathcal{M}_r$, $n=1,2,\ldots$, be a weakly convergent sequence in $L_2^k[0,1]$, such that $\alpha_n v_n$ are minimal. Let v be the weak limit of v_n , $\|v\| \leq r$. We may assume without lack of generality that $\exists \lim_{n \to \infty} \alpha_n = \alpha$. There are two possibilities.

(1) $\alpha > 0$. We have $\alpha r = \lim_{n \to \infty} \alpha_n r = \lim_{n \to \infty} \rho(f(\alpha_n v_n)) = \rho(f(\alpha v))$. Hence the length of the trajectory associated to the control αv is αr . In particular, $\|\alpha v\| \ge \alpha r$. We

already know that $||v|| \le r$. Thus ||v|| = r, v is normalized and belongs to \mathcal{M}_r . Moreover, the sequence v_n is strongly convergent since the weak and strong topologies coincide on the Hilbert sphere.

(2) $\alpha = 0$. We have $\hat{\rho}(\hat{f}(v)) = \lim_{n \to \infty} \hat{\rho}(\hat{f}(v_n))$. Theorems 2, 3, and Lemma 1 make it possible to replace $\hat{\rho}$ by ρ_{α_n} and \hat{f} by f_{α_n} in the right-hand side of the last equality. We obtain

$$\hat{\rho}(\hat{f}(v)) = \lim_{n \to \infty} \rho_{\alpha_n}(f_{\alpha_n}(v_n)) = \lim_{n \to \infty} \frac{1}{\alpha_n} \rho(f(\alpha_n v_n)) = \lim_{n \to \infty} r = r.$$

Now the same arguments as in the case (1) show that v is normalized and ||v|| = 1. \square

4. Subanalyticity and nilpotentization

In this section we assume that the Riemannian manifold M and the distribution Δ are real analytic. Then we can assume (and we do so) that the vector fields X_1, \ldots, X_k and the adapted coordinate mapping are real analytic.

THEOREM 4. – If the germ of ρ at q_0 is subanalytic, then $\hat{\rho}$ is subanalytic.

Proof. – Let S^{n-1} be the unit sphere in \mathbb{R}^n and let $\varepsilon > 0$ be such that $\rho(\chi^{-1}(\delta_t x))$ is well defined for all $x \in S^{n-1}$, $|t| \leq \varepsilon$. Then $(t, x) \mapsto \rho(\chi^{-1}(\delta_t x))$ is a subanalytic function on the product $(-\varepsilon, \varepsilon) \times S^{n-1}$. Moreover,

$$\hat{\rho}(x) = \lim_{t \to 0} \rho_t(x) = \lim_{t \to 0} \frac{1}{t} \rho \left(\chi^{-1}(\delta_t x) \right).$$

Hence $\hat{\rho}$ is a subanalytic function on the compact algebraic manifold S^{n-1} (see [13,16]). Now the quasi-homogeneity of $\hat{\rho}$, $\hat{\rho}(\delta_t x) = |t|\hat{\rho}(x)$, implies the subanalyticity of $\hat{\rho}$ on the whole \mathbb{R}^n . \square

So the subanalyticity of ρ implies the same property for $\hat{\rho}$. It is hard to expect that the inverse implication is always true. We are going however to show that it is true very often. Namely, ρ is subanalytic if the nilpotentization $(\hat{2})$ of the original system satisfies general sufficient conditions for subanalyticity of sub-Riemannian balls developed in [1]. We point out that, in general, the subanalyticity of all balls $\rho^{-1}([0,r])$ (i.e. the Lebesgue sets of ρ) does not imply at all the subanalyticity of ρ (i.e. the graph of ρ); see the next section to appreciate a sharp difference between these two kinds of subanalyticity. At the same time, the subanalyticity of the balls $\hat{\rho}^{-1}([0,\varepsilon])$ is equivalent to the subanalyticity of $\hat{\rho}$ itself, by the quasi-homogeneity of $\hat{\rho}$.

Let us recall the background on sub-Riemannian geodesics we need to formulate the abovementioned subanalyticity conditions. First we set $f_r = f|_{U_r}$, the restriction of the endpoint mapping to the Hilbert sphere. The critical points of the mapping $f_r: U_r \to M$ are called *extremal controls* and the corresponding solutions of Eq. (2) are called *extremal trajectories* or *sub-Riemannian geodesics*. It is easy to check that all minimal controls are extremal ones. The geodesics associated to minimal controls are also called minimal.

An extremal control u and the corresponding geodesic $q(\cdot)$ are regular if u is a regular point of f; otherwise they are singular or abnormal.

Let $D_u f: L_2^k[0,1] \to T_{f(u)}M$ be the differential of f at u. Extremal controls (and only them) satisfy the equation:

$$\lambda D_u f = \nu u \tag{7}$$

with some "Lagrange multipliers" $\lambda \in T_{f(u)}^*M \setminus 0$, $\nu \in \mathbb{R}$. Here $\lambda D_u f$ is the composition of the linear mapping $D_u f$ and the linear form $\lambda : T_{f(u)}M \to \mathbb{R}$, i.e. $(\lambda D_u f) \in L_2^k[0,1]^* = L_2^k[0,1]$. We have $\nu \neq 0$ for regular extremal controls, while for abnormal controls ν can be taken 0. In principle, abnormal controls may admit Lagrange multipliers with both zero and nonzero ν . If it is not the case, then the control and the geodesic are called *strictly abnormal*.

Pontryagin's maximum principle gives an efficient way to solve Eq. (7), i.e. to find extremal controls and Lagrange multipliers. A coordinate free formulation of the maximum principle uses the canonical symplectic structure on the cotangent bundle T^*M . The symplectic structure associates a Hamiltonian vector field $\vec{a} \in \text{Vec } T^*M$ to any smooth function $a: T^*M \to \mathbb{R}$.

We define the functions h_i , i = 1, ..., k, and h on T^*M by the formulas

$$h_i(\psi) = \langle \psi, X_i(q) \rangle, \quad h(\psi) = \frac{1}{2} \sum_{i=1}^k h_i^2(\psi), \quad \forall q \in M, \ \psi \in T_q^*M.$$

Pontryagin's maximum principle implies the following:

PROPOSITION 4. – A triple (u, λ, v) satisfies Eq. (7) if and only if there exists a solution $\psi(t)$, $0 \le t \le 1$, to the system of differential and pointwise equations:

$$\dot{\psi} = \sum_{i=1}^{k} u_i(t) \vec{h}_i(\psi), \quad h_i(\psi(t)) = v u_i(t), \tag{8}$$

with boundary conditions $\psi(0) \in T_{q_0}^*M$, $\psi(1) = \lambda$.

Here $(\psi(t), \nu)$ are Lagrange multipliers for the extremal control $u_t : \tau \mapsto tu(t\tau)$; in other words, $\psi(t)D_{u_t}f = \nu u_t$.

Note that abnormal geodesics are still geodesics after an arbitrary reparametrization, while regular geodesics are automatically normalized. We say that a geodesic is *quasi-regular* if it is normalized and is not strictly abnormal. Setting $\nu=1$ we obtain a simple description of all quasi-regular geodesics.

COROLLARY 1. – Quasi-regular geodesics are exactly projections on M of the solutions of the differential equation $\dot{\psi} = \vec{h}(\psi)$ with initial conditions $\psi(0) \in T_{q_0}^*M$. If $h(\psi(0))$ is small enough, then such a solution exists (i.e. is defined on the whole segment [0,1]). The length of the geodesic is equal to $\sqrt{2h(\psi(0))}$ and the Lagrange multiplier $\lambda = \psi(1)$.

Corollary 1 provides a parametrization of the space of quasi-regular geodesics by the points of an open subset Ψ of $T_{q_0}^*M$. Namely, Ψ consists of $\psi_0 \in T_{q_0}^*M$ such that

the solution $\psi(t)$ to the equation $\dot{\psi} = \vec{h}(\psi)$ with the initial condition $\psi(0) = \psi_0$ is defined for all $t \in [0,1]$. The space of quasi-regular geodesics of a prescribed length r, small enough, are parametrized by the points of the manifold $h^{-1}(\frac{r^2}{2}) \cap T_{q_0}^*M \subset \Psi$. This manifold is diffeomorphic to $\mathbb{R}^{n-k} \times S^{k-1}$. The composition of the given parametrization with the endpoint mapping f is the *exponential mapping* $\mathcal{E}: \Psi \to M$. Thus $\mathcal{E}(\psi(0)) = \pi(\psi(1))$, where $\pi: T^*M \to M$ is the canonical projection.

Throughout the paper the "hat" over a symbol means that we replace the original system (2) by its nilpotentization ($\hat{2}$) in the construction of the object denoted by the symbol. In particular, \hat{h} is the Hamiltonian and $\hat{\mathcal{E}}$ is the exponential mapping for the system ($\hat{2}$). Besides that, we denote by h^{ε} and $\mathcal{E}^{\varepsilon}$ the Hamiltonian and the exponential mapping for the system:

$$\dot{x} = \sum_{i=1}^{k} u_i Z_i^{\varepsilon}(x), \quad x \in \mathbb{R}^n, \tag{2}^{\varepsilon}$$

where $Z_i^{\varepsilon} = \varepsilon \delta_{\varepsilon *}^{-1} \chi_* X_i$. Recall that system (2^{ε}) produces the endpoint mapping f_{ε} and sub-Riemannian distance ρ_{ε} . Note that $(\varepsilon, x) \mapsto Z_i^{\varepsilon}(x)$ are real analytic vector functions and $Z_i^0 = \hat{X}_i$. Hence $h^{\varepsilon}(\psi)$, $\mathcal{E}^{\varepsilon}(\psi)$ are also analytic with respect to (ε, ψ) and $h^0 = \hat{h}$, $\mathcal{E}^0 = \hat{\mathcal{E}}$

Our results on subanalyticity of the distance function ρ are based upon the following statement.

PROPOSITION 5. – Assume that there exists a compact $K \subset T_{q_0}^*M$ such that $\rho_r^{-1}(1) \subset \mathcal{E}(K \cap (h^r)^{-1}(\frac{1}{2}))$ for any small enough nonnegative r. Then the germ of ρ at q_0 is subanalytic.

Proof. - We have:

$$\rho(q) = \min\{r: \exists \psi \in K, \text{ such that } h^r(\psi) = \frac{1}{2}, \ \delta_r \mathcal{E}^r(\psi) = \chi(q)\},\$$

for any q in a neighborhood of q_0 . One can enlarge the compact K, if necessary, to make it semi-analytic. The subanalyticity of ρ follows now from [23, Proposition 1.3.7], thanks to the analyticity of $\mathcal{E}^r(\psi)$ and $h^r(\psi)$ with respect to (r, ψ) . \square

Let $u \in U_r$ be an extremal control, i.e. a critical point of f_r . The Hessian of f_r at u is a quadratic mapping

$$\operatorname{Hes}_u f_r : \ker D_u f_r \to \operatorname{coker} D_u f_r.$$

This is a coordinate free part of the second derivative of f_r at u. Let (λ, ν) be Lagrange multipliers associated with u so that Eq. (7) is satisfied. Then the covector $\lambda : T_{f(u)}M \to \mathbb{R}$ annihilates im $D_u f_r$ and the composition:

$$\lambda \operatorname{Hes}_{u} f_{r} : \ker D_{u} f_{r} \to \mathbb{R}, \tag{9}$$

is well-defined.

The quadratic form (9) is the *second variation* of the sub-Riemannian problem at (u, λ, ν) . We have:

$$\lambda \operatorname{Hes}_{u} f_{r}(v) = \lambda D_{u}^{2} f(v, v) - v |v|^{2}, \quad v \in \ker D_{u} f_{r}.$$

Let $q(\cdot)$ be the geodesic associated with the control u. We set:

$$\operatorname{ind}(f; u, \lambda, \nu) = \operatorname{ind}_{+}(\lambda \operatorname{Hes}_{u} f_{r}) - \dim \operatorname{coker} D_{u} f_{r}, \tag{10}$$

where $\operatorname{ind}_+(\lambda \operatorname{Hes}_u f_r)$ is the positive inertia index of the quadratic form $\lambda \operatorname{Hes}_u f_r$. Decoding some of the symbols we can rewrite:

$$\operatorname{ind}(f; u, \lambda, \nu) = \sup \{ \dim V \colon V \subset \ker D_u f_r, \ \lambda D_u^2 f(v, v) > \nu |v|^2, \ \forall v \in V \setminus 0 \}$$
$$- \dim \{ \lambda' \in T_{f(u)}^* M \colon \lambda' D_u f_r = 0 \}.$$

The value of ind $(f; u, \lambda, \nu)$ may be an integer or $+\infty$.

Remark. – The index (10) does not depend on the choice of the orthonormal frame X_1, \ldots, X_k and is actually a characteristic of the geodesic $q(\cdot)$ and the Lagrange multipliers (λ, ν) . Indeed, a change of the frame leads to a smooth transformation of the Hilbert manifold U_r and to a linear transformation of variables in the quadratic form $\lambda \operatorname{Hes}_u f_r$ and the linear mapping $D_u f_r$. Both terms in the right-hand side of (10) remain unchanged.

The next theorem presents the most important properties of index (10); see [1,5] and references there for proofs and details.

THEOREM 5. – (1) The integer-valued function $(f, u, \lambda, v) \mapsto \operatorname{ind}(f; u, \lambda, v)$ is lower semicontinuous for the C^2 topology in the space of the mappings $f: L_2^k[0, 1] \to M$.

(2) For any minimal control u there exist Lagrange multipliers λ, ν such that $\operatorname{ind}(f; u, \lambda, \nu) < 0$.

Now we are ready to formulate the main result of this section. It is a generalization of some results from [1,17].

THEOREM 6. – Assume that $\operatorname{ind}(\hat{f}; \hat{u}, \hat{\lambda}, 0) \ge 0$ for any nonzero abnormal control \hat{u} of the nilpotent system ($\hat{2}$) and any associated Lagrange multipliers ($\hat{\lambda}, 0$). Then the germ of ρ at q_0 is subanalytic.

Proof. – First we'll prove that no sufficiently small strictly abnormal control of the original system (2) is minimal.

Assume on the contrary that u_m , m = 1, 2, ..., is a sequence of minimal strictly abnormal controls, $||u_m|| = \varepsilon_m$, $\varepsilon_m \to 0$ $(m \to \infty)$. The minimality of u_m implies the existence of a nonzero $\lambda_m \in T^*_{f(u_m)}M$ such that:

$$\lambda_m D_{u_m} f = 0, \quad \text{ind}(f; u_m, \lambda_m, 0) < 0. \tag{11}$$

Set $v_m = \frac{1}{\varepsilon_m} u_m$, $\mu_m = \delta_{\varepsilon_m}^* \lambda_m$ and rewrite relations (11) in the form:

$$\mu_m D_{v_m} f_{\varepsilon_m} = 0$$
, $\operatorname{ind}(f_{\varepsilon_m}; v_m, \mu_m, 0) < 0$.

According to Proposition 3, we may assume that there exists a (strong) $\lim_{m\to\infty} v_m = v$. Of course, we may also assume that there exists $\lim_{m\to\infty} \mu_m = \mu \neq 0$. Theorem 2 implies that $\mu D_v \hat{f} = 0$, i.e. v is an abnormal control for the nilpotent system (2). On the other hand, the lower semicontinuity of ind implies that $\inf(\hat{f}; v, \mu, 0) < 0$ and we come to a contradiction.

Therefore, any short enough minimal geodesic is quasi-regular. Hence:

$$\rho(q) = \min\{r: \exists \psi \in T_0^* \mathbb{R}^n, \text{ such that } h^r(\psi) = \frac{1}{2}, \ \delta_r \mathcal{E}^r(\psi) = \chi(q)\}. \tag{12}$$

Now it remains only to show that, in relation (12), $T_0^*\mathbb{R}^n$ can be replaced by a compact subset $K \subset T_0^*\mathbb{R}^n$ and to apply Proposition 5.

Denote by $u_{\psi(0)}^r$ the extremal control associated with $\psi(0) \in (h^r)^{-1}(\frac{1}{2})$ so that $\mathcal{E}^r(\psi(0)) = f_r(u_{\psi(0)})$. We have $u_{\psi(0)}^r = (h_1^r(\psi(\cdot)), \dots, h_k^r(\psi(\cdot)))$ (see Proposition 4 and its corollary). In particular, $u_{\psi(0)}^r$ depends continuously on $\psi(0)$. We set:

$$K_r = \{ \psi(0) \in (h^r)^{-1}(\frac{1}{2}): u_{\psi(0)}^r \text{ is minimal for } (2^r), \text{ ind}(f_r; u_{\psi(0)}^r, \psi(1), 0) < 0 \},$$

$$K^{\varepsilon} = \bigcup_{0 \le r \le \varepsilon} K_r.$$

It follows from Theorem 5 that one can replace $T_0^*\mathbb{R}^n$ by K^{ε} in (12) if q lies in $\rho^{-1}([0,\varepsilon])$. We have shown above that the system

$$\mu D_v f_{\varepsilon} = 0$$
, $\operatorname{ind}(f_{\varepsilon}; v, \mu, 0) < 0$, $\mu \in \mathbb{R}^n \setminus 0$, $v \in U_1$,

has no solutions for ε small enough, and we assume ε to be so small. We are going to prove that K^{ε} is compact.

Take a sequence $\psi_m(0) \in K_{r_m} \subset K^{\varepsilon}$, $m=1,2,\ldots$ We have to find a convergent subsequence. K_0 is compact in virtue of [1, Theorem 5] applied to system (2). Hence we may assume that $r_m > 0$ for all m. Moreover, we may assume that there exists $\lim_{m\to\infty} r_m = \bar{r}$. The controls $u_{\psi_m(0)}^{r_m}$ belong to $\mathcal{M}_{\varepsilon}$; according to Proposition 3, there exists a convergent subsequence of this sequence of controls and its limit is minimal for system $(2^{\bar{r}})$. To simplify notations, we assume that the sequence $u_{\psi_m(0)}^{r_m}$, $m=1,2,\ldots$, is already convergent and $\lim_{m\to\infty} u_{\psi_m(0)}^{r_m} = \bar{u}$.

It follows from Proposition 4 that $\psi_m(1)D_{u_{\psi_m(0)}^{r_m}}f_{r_m}=u_{\psi_m(0)}^{r_m}$. There are two possibilities: either $|\psi_m(1)| \to \infty$ $(m \to \infty)$ or $\psi_m(1)$, $m=1,2,\ldots$, contains a convergent subsequence.

In the first case we come to the equation $\bar{\mu}D_{\bar{u}}f_{\bar{r}}=0$, where $\bar{\mu}$ is a limiting point of the sequence $\frac{1}{|\psi_m(1)|}\psi_m(1)$, $|\bar{\mu}|=1$. The lower semicontinuity of ind implies the inequality $\inf(f_{\bar{r}};\bar{u},\bar{\mu},0)<0$. We come to a contradiction with our assumption on ε since $\bar{r}\leqslant\varepsilon$.

In the second case let $\psi_{m_l}(1)$, $l=1,2,\ldots$, be a convergent subsequence. Then $\psi_{m_l}(0)$, $l=1,2,\ldots$, is also convergent, $\exists \lim_{l\to\infty} \psi_{m_l}(0) = \bar{\psi}(0)$. Then $\bar{u}=u^{\bar{r}}_{\bar{\psi}(0)}$ and $\operatorname{ind}(f_{\bar{r}};\bar{u},\bar{\psi}(1),1)<0$ because of the lower semicontinuity of ind. Hence $\bar{\psi}(0)\in K_{\bar{r}}\subset K^{\varepsilon}$ and we are done. \square

To apply the last theorem we need a way to evaluate our index. There is a well developed theory about that, see [1] for some references. In the next proposition we formulate just the most simple and easy to check necessary conditions for the finiteness of the ind. A detailed proof can be found in [4, Appendix 2].

PROPOSITION 6. – Assume that $u(\cdot)$ is an abnormal control and $\psi(\cdot) \neq 0$ satisfies (8) for v = 0. If ind(f; $u(\cdot)$, $\psi(1)$, 0) < ∞ , then:

$$\{h_i, h_i\}(\psi(t)) = 0 \quad \forall i, j \in \{1, \dots, k\},$$
 (13)

$$\sum_{i,j=1}^{k} \left\{ h_i, \left\{ h_j, \sum_{i=1}^{k} u_i(t) h_i \right\} \right\} v_i v_j \leqslant 0 \quad \forall (v_1, \dots, v_k) \in \mathbb{R}^k, \tag{14}$$

for almost all $t \in [0, 1]$, where $\{a, b\} = \vec{a}b$ is the Poisson bracket of the Hamiltonians a, b.

Remark. – Identity (13) is called the Goh condition while inequality (14) is the generalized Legendre condition. It is easy to see that both conditions are actually intrinsic: Identity (13) does not depend on the choice of the orthonormal frame X_1, \ldots, X_k since $h_i(\psi(t))$, $i = 1, \ldots, k$, vanish anyway. Inequality (14) does not depend on the choice of the orthonormal frame provided that (13) is satisfied.

We say that $u(\cdot)$ is a *Goh control* if (13) is satisfied for an appropriate $\psi(\cdot)$; it is a *Goh–Legendre control* if both (13) and (14) are satisfied.

COROLLARY 2. – If the nilpotent system (2) does not admit nonzero Goh–Legendre abnormal controls, then the germ of ρ at q_0 is subanalytic.

The system (2) is said to be *medium fat* if:

$$T_{q_0}M = \Delta_{q_0}^2 + \text{span}\{[X, [X_i, X_j]](q_0): i, j = 1, ..., k\}$$

for any $X \in \bar{\Delta}$, $X(q_0) \neq 0$ (see [5]). Medium fat systems do not admit nontrivial Goh controls. It follows directly from the definitions that a system is medium fat if and only if its nilpotentization is. We come to the following:

COROLLARY 3. – If the system (2) is medium fat, then the germ of ρ at q_0 is subanalytic.

It is proved in [5] that generic germs of distributions are medium fat for $n \le (k-1)k+1$. This gives the following general result.

THEOREM 7. – Assume that $n \leq (k-1)k+1$. Then the germ of the sub-Riemannian distance function associated with a generic germ of a rank k distribution on an n-dimensional real-analytic Riemannian manifold is subanalytic.

5. Exclusivity of Goh controls for rank > 2 distributions

First we'll make precise the term exclusivity. Rank k distributions on M are smooth sections of the "Grassmannization" H_kTM of the tangent bundle TM. The space of

sections is endowed with the C^{∞} Whitney topology and is denoted by $\overline{H_kTM}$. Smooth families of distributions parametrized by the finite dimensional manifold N are sections of the bundle $p_*^N H_kTM$ over $N \times M$ induced by the standard projection $p^N : N \times M \to M$. Let $\mathcal{A} \subset \overline{H_kTM}$ be a set of distributions. We say that \mathcal{A} has codimension ∞ in $\overline{H_kTM}$ if the subset:

$$\{D \in \overline{p_*^N H_k T M}: D|_{x \times M} \notin \mathcal{A}, \ \forall x \in N\},$$

is everywhere dense in $\overline{p_*^N H_k T M}$, $\forall N$.

We will also use a real-analytic version of the definition, just given. The only difference with the smooth case is that the manifolds and the sections are assumed to be real-analytic, while the topology remains the same Whitney topology.

THEOREM 8. – For any $k \ge 3$, the distributions admitting nonzero Goh controls form a subset of codimension ∞ in the space of all smooth rank k distributions on M.

Proof. – We start with a weaker result related to *smooth* Goh controls. Namely, we are going to prove that the distributions that admit nonzero C^{∞} Goh controls form a subset of codimension ∞ in the space of rank $k \ge 3$ distributions. Thom transversality theorem allows to reduce the proof to calculations in the jet spaces. Let $\mathcal{J}^m(n,k)$ be the space of m-jets at 0 of k-tuples of vector fields in \mathbb{R}^n and $\mathcal{J}^m_o(n,k) = \{(X_1,\ldots,X_k) \in \mathcal{J}^m(n,k)\colon X_1(0) \wedge \cdots \wedge X_k(0) \ne 0\}$ be the space of m-jets of k-frames. To any vector field X_i we associate the Hamiltonian $h_i(\xi,x) = \langle \xi,X_i(x)\rangle, \ (\xi,x) \in \mathbb{R}^{n*} \times \mathbb{R}^n$ and the Hamiltonian field $\vec{h}_i(\xi,x) = \sum_{j=1}^n (\frac{\partial h_i}{\partial \xi^j} \frac{\partial}{\partial x^j} - \frac{\partial h_i}{\partial x^j} \frac{\partial}{\partial \xi^j})$. Set $\psi = (\xi,x)$; the Goh controls for the system $\dot{x} = \sum_{i=1}^k u_i(t)X_i(x), \ x(0) = 0$, are admissible controls $u = (u_1(\cdot),\ldots,u_k(\cdot))$ such that there exist:

$$\psi(\cdot) = (\xi(\cdot), x(\cdot)), \quad \xi(0) \neq 0, \quad x(0) = 0, \quad \dot{\psi} = \sum_{i=1}^{k} u_i(t) \vec{h}_i(\psi),$$
 (15)

$$h_i(\psi(t)) = \{h_i, h_j\}(\psi(t)) \equiv 0, \quad i, j = 1, \dots, k.$$
 (16)

Working in the jet space we try to solve Eqs. (16) not precisely but up to a certain order. We say that the m-jet of (X_1, \ldots, X_k) is Goh-compatible if there exists a nontrivial smooth solution $(u, \psi(\cdot))$ of (15) such that the functions $t \mapsto h_i(\psi(t))$, $t \mapsto \{h_i, h_j\}(\psi(t))$, $i, j = 1, \ldots, k$, have zero m-jets at t = 0.

Let $\mathcal{A}^m \subset \mathcal{J}_o^m(n,k)$ be the set of all Goh-compatible m-jets. Standard transversality techniques reduce the expected result about the set of distributions admitting nontrivial C^∞ Goh controls to the following lemma.

LEMMA 2. – \mathcal{A}^m is an algebraic subset of the linear space $\mathcal{J}_o^m(n,k)$ and $\operatorname{codim} \mathcal{A}^m \to \infty$ as $m \to \infty$.

Proof. – Differentiating (16) m times in virtue of (15) at t=0 leads to a system of polynomial equations on $\xi(0), u_i(0), \ldots, u_i^{(m-1)}(0), i=1,\ldots,k$. Actually, these equations are even linear with respect to $\xi(0)$. The set \mathcal{A}^m is thus automatically algebraic.

Any reparametrization of a Goh trajectory is still Goh. In particular, we may normalize one of the coordinates of the nontrivial smooth Goh control assuming that $u_{i_0} \equiv 1$ for some i_0 . Without lack of generality, we may compute everything only in the case $i_0 = 1$. Moreover, any nonvanishing vector field is locally rectifiable and gauge transformations $X_1 \mapsto X_1, X_i \mapsto X_i(x) + a_i(x)X_1(x)$, i = 2, ..., k, do not change Goh-compatibility.

Hence we may assume that:

$$X_1 = \frac{\partial}{\partial x^1}, \qquad X_i(x) = \sum_{i=2}^n a_{ij}(x) \frac{\partial}{\partial x^j}, \quad i = 2, \dots, k,$$

where $a_{ij}(x)$ are polynomials of degree m. In particular, $X_i = \sum_{\alpha=0}^m (x^1)^\alpha Y_i^\alpha(y)$, where $y = (x^2, \dots, x^n)$, $(Y_2^\alpha, \dots, Y_k^\alpha) \in \mathcal{J}^m(n-1, k-1)$, $\alpha = 1, \dots, m$, and $(Y_2^0, \dots, Y_k^0) \in \mathcal{J}_o^m(n-1, k-1)$. Finally, the codimension of \mathcal{A}^m in $\mathcal{J}_o^m(n, k)$ is equal to codimension of the subset \mathcal{B}^m of all $(Y_2^0, \dots, Y_k^0; \dots, Y_2^m, \dots, Y_k^m) \in \mathcal{J}_o^m(n-1, k-1) \times \mathcal{J}^m(n-1, m(k-1))$ such that:

$$\left(\frac{\partial}{\partial x^1}, \sum_{\alpha=0}^m (x^1)^{\alpha} Y_2^{\alpha}, \dots, \sum_{\alpha=0}^m (x^1)^{\alpha} Y_m^{\alpha}\right) \in \mathcal{A}^m,$$

in $\mathcal{J}_{0}^{m}(n-1,k-1) \times \mathcal{J}^{m}(n-1,m(k-1))$.

We study the subsystem of (16) corresponding to i, j = 2, ..., k. The requirement that (15) admits a nontrivial solution $(u, \psi(\cdot))$ such that:

$$h_i(\psi(t)) = O(t^{m+1}), \quad \{h_i, h_j\}(\psi(t)) = O(t^{m+1}), \quad 2 \le i < j \le k,$$
 (17)

defines an algebraic subset $\widehat{\mathcal{B}}^m$ in $\mathcal{J}_o^m(n-1,k-1)\times\mathcal{J}^m(n-1,m(k-1))$, where $\widehat{\mathcal{B}}^m\supset\mathcal{B}^m$. We'll show that the codimension of this larger subset tends to infinity as $m\to\infty$.

We have $x^1(t) = t$ in virtue of (15). We set $\eta = (\xi^2, \dots, \xi^n)$, $H_i^{\alpha}(\eta, y) = \langle \eta, Y_i^{\alpha}(y) \rangle$, then (15), (17) take the form:

$$\frac{d(\eta, y)}{dt} = \sum_{i=2}^{k} \sum_{\alpha=0}^{m} t^{\alpha} u_i(t) \overrightarrow{H}_i^{\alpha}, \tag{18}$$

$$\sum_{\alpha=0}^{m} t^{\alpha} \langle \eta(t), Y_{i}^{\alpha} (y(t)) \rangle = O(t^{m+1}),$$

$$\sum_{\alpha+\beta \le m} t^{\alpha+\beta} \langle \eta(t), \left[Y_i^{\alpha}, Y_j^{\beta} \right] (y(t)) \rangle = \mathcal{O}(t^{m+1}), \quad 2 \le i < j \le k.$$
 (19)

The derivative of the function $t \mapsto \langle \eta(t), Y(y(t)) \rangle$, by (18), has the form:

$$\sum_{i=2}^{k} \sum_{\alpha=0}^{m} t^{\alpha} u_{i}(t) \langle \eta(t), [Y_{i}^{\alpha}, Y] (y(t)) \rangle.$$

Successive differentiations and evaluation of the derivatives at t = 0, show that (18), (19) are equivalent to a system of equations of the form:

$$\langle \eta(0), Y_{i}^{\alpha}(0) \rangle = \phi_{i}^{\alpha} (Y_{i}^{\beta}, u_{i}^{(\beta)}(0)); \quad \beta < \alpha, \ i = 2, \dots, k,$$

$$\langle \eta(0), [Y_{i}^{\alpha}(0), Y_{j}^{0}](0) + [Y_{i}^{0}(0), Y_{j}^{\alpha}](0) \rangle = \Phi_{i,j}^{\alpha} (Y_{i}^{\beta}, u_{i}^{(\beta)}(0));$$

$$\beta < \alpha, \ i = 2, \dots, k, \quad \alpha = 0, 1, \dots, m, \quad 2 \le i < j \le k,$$

$$(20)$$

where ϕ_i^{α} , $\Phi_{i,i}^{\alpha}$ are certain polynomials.

The number of equations in the system (20) is $(m+1)\frac{k(k-1)}{2}$. The mappings:

$$(Y_1^{\alpha}, \dots, Y_k^{\alpha}) \mapsto \begin{pmatrix} \{\langle \eta(0), Y_i^{\alpha}(0) \rangle\}_{2 \le i \le k} \\ \{\langle \eta(0), [Y_i^{\alpha}(0), Y_i^0](0) + [Y_i^0(0), Y_i^{\alpha}](0) \rangle\}_{2 \le i \le k} \end{pmatrix}$$

are, obviously, submersions ($\eta(0)$ has to be nonzero). The polynomials ϕ_i^{α} , $\Phi_{i,j}^{\alpha}$ do not depend on Y_i^{α} , $i=1,\ldots,k$. Hence the solutions $(Y_i^{\alpha},\eta(0),u^{(\beta)}(0))$ of (20) form an algebraic subset:

$$\mathcal{C}^m \subset \mathcal{J}_o^m(n-1,k-1) \times \mathcal{J}^m(n-1,m(k-1)) \times \mathbb{RP}^{n-1} \times \mathbb{R}^{m(k-1)}$$

of codimension $(m+1)\frac{k(k-1)}{2}$. The set $\widehat{\mathcal{B}}^m$ is the image of \mathcal{C}^m under the projection:

$$\mathcal{J}_o^m(n-1,k-1) \times \mathcal{J}^m(n-1,m(k-1)) \times \mathbb{RP}^{n-1} \times \mathbb{R}^{m(k-1)}$$

 $\to \mathcal{J}_o^m(n-1,k-1) \times \mathcal{J}^m(n-1,m(k-1)).$

Hence:

$$\operatorname{codim} \widehat{\mathcal{B}}^{m} \geqslant (m+1)\frac{k(k-1)}{2} - (n-1) - m(k-1)$$

$$= m\frac{(k-1)(k-2)}{2} - (n-1) + \frac{k(k-1)}{2};$$

$$\operatorname{codim} \widehat{\mathcal{B}}^{m} \to \infty \ (m \to \infty). \quad \Box$$

Lemma 2 plus a transversality routine give the following:

COROLLARY 4. – For any smooth manifold N, the set of families of distributions admitting no smooth nonzero Goh controls, contains an open everywhere dense subset of $p_*^N H_k T M$.

Any smooth manifold admits a real-analytic structure and any smooth family of distributions can be approximated in the Whitney topology by a real-analytic one. What remains to be proved is that a real-analytic distribution admits a nontrivial smooth Goh control as soon as it admits a nontrivial bounded measurable Goh control. We derive this fact from the following lemma.

LEMMA 3. – Let $\dot{z} = g(z, u), \ z \in W, \ u \in U$ be a real-analytic control system and $\phi: W \times U \to \mathbb{R}^m$ be an analytic mapping; here W is a real-analytic manifold and U is a compact subanalytic set. Assume that there exists a bounded measurable control

 $u(\cdot):(t_0,t_1)\to U$ and a Lipschitzian trajectory $z(\cdot):(t_0,t_1)\to W$ such that:

$$\frac{dz}{dt}(t) = g(z(t), u(t)), \quad \phi(z(t), u(t)) = 0,$$

for almost all $t \in (t_0, t_1)$. Then there also exists an analytic control $\hat{u}(\cdot): (\hat{t}_0, \hat{t}_1) \to U$ and a trajectory $\hat{z}(\cdot): (\hat{t}_0, \hat{t}_1) \to W$ such that:

$$\frac{d\hat{z}}{dt}(t) = g\left(\hat{z}(t), \hat{u}(t)\right), \quad \phi\left(\hat{z}(t), \hat{u}(t)\right) = 0, \quad \forall t \in (\hat{t}_0, \hat{t}_1).$$

A detailed proof of this rather hard technical lemma is contained in the proof of [14, Theorem 5.1]. It follows also from anterior results by H.J. Sussmann [21,22].

The statement on real-analytic distributions we have to prove is local with respect to the state variables and we may assume that the distribution Δ under consideration is defined on \mathbb{R}^n and admits a basis, $\Delta_x = \text{span}\{X_1(q), \dots, X_k(q)\}, \ \forall x \in \mathbb{R}^n$. Let $h_i(\xi, x) = \langle \xi, X_i(x) \rangle$ be the Hamiltonian associated to X_i . We set:

$$W = (\mathbb{R}^{n*} \setminus 0) \times \mathbb{R}^n, \quad z = (\xi, x), \quad U = S^{k-1} = \left\{ (u_1, \dots, u_k) \in \mathbb{R}^k \colon \sum_{i=1}^k u_i^2 = 1 \right\},$$

$$g(z,u) = \sum_{i=1}^{k} u_i \vec{h}_i(\xi,x), \quad \phi = (h_1,\ldots,h_k;\{h_1,h_2\},\ldots,\{h_{k-1},h_k\}) : W \to \mathbb{R}^{k+\frac{k(k-1)}{2}},$$

and apply Lemma 3. Theorem 8 has been proved.

It was proved in [1, Corollary 4] that the small sub-Riemannian balls are subanalytic for any real-analytic sub-Riemannian structure without nontrivial Goh controls. Combining this fact with Theorem 8, we obtain the following result. Recall that all over the paper we keep the notation $\rho(q)$, $q \in M$, for the sub-Riemannian distance between q and the fixed point q_0 . The sub-Riemannian distance is defined by a given distribution Δ on the Riemannian manifold M.

THEOREM 9. – Suppose that M is real-analytic and $k \geqslant 3$. There exists a subset A of codimension ∞ in the space of rank k real-analytic distributions on M such that the relation $\Delta \notin A$ implies the subanalyticity of the sub-Riemannian balls $\rho^{-1}([0,r])$ for all r, small enough.

6. Nilpotent systems

The system:

$$\dot{x} = \sum_{i=1}^{k} u_i(t) Y_i(x), \quad x \in \mathbb{R}^n, \ x(0) = 0, \tag{21}$$

is called *nilpotent* if it coincides with its own nilpotentization expressed in adapted coordinates.

In other words, \mathbb{R}^n is presented as a direct sum $\mathbb{R}^n = \mathbb{R}^{k_1} \oplus \cdots \oplus \mathbb{R}^{k_l}$, $k_1 = k$, so that any vector $x \in \mathbb{R}^n$ takes the form $x = (x_1, \dots, x_l)$, $x_i = (x_{i1}, \dots, x_{ik_i}) \in \mathbb{R}^{k_i}$,

 $i=1,\ldots,l$. The vector fields $Y_i,\ i=1,\ldots,k$, are polynomial and quasi-homogeneous. More precisely, they are homogeneous of weight -1 with respect to the dilation:

$$\delta_t : (x_1, x_2, \dots, x_l) \mapsto (tx_1, t^2x_2, \dots, t^lx_l), \quad t \in \mathbb{R}$$

 $\delta_{t*}Y_i = tY_i, i = 1, \ldots, k.$

We keep the notation $\hat{f}: L_2^k[0,1] \to \mathbb{R}^n$ for the endpoint mapping $u \mapsto x(1;u)$, where $x(\cdot;u)$ is the solution of (21), $u=(u_1(\cdot),\ldots,u_k(\cdot))$, and the notation $\hat{\rho}: \mathbb{R}^n \to \mathbb{R}_+$ for the sub-Riemannian distance, $\hat{\rho}(x) = \min\{\|u\|: \hat{f}(u) = x\}$.

A special case of the system (21) with n = l = 3, $k_1 = 2$, $k_2 = 0$, $k_3 = 1$, is called "the flat Martinet system". We will use the special notation $\rho^m : \mathbb{R}^n \to \mathbb{R}_+$ for the sub-Riemannian distance in this case, which plays an important role below.

PROPOSITION 7. – Assume that k = 2, $k_3 \neq 0$. Then there exists a polynomial submersion $\Phi: \mathbb{R}^n \to \mathbb{R}^3$ such that $(\rho^m)^{-1}([0,r]) = \Phi(\hat{\rho}^{-1}([0,r])), \forall r \geq 0$.

Proof. – The inequality $k_3 \neq 0$ means that at least one of the third order brackets of the fields Y_1 , Y_2 is linearly independent on the brackets of lower order at 0. We may assume that:

$$[Y_1, [Y_1, Y_2]](0) \notin \text{span}\{Y_1(0), Y_2(0), [Y_1, Y_2](0)\}.$$

There are 2 possibilities.

(1) $k_2 = 0$. Applying, if necessary a δ_t preserving linear change of coordinates, we may assume that $Y_1(0) = \partial/\partial x^1$, $Y_2(0) = \partial/\partial x^2$, $[Y_1, [Y_1, Y_2]](0) = \partial/\partial x^3$. The coordinates x^1, x^2, x^3 have the weights 1, 1, 3 respectively (see Section 2). All other coordinates have weights not less than 3. We have:

$$Y_i(x) = \frac{\partial}{\partial x^i} + \sum_{i=3}^n b_i^j(x) \frac{\partial}{\partial x^j}, \quad i = 1, 2,$$

where the polynomials $b_1^3(x), b_2^3(x)$ depend only on x^1, x^2 . Then the mapping $\Phi: (x^1, \dots, x^n) \mapsto (x^1, x^2, x^3)$ satisfies required properties. Indeed, $\Phi_* Y_1, \Phi_* Y_2$ are well-defined vector fields on \mathbb{R}^3 generating the flat Martinet system. Hence the image under the mapping Φ of any trajectory $t \mapsto x(t; u)$ of the system (21) is the trajectory of the flat Martinet system associated to the same control u.

(2) $k_2 = 1$. We may assume that $Y_1(0) = \partial/\partial x^1$, $Y_2(0) = \partial/\partial x^2$, $[Y_1, Y_2](0) = \partial/\partial x^3$, $[Y_1, [Y_1, Y_2]](0) = \partial/\partial x^4$. The desired mapping Φ is constructed as the composition of three mappings. The first one is the projection $\Phi^1: (x^1, \dots, x^n) \mapsto (x^1, \dots, x^4)$. Then $\Phi^1_* Y_1, \Phi^1_* Y_2$ are well-defined vector fields on \mathbb{R}^4 ; we denote them by $Z_i = \Phi^1_* Y_i$, i = 1, 2. The fields Z_1, Z_2 define a distribution $D = \text{span}\{Z_1, Z_2\}$ in \mathbb{R}^4 with the growth vector (2, 3, 4), i.e. an Engel distribution.

The Engel distribution D contains a nonvanishing characteristic vector field, i.e. a vector field Z such that $[Z, D^2] = D^2$. We may assume without lack of generality that $Z = Z_2$. This implies the relation:

$$[Z_2, [Z_2, Z_1]](x) \in \text{span}\{Z_1(x), Z_2(x), [Z_1, Z_2](x)\} \quad \forall x \in \mathbb{R}^4.$$
 (22)

The vector fields $Z_1(x)$, $Z_2(x)$, $[Z_1, Z_2]$, $[Z_1, [Z_1, Z_2]]$ generate polynomial quasihomogeneous flows, thanks to their triangular "nilpotent" structure. We will use the exponential notations e^{tZ_1} , e^{tZ_2} , etc. for these flows. The mapping Φ^2 is a change of coordinates $\Phi^2: (x^1, \dots, x^4) \mapsto (y^1, \dots, y^4)$, defined in the following way:

$$(x^1, \dots, x^4) = e^{y^1 Z_1} \circ e^{y^2 Z_2} \circ e^{y^3 [Z_1, Z_2]} \circ e^{y^4 [Z_1, [Z_1, Z_2]]}(0).$$

The coordinates (y^1, \dots, y^4) are still adapted and we have:

$$\Phi_*^2 Z_1 = \frac{\partial}{\partial y^1}, \quad \Phi_*^2 Z_2|_{y^1 = 0} = \frac{\partial}{\partial y^2}, \quad \Phi_*^2 [Z_1, Z_2]|_{y^1 = y^2 = 0} = \frac{\partial}{\partial y^3},$$

$$\Phi_*^2[Z_1, [Z_1, Z_2]]|_{y^1=y^2=y^3=0} = \frac{\partial}{\partial y^4}.$$

These identities and the relation (22) leave the only possibility for $\Phi^2_*Z_2$,

$$\Phi_*^2 Z_2 = \frac{\partial}{\partial y^2} + y^1 \frac{\partial}{\partial y^3} + \frac{(y^1)^2}{2} \frac{\partial}{\partial y^4}.$$

In particular, the coefficients in the coordinate expression of $\Phi_*^2 Z_i$, i = 1, 2, depend only on y^1 .

We define $\Phi^3:(y^1,y^2,y^3,y^4)\mapsto (y^1,y^2,y^4)$ and $\Phi=\Phi^3\circ\Phi^2\circ\Phi^1$. The fields Φ_*Y_1,Φ_*Y_2 are well-defined and generate a flat Martinet distribution. \square

COROLLARY 5. – Under the conditions of Proposition 7 the sub-Riemannian balls $\hat{\rho}([0, r])$, r > 0, are not subanalytic.

Proof. – Assume that $\hat{\rho}^{-1}([0,r])$ is subanalytic. Then $\Phi(\hat{\rho}^{-1}([0,r])) = (\rho^m)^{-1}([0,r])$ is also subanalytic because $\hat{\rho}^{-1}([0,r])$ is compact and Φ is polynomial. It is shown however in [6] that $(\rho^m)^{-1}([0,r])$ is not subanalytic. \square

Now consider nilpotent distributions of rank greater than 2, i.e. $k = k_1 > 2$. We restrict ourselves to the case of maximal possible k_2 , k_3 . It means

$$k_2 = \min\left\{n - k, \frac{k(k-1)}{2}\right\}, \qquad k_3 = \min\left\{n - \frac{k(k+1)}{2}, \frac{(k+1)k(k-1)}{3}\right\}.$$

Remark. – Generic germs of distributions and their nilpotentizations have the maximal possible growth vector and, in particular, the maximal possible k_2 , k_3 .

PROPOSITION 8. – Assume that $n \ge (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$ and k_2, k_3 are maximal possible. Then there exists a polynomial submersion $\Phi : \mathbb{R}^n \to \mathbb{R}^3$ such that $(\rho^m)^{-1}(r) = \Phi(\hat{\rho}^{-1}(r)), \ \forall r \ge 0$.

Proof. – We'll present Φ as a composition of certain polynomial submersions. The first one is the projection:

$$\Phi^1_* : \mathbb{R}^n \to \mathbb{R}^{k_1 + k_2 + k_3}, \quad \Phi^1(x) = (x_1, x_2, x_3).$$

Then $\Phi_*^1 Y_i$, i = 1, ..., k, are well-defined vector fields and the nilpotent distribution span $\{\Phi_*^1 Y_i : i = 1, ..., k\}$ has maximal growth vector $(k_1, k_1 + k_2, k_1 + k_2 + k_3)$ at 0. We set $m = k_1 + k_2 + k_3$, $Z_i = \Phi_*^1 Y_i$, $D_x = D_x^1 = \text{span}\{Z_i(x): 1 \le i \le k\}$,

$$D_x^2 = \text{span}\{[Z_i, Z_j](x): 1 \le i, j \le k\},\$$

$$D_x^3 = \text{span}\{[Z_l, [Z_i, Z_j]](x): 1 \le i, j, l \le k\}.$$

The maximality of k_2 , k_3 and homogeneity of Z_i with respect to the dilation imply that dim $D_x^i = k_i$, i = 1, 2, 3, $\forall x \in \mathbb{R}^n$.

Take bracket monomials:

$$Z_{k_1+\alpha} = [Z_{i\alpha_1}, Z_{i\alpha_2}], \qquad Z_{k_1+k_2+\beta} = [Z_{i\beta_1}, [Z_{i\beta_2}, Z_{i\beta_3}]],$$

 $\alpha=1,\ldots,k_2,\ \beta=1,\ldots,k_3,\ 1\leqslant i_{\alpha j},\ i_{\beta j}\leqslant k_1,$ in such a way that $Z_1(0),\ldots,Z_m(0)$ form a basis of \mathbb{R}^m . Then $Z_1(x),\ldots,Z_m(x)$ form a basis of \mathbb{R}^m for $\forall x\in\mathbb{R}^m$. In particular, any Lie monomial of the fields Z_1,\ldots,Z_k is a linear combination of the fields Z_1,\ldots,Z_m with smooth coefficients. The nilpotency of the system Z_1,\ldots,Z_k implies that these coefficients have weight 0 and are actually constants. Moreover, all Lie monomials of order greater than 3 are zero. We obtain that the fields Z_1,\ldots,Z_k generate an m-dimensional nilpotent Lie algebra with the basis Z_1,\ldots,Z_m ; the sub-Riemannian structure with the orthonormal frame Z_1,\ldots,Z_k is isometric to the left-invariant sub-Riemannian structure on the corresponding m-dimensional simply connected nilpotent Lie group G_m . We will identify G_m with \mathbb{R}^m and assume that the fields Z_i are left-invariant. \square

LEMMA 4. – Let $I(Z_3, ..., Z_k)$ be the ideal in the Lie algebra $\text{Lie}\{Z_1, ..., Z_k\}$ generated by $Z_3, ..., Z_k$. If $\dim(\text{Lie}\{Z_1, ..., Z_k\}) \geqslant (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$, then $\dim(\text{Lie}\{Z_1, ..., Z_k\}/I(Z_3, ..., Z_k)) \geqslant 4$.

Proof. – The following monomials represent the specialization of a Ph. Hall basis of the free Lie algebra with *k* generators up to the order 3:

$$Z_i, [Z_i, Z_i], [Z_l, [Z_i, Z_i]], i, j, l \in \{1, \dots, k\}, i < j, i \le l.$$
 (23)

This Ph. Hall basis consists of

$$v_3(k) = k + \frac{k(k-1)}{2} + \frac{(k+1)k(k-1)}{3} = (k-1)\left(\frac{k^2}{3} + \frac{5k}{6} + 1\right) + 1$$

elements. Hence m equals either $v_3(k)$ or $v_3(k) - 1$. In both cases, removing the fields $[Z_1, [Z_1, Z_2]]$, $[Z_2, [Z_2, Z_1]]$ from the list (23) we obtain that the linear hull of the remaining fields is a proper subspace of Lie $\{Z_1, \ldots, Z_k\}$.

Let $\phi: \text{Lie}\{Z_1, \ldots, Z_k\} \to \text{Lie}\{Z_1, \ldots, Z_k\}/I(Z_3, \ldots, Z_k)$ be the canonical homomorphism. We obtain that at least one of the fields $\phi([Z_1, [Z_1, Z_2]]), \phi([Z_2, [Z_2, Z_1]])$ is nonzero. \square

Let G(I) be the normal subgroup of G_m generated by $I(Z_3, ..., Z_k)$. Then $\phi = \Phi^2_*$, where $\Phi^2: G_m \to G_m/G(I)$ is the canonical epimorphism. We have $\Phi^2_*Z_3 = \Phi^2_*$

 $\cdots = \Phi^2_* Z_n = 0$, while span $\{\Phi^2_* Z_1, \Phi^2_* Z_2\}$ is a nilpotent distribution with the growth vector 2, 3, 5 or 2, 3, 4. We are thus in the situation of Proposition 7. This proposition provides us with the submersion $\Phi^3: G_m/G(I) \to \mathbb{R}^3$ which "projects" the sub-Riemannian structure with orthonormal frame $\Phi^2_* Z_1, \Phi^2_* Z_2$ onto the flat Martinet structure. Finally, we set $\Phi = \Phi^3 \circ \Phi^2 \circ \Phi^1$.

COROLLARY 6. – Under the conditions of Proposition 8, the sub-Riemannian balls $\hat{\rho}([0, r])$, r > 0, are not sub-analytic.

The proof is a strict repetition of the proof of Corollary 5.

Let now Δ be an arbitrary (not necessarily nilpotent) germ of a bracket generating distribution at $q_0 \in M$, and let ρ be the germ of the associated sub-Riemannian distance function. Combining Corollaries 5, 6, and Theorem 4 we obtain the following:

THEOREM 10. – Assume that either k=2 and $\Delta_{q_0}^3 \neq \Delta_{q_0}^2$ or dim $M \geqslant (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$ and the segment $(k, \dim \Delta_{q_0}^2, \dim \Delta_{q_0}^3)$ of the growth vector is maximal. Then ρ is not subanalytic. In particular, generic germs are such that ρ is not subanalytic.

Finally, combining Theorem 10 with Theorem 9 we come to the following surprising result.

COROLLARY 7. – Let ρ be a germ of sub-Riemannian distance function associated with a generic germ of real-analytic distribution of rank $k \ge 3$, on a n-dimensional manifold, $n \ge (k-1)(\frac{k^2}{3} + \frac{5k}{6} + 1)$. Then the balls $\rho^{-1}([0,r])$ are subanalytic for all small enough r, but the function ρ is not subanalytic!

Acknowledgement

We are grateful to Sébastien Jacquet for fruitful discussions.

REFERENCES

- [1] Agrachev A.A., Compactness for sub-Riemannian length-minimizers and subanalyticity, Rend. Semin. Mat. Torino 56 (1998).
- [2] Agrachev A.A., Gamkrelidze R.V., Sarychev A.V., Local invariants of smooth control systems, Acta Appl. Math. 14 (1989) 191–237.
- [3] Agrachev A.A., Sarychev A.V., Filtrations of a Lie algebra of vector fields and nilpotent approximation of control systems, Dokl. Akad. Nauk SSSR 295 (1987) 777–781; English transl. in Soviet Math. Dokl. 36 (1988) 104–108.
- [4] Agrachev A.A., Sarychev A.V., Abnormal sub-Riemannian geodesics: Morse index and rigidity, Annales de l'Institut Henri Poincaré, Analyse non linéaire 13 (1996) 635–690.
- [5] Agrachev A.A., Sarychev A.V., Sub-Riemannian metrics: minimality of abnormal geodesics versus subanalyticity, J. ESAIM: Control, Optimisation and Calculus of Variations 4 (1999) 377–403.
- [6] Agrachev A.A., Bonnard B., Chyba M., Kupka I., Sub-Riemannian sphere in Martinet flat case, J. ESAIM: Control, Optimisation and Calculus of Variations 2 (1997) 377–448.
- [7] Bellaïche A., The tangent space in sub-Riemannian geometry, in: Sub-Riemannian Geometry, Birkhäuser, 1996, pp. 1–78.

- [8] Bianchini R.M., Stefani G., Graded approximations and controllability along a trajectory, SIAM J. Control Optim. 28 (1990) 903–924.
- [9] Bonnard B., Chyba M., Méthodes géométriques et analytique pour étudier l'application exponentiele, la sphère et le front d'onde en géometrie SR dans le cas Martinet, J. ESAIM: Control, Optimisation and Calculus of Variations, submitted.
- [10] Bonnard B., Launay G., Trélat E., The transcendence we need to compute the sphere and the wave front in Martinet SR-geometry, in: Proc. Int. Confer. Dedicated to Pontryagin, Moscow, September 1998, to appear.
- [11] Chow W.-L., Über Systeme von linearen partiellen Differentialgleichungen ester Ordnung, Math. Ann. 117 (1939) 98–105.
- [12] Filippov A.F., On certain questions in the theory of optimal control, Vestnik Moskov. Univ., Ser. Matem., Mekhan., Astron. 2 (1959) 25–32.
- [13] Gabrielov A., Projections of semi analytic sets, Funct. Anal. Appl. 2 (1968) 282–291.
- [14] Gauthier J.-P., Kupka I., Observability for systems with more outputs than inputs and asymptotic observers, Mathem. Zeitschrift 223 (1996) 47–78.
- [15] Ge Zhong, Horizontal path space and Carnot–Caratheodory metric, Pacific J. Math. 161 (1993) 255–286.
- [16] Hironaka H., Subanalytic sets, in: Numbers Theory, Algebraic Geometry, and Commutative Algebra (in honor of V. Akizuki), Tokyo, 1973, pp. 453–493.
- [17] Jacquet S., Subanalyticity of the sub-Riemannian distance, J. Dynamical and Control Systems 5 (1999).
- [18] Rashevsky P.K., About connecting two points of a completely nonholonomic space by admissible curve, Uch. Zapiski Ped. Inst. Libknechta 2 (1938) 83–94.
- [19] Stefani G., On local controllability of a scalar-input system, in: Byrnes, Lindquist (Eds.), Theory and Appl. of Nonlinear Control Syst., North Holland, Amsterdam, 1986, pp. 167– 179
- [20] Sussmann H.J., Optimal control and piecewise analyticity of the distance function, in: Ioffe A., Reich S. (Eds.), Pitman Research Notes in Mathematics, Longman Publishers, 1992, pp. 298–310.
- [21] Sussmann H.J., Trajectory regularity and real analyticity, in: Proc. 25th CDC Conference, Athens, Greece, 1986, pp. 592–595.
- [22] Sussmann H.J., A weak regularity theorem for real-analytic optimal control problems, Revista Mathematica Iberoamericana 2 (3) (1986) 307–317.
- [23] Tamm M., Subanalytic sets in the calculus of variations, Acta Mathematica 46 (1981) 167–199.