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ON SUB-RIEMANNIAN CAUSTICS AND WAVE FRONTS
FOR CONTACT DISTRIBUTIONS IN THE THREE-SPACE

A.A. AGRACHEV, G. CHARLOT, J.P.A. GAUTHIER, and V.M. ZAKALYUKIN

Abstract. In a number of previous papers of the first and third
authors, caustics, cut-loci, spheres, and wave fronts of a system of
sub-Riemannian geodesics emanating from a point q0 were studied.
It turns out that only certain special arrangements of classical La-
grangian and Legendrian singularities occur outside q0. As a conse-
quence of this, for instance, the generic caustic is a globally stable
object outside the origin q0.

Here we solve two remaining stability problems.
The first part of the paper shows that in fact generic caustics have

moduli at the origin, and the first module that occurs has a simple
geometric interpretation.

On the contrary, the second part of the paper shows a stability
result at q0. We define the “big wave front”: it is the graph of the
multivalued function arclength → wave-front reparametrized in a cer-
tain way. This object is a three-dimensional surface that also has a
natural structure of the wave front. The projection of the singular
set of this “big wave front” on the 3-dimensional space is nothing
else but the caustic. We show that in fact this big wave front is
Legendre-stable at the origin.

1. Introduction

Sub-Riemannian geometry studies the interrelation between a Rieman-
nian structure on a manifoldM and a completely nonintegrable distribution
∆ over M .

Here we restrict ourselves to the case where ∆ is a contact structure.
In this case, sub-Riemannian geodesics are (smooth) length extremals

chosen among the (smooth) curves, whose tangent vectors belong to ∆.
As in Riemannian geometry, the following facts hold (see, e. g., [2]):
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Geodesics are locally C0-optimal. The system of sub-Riemannian
geodesics emanating from a distinguished point q0 ∈M defines the exponen-
tial mapping Eq0 : U ⊂ T ∗

q0M →M , where U is an open neighborhood of 0.
The first point on a geodesic that is a singular value of Eq0 (the first conju-
gate point) is a point at which the geodesic is no longer locally C0-optimal.
It corresponds to the conjugate time (arclength), along the geodesic.

It turns out that in contrast to Riemannian geometry, this conjugate
time is not uniformly bounded from below, and as a consequence, the first
caustic (the union of all these first singular values) has always the point q0
in its closure.

As a consequence, the study of this first caustic becomes partly a local
problem.

Generic singularities of Riemannian caustics are classical objects (going
back to Huygens and Newton). Now they represent the most popular ap-
plication of singularity theory. They are governed by the singularities of
projections of smooth Lagrangian submanifolds of the cotangent bundle on
the base [17].

The first example of caustic for generic sub-Riemannian exponential map-
ping was described only recently [1]. In the 3-dimensional case, a complete
generic classification of caustics of germs of contact sub-Riemannian metrics
was given [4].

In this paper, we restrict to germs at generic points of these generic
contact 3-dimensional sub-Riemannian metrics. In that case, the germ of
the corresponding caustic Σ has the following asymptotic form near the base
point q0 (Fig. 1).

Fig. 1. Generic sub-Riemannian caustic
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The plane parallel to the distribution plane ∆0 at the origin intersects the
caustic by an astroid (closed curve with four cusps). This section becomes
smaller and smaller as the plane tends to the origin.

The four cuspidal edges of each half (upper and lower with respect to ∆0)
of the caustic actually form two singular curves diffeomorphic to semicubic
parabolas. The tangent directions of these edges at the origin coincide with
the direction of the kernel line of the exterior derivative of the distribution
contact form.

Outside the origin, the singularities of the caustic (regular points and
cuspidal edges) are structurally stable (in fact, they fall among classical
well-known Lagrangian singularities in dimension 3).

We prove the two following facts:

(1) The germ of Σ at the origin is not structurally stable (for different
contact sub-Riemannian systems, the corresponding germs are not
diffeomorphic), and we describe its principal module (Theorem 2.5).

(2) There exists a singular 3-dimensional submanifold W in M × R

(called the big wave front of the sub-Riemannian contact system).
The projection of the singular locus of W on M coincides with
the first caustic. Roughly speaking, W is the graph of the sub-
Riemannian distance function reparametrized in a certain way.
In fact, W is the wave front of a Legendre submanifold L∗ in
PT ∗(M × R) formed by the exponential trajectories with the
reparametrized time. Moreover, L∗ turns out to be a proper sub-
manifold with only one singular point.
We prove that in contract to the caustic itself, this “big wave front”
W is structurally stable (Theorem 2.7).
This means that the Legendrian germ L∗ is stable with respect to
contactomorphisms of PT ∗(M × R) preserving the projection on
the base.

2. Preliminaries and results

2.1. Hamiltonian, normal form and invariants. In the contact case,
the sub-Riemannian geodesics are projections of the trajectories of a Hamil-
tonian vector field on the cotangent bundle T ∗M on the manifold M .

The corresponding Hamiltonian function is a quadratic form with re-
spect to impulses (coordinates on the fibers) depending on the base point.
This quadratic form is everywhere degenerate (while this is not the case in
Riemannian geometry), and its kernel coincides with the annihilator of ∆.

The following theorem was proved in [4].
Let a germ of contact sub-Riemannian structure at q0 in M defined by

its Hamiltonian H be given.
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Theorem 2.1. There is a local coordinate system (x, y, w) near the point
q0 ∈ M , called a “normal” coordinate system, such that q0 = 0 and H can
be written as

Hβ,γ =
1
2

(
px + βy(pxy − pyx) + pw

γ

2
y

)2

+

+
1
2

(
py − βx(pxy − pyx)− pw γ2x

)2

, (2.1)

where p = (px, py, pw) are conjugate coordinates (impulses) on the fibers of
T ∗M (the Liouville form is px dx+ py dy + pw dw).

Moreover, the functions β(x, y, w) and γ(x, y, w) satisfy the boundary
conditions

β(0, 0, w) = 0, γ(0, 0, w) = 1,
∂γ

∂x
(0, 0, w) = 0,

∂γ

∂y
(0, 0, w) = 0.

(2.2)

Normal coordinate systems are such that ∆(0) = span
{ ∂

∂x
,
∂

∂y

}
|0
. They are

unique up to a constant rotation of the variables (x, y).

Remark 2.1. We choose the notation (x, y, w) instead of (x, y, z) for
normal coordinates because the letter z will be used for x + iy accord-
ing to the fact that ∆(q) has a natural complex structure I given by
Volg(u, v) = g(I(u), v).

A careful examination of the formulas (2.1) and (2.2) shows that they
are invariant under the action of constant rotations at the origin.

Lemma 2.2. A rotation Rθ of the variables (x, y) maps β and γ into
β̃ = β ◦R−θ, and γ̃ = γ ◦R−θ.

Let us work in a normal coordinate system (x, y, w), and define the fol-

lowing quantities: βk(x, y) =
∂kβ

∂wk

∣∣∣
w=0

and γk(x, y) =
∂kγ

∂wk

∣∣∣
w=0

. Denote

by βk
l and γkl the lth differentials of βk and γk w.r.t (x, y) at (x, y) = 0.

These quantities βk
l and γkl are homogeneous polynomials of degree l on

∆∗(0) and can be canonically identified with l-covariant symmetric tensors
over ∆(0).

Lemma 2.2 has the following important consequence.

Lemma 2.3. The tensors βk
l and γkl do not depend on the given normal

coordinate system.

This process allows us to define l-covariant tensor fields, still denoted by
βk
l and γkl , which are invariants of the sub-Riemannian structure.
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2.2. Decomposition of tensors. Denote by 	k∆∗ the tensor bundle of
symmetric k-covariant tensors over ∆. Assume that q0 ∈M is fixed. Then
the metric subbundle ∆ of TM has the structural group SO(2), and 	k

q0∆
∗

naturally becomes an SO(2)-module.
This SO( 2)-module can be decomposed into real isotypic (that are in

fact irreducible) components, leading to corresponding decompositions of
the bundles 	k∆∗:

	k∆∗ = ⊕
j∈N

(	k∆∗)j , (2.3)

where the irreducible component (	k
q0∆

∗)j corresponds to the character ejiϕ

of SO( 2).
Then, according to these decompositions, we have


βk
l (q0) =

∑
r∈N

βk
l,r(q0),

γkl (q0) =
∑
r∈N

γkl,r(q0).
(2.4)

The following facts hold:

• in (2.4), all the terms are zero for r > l;
• in (2.3), the dimension corresponding to the jth component is al-

ways 2, except for j = 0, where it is 1 (the zero character);
• in (2.4), the sum should be taken over odd terms r if l is odd, and

over even terms r if l is even;
• decomposition (2.4) is just the (finite) Fourier series of βk

l (resp.
γkl ) as an homogeneous polynomial restricted to the unit circle.
The term corresponding to r = l is the highest harmonic.

The most important components in this decomposition are γ0
2,2 and γ0

3,3.:

γ0
2 = γ0

2,0 + γ0
2,2,

γ0
3 = γ0

3,1 + γ0
3,3.

(2.5)

γ0
2 is a quadratic and γ0

3 is a cubic. Let us explicit decomposition (2.5). Here
γ0
2 = Q(dx, dy) is a quadratic form in dx, dy, γ0

2,0 is the trace of this form
with respect to the metric g on ∆, and γ0

2,2 = 0 iff the discriminant of the
quadratic form Q vanishes (Q is “umbilic”). The component γ0

3 is a cubic
form in dx, dy: γ0

3,1 = L(dx, dy)(dx2 +dy2), where L is linear, L = �(a.dz),
γ0
3,3 = �(b.dz3), a and b are complex numbers, and dz = dx+ i dy.

Remark 2.2. For a generic contact sub-Riemannian metric, the tensor
field γ0

2,2 vanishes on a smooth curve (possibly empty) in M (i. e., Q is
umbilic on this curve). The generic points studied in this paper form the
complement of this curve in M .
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Assumption. From now on, γ0
2,2(q0) 
= 0, and we chose the normal

coordinates for γ0
2,2(q0) = A(dx2 − dy2), where A is real > 0. Then, up

to a rotation by kπ of the variables (x, y), the normal coordinates at q0
are uniquely determined. In these coordinates, γ0

3,3(q0) = �(b.dz3) and
b = Beiϕ0 .

In fact, the main invariant in this study will just be tanϕ0. If a rotation
of π is applied to (x, y), this invariant is not changed.

Remark 2.3. When β and γ − 1 vanish identically, the metric is the so-
called “Heisenberg sub-Riemannian metric”. If R

3 is equipped with the
structure of the Heisenberg group H, then this metric is a (unique up to
conjugation) left-invariant sub-Riemannian structure over H. Everything
in the following will be computed as a perturbation of this case.

From now on, the considerations are local and M is an open neighbour-
hood of q0 = 0 in R

3.

2.3. Exponential mapping, conjugate time and first caustic. Con-

sider the intersection C0 of the level hypersurface H−1
(1
2

)
of the Hamilto-

nian function H with the fiber T ∗
0 R

3 over the origin. If (x, y, w) are normal
coordinates and (px, py, pw) are the dual coordinates, this intersection is the
standard cylinder C0 =

{
(px, py, pw)

∣∣p2x + p2y = 1
}

in the p-space over the
origin.

Denote by L the Lagrangian submanifold swept by all the trajectories of
the Hamiltonian vector field emanating (at time zero) from the points of C0.
Coordinates on C0 and values s of time (arclength) along each trajectory
parametrize L.

The restriction of the projection (p, q) �→ q to L is the exponential map-
ping E0 : C0 ×R→ R

3. Its singular values form the caustic. Projections of
the first critical points on each trajectory form the first caustic Σ.

It is easy to integrate explicitly the Hamiltonian system in the Heisenberg
case: the computation of the Hamiltonian flow is equivalent to the solution
of a linear differential equation.

In this case, the caustic coincides with the w-axis as is well known
(see [7]).

In our previous papers (see, e. g., [4]), the explicit computation of the
exponential mapping E0 was done in normal coordinates (x, y, w) and dual
coordinates (px, py, pw) in C0.

We have T ∗
0 R

3 = ∆∗(0) ⊕ ∆0(0), where ∆∗(0) is the dual of ∆(0) and
∆0(0) is the annihilator of ∆(0). If g denotes the metric on ∆, the metric
induced by g on ∆∗ is just 2H (twice the Hamiltonian restricted to ∆∗).
In the dual coordinates, this metric is p2x + p2y, and it defines an angular
coordinate ϕ in ∆∗(0). ϕ is the angle variable in the chosen dual normal
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coordinates (px, py). pw, being the coordinate dual to w (coordinate on

∆0(0))
(
ϕ, ρ =

1
pw

)
, define coordinates on a neighborhood of infinity in

C0.
Making the time reparametrization s = ρt (s is the arclength and t is the

“new time”) it turns out that the following assertion holds.

Lemma 2.4 (see [4]). The exponential mapping E0 is a smooth mapping
of the variables ρ, t, and ϕ even at ρ = 0.

This lemma is a key point. It allows us to compute the exponential
mapping as Taylor series in ρ at ρ = 0 (see [4]). This Taylor series has the
following form:

E0(ρ, t, ϕ) = ρE−1(t, ϕ) + ρ2E0(t, ϕ) + ρ3E1(t, ϕ) + ...,

and EH = ρE−1(t, ϕ)+ρ2E0(t, ϕ) is just the exponential mapping associated
with the Heisenberg subriemannian metric:

xH = 2ρ cos
(
ϕ− t

2

)
sin

t

2
,

yH = 2ρ sin
(
ϕ− t

2

)
sin

t

2
,

wH =
ρ2

2
(t− sin t).

(2.6)

The first conjugate time in the Heisenberg case appears for t = ±2π
(a direct computation). As we said before, the first caustic in this case is
the w-axis (the upper part corresponds to ρ > 0, t = 2π, the lower part to
ρ > 0, t = −2π).

The caustic in the general case will also fall into two pieces corresponding
to t � 2π and t � −2π.

Remark 2.4 (on orientation). The contact structure defines an orienta-
tion on R

3, but we have no canonical orientation on ∆. The choice of an
orientation on ∆ is equivalent to that of the direction w > 0 transversal to
∆. The change of this orientation exchanges the two parts of the caustic.
In the same way, the invariants γkl,r defined above are invariant with respect
to the orientation if k is even, but are covariant if k is odd. In this study,
as we said, k = 0 only occurs. We refer to [4] to see how the change of
orientation can affect the caustic.

From now on, we fix an orientation on ∆ and study only the upper part
of the caustic corresponding to w > 0 and t � 2π, s � 2πρ = 2π/pw.
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It can be shown that in an appropriate neighborhood of the first singular
locus S (in the source space of E0) outside the origin, the mapping η,

η : (ρ, ϕ, t) �−→ (h, ϕ, θ),

where h =
√
w

π
and θ =

s

h
, is a smooth change of coordinates.

In these coordinates, the exponential mapping takes the suspended form

E0(h, ϕ, θ) = hE−1(ϕ, θ, h) +
N∑
i=1

hi+2E i(ϕ, θ) +O(hN+3), (2.7)

where

E−1 = (E−1
x (ϕ, θ), E−1

y (ϕ, θ), h),

E i = (E i
x, E i

y, 0), i = 1, ..., N.

and O(hN+3) is a smooth mapping whose components belong to the ideal
generated by hN+3.

Explicit formulas for N = 2 in (2.7) were computed in our previous
papers (see, e. g., [8], Lemma 4.9, p. 387). This approximation only N = 2
is sufficient for the considerations in this paper.

From these expressions, one can easily compute the first caustic Σ:

(R× S1) −→ R
3,

(h, ϕ) �−→ (x(h,ϕ) + x̃(h, ϕ), y(h, ϕ) + ỹ(h, ϕ), w(h)),

where

x(h, ϕ) = −2h3A(3 cosϕ+ cos 3ϕ)− 15
2
h4B(2 sin(ϕ0 + 2ϕ) +

+ sin(ϕ0 + 4ϕ)) + 5C1h
4,

y(h, ϕ) = 2h3A(3 sinϕ− sin 3ϕ)− 15
2
h4B(2 cos(ϕ0 + 2ϕ)−

− cos(ϕ0 + 4ϕ)) + 5C2h
4,

w(h) = h2.

(2.8)

A, B, ϕ0 are defined above, and x̃, ỹ are smooth functions in h cosϕ, h sinϕ,
of order O(h5).

Remark. This latter fact that x̃ and ỹ are smooth functions in h cosϕ,
h sinϕ is a consequence of Lemma 2.4 above.
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2.4. The extended wave front and the big wave front. We define
the extended exponential mapping ε̃:

ε̃ : C+ × R→ R
4 = {(x, y, w, s)}

(pw, ϕ, s) �→ (ε(pw, ϕ, s), s),
(2.9)

and denote by V its image.

Here C+ is the upper half part of the cylinder C0 = H−1
(1
2

)
∩T ∗

0 R
3 and

s is the time (or arclength) along a geodesic.
This 3-dimensional submanifold V is the graph of the multivalued time

(or arclength) function. It is the projection on R
4 of the Legendrian sub-

manifold L ⊂ PT ∗
R

4, formed by the projectivized (with respect to the
fibers) trajectories of the Hamiltonian system in T ∗(R3 × R) emanating
from C+ × {0}. Its sections by the hyperplanes s = const are the mo-
mentary sub-Riemannian wave fronts (equidistant surfaces). We call it the
extended wave front.

The image of the projection of the singular points of V (we forget the
time value) on R

3 form the complete caustic of the system. It consists of
an infinite number of components, and the closure of each of them contains
the origin. The first component of Σ was described above (Fig. 1).

The components fall into two series, and all components of the first series
are similar to the first one. The second series is different and is already stable
outside the origin, at the level of the Heisenberg sub-Riemannian metric.

At any time s, the wave front meets all of these components (for small

enough values of ρ =
1
pw

). We consider the first series only.

In the Heisenberg approximation, the conjugate time corresponding to
the kth component in this series is 2kπρ. There is no hope to have diffeo-
morphism structural stability of the (instantaneous) wave fronts or of the
extended wave front V with respect to generic perturbations of the sys-
tem. Hence it seems natural to blow up the manifold V with respect to
the time axis to distinguish the limits (as pw → +∞) of V -singular points
corresponding to different components of the caustic.

To do this, we consider the diffeomorphism of the open upper half-space
R

4
+ (defined by the inequality w > 0), Ξ : (x, y, w, s) �→ (x, y, w, θ), where θ

has been defined above
(
θ =

s

h

)
. The image W = Ξ(V ) is the graph of the

reparametrized time function. We call it the big wave front.
Obviously W ∩ R

4
+ is diffeomorphic to V ∩ R

4
+.
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2.5. Statement of the results.

2.5.1. The caustics under the action of diffeomorphisms.

Theorem 2.5 (module for the caustics). If the germs at the origin
of two caustics Σ determined by two pairs of functions (β, γ) are diffeomor-

phic, then the corresponding values of ±ϕ0 +
kπ

2
should coincide provided

that A 
= 0 and B 
= 0.

Hence this expression provides the main (of lowest degree) module of the
caustics under the action of diffeomorphisms.

2.5.2. The stability of the big wave fronts.

Proposition 2.6. Let W1 be the closure of Ξ(V ∩ R
4
+) near the point

(0, 0, 0, 2π). The projections of the singular points of W1 to R
3 form the

first caustic of the system.

Theorem 2.7 (stability of big wave fronts). The germs W1(0, 0,
0, 2π) are diffeomorphic for all generic sub-Riemannian systems.

Remark 2.5. Of course, the same result holds for equivalent blowing-ups
θ′ =

s

h
f , where f is any regular (nonzero) germ of function in x, y, w.

Remark 2.6. This implies that the corresponding Legendrian germs L∗ ⊂
PT ∗

R
4 are equivalent with respect to the contactomorphisms preserving the

fibration PT ∗
R

4 → R
4.

3. Proof of Theorem 2.5

The proof of the theorem follows from the elementary geometry of Σ1,1,
the locus of singular points of the caustic.

Lemma 3.1. If A 
= 0, then Σ1,1 is diffeomorphic to the union of two
semicubic parabolas Γx and Γy belonging to coordinate planes and defined
by the equations

Γx = {(x, y, w) | x = 0, y2 = w3},
Γy = {(x, y, w) | y = 0, x2 = w3}.

Proof. See Remark 4.2.
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Hence the set Σ1,1 (being a set of cuspidal edges) of a generic caustic
has no module. However, these cuspidal edges are equipped with a framing:
at each point of a cuspidal edge, there is a well-defined tangent plane to
the caustic. We will prove that the orbits under diffeomorphisms of these
framed pairs of cuspidal edges are distinguished by the above-mentioned
invariant tanϕ0.

Consider a germ of a smooth mapping f : (R, 0) → (R3, 0) with singular
point at the origin such that in some (and, therefore, in any) local coordi-
nates q in R

3, the mapping has the form f : σ �→ aσ2 + bσ3 + ..., where the
dots mean a mapping with zero 3-jet at the origin and the vectors a and b
are linearly independent (in particular a 
= 0).

The image of such a germ is called a cusp. Any cusp Γ is actually a germ
of a plane curve. There exists a smooth surface S containing Γ. In the
tangent space at the origin, there is a well-defined tangent flag to the cusp
Γ. It consists of a plane TΓ tangent to any ambient surface S that contains
Γ and of a semiline lΓ that is a tangent cone (limit of secants) to Γ at the
origin (lΓ ⊂ TΓ).

Lemma 3.2. The union of two cusps Γ1 and Γ2 with common singular
point, common tangent direction l, and pairwise transversal tangent planes
TΓ1 and TΓ2 , is diffeomorphic to the standard pair of cusps from Lemma 3.1.

Proof. Take a pair of ambient smooth surfaces S1 and S2 such that Γ1 ⊂ S1

and Γ2 ⊂ S2. Using an appropriate germ of diffeomorphism, one can rectify
these surfaces, mapping them into coordinate planes S̃1 = {x = 0} and
S̃2 = {y = 0}. The positive direction of the w-axis becomes a tangent
direction to the images Γ̃1 and Γ̃2 of the initial cusps. The union of a plane
cusp and a smooth curve passing through the cusp singular point at its
tangent direction is diffeomorphic to a standard collection (say to the one
defined by the equation y(y2 − w3) = 0 in the y, w-plane). This union is
the zero level of a germ of a function on the plane with an isolated simple
singularity of type E7 (see [6]).

Therefore, there exists a germ D1 of the diffeomorphism of the coordinate
plane (y, w), which maps Γ̃1 to the cusp y2 − w3 = 0 and preserves the w-
axis. Hence it has the following form D1 : (y, w) �→ (yY (y, w),W1(y, w))
with smooth functions Y and W1.

Moreover, the zero-level set y(y2 − w3) = 0 of the normalized E7 singu-
larity is invariant under the action of phase flows of the Euler vector field

3y
∂

∂y
+ 2w

∂

∂w
multiplied by an arbitrary function of y and w. An appro-

priate choice of such a factor as a function in w only allows us to find a
diffeomorphism D1 with trivial action on the w-axis (that is W1(0, w) = w).
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Similarly, there exists a germ D2 of the diffeomorphism of the coordinate
plane (x,w), rectifying the pair Γ̃2 and having the form D2 : (x,w) �→
(xX(x,w),W2(x,w)) with W2(0, w) = w.

Now, obviously, the germ

D : (x, y, w) �→ (xX(x,w), yY (y, w),W1(y, w) +W2(x,w)− w),

is a germ of a diffeomorphism of (R3, 0). It preserves the coordinate planes
x = 0 and y = 0. Its restrictions to these planes coincide with the actions
of D1 and D2, respectively. Hence it normalizes both cusps. The lemma is
proved.

Remark 3.1. The first jets at the origin of a diffeomorphisms that pre-
serve the normalized variety Σ1,1 (from Lemma 3.1) form a one-dimensional
subgroupG1 of Gl(3,R). G1 contains only linear transformations of the form
(x, y, w) �→ (

kx, ky, k
2
3w
)
.

Actually, a linear transformation preserving the coordinate planes x = 0
and y = 0 is of the form (x, y, w) �→ (ax, by, cw + dx + ey). The diffeomor-
phisms with such a linear part preserve Σ1,1 if a = m3, b = m3, and c = m2

for a certain m ∈ R and d = e = 0.
A framing of a cusp f : R → R

3 sets in correspondence the plane Uσ ⊂
Tf(σ)R

3, which contains the tangent direction to the cusp and depends
smoothly on σ, to a point σ ∈ R. In other words aframing is a smooth
mapping ν : R→ PT ∗

R
3 into the projective cotangent bundle of R3 (which

is the space of all planes in the tangent spaces to R
3) such that π ◦ ν = f

and
〈
ν,
df

dσ

〉
= 0. Here π is the natural projection π : PT ∗

R
3 → R

3, ν

is any cotangent vector, the projectivization of which is ν, and 〈, 〉 is the
natural pairing between cotangent and tangent vectors.

Since the projection of the mapping ν on the base has a singular (cusp)

point at the origin, the velocity
dν

dσ
at this point is a vertical tangent vector

of T (PT ∗
R

3): it is tangent to the fiber PT ∗
0 R

3.
A framing ν(σ) of a cusp Γ is called a tangent framing if ν(0) is the plane

TΓ tangent to the cusp at the singular point.

Proposition 3.3. The velocity
dν(σ)
dσ

at the singular point of a tangent

framing is a tangent vector (in the tangent plane TΓ) to the projective line
P1 ⊂ P0T

∗
R

3 consisting of all planes that contain the tangent direction lΓ
to the cusp at the origin.

Proof. Since the statement is coordinate-free, it is sufficient to prove it using
appropriate coordinates. Let the cusp be given by the parametrization
x = kσ4 + ..., y = σ3 + ..., w = σ2 + .... The affine chart consisting of the
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planes transversal to the x-axis in PT ∗
0R

3 can be identified with the space
of forms dx − (a dy + b dw) = 0. The tangent plane TΓ at the origin is the
form dx = 0. Therefore, the coordinates (a, b, x, y, w) parametrize PT ∗

R
3

near TΓ.
Assume that the framing is given by a nonzero vector field of the form

u(σ)
∂

∂x
+v(σ)

∂

∂y
(that is by the direction of the intersection of the framing

with a plane parallel to the w = 0 plane) and by the direction:

(4kσ2 + ...)
∂

∂x
+ (3σ + ...)

∂

∂y
+ (2 + ...)

∂

∂w
,

tangent to the cusp.
Then the coefficients a(σ) and b(σ) of the corresponding form satisfy the

linear system {
u(σ)− av(σ) = 0,
(4kσ2 + ...)− a(3σ + ...)− b(2 + ...) = 0.

Since the framing is tangent, u(σ) vanishes at the origin and v(σ) does

not vanish. We find now that a =
u

v
, b = 2kσ2+ ...−

(3
2
σ+ ...

)u
v
. Thus, the

first jet of b(σ) vanishes at the origin. Therefore, in our coordinate system

(a, b, x, y, w), the derivative
dν

dσ

∣∣∣∣
σ=0

=
da

dσ

∣∣∣∣
σ=0

∂

∂a
+
db

dσ

∣∣∣∣
0

∂

∂b
+
dx

dσ

∣∣∣∣
0

∂

∂x
+

dy

dσ

∣∣∣∣
0

∂

∂y
+
dw

dσ

∣∣∣∣
0

∂

∂w
takes the form

dν

dσ

∣∣∣∣
σ=0

=
da

dσ

∣∣∣∣
0

∂

∂a
. Hence it represents

the tangent vector to the coordinate line b = 0 in the affine chart. Since
this line represents the projective line P1, the proposition is proved.

Denote by Λ a pair of cusps Γ1 and Γ2 from Lemma 3.2 and equip each
of them with tangent framings ν1 and ν2.

Consider the projective line P1(Λ) ⊂ PT ∗
0 R

3 of the planes containing the
tangent direction l(Λ) of the cusps at the singular point.

Proposition 3.4. The assignment of a Riemannian metric ρ0 on
P1(Σ1,1) uniquely determines a Riemannian metric ρΛ on P1(Λ) compat-
ible with the action of diffeomorphisms on the framed pairs of cusps: if a
diffeomorphism D maps Λ1 into Λ2 then its adjoint projectivized transfor-
mation at the origin maps ρΛ1 into ρΛ2.

Proof. Choose an arbitrary metric ρ0 on P1(Σ1,1) (here Σ1,1is the standard
pair of cusps of Lemma 3.1). According to Remark 3.1, the diffeomorphisms
which preserve Σ1,1 act trivially on P1(Σ1,1); thus, there is a unique projec-
tive transformation Pr : P1(Λ) → P1(Σ1,1) adjoint to any diffeomorphism
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mapping Λ into Σ1,1. Transporting ρ0 by P−1
r , one obtains the required

metric.

Two parametrizations f1(σ) and f2(σ) of a pair of cusps Λ are called con-

gruent if they determine equal tangent vectors
d2f1
dσ2 =

d2f2
dσ2 at a common

singular point.

Lemma 3.5. Fix a system of metrics ρΛ as above. The ratio of lengths

of the velocities
dν1
dσ

∣∣∣∣
0

and
dν2
dσ

∣∣∣∣
0
(the tangent vectors to P1(Λ) at two points

T0Γ1 and T0Γ2) computed for congruent parametrizations is an invariant of
the action of diffeomorphisms on framed pairs of cusps.

Proof. This follows immediately from the intrinsic (coordinate free) defini-
tions of all the objects and from the fact that the choice of another congruent
parametrization produces a simultaneous scaling of the framing velocities
dνi
dσ

.

To prove Theorem 2.5, first observe that we have a special framing for
Σ1,1 defined by Σ itself: Σ has tangent planes at points of Σ1,1. It re-
mains only to compute the invariant ratio for this special framing. For this
purpose, we use parametrization (2.8) of the first caustic.

Assume that A 
= 0 and B 
= 0.
First, we note that a diffeomorphism of the form (x, y, w) �→ (x+aw2, y+

aw2, w) eliminates the terms with coefficients c1 and c2 of the normal form
(2.8). A scaling (x, y, w) �→ (kx, ky, w) normalizes the coefficient A for
an appropriate constant k. Finally, a scaling of the form (x, y, w, h) �→
(xl3, yl3, wl2, hl) with an appropriate constant l normalizes B. All these
transformations do not change the tangent lines and planes to the singular
locus Σ1,1.

Hence, using the complex variable z = x + iy, the transformed caustic
obtains the following asymptotics (up to the order 4 in h):

z = h3(3e−iϕ + e3iϕ) + ih4(2e−(2ϕ+ϕ0)i − e(4ϕ+ϕ0)i),

w = h2.

The intersection of the cuspidal edges with the plane w = h2 is deter-
mined by the equation

dz

dϕ
= 3h3i

(
e3iϕ − e−iϕ

)
+ 4h4(e(4ϕ+ϕ0)i + e−(2ϕ+ϕ0)i

)
= 0.
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This expression provides the following four approximate (up to the first
order in h) cusp solutions:

ϕ1 =
2
3

cos(ϕ0)h,

ϕ2 =
π

2
− 2

3
sin(ϕ0)h,

ϕ3 = π − 2
3

cos(ϕ0)h,

ϕ4 =
3π
2

+
2
3

sin(ϕ0)h.

The first and third values (as well as second and fourth) correspond to
the different halfs of the same cusp.

The direction fields ν (scaled in order to be nonzero at the origin) corre-
sponding to the intersection of the framing with the planes w = const are
given by the directions of

1
h3

d2z

dϕ2 = −3
(
3e3iϕ + e−iϕ

)
+ i8h

(
2e(4ϕ+ϕ0)i − e−(2ϕ+ϕ0)i

)
,

counted at the critical points ϕi (i = 1, ..., 4).
Taking into account the affine terms in h only, we find that

ν(ϕ1) = −
(
(1 + 2h sinϕ0)

∂

∂x
+

2
3
h cosϕ0

∂

∂y

)
,

ν(ϕ2) =
2
3
h sinϕ0

∂

∂x
+ (1 + 2h cosϕ0)

∂

∂y
,

ν(ϕ3) =
(
(1− 2h sinϕ0)

∂

∂x
− 2

3
h cosϕ0

∂

∂y

)
,

ν(ϕ4) =
2
3
h sinϕ0

∂

∂x
− (1− 2h cosϕ0)

∂

∂y
.

They are the directions of the tangent framings (tending to coordinate
planes as h→ 0).

Finally, we find the derivatives
dν1
dh

∣∣∣∣
0
=

2
3

cosϕ0 for the cusp correspond-

ing to ϕ1 and ϕ3, and
dν2
dh

∣∣∣∣
0
=

2
3

sinϕ0 for the other.

Therefore the invariant ratio is |tan(ϕ0)|. Different values of it correspond
to nondiffeomorphic caustics.

Here, for ρ0, we have used the metric defined by
( da

1 + a2

)2
in the affine

charts of Proposition 3.3.
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Remark 3.2.

(1) Actually, the number of moduli is infinite. The tangent space to
the orbit under the diffeomorphisms of a generic caustic has infinite
codimension in the tangent space to the space of caustics.

(2) According to [18], the duals to the tangent spaces of caustics are the
projectivized kernels of the corresponding Lagrangian projection.
Thus, the main invariant has an easy interpretation in terms of the
derivatives of the vertical directions in T ∗

R
3 tangent to the critical

locus of the exponential mapping.
(3) We have skipped the action of the finite group of square symmetries

acting by permutations of cusps and their halfs. It reduces slightly
the range of the orbits under the action of diffeomorphisms. Tak-
ing this group into account, the module is tanϕ0/{±; 1/.}, that is,
|log |tanϕ0||.

4. Proof of Theorem 2.7

4.1. Generating families. Using constructions of generating families of
Lagrangian and Legendrian varieties (see [17], [19]), we reduce the problem
to that of the stability of discriminants of a certain family of functions
depending on parameters within a special class of deformations.

A family F (u, q), u ∈ N , of functions on a manifold N with parameters
q ∈ R

n is called a generating family for a Lagrangian variety L ⊂ T ∗
R

n

(the symplectic structure dp ∧ dq is standard) if

L =
{
(p, q)

∣∣∃u :
∂F (u, q)
∂u

= 0, p =
∂F

∂q

}
.

A family of functions G(u, q) is called a generating family of Legendre
variety L in PT ∗

R
n if

L =
{(

[p], q
) | ∃u : G(u, q) = 0,

∂G(u, q)
∂u

= 0, [p] =
[
∂G

∂q

]}
,

where [p] denotes the projectivization of the covector p in T ∗· Rn.
Let u = (pw, ϕ, s) ∈ C+ × R, (P (u), Q(u)) ∈ T ∗

R
3 be the corresponding

point of the Lagrangian manifold, L : Q(u) = E0(pw, ϕ, s) be the exponential
mapping, and let P (u) be the adjoint impulse.

Proposition 4.1. The family F (u, q) = P (u)(q −Q(u)) + s is a gener-
ating family of the restriction of L to an open neighborhood U of the set
{pws = 2π, x = y = w = 0}.
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Proof. Let γ be a path on N joining the point u with a distinguished point
u0. Consider the following function A(u, q) defined up to a constant:

A(u, q) =
∫
γ

(q −Q(u)) dP (u) = P (q −Q) +
∫
γ

P dQ.

Since L is contained in the level H−1(1
2 ) of the Hamiltonian H and H is

homogeneous of degree 2 w.r.t. the impulses, we have
∫
γ
PdQ = 2Hs = s.

Hence A(u, q) = F (u, q).
The differential of A with respect to u vanishes on L : duA = (q −

Q(u)) dP (u). The relation p =
∂F

∂q
holds on L. In the Heisenberg case,

the Jacobian det
(∂P
∂u

)
does not vanish for any pws sufficiently close to 2π.

This completes the proof.

Consider the Hamiltonian function as a function on T ∗(R3×R) indepen-
dent of the last variable. Any of its regular level surfaces in T ∗(R3 × R)
(equipped with coordinates p, q, s, H and the Liouville form p dq−2H ds) is
a contact 7-dimensional manifold. It is locally isomorphic to an affine chart
E of the projectivization PT ∗(R3 ×R) determined by the value H = const
of one of the coordinates on the fiber.

Coordinates on C+ are υ = (pw, ϕ). The points
(
P (υ), Q(υ), s,

1
2

)
form

a Legendre submanifold L in E. The projection of L on R
3 × R is the

extended wave front V of the exponential mapping.
The previous proposition implies the following assertion.

Proposition 4.2. The family G(υ, s, q) = P (υ, s)(q − Q(υ, s)) of func-
tions of the variables υ with parameters q, s, is a Legendre generating family
of L. In particular the extended wave front V is a component of the dis-
criminant variety:

Ṽ =
{
(q, s) | ∃υ : G(υ, s, q) = 0, dυG(υ, s, q) = 0

}
of the family G.

The couples (Ψ,D) formed by a nonzero germ of the function Ψ(υ, s, q),
and a germ of diffeomorphism D : (υ, s, q) �→ (υ̃(υ, s, q), s̃(s, q), q̃(s, q))
acts on the space of germs of families G. The couple (Ψ,D) transforms
G into the germ of Ψ · G(D−1). This action is said to be contact. The
transformed family Ψ ·G(D−1) is a generating family of a Legendrian germ,
whose wave front is the image of the germ VG under the diffeomorphism
D′ : (s, q) �→ (s̃, q̃).
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Moreover, the stability under diffeomorphisms of a germ of wave front is
equivalent to the stability with respect to the contact action of the corre-
sponding generating family (provided that the latter is almost everywhere
Morse in the sense of [17], [20]).

Outside the fiber PT ∗
0R

4 over the origin, the variety L is smooth. Its
generating family G is locally contact equivalent to a family of the form
G̃(u, q) + s. The germ of L at a nonzero point is defined by the equations

G̃(u, q) = −s and
∂G̃

∂u
= 0. Thus s is a regular function on L. Therefore,

singular points of the projection of L on R
3×R coincide with singular points

of the projection to R
3 only. This proves Proposition 2.6.

We will use again extensively the time reparametrization t = pws =
s

ρ
of Lemma 2.4. It is equivalent to the consideration of the “cylindrical”
projection of C+ on the plane B0 = {pw = 1} ⊂ T ∗

0R
3 along the radial rays.

It maps the point p = (cosϕ, sinϕ, pw) to the point n = (nx, ny, 1) ∈ B0.

Here nx =
cosϕ
pw

, ny =
sinϕ
pw

, and ρ =
1
pw

=
√

(nx)2 + (ny)2.

4.2. The Heisenberg case. In the Heisenberg case, the time (arclength)
to the first conjugate point along the trajectory equals 2πρ, and its w-
coordinate equals πρ2.

From now on, we will consider only germs of extended wave fronts along

the subset Z =
{
w − s2

4π
= 0
}
⊂ R

4.

The Heisenberg case corresponds to β = γ = 0. The generating family
of L has the form

G(nx, ny, s, x, y, w) =
1
ρ

(
w + x

(
nx

1 + cos t
2

+ ny
sin t
2

)
+ y

(
−nx sin t

2
+

+ ny
1 + cos t

2

)
− ρ2

2
(t+ sin t)

)
.

In the new variables u = Px(nx, ny, t)ρ and v = Py(nx, ny, t)ρ, this family
takes the following form:

G(u, v, s, x, y, w) = −cos t
2

r

(
w + ux+ vy − 1

2
r2
t+ sin t
cos2 t

2

)
,

where r =
√
u2 + v2. It will be useful to reparametrize again the time axis.

Let τ =
s

r
= − t

cos t
2
. This formula determines a regular function t = t(τ )

near the point τ = 2π, t = 2π. Let T (τ ) =
t(τ) + sin(t(τ))
1 + cos(t(τ))

. Dropping the
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nonzero factor, we reduce the generating family to the form

G =
1
r

(
w + xu+ yv − r2T (τ)

)
. (4.1)

4.3. Reduction to a prenormal form. Let (u, v) be local coordinates on
the plane. The germB(τ, u, v) at the point (2π, 0, 0) is said to be degenerate,

if for any τ close to 2π, we have B(τ, 0, 0) = 0 and
∂B

∂u

∣∣∣
(τ,0,0)

=
∂B

∂v

∣∣∣
(τ,0,0)

=

0. The germ is said to be typical if, moreover, the quadratic form d2u,vB is
not umbilic at the origin (not proportional to u2 + v2).

Actually, we will prove that the change of variables (ux, uy) �→(Px

Pw
,
Py

Pw

)
, which is regular near τ = 2π, maps the generating family into a

that of a certain “prenormal form,” which is obtained by using a degenerate
additive perturbation B of T (τ) in (4.1).

Lemma 4.3 (prenormal form for generating families). The germ
of the extended wave front V of a sub-Riemannian system with smooth
functions β and γ is diffeomorphic to the discriminant variety of one of
the following germs of generating family at the origin:

G(u, v, τ, x, y, w) =
1
r

(
w + xu+ yv − r2(T (τ ) +B(τ, u, v)

))
.

Here (u, v) ∈ (R2, 0), τ =
s

r
, r =

√
u2 + v2, and B is degenerate.

Denote by Oq the local ring of germs at the origin of smooth functions
of q ∈ R

n.
Let Φ1(q), ...,Φk(q) be a set of smooth functions vanishing at the origin,

and let ν = Σνi
∂

∂qi
be a germ of smooth vector field such that ν(0) = 0.

Denote by Dt
ν(q) the germ of phase flow diffeomorphism at 0 generated

by ν. Denote by Oq{Φj} the ideal in Oq generated by Φj . We also identify
the space Oq with the subspace of Oq,q′ of functions, not depending on the
additional variables q′.

Proposition 4.4. If LνΦi ∈ Oq{Φj}, then Φi ◦ Dt
ν ∈ Oq{Φj}.

Proof. Obvious.

Let Φ1, ...,Φk satisfy the claim of Proposition 4.4. Denote by χ the set{
q | Φ2 = ... = Φk = 0

}
and by χt0 the germ at the point (0, t0) ∈ R

n × R

of the set
{
(Dt

ν(χ), t)
}
.

Assume that χ contains a germ of curve passing through the origin and
parametrized by a smooth mapping Γ : (R, 0) → (χ, 0) such that the orders
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of the first nonzero jet at the origin of the functions Φ1 ◦Γ and Φ1 ◦Dt0
ν ◦Γ

on the real line coincide and are finite.

Proposition 4.5. There exist smooth germs Vi(q, t) such that Φi−Φ1Vi
(i = 2, ..., k) vanish on χt0 .

Proof. The above proposition implies the existence of decompositions
Φi(q) = Σk

j=1Kij(q, t)Φj ◦ D−t
ν (q) with smooth functions Kij . By the def-

inition of χt0 , at a point (q, t) ∈ χt0 , the functions Φj ◦ D−t
ν vanish for

j = 2, . . . , k. Restrict the first of the above decompositions to the curve Γ:

Φ1 ◦ Dt0
ν ◦ Γ(ε) = K11(Dt0

ν ◦ Γ(ε), t0)Φ1 ◦ Γ(ε).

The equality of orders w.r.t. ε of the functions Φ1◦Dt0
ν ◦Γ and Φ1◦Γ, implies

K11(Dt0
ν ◦Γ(ε), t0) 
= 0. Thus, Φi −Φ1

Ki1(q, t)
K11(q, t)

belongs to Oq,t{Φj ◦D−t
ν },

where j ≥ 2 and, therefore, vanishes on χt0 .

Lemma 4.6. The collection of functions on T ∗
R

3 : Φ1 = p2x + p2y;
Φ2 = x2 + y2; Φ3 = xpx + ypy; Φ4 = xpy − ypx; Φ5 = w; Φ6 = pw − 1,
satisfies the conditions of Propositions 4.4 and 4.5 with respect to the Hβ,γ-
Hamiltonian vector field near the point (px, py, pw, x, y, w) = (0, 0, 1, 0, 0, 0)
and the reparametrized time moment t = 2π.

Proof. The Hamiltonian function Hβ,γ actually belongs to the ideal JΦ =
O{Φ1, ...,Φ6} generated by these functions

Hβ,γ =
1
2

(
Φ1 +

1
4
P 2
wγ

2Φ2 + 2βΦ4 + β2Φ2Φ4 + βγΦ2Φ4Pw +
1
2
γPwΦ4

)
.

Hence the Poisson brackets of Hβ,γ with any of Φi belongs to this ideal.
For example,

[Φ4, Hβ,γ ] =
(

1
2
p2wΦ2 +

1
2
Φ4Φ5 + βΦ2Φ4

)(
∂γ

∂y
x− ∂γ

∂x
y

)
+

+
(
pwγΦ2Φ4 + Φ2

4 + 2βΦ2Φ4
)(∂β
∂y
x− ∂β

∂x
y

)
.

This implies that Proposition 4.4 holds.
The Heisenberg approximation shows that near the value τ = 2π,

det
∂(Px, Py)
∂(nx, ny)


= 0 on χ2π. Hence, on the Lagrangian submanifold L, which

is exactly the set Ds
H(χ0) the curve required in Proposition 4.5 exists for

this collection of functions.

Now, Proposition 4.5 implies the following proposition.
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Proposition 4.6. On the image of the Hamiltonian phase flow of the
initial plane pw = 1, all the functions Φi are divisible by Φ1 = P 2

x + P 2
y .

In particular, we see that the restriction of the Hamiltonian function to
L is divisible by Φ1:

Hβ,γ |L = (P 2
x + P 2

y )K, K 
= 0.

The explicit formula of the generating family G =
1√
2H

(wPw+xPx+yPy−
WPw −XPx − Y Py) is as follows:

G =
f1√
Φ1

(
w + x

Px

Pw
+ y

Py

Pw
− f2Φ1

)
,

with some nonzero functions f1 and f2 of the variables Px, Py, t.

Near the value t = 2π, the functions
Px

Pw
and

Py

Pw
can be taken as new

coordinates u and v on the fibers B of the source space of the family G.
Since Pw 
= 0, the function Φ1 is equivalent to u2 + v2 : Φ1 = g(u2 + v2),

g 
= 0 on L. The family G takes now the form

G =
1
r

(
w + ux+ vy − r2f(t, u, v)).

In the Heisenberg case, fH =
t+ sin t
1 + cos t

and does not depend on u and v.

The explicit forms of the Poisson brackets [Φi,Hβ,γ ] imply that in the

general case, the functions PwW +PxX+PyY −r2fH and Hβ,γ− r2

cos2(t/2)
restricted to L have a zero 3-jet at the origin with respect to the initial
coordinates nx, ny (or equivalently with respect to u, v) for any fixed value
of t. Thus, f = fH + B̃(t, u, v) with a degenerate B̃. The corresponding

substitution of time τ =
tρ

r
= t

√
2Hβ,γ

r2
= − t

cos(t/2)
√

1 +A with a certain

degenerate A(t, u, v) provides a solution of the form t = tH(τ) + C(τ, u, v),
where C is also degenerate. Therefore, in variables τ , u, and v, the family
takes the required prenormal form.

4.4. End of the proof of Theorem 2.7. We complete the proof of
Theorem 2.7 in two steps: reducing the prenormal generating family to the
circular form (Lemma 4.8) and then proving its stability (Lemma 4.10).

The reduced problem turns out to be close to the geometrical problems
“on vanishing flattenings” studied by V. Arnold’s Paris school [22], [21].

Let G(u, v, θ, x, y) be a smooth germ at the origin of a family of functions
on the Euclidean plane, (u, v) ∈ (R2, 0), with parameters (θ, x, y) ∈ R

3.
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Denote by Gw the restriction of G of the circle S(u, v, w) = u2+v2−w =

0, w > 0 to this plane (u, v), and by Lϕ the differentiation
∂

∂ϕ
= −u ∂

∂v
+

v
∂

∂u
along the circle.

The set V of parameters (θ, x, y,w) such that the restriction Gw has a
critical point with zero critical value, is called the bifurcation diagram of
the pair (G,S) of germs of functions.

The union of this 3-dimensional submanifold V = {(θ, x, y, w) | ∃u, v :
Gw = 0, LϕGw = 0}, with the flat additional component w = 0 forms the
bifurcation diagram of the complete intersection {G = 0} ∩ {S = 0}, that
is, the set of parameters for which this system of equations has a critical
solution.

We consider:
(a) parameter depending families of germs D of diffeomorphisms and

covering diffeomorphisms D̃ (via the coordinate projection π forgetting u
and v):

R
2 × R

4 D−→ R
2 × R

4

π ↓ ↓ π
R

4 D̃−→ R
4

, D̃ ◦ π = π ◦ D,

and

(b) multiplications of a pair
(
G
S

)
of functions by germs of 2× 2 non-

degenerate matrices M (with functional coefficients).
These transformations (M,D) form a contact group. It acts on the space

of pairs (G,S) according to the formula
(
G
S

)
�→M

(
G ◦ D
S ◦ D

)
, whence

the diffeomorphism D̃ maps the bifurcation diagram of the initial pair to
that of the transformed one.

Definition 1. The family G is called circular if it has the following spe-
cial form:

G = xu+ yv + (u2 + v2)F (u, v, θ, x, y), (4.2)

where F (0) = 0,
∂F

∂u

∣∣∣
0
=
∂F

∂v

∣∣∣
0
= 0, and

∂F

∂θ

∣∣∣
0

= 0.

A circular family is called generic if the second differential at the origin
of F |θ,x,y=0 is not umbilic.

Lemma 4.8 (suspension). The germ of the big wave front V of a
prenormal generating family G (Lemma 4.3) is diffeomorphic to the (non-
trivial) component of the bifurcation diagram of a certain circular family.
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Proof. The variety V is defined by the set of equations

(i) G = 0,

(ii)

∧
∂

∂u
G = 0,

(iii)

∧
∂

∂v
G = 0.

(4.3)

Here

∧
∂

∂u
means

∂

∂u

∣∣∣
s=const

=
∂

∂u

∣∣∣
τ=const

+
∂τ

∂u

∣∣∣
s=const

.
∂

∂τ
and

∧
∂

∂v
is

defined similarly.

Items (ii) and (iii) of (4.3) imply r

∧
∂

∂r
G = 0, where r

∧
∂

∂r
= u

∧
∂

∂u
+ v

∧
∂

∂v
.

This last equation has a simple form:

0 = r

∧
∂

∂r
G =

1
r

(−w + r2
(
T̃ (τ) + B̃

))
, (4.4)

where B̃ = B̃(u, v, τ) is a smooth degenerate function and T̃ (τ ) =
∂T

∂τ
τ−T .

Note that T̃ (2π) = π and
∂T̃

∂τ

∣∣∣∣∣
2π

= 4π3.

Near the origin, (4.4) yields w = πr2(1 + B); therefore, the value of

l =
√

w

πr2
is bounded.

Substitute now the expression s = θ

√
w

π
in Eq. (4.4). We have τ =

s

r
=

θl, and this equation takes the form of the set of equations

w = πl2r2, πr2(T̃ + B̃) = w

or

r =
√

w

πl2
, l2 = T̃ + B̃.

Computations show that the equation l2 = T̃ + B̃ has a real smooth solu-
tion of the form l = C(θ) + Ã(u, v, θ,w), where the smooth function Ã is
degenerate and C(2π) = 1.

Obviously, the mapping Sus : (u, v) �→ (lu, lv) is a germ of diffeomor-
phism of the plane (for any parameter set close to the origin). As new
variables we take u = lu and v = lv and set G = Gs ◦ (Sus)−1.
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As we have seen system (4.3) implies:

w

π
= l2r2 = l2(u2 + v2) = u2 + v2. (4.5)

In the new variables, system (4.3) is equivalent to the system G = 0,
∂G

∂u
= 0,

∂G

∂v
= 0 or (outside the origin) to the system

G = 0, r
∂G

∂r
= 0,

∂G

∂ϕ
= 0.

Since the diffeomorphism Sus is close to the identity near the origin,
Eq. (4.5) is independent of the system formed by the first and third equa-

tions, G = 0,
∂G

∂ϕ
= 0. This implies that the germ of big wave front V

(the subset formed by the points (x, y, w, s) such that
(
x, y, w,

s
√
π√
w

)
are

close to (0, 0, 0, 2π)) is diffeomorphic to the bifurcation diagram of the pair{
G,w − u2 − v2}.
The family takes the form

G =
l
√
π√
w

(w +
xu

l
+
yv

l
− w

πl2
(T +B)) =

=
√
π√
w

(xu+ yv − (u2 + v2)E(θ, u, v)),

where E is again a sum of a degenerate function E∗ and a function E0(θ)

such that E0(2π) = 0 and
∂E0

∂θ

∣∣∣∣
2π

= 0.

The multiplication by
1√
w

only adds a trivial component to the bifurca-

tion diagram.
Therefore, the pair (G,S) is contact equivalent to the circular pair{

xu+ yv + (u2 + v2)E,S
}
.

The lemma is proved.

Remark 4.1. Note that in (4.2) the addition to G of a function divisible
by S = w − u2 − v2 does not change the bifurcation diagram.

Proposition 4.9. A generic circular family corresponds to a generic
sub-Riemannian system (γ0

2,2 
= 0).
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Proof. It is possible to get the result by a direct computation: using asymp-
totic formulas for E0 (with γ0

2,2 
= 0), one can compute the initial generating
family, and then follow all the transformations described above keeping the
terms of order 2 in u, v for the degenerate germ B in Lemma 4.3.

We will avoid these calculations, and base our reasoning only on asymp-
totics (2.8) of the caustic.

The reduction of the generating family to the circular form

G = xu+ yv + (u2 + v2)(E0(θ) + E∗(u, v, θ)),

consists only of contact equivalences, corresponding to the trivial action
on the parameters. We have also preserved the simple form of the initial

arclength s = θ

√
w

π
.

Therefore, the caustic of a sub-Riemannian system coincides with the set
of (x, y, w) such that there exist θ, u, v satisfying the system of equations

G = 0,
∂

∂ϕ
G = 0,

∂2

∂ϕ2G = 0, w = u2 + v2.

Since
dE0

dθ

∣∣∣
2π

= 0, the first and third equations

xu+ yv + (u2 + v2)(E0 + E∗) = 0,

−yu+ xv + (u2 + v2)
∂2

∂ϕ2E∗ = 0,

allow us to express θ as a function of u, v : θ = 2π + Ψ(u, v). Here the
function Ψ is degenerate.

The substitution of θ = 2π + Ψ(u, v) in the second and third equations
yields:

−vx+ uy = (u2 + v2)
∂

∂ϕ
E∗,

xu+ yv = (u2 + v2)
∂2

∂ϕ2E∗.

Hence

x = −v ∂
∂ϕ
E∗ + u

∂2

∂ϕ2E∗,

y = u
∂

∂ϕ
E∗ + v

∂2

∂ϕ2E∗.
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Assuming that E∗ has only an umbilic second order term in u, v when
θ = 2π, we get

x = Ψ1(u, v), y = Ψ2(u, v), w = u2 + v2,

and the 3-jets at the origin of Ψ1 and Ψ2 vanish. Therefore, the caustic has
asymptotic x, y ∼ O(w2) as w→ 0. This contradicts the asymptotics (2.8).
Hence E∗ is not umbilic for a generic sub-Riemannian system.

Lemma 4.10. All generic circular germs (at the origin) are contact
equivalent. Hence their bifurcation diagrams are diffeomorphic. Moreover,
there exists a diffeomorphism preserving the w-coordinate function.

Proof. The Moser homotopy method prescribes to join an arbitrary generic
family G with a standard one, for instance, with

G0 = xu+ yv + r2(±θ + (u2 − v2)), (4.6)

by an arc Gε, ε ∈ [0, 1] in the space G of generating families: Gε |ε=0= G0,
Gε |ε=1= G, and to look for an ε-family Kε of contact equivalences (of the
required form), which maps Gε into G0.

Note that G has two connected components corresponding to signs ± in
formula (4.6) for G0. But the reversion of the “time” θ makes these two
distinguished classes equivalent.

The contact equivalence Kε consists of a pair (due to Remark 4.1) of
smooth germs of functions A 
= 0, B of the variables ε, u, v, θ, x, y, w and of
a family of diffeomorphisms Dε : (u, v, θ, x, y, w) �→ (U, V,Ξ, X, Y,w) the U ,
V components of which depend on all 7 variables, while the remaining ones
depend only on parameters ε, θ, x, y, w (and the w-component is preserved).
Of course, Dε also preserves the system of circles r2 − w = 0.

Thus, expecting to satisfy the equation AGε ◦ Dε +B(r2 −w) = G0, we
differentiate it w.r.t. ε:

A ◦ D−1
ε

∂Gε

∂ε
+
∂A

∂ε
◦ D−1

ε Gε +A ◦ D−1
ε LνGε +

+
∂B

∂ε
◦ D−1

ε (r2 − w) = 0.

Here the phase flow of the vector field ν is the family Dε. Hence we try
to find ν of the form

ν = f1

(
−v ∂

∂u
+ u

∂

∂v

)
+ gθ

∂

∂θ
+ gx

∂

∂x
+ gy

∂

∂y
,

whose components gθ, gx, and gy are functions of the parameters, f1, f2 =
1
A

∂A

∂ε
◦D−1

ε , f3 =
1
A

∂B

∂ε
◦D−1

ε are functions of all 7 variables such that the
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homological equation

−∂Gε

∂ε
= LνGε + f2Gε + f3(r2 − w),

is satisfied.
We prove the solvability of this equation below (Proposition 4.11).

Moreover, decomposition (4.7) below of the germ −∂Gε

∂ε
provides a vector

field ν which vanishes at the origin for any ε and, therefore, determines a
germ of flow. This completes the proof of the lemma and hence Theorem
2.7.

Remark 4.2. Theorem 2.7 implies that the singular loci Σ(1) of generic big
wave fronts are diffeomorphic. Their inverse images in the (u, v, θ, x, y, w)-
space (as well as the corresponding subsets of the Legendre varieties), are
diffeomorphic as well. The singular loci Σ(1,1) of Σ(1) are also diffeomorphic.

They are determined by the equations G =
∂

∂ϕ
G =

∂2

∂ϕ2G =
∂3

∂ϕ3G in terms

of the circular families G.
For the standard family G0, the inverse image of the singular locus Σ(1,1)

consists of two smooth curves. Their projections to the (x, y, w)-space form
two cusps on the (upper) half of the caustic. Hence this hods for arbitrary
generic systems and implies Lemma 3.1.

Fix a certain value ε0 of ε, and denote by O the ring of germs of smooth
functions of the variables ε, u, v, θ, x, y, w, at the point (ε0, 0, 0, 0, 0, 0, 0).
Denote by O∗ the ring of germs at (ε0, 0, 0, 0, 0) of functions of the param-
eters ε, θ, x, y, w.

Also, we recall that
∂Gε

∂ε
∈ O{r2} for any ε0.

Proposition 4.11 (infinitesimal circular stability). Any germ f ∈
O{r2} has the decomposition

f = f1
∂

∂ϕ
Gε + f2Gε + f3(r2 − w) + g1

∂

∂θ
+ g2

∂

∂x
+ g3

∂

∂y
, (4.7)

where f1,f2, f3 ∈ O, g1, g2, g3 ∈ O∗, and
∂

∂ϕ
= −v ∂

∂u
+ u

∂

∂v
.

Proof. The fact that the right-hand side terms of (4.7) does not belong to
the ideal O{r2} causes an obstruction to the immediate application of the
Malgrange preparation theorem. We need certain tricks to avoid it.

Denote by O0 the ring of germs at the origin of functions in u, v only and
by [ϕ] the restriction of ϕ ∈ O to the coordinate subspace ε = θ = x = y =
w = 0.
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An appropriate rotation of coordinates in the u, v plane (it does not affect
the form of equations) allows us to write Gε = xu + yv + r2(a(u2 − v2) +

br2 + ...), a 
= 0, and respectively,
∂

∂ϕ
Gε = −xv+ yu− r2(4auv+ ...). Here

and below the dots mean smooth functions Ψ the restrictions [Ψ] of which
belong to M3

0, where M0 is the maximal ideal of O0.
Observe that the functions

δ1 = uGε − v ∂
∂ϕ
Gε = x(u2 + v2) + r2a(u3 − u2v + 4uv2) + br2u+ ...,

and

δ2 = vGε + u
∂

∂ϕ
Gε = y(u2 + v2) + r2a(u2v − v3 − 4u2v) + br2v + ...,

are divisible by r2 in the algebra O.
Since modulo the ideal O{r2}, u2 ≡ −v2, u2v ≡ −v3, v2u ≡ −u3 in the

space O0, modulo the ideal O0{r2}, we obtain[
δ1
r2

]
= a(u3 − uv2 + 4uv2) + br2u+ ... ≡ −2au3 + ...,[

δ2
r2

]
= a(u2v − v3 − 4u2v) + br2v + ... ≡ 2av3 + .....

Therefore, M3
0 ⊂ I0+M4

0, where I0 = O0

{[δ1
r2

]
,
[δ2
r2

]
, r2
}
. Nakayama’s

lemma implies now thatM3
0 ⊂ I0, and consequently, the class of 1, u, v, u2−

v2, uv generate the R-module O0/I0.
The Malgrange preparation theorem applied to the above module and

the mapping (ε, u, v, θ, x, y, w) �→
( δ1
r2
,
δ2
r2
, r2 − w, ε, θ, x, y,w

)
implies that

any 5 function germs from O whose 2-jets of restrictions [ ] span the space
of affine and nonumbilic quadratic functions form a basis of the O∗-module

O/I, where I = O
{ δ1
r2
,
δ2
r2
, r2 − w

}
. In particular, the functions

1, u, v, e1 =
1
r2
(
Gε − xu− yv

) ∼ a(u2 − v2),

e2 =
1
r2

(
∂Gε

∂ϕ
yu− xv

)
∼ axy,

form such a basis. In other words,

O = O
{
δ1
r2
,
δ2
r2
, r2 − w

}
+O∗{1, u, v, e1, e2}. (4.8)
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The multiplication by r2 yields

O{r2} = O{δ1, δ2, (r2 − w)r2}+O∗{r2, r2u, r2v, r2e1, r2e2}. (4.9)

Since δ1, δ2 ∈ J = O
{
Gε,

∂Gε

∂ϕ
, r2 − w

}
, modulo this ideal, r2 ≡ w,

r2e1 ≡ −xu− yv, r2e2 ≡ uy − vx. Hence, we obtain

O∗{r2, r2u, r2v, r2e1, r2e2}+ J =
= O∗{w, uw, vw,−xu− yv, uy − xv}+ J ⊂ O∗{w, u, v}+ J . (4.10)

On the other hand, the definition of a circular family implies µ1 =
∂Gε

∂x
=

u+ r2ϕ1, µ2 =
∂Gε

∂y
= v+ r2ϕ2, µ3 =

∂Gε

∂θ
= r2(c+ϕ3), where c ∈ R

∗ and

ϕ1, ϕ2, ϕ3, vanish on the line u = v = θ = x = y = w = 0.
Decomposing these germs ϕi according to (4.8), modulo the ideal I, we

get

ϕi = ξ1i + ξ2iu+ ξ3iv + ξ4ie1 + ξ5ie2,

i = 1, 2, 3, where ξji ∈ O∗. Since
δ1
r2

,
δ2
r2

and r2−w belong to M, the germs
ξ1i are forced to belong to M∗.

According to (4.9), modulo the ideal I, we obtain

µ1 ≡ u+ wξ11 + uwξ21 + vwξ31 − (xu+ yv)ξ41 + (uy − vx)ξ51,
µ2 ≡ v + wξ12 + uwξ22 + vwξ32 − (xu+ yv)ξ42 + (uy − vx)ξ52,
µ3 ≡ cw + wξ13 + uwξ23 + vwξ33 − (xu+ yv)ξ43 + (uy − vx)ξ53,

or equivalently 
 µ1

µ2
µ3


 ≡M


 u

v
w


 ,

where the entries of the matrix M are germs in O∗.
Near the origin in the (θ, x, y, w)-space (and for an arbitrary ε), this

matrix is close to the diagonal one diag(1, 1, c). Therefore, it is invertible.

Hence O∗
{∂Gε

∂x
,
∂Gε

∂y
,
∂Gε

∂θ

}
+ J = O∗{u, v, w} + J . Combining this

with the relation (4.10), we obtain the required decomposition (4.7):

O(r2) = O
{
Gε,

∂

∂ϕ
Gε, r

2 − w
}

+O∗

{
∂Gε

∂x
,
∂Gε

∂y
,
∂Gε

∂θ

}
.
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