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Abstract

This paper is a continuation of a series of papers of the authors dealing
with sub-Riemannian metrics on IR® in the contact case. Our purpose here in
is twofold :

1. We prove the smoothness of a certain normal form, which is the analog
of “normal coordinates” in Riemannian geometry. This normal form is crucial
for the purpose of studying singularities of the exponential mapping. In our
previous papers, it was a “formal” normal form only.

2. We finish with the generic classification for the singularities of the
exponential mapping of a germ of a contact sub-Riemannian metric.

1. Introduction.

1. A sub-Riemannian metric on a 3-dimensional manifold X is a couple & = (A, g)
of a two dimensional vector subbundle A of TX, and an Euclidian metric g : A —
R, on A. When A is completely non-integrable, such a couple (A, g) defines a
metric d on X ([24]). In most cases, we will consider that A is a contact structure
on X. The set of the contact sub-Riemannian metrics on a given manifold X is
denoted by SubR.

In previous papers of the authors ([2], [4], [9]), these metrics were studied in
details in the contact case. The main purpose of these papers was the study of the
conjugate locus of a point xo, CL(X), the cut-locus of a point xo, CutL(X) and the
spheres of small radius centered at zp. In contrast with Riemannian geometry, the
study of CL(X), CutL(X) is partly a local problem : both of these sets have the
point zg in their closure. As a consequence, even spheres of small radius are not

smooth.
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29




30 A.A. AGRACHEV, EL-H. CHAKIR & J.P. GAUTHIER

The most simple sub-Riemannian metric is the right invariant metric on the
Heisenberg group : A is the (unique up to conjugation) left invariant 2-dimensional
contact distribution and g is left invariant. This particular metric plays a very
special role in the theory, since any contact sub-Riemannian metric can be treated
as a perturbation of this Heisenberg metric.

2. Precisely, we have shown that a formal contact sub-Riemannian metric (spec-
ified for instance by a couple of formal vector fields (F, G), that are a formal or-
thonormal basis for the metric) has the following normal form :

( F=(1+y*B) e —zyBer+L(1+7)es
24y (B2 -s2)+i1+m L
2c TY Y3z —Tay 3 ) 3w

(NF) { (1.1)
G=(1+a’P)es—zyPBer—2(1+7)es

= -2 (B - ) +30+m )

where F(0) = ﬁ(O) = e, G0) = 6(0) = ey, [ﬁ, é] (0) = es, and where

(z, y, w) are the linear coordinates on TpX, dual to (e, ez, e3), B, v are power

series, uniquely determined, and meeting the “boundary” conditions 3(0, 0, w) =
Ay

_ el _
7(0’ 03 U)) - 6—.’1,‘(0’ O’ w) - 8y (03 0’ w) =0.

(When 8 =« = 0 this is just the Heisenberg metric).

In our section 2, we will mainly show that this normal form (N F) is not only
formal but C* or C¥ (depending on either we consider C* or C* metrics).
This is the main theorem of section 2, Theorem (2.7).

We also show (Theorem (2.6)) that this normal form can be obtained in all cases
(not only in the contact case). But, in these other cases, the boundary conditions
are not reached, and the normal form does not allow to define the invariants (tensor
fields) of the metric structure X, that we define in section 2.4. (The construction of
these invariants was already done in our previous paper ([9])).

In the Martinet case, the same methodology can be applied to obtain another
normal form, which also defines functional invariants along the Martinet surface
(see section 2.6).

For a similar study of spheres, wave fronts and conjugate loci in this Martinet
case, see the papers ([3], [6], [7]).

3. Our section 3 is devoted to complements (of our previous papers [2], [4], [9])
about the conjugate locus of a point for a germ of a contact metric, and the finite
determinacy of the exponential mapping in a neighbourhood of its singular locus.
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Theorems 3.3, 3.4 are two main results of section 3. In these theorems, we
examine the situation where our first principal invariant Q. vanishes. (Q2 is a
component of a certain tensor field defined by means of the normal form). This
degenerate situation happens generically on a curve C.

Theorem 3.3 deals with generic points of this curve, Theorem 3.4 deals with
isolated points on this curve, that can appear generically. They can be of two
types. In all cases, we describe precisely the conjugate locus (some strange cases
appear) and we conclude with the fact that the exponential mapping is determined
by a certain finite jet of the metric, in a neighbourhood of its singular locus.

The coordinates (z, y, w) of the smooth normal form (N F) (normal coordinates)
are, in the contact case, unique up to a rotation in A(0).

The conjugate locus of 0 splits in two parts CL* and CL~ corresponding to
w > 0 or w < 0 in these normal coordinates :

CLt* =CLNn{w>0}, CL™ =CLn{w<0}.

Let us call CLt, CL™ a “semi conjugate locus”, typically denoted by CL*.

As we know from our previous papers 2], [4], [9], for |w| small enough, the
intersection CLE of CL* with the planes w =constant, w # 0, is a closed curve 7,
presenting 6 cusp points.

As we shall show, for generic cases, this curve will present only transversal self-
intersections, and we will define the symbol S of CL* as follows:

S will be an ordered sequence of 6 (rational) numbers, S = (s, ..., sg), modulo
cyclic permutations and reflexion. We follow the curve 7, starting from a cusp point.

1 . . . .
s; is 3 the number of self intersections between the i** and (i + 1)** cusp point.

Our result describing the shape of possible “semi conjugate loci” is :

THEOREM 1.1. 1) At generic points of the curve C, the possible symbols for generic
“semi conjugate loci” are:

S =(21,1,21,0), Se=(2,1,1,1,1,1),
S3=(0,1,1,1, 1, 1),
2) At isolated points of the first type of C :
S1=8=(211210), S=85=(21111,1)

But in that case, the exponential mapping is determined by a higher order jet of
the metric (7" jet) than at generic points of C (5" jet).

3) At isolated points of the second type, the possible symbols are :

Se=(3,1,1,00,1), Ss=(1,31,1,1,1),
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Some corresponding pictures of semi conjugate loci (not all of them because it
is not that easy to draw them) are given in section 3. On the contrary, it is easy to
give all pictures for the semi singular sets at the source of the exponential mapping,
as follows: r
We draw a circle, with six sectors of size 3 corresponding to the positions of the

cusp points. In each sector, there are stars, corresponding to preimages of double
points. Both preimages pi, ps of a double point d € CLZ, are such that p, is close

to p1 + 7. All configurations are shown on figure 1.1.
St 83
$4 S6

Figure 1.1: Semi singular sets at the source.

Also, it follows from the results of our section 3.5 that the symbols S; to Sy
give a complete classification of germs (in R3) of semi conjugate loci, with respect
to germs of (origin preserving) homeomorphisms of IR3, that are smooth together
with their inverse, outside the origin.

Let us point out the fact that in this paper, some computations were made us-
ing a formal calculus language : Namely, Mathematica. If a posteriori, all the
computations in the paper can be done by hand, it is clear to us that it
would have been very difficult to obtain the results without using such a formal
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program. For the interested reader, we give (see Appendix A3) the complete pro-
gram allowing to compute all the expansions needed for our purposes (mainly, the
expansion of the exponential mapping and conjugate loci at order 7).

2. Normal coordinates.

Convention : All along the paper, the notation O(%) means a function of the form
¥ F, where F is a smooth function of all variables under consideration. We allow to
write O(¥), O(yp) in the same expression. This doesn’t mean that the F’s are the
same. Also, O1(3, ) means O(1)+O0(y), O?(1, v) means O(¥?)+O0(¢) ) +0(p?).

2.1. Preliminaries.

Let us consider a sub-Riemannian metric (A, g) on X, but let us not assume that A
is a contact structure (it can be integrable, or Martinet, or other). Let us consider
a parametrized smooth curve I : |—¢, €] — X, I'(0) = 0, which is transversal to A :

dr
R @i +AT®) = Tr X

If A is contact, there is, up to orientation, a natural choice for such a curve :
— The orientation being given, there is a unique 1-form w on X such that

1. A = ker w,
2. dw restricted to A is the area form.

— There is a unique vector field v on X such that :

(V) (wA dw) = dw or equivalently w(v) =1, i(v)dw = 0.
The integral curve through zero of v, expt v(0) is such a curve T', in that case.

Let us consider the Hamiltonian H of the metric. It is defined as follows :
associated to (A, g), there is a cometric on T* X :

2
1 b(v)

H) = - LACY
@) 2,,&“&0}<nvlig)

On fibersof mx : T*X — X, H is a positive semi-definite quadratic form, the kernel
of which is the annihilator of A.

Locally, we can assume that the metric is specified by an orthonormal frame
field (F, G). Then,

H = ((9(F))* + ((G))?).

DN =

Let H denote the corresponding Hamiltonian vector field on 7™ X.
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The curve I' defines also a codistribution Ar along I' :
- ar . .
Ar(t) = Annihilator of i TrpX.

The cometric H|g.(:), H restricted to Ap(t) is a positive definite quadratic form
g ().

Then, Ar = |J Ar(t) carries the structure of a metric bundle over T,
t€]—e, €[
mx : Ar — I, and this structure can be trivialized as follows :

We take along I" a coordinate system £ = (z, y, w) such that : T'(¢) = (0, 0, ¢),
and at = y = 0, the distribution A (I'(¢)) is ker dw and the metric g is dz? + dy?.
If € is small, we can identify the coordinates £ in a neighbourhood U of T with
coordinates in the tangent bundle. Dual coordinates in the cotangent bundle T* X

are (p, g, 7).
In these coordinates, Ar = {(0, 0, w, p, g, 0) |w € ]—¢, €[}, Ar(t) = is the vector

space {(0, 0, t, p, q, 0)}. The cometric H is i(p2 +q%).

With these coordinates, the structural group SO(2) of this trivial bundle acts
now on the fibers of Ar in the trivial way :

a(w, p, q) = (w, pcosa — gsina, psina+gcosa) = (w, e /*(p, q))  (2.1)
Any smooth curve 8 : |—¢, e[ — SO(2) determines a change of coordinates

(@, B, @) = (w, e77°™) (p, q))

of this structure (of a trivial metric bundle).

Such coordinates and changes of coordinates on Ar we call coordinates (changes)
“adapted to I'”.

1
Set Cr = ArNH _1(5). In these coordinates, Cr is the cylinder {p? + ¢ = 1}.

Associated to these cartesian coordinates “adapted to I'”, there are the cor-
responding cylindrical coordinates “adapted to I, (w, p, ¢), p*> = p* + ¢, p =
p cosp, g = psing. In these cylindrical coordinates, Cr is the cylinder {p = 1},
and “adapted to I'” coordinate changes are : (w, p, ¢) — (w, p, ¢ — §(w)).

2.2. I'-Normal coordinates.

The mapping
(38 Ar* — X
—
®()\) = 7wx oexp H(N).
is a smooth diffeomorphism, (provided that € is small) from a cylindrical neighbour-

hood Nr of {p = ¢ = 0} (the zero section) in Ar, to Ur a neighbourhood of T' in
X.
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Given an “adapted to I coordinate system (w, p, q), consider the coordinates
system on Ur C X :

(w, p, @) o @ (2.2)

DEFINITION 2.1. These coordinates on Ur C X we call I'-normal (cartesian) coor-
dinates.

An important observation is the following : if (w, p, ) are the corresponding
cylindrical I'-normal coordinates, they can also be defined as follows.

Set & : Cr x [0, a[ — Ur, for a > 0, sufficiently small:

O(c, p)=mx o0 exppﬁ(c). : (2.3)

Then, if ¢ has adapted cylindrical coordinates (w, ¢) in Cr,

(w, B, §) (1) = (w, p, p) 0 @~ (w). (2.4)
Then :

CLAIM 2.2. In these T'-normal (cartesian or cylindrical) coordinates, geodesics
through I, satisfying the transversality conditions w.r.t. I, are straight lines con-
tained in the planes {w = constant}.

Also, the following lemma is a series of consequences of Pontriagin’s maximum
principle ([23]).

Let C,s be the set of points & of X that are at distance s of I'. (If A is not
maximally non-integrable, we don’t have a distance. In that case, we just mean,
similarly to the distance case, that the inf of the length of curves tangent to A and
joining z to I is s).

LEMMA 2.3. If a and € are small enough, then for all s < a :

i) Cy is the smooth cylinder ®(Cr, s) ({p = s} in T-normal coordinates),

1) For c € Cr, exp s ﬁ(c) satisfies the transversality conditions w.r.t. Cs,

ie exps _ﬁ(c) vanishes on 5, \Cs.

(¢,9)

REMARK 1. In particular, abnormal curves (see [22]) are never optimal in the prob-
lem with free initial condition on I" : the adjoint vector has to be nonzero, and
transversal to both I' and A. This is impossible.
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Conversely, assume that (w, z, y) is a coordinate system (with associated cylin-
drical coordinate system (w, p, @)) such that

i) T(t) = (¢, 0, 0),

i1) For (s € Tiy X, H(y(n) = 3, Py 5% = 0, then

Tx O€Xps$ ﬁ(wv(t)) = (w, s, @), for a certain .

Then, it defines an adapted to I' coordinate system, and it is the corresponding
I-normal coordinate system.

2.3. I'-normal forms.

We consider on a neighbourhood N of T', a cartesian I'-normal coordinate system
£ ={(w, z, y), & = (w, p, ¥) is the corresponding cylindrical system.

0

On N\{T'}, we set F = R

o

positive frame for the metric on N\{I'} (positive orientation on A is given by I').
G is unique.

and we chose G such that (F, G) is an orthonormal

A trivial reasonning using Lemma 2.3 (i) and the Pontriagin’s maximum principle,
shows that G has to be tangent to the cylinders Cs:

Let 8(s) = (w, scos(p), ssin(p)) be one of our geodesics (starting from I' with
transversality conditions). Let A(s) = (r(s), p(s), g(s)) be the corresponding adjoint
vector along this geodesic. By Lemma 2.3 (ii), A(s) vanishes on Tj5(,)Cs. Hence:

i) r(s) =0,
. . 0
i1) (0, p(s),q(s)) vanishes on—
Op
Otherwise, since the geodesic §(s) is a trajectory of F, by the PMP, A(s).G = 0.
Therefore G is a linear combination of —a—, —6—
ow’ Oy
This shows that, there are smooth functions a, b on N\{I'} such that
0 1, 0

We will need the following trivial technical lemma :

LEMMA 2.4. Let f: U C RPxRx R — R, f : (w,z,y) — f(w,z,y), be any
function, U some neighbourhood of zero. Assume that z f and y f are C™ (resp.
C¥)onU. Then, f is C* (resp. C*) on U.

PROOF. Left to the reader. O




SUB-RIEMANNIAN METRICS ON R? 37

- b
COROLLARY 2.5. @ = % and b= ; are smooth functions on N.

PRrOOF. Let (p, g, r) be the dual coordinates of our normal coordinates (z, y, w).
The expression of the Hamiltonian in these coordinates is a smooth function of

(z,y, w,p, ¢ 7).
Computing H on our orthonormal basis (F, G), on N\{I'}, we get :

2H = (p*+¢°)+{(p, 9), J (z, v)) %(2+bp)+27‘((p, ), J (x, v)) (1+pb)%+r2 a2,

(2.5)
where J is as in formula 2.1. (Once the orientation is chosen, J can also be under-
stood intrinsically as the complex structure on A defined by :

a'r'g(u, U) = g(J(U), U)a

where ar, is the area form associated to g on A).
Therefore, setting p = ¢ = 0, we obtain that a? is a smooth function.
Also, we know that

2H(p, q,7, 0,0, w) = p* + ¢,
therefore
a{0,0,w) = 0.

We consider now the 2 x 2 Gramm matrix G(z, y, w), associated to our coordinates
and our frame (F, G) on N\{I'},

_ [ (F,F) (F,G)
G(z, y, w) —( (F,G) (G,G) )

G depends on the frame (F, G), but its determinant and trace do not. Therefore,
its determinant det G(z, y, w) is a smooth function.
A straightforward computation shows that

detG = (1 +bp)% + a2

Besides, det G(0, 0, w) = 1. Therefore, b p is a smooth function, and (bp)(0, 0, w) =
0.

Also,
0H

_ a 2
o = (P a), J(z,y) (1 +pb)p +ra
is smooth. Applying lemma 2.4, we get that g is smooth.

In the expression 2.5 above, the first, third and fourth terms are smooth, as we
have just shown.

. . b b b
Hence, the second term also is smooth. This implies that z? —, zy —, y? — are
P P

b
smooth. Applying lemma 2.4 three times, we get that — is smooth. O
P
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Now, let us make the following (singular along I') change of orthonormal frame
field :

set : -
—zpp_¥
F—zF pG,
_ (2.6)
=¥ z
G—pF+pG.
We get :
m_ 8 b ) 8 3
F=5 -1, (»’Ca—y—ym)-y%m,
(2.7)
~N_ 0 b a 8 3
G—'@'FIL‘; (ma—y—y%)%-w%%

Setting 8 = %, (1+~)=-2 %, we obtain finally :

m
Il
Fle

~yB (wa%—ya%)wL%(Hv)%,

G= a%+zﬂ (xa%—y%) L1+ 2.
This is exactly our normal form (N F) of section 1.

Therefore, we have shown :

THEOREM 2.6. (A, g) being given, not necessarily contact, together with a
parametrized curve I : |—¢, [ — X, ['(0) = 0, transversal to A, there is a smooth
coordinate system £ = (w, z, ¥), & = (w, p, @) around 0, such that :

LT({) = (t0,0),

2. In these coordinates, (A, g) has the normal form (NF).
(without the boundary conditions)

Moreover, this coordinate system is unique up to a change of coordinates of the
form :

(w, p, ) = (w, p, ¢ — 6(w)), where § : |—¢, ] — SO(2) is a smooth mapping

2.4. Contact case.

In this case, as we already know, we have two natural candidates for T" : ¢t —
exp et (0), where v is the vector field defined in section 2.1, and € = £1. Let us
chose € = 1.

Also, in that case, % #O0forz=y=0.

_ 0 1,0
Setting & = ¢ — §(w), we see that, since F' = 62;)’ G=ua e +(b+ ;) 35’ % is
unchanged and § = b is changed for b_ @ 2
P p Owp
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This shows, since E(w, 0, 0) # 0, that we can chose § for 8(w, 0, 0) = 0. This

choice is unique up to §(0).
Second, if w denotes the 1-form of the section 2.1, the expression of w in normal
coordinates is
w= f(dw+ 7 (zdy — ydz)),

a

with 7 = —W and,
. 1+ 3p° __a
f——2a+ @+ 3(ﬂ?§_a%)’ wherea-—;. (2.8)
pap p Op dp
Onl, (z=y=0,ww)=1v= 9 w= fdw
? _y— ’ - - awv - .
This shows that f|,—¢ = 1, which implies that %] p=0 = —%, or
V]p=0 = 0. (2.9)

Also, v has to be such that i(v) (dw) = 0. It is easily computed that, along T (at
xTr = y = 0),

i) (@)lpmo =~ gL do - S ay (2.10)
This implies that, g—i(w, 0,0)= %(w, 0,0)=0.
This shows that, by (2.8), %(w, 0,0) = g—Z(w, 0,0) =0, or
Z—Z(w, 0, 0) = Z—Z(w, 0, 0) = 0.

We have obtained the boundary conditions for (NF).

THEOREM 2.7. A germ at 0 of contact sub-Riemannian metric (4, g) being given,
there is, up to orientation and up to the action of SO(2), a unique coordinate system
in which the metric (A, g) has the normal form (NF), with boundary conditions.

REMARK 2. Observe that, in this section 2, the results are available in the C*° or
CY category : just replace everywhere smooth by C* (resp. C¥).

Any choice of the value of §(0) € SO(2) determines completely the normal form,
and the normal coordinates, (up to orientation). §(0) being chosen, let (w, z, y) be
these coordinates. In these coordinates, the derivatives

, Oy

8B
di = 5 - |lw=0s di = ~—lw=
awll 0 ' I 0




40 A.A. AGRACHEV, EL-H. CHAKIR & J.P. GAUTHIER

are functions of (x,y) only.

The kt* differentials D¥(z, y), D!*(zx, y), at (z, y) = 0, of these functions d;, d;
are homogeneous polynomials of degree k in (z, y).

The pull backs on A(0) of the D¥, D.*, by the mapping (dz, dy) — (z, y) allow
to define covariant symmetric tensors on A(0), that we denote by 8; x 5(0), Yi,k,6(0)-

PROPOSITION 2.8. The typical point of X is now denoted by x (in the previous
section, in coordinates, it was x = y = w = 0). The tensors [B; x 5(0),, x> Yi,k,5(0)x, x>
are independent on the choice of §(0), and, if i is even, of the orientation chosen
on A. We denote them by [ k., Vikx, and the corresponding tensor fields by

,Bi,ka Yi, k-

PROOF. If we consider 5; k 5(0),, x> Yi,k,60), x> Pi,k,8"(©)xsxr Yik,6'(0),,x and the

corresponding normal coordinates in A(x), (E’ EZ)IX, and (%, a—y’)lx’ then the
0 0 0 0
element A = (6'(0),, — 6(0),,) € SO(2) maps (%, 8—y)|x to (%, a—yl)lx But, by

construction,

Bik,6'0)xx = Bik,60)5,x © As Vik,80)x,x = Virk,6(0).x © A-
If we reverse the orientation on A, the normal frame

_(98 _» 9 Lo
(F.6)= (o, -5+ + 05+ D)

is changed for (F, —G), but ¢ changes for —¢, and v = a% at ¢ = y = 0, changes

5]
- . O
for 5

Therefore, these tensor fields (;; x (resp. B2i+1,k), are invariants of the metric
structure (A, g), (resp. modulo orientation).

This was already stated in our paper [9]. The invariants defined here are just
certain components of those we defined in [9]. (We will use them again in the next
section).

2.5. Notations.

At this point, we need to introduce some notations, relative to the tensor fields
Bi, 5 Vi, j, that will be used extensively in the second part of this paper. These
notations are the same as those we used in the paper [9]. They concern contact
metrics only.
Let us set :

2 =Bk, BT =k (2.11)
This notation is extremely important because, in the approximation at order n (in
the sense of our paper [9]) of the exponential mapping and the conjugate locus CL,
only the tensor fields ,8;-_1, 'y§+1, l < n, play a role.
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Also, if @k A* denotes the tensor bundle of k-symmetric covariant tensors over
A, the structural group SO(2) of A acts on its typical fiber, allowing to decompose

@k A* into isotypic components,
k k
Ox-®(0x).
J

where (@k A*) _is the component relative to the 5 power of the basic character
J

€%, (i=+/—1.)
k k
If g7 e @A*, then g = Z i B € (OA*) . (2.12)

i
Some of these tensors played a basic role in our paper [9], hence, we introduced
special notations for them :

Q:=749 and Qo =173, (2.13)

42 is a quadratic form on A, we denote its trace with respect to g by try(v2). It is
easy to see that

1
Qo =",0=51e(13) 9.

Also,
'Yg = 'Yg,l + 7§,3,

We set,
Va=73 Vi=7a (2.14)

In normal coordinates, (z, y, w), at the typical point x = 0 of X, we set :
Vi = Re (@ (dzx + idy) (dz? + dy?)), Vs = Re ((by +1b2) (dz + idy)3), with
a=a;+iaz =a(—sinw, +1% coswy).

Let us set also b = (b1, bs) zg(sinwb, — COSWp)-

Also, depending on the context, it can happen that b = by + 1 ba.

(@ denotes the complex conjugate of a).

2.6. Martinet case.

Of course, in the Martinet case, the previous normal form works, but there is an
other one, based on the same idea, which is better. Curiously, it is also much easier
to obtain.

We will assume that the Martinet surface M (the set of points where [A, A] C A)
is smooth, and that the distribution A is transversal to M. (In particular, this
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method doesn’t work for points at which the distribution is tangent to M. But
these points appear generically as isolated points in M, hence, there is still some
work to do in that case).

We replace the curve I'(¢) of 2.1 to 2.4 by the Martinet surface M. We consider
geodesics that verify the transversality conditions w.r.t. M, and we apply exactly
the same method. It leads to the normal form :

0 0 7]
N F=— G= — +zb— 2.1
(NFy) 6z’G (1+za)ay+w baw’ (2.15)
with the boundary conditions %(O, 0, w)=0, 50,0, w)=1.

These “normal” coordinates and these functions a and b are uniquely determined
up to orientation, hence they define functional invariants.

1
The curve (0, 0, t) is a trajectory of the vector field E[F’ [F, Q).
We leave the details to the reader.

In the beautiful papers ([3], [6], [7]) the Martinet case is adressed. A similar
normal form is obtained in the analytic case. A study of spheres, wave fronts,
conjugate loci is done in the so called “flat case” (a = b = 0), for some perturbations
of this flat case, and at the end in the integrable case.

3. Generic conjugate loci.

All along this section, the notations of section 2.5 will be in force.

3.1. Some preliminary results.

In the contact case, consider the principal invariant Q2 =73, (2.13).

For an open dense subset of SubR, ()2 vanishes on a curve C (possibly empty)
([9]). Let us fix such a contact sub-Riemannian metric ¥, with C # @, and z, € C.
We consider a sufficiently small neighbourhood N of xy, with normal coordinates

(z,y, w), o = (0,0,0), and we restrict the metric to N. The dual coordinates
on T*N are (p, ¢, r) and the set Cy, = Iy (zo) N H~1(1) is the cylinder {p* +
¢’> = 1}. If N is small enough, points of CL in N appear only along geodesics
{mx oexp sﬁ()\zo)} for Ay, in a certain neighbourhood of infinity N° ¢ C,,. We

will show in our appendix 4.2 that it does exists a suitable coordinate system (k, )
on N™ such that the conjugate locus mapping CL : N° — N has the following
expansion with respect to h (“suspended form”):

7
CL(p, h) = (2, h), Yo, h), k= y[e 2) = (3 ful@) b+ O(h®), ), (3.1)

i=4
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where € is +1 according to the sign of w and \/a denotes the positive square root
of the positive real number a. (As we know, the conjugate locus splits in two parts,
CL* and CL™, corresponding to w > 0 and w < 0. Also, let us emphasize that the
coordinates (z, y, w) are just the normal coordinates).

We first summarize the properties of these maps f;, that will be crucial for
our purposes. These properties will be shown in Appendix As, together with the
complete expression of the f/s when possible.

1. fa(p) = (—57a cosw, + 157rgcos(2<p +wp) + %wgcos(éhp + wp),
—5ma sinw, — 157bsin(2¢ + wp) + %wgsin(étgo +wyp))

fa(p) does not depend on €.

2. fslp+m) =—f5(p), felo+m) = folp), fr(o+m)=—f1(p).

3. Yale) A dslo) — 0, and
4. df;—gp) A fs(p) = =20 ﬂzgsin(&p +wp) P(p) = ¥(y)
= -207? (b1 cos 3y — be sin 3¢p) P(p).

5. Lule) A fr(p) = 207 bsin(3e + ws) Q(p),

>

2 2 ~ . 3 2 ~
%ﬁ&l A d_‘%gﬁ = —2072 b (sin(3p + wb)%—ﬁ — 3 cos(3p + wb)‘;—‘p’;) = Q(fg,m
where :

e Q(p) = Q,(p) + Qz(v), @, (resp. Q) depends non trivially (resp. does
not depend) on the coefficients of our invariants 'y?. (@, is in fact a general

trigonometric polynomial in et2¢¢ | e*4¢¥ ¢+6%¢ with no constant term, the
coeflicients of which are independent linear combinations of the coefficients of
78, 18> 78)-

o Plp) = Accos(2¢) + Besin(2¢) + C cos(4dyp) + D sin(4¢), where
Ay, A, By, B_, C, D are independent linear combinations of the coefli-
cients of our invariants 3, v3 of section 2.

(3.2).2 is a consequence of proposition 3.1, and its corollary in ([2]).

Knowing fy, fs (that are given in appendix Az) one can easily check (3.2).3,
(3.2).4, (3.2).6.

Using these relations (3.2) and no more, we will be able to analyze precisely
the nature of the conjugate locus, and to derive a theorem of finite determinacy
of the exponential mapping along its singular set at the source. This theorem is
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similar to the theorem we got for generic points (out of C) in our previous papers
[4], [9].

To get this result, we need to show the “stability” of certain jets of the exponen-
tial mapping (in suspended form, where it is the suspension of a mapping between
2-dimensional manifolds). For this purpose, following the basic results of Whitney
([28], [27], [13]), we have to compute the self-intersections of the conjugate locus,
and to show that they are “in general position”.

3.2. A basic lemma.

Let Self denote the set of self-intersections of CL (i.e. the set of (h, 1, @2) such
that A > 0 and 1) @1 # s 2) CL(p1, h) = CL(p2, h)). We are interested with the
germ of Self along {h = 0}. A value of p is said “adherent to Self” if (0, ¢, ©)
lies in the closure of Self for some <pl. The set of such ¢ is denoted by A-Self. It
follows from (3.2).1 and from our “local stability” result along the conjugate locus
at the source ([4], [9]), that if ¢ € A-Self, ¢ = ¢+ € A-Self, and no other value
of cp' is possible.

LEMMA 3.1. A-Self c {p|¥(p) = 0}.
PROOF. Assume that (k, @, ¢ + 7+ 8) € Self, for h > 0, k and & small. Then
falp +7+8) +h fs(p+ 7 +8) = fale) + h f5(p) + O(R?)
By (3.2).1, (3.2).2, fa(p + 7) = fa(y), fs{¢ + ™) = —f5(). Then
f1(o +6) = fa(p) — R (fs(p + 6) — f5()) — 2 f5() + O(h®) = 0,

5‘;—’:;‘ —2h fs(p) + O*(h, ) = 0.

This shows that, if ¢* € A-Self, Z_f‘i

()N fs(p")=0. O
©
As a consequence of this lemma, A-Self splits in two subsets :

A-Self = A-Self; U A-Self..

A-Sel f; is the set of roots of the trigonometric polynomial P(y), A-Self. = {k % -
Ac.—iB.  C-iD
2 HT T

?} is the set of cuspidal angles. Set : v =
P(@) :l/eZiap +ve—2igp+'ue4i<p +ﬁ€_4i¢.

Set : 5
PR)=pt+v2+02+7.

¢ € A-Self, iff €% is a root of P(z).
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Therefore, these polynomials will be the most important objects in
the remaining of the paper.

Let us list several very elementary facts for these polynomials. Assume g # 0.
Then,

FO P has a root on the unit circle.

1 1
F1 (i) If z is a root, = is a root. (#) If z is a double root, then = is a double

z
root. Hence, by (FO) the number of roots on the unit circle (counted with
multiplicity) is 2 or 4.

F2 P has a triple root on the unit circle iff Fo(y, v) = 4p?7+v° = 0.

F3 P has a double root on the unit circle iff F3(u, v) = 27 Re?*(u?) — (4 lul® =
lv|*)? =0.

F4 P has not two double roots on the unit circle.

F5 If P has a double root on the unit circle, then the two other roots are on the
unit circle.

Proor.

(F0), (F4), (F5) are direct consequences of the fact that the integral over its
period of the trigonometric polynomial P is zero.

(F1) : () Obvious. (i) assume that z is a double root
pt+v+vz+m=0

4 +3v224+v=0

Set z =

N(!l —

4 x (1) — (2) gives :
apF+3v+vz=0.

2 cannot be zero because p # 0, hence Z cannot be zero, 4uz° +3vZ2 +v =0
shows that Z is a double root.

(F2) : If z is a triple root on the unit circle, z is nonzero and

yut+v2+vz+m=0
) 4p2*+3v22+v=0 _
) 12p22+6vz2=0 = () v="-2pz
)

1
(2
3
4) zz=1
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Plugging this in (2) gives :
4ud—-6uB+v=0

(—2u2)®  V°

Yty (3.3)

—V==-2u 23 =
This gives (F2). Plugging (5), z = —ﬁ in (4) gives ur = 4v ¥, which also a direct
consequence of (3.3). Conversely, it is obvious to check that if (F2) is satisfied, then
(1), (2), (3), (4) are also satisfied by z = —2_”;;.

(F3) : First notice that z = € is a double root of P(z) iff z is a simple root of
dP R 1
= Ifitisso: p= v oV _Z (—3% —-7), = —éﬁz - Zuz3. Replacing

423 vy z 4

in P(z) = 0 gives :

P(z) = (—31/z2 —E)Z +uz3+7z— Z—Fz— iuz3 =0.

5.1
Then, (F3) is only a matter of trivial computations on the polynomial 23 ‘;—I:(;) =

dp+3v2+723 =R(2). O

3.3. Transversality.

1. Let R denote the set of orthonormal frames of contact sub-Riemannian metrics
on some open set U C X.

Let us denote by J™(R) the vector bundle of n-jets of elements of R : J*(R) is
nothing but the fiber product over U,

JY(R) = JMVF) xy JHVF),

J"(VF) is the vector bundle of n-jets of sections of TU.

Let p™ denote the set of real polynomials in the two variables (z, y) that are
homogeneous of degree n.

Set
Pr=@{p'|1 <i<n, i=nmod2}, P°={0},

" =@ {p'|2<i<n, i=nmod2}.

(F, G) denotes a typical element of R, and xo a typical element of U.
For n > 0 let us define a mapping

Iy : JTA(R) — P x QY
by its restriction to the fiber II"!(o) of the bundle J**2(R) :

HX,(j;(L(;{Q(F)’ ];jz(G)) — (pn—l, qn+1) € Pn—l X Qn+1,
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with p»~! = B! gl = I‘;‘“, where B]'~!, T7*" are the representative of our
n—1 n+1

i x00 Vi, xo I the unique normal coordinate system at xo such that

(F(x0), G(x0)) = (F(x0)> G(x0)),
(F, G) is the normal form of (F, G) at xo.

tensors

It is stated in our paper ([9]) that this map, IT}, , is a surjective submersion.
For (F, G) fixed, we define

}(F, G): U - P" x @™,

by

3 (F, G)(xo) = IR (35 2(F), 4 *(G)).-

2. Let us define several subsets S%, of P* x Q°, and the corresponding subsets
S, 5 of JI(R), R : ~
St = () (%),

5 = {(F, G) | j'(F, G)"§}.

Since all the S¢ will be Whitney stratified sets, it follows from the transversality
theorems ([5], [14]), that all the S* are open dense for the Whitney topology on R.

Moreover, since in all cases, the S* are either manifolds, or Whitney-stratified

sets of codimension 3 at least, it will follow that for (F, G) € S = ﬂ?i, (an open
dense set), the sets

(Il (F, G))~'(S")
are smooth submanifolds of U of the same codimension' as the S*.
3. Definition of the S°.
Sl = {Q? = ’722,2 = O}v
S?=8"n({Va =135 =0} U{u=0}),

§% =81 n({Fs(n, v) = 0} U {Res(i,v,b) = 0}),
where :
1) F3, u, v have been defined in section 3.2. Remember that (section 2.5) b is

such that :
Vi =733 = Re((by +ib2) (x +iy)3), b= (b1, b2).
ii) Res(u, v, b) is the resultant polynomial of the two polynomials P(z)

(defined in 3.2) and T'(z) = (b + i bo) 23 + by — i by.
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§*=S'n{F(u, v) =0},
S5 =8 N ({Fb—pub=0}U{2703bb + (Tb—4ub)}).
Let $6 C P4 x Q% x ) (81, the circle) be defined by :
dP ~
Q2=0, P(p) =0, %(w) =0, Q(p) =00r Q(p) =0.
Q, Q have been defined in (3.2).5, (3.2).6 respectively.

It follows from our section 3.1, that §i is an analytic subset of P* x Q% x S, of
codimension 5. The projection S® = I1;(S%) on P* x QF is therefore a subanalytic
subset of P* x Q8, of codimension 4 at least. (In fact, S® is semialgebraic.)

S, S' are smooth submanifolds of codimension 2. $2, S? are the union of two
smooth manifolds of codimension 4. S3, §¢, S5 are algebraic subsets of P4 x Q8 of
codimension 3, 4, 4 respectively.

4. Since (F, G) € S, which is open dense, the following holds :

o The set of points of X where Q5 = 0 is a smooth curve C,

e On C, V3 is nonzero, u is nonzero, F»(u, v) is nonzero, vb — pb is nonzero.
Moreover F3(u, v) and Res(u, v, b} do not vanish simultaneously on C.

e OnC, F3(u, v), Res(u, v, b) are nonzero, except at isolated points. (This last
case, Res(u, v, b) = 0, will be the most surprizing).

o It is easily seen that the condition vb —~ wb = 0 is equivalent, when b # 0
(equivalently V3 # 0), to the fact that P(z) and T'(z) have 2 distinct common
roots (on the unit circle) (which is also equivalent to the fact that they have
3 common roots). This does not happen on C.

e Also it is easily seen that, when b # 0, the condition 27 v b +(@Tb—4ub)® =
0, in the definition of S, is equivalent to the fact that a root of T'(z) is equal
to a double root of ﬁ(z) Hence, for these values, a cusp point should be a
triple root of ¥(p). This does not happen on C.

As a consequence of these facts, and of the results of sections 3.2, 3.3 1-3, we
can state the following :
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THEOREM 3.2. There is an open dense subset G of SubR (for the Whitney topol-
ogy) such that :

1) The set of points of X on which Q2 = 0 is a smooth curve C (possibly empty).
On C, u and b (or V3) don’t vanish.

11} On the complement of a discrete subset of C,

a) P has either 2 or 4 distinct simple roots on the unit circle,

b) P(z) and T(z) have no common root.
i41) At isolated points of C, either

a) P(z) has a double root on the unit circle, which is not triple, and which is not a
root of T. In that case :

a.1) The other roots are distinct, are on the unit circle, do not coincide with
roots of T,

a.2) If o* denotes this double root of P(p), Q(*) # 0, Q(p*) # 0, or,
b) P(z) and T(z) have one common simple root and one only (on the unit circle).

The other roots of P are simple.

REMARK 3. (e = +1). Since A,, A_, By, B_, C, D, can be any (by our section
3.1) it follows that different configurations can occur for ¢ = 1 and € = —1 (any
combination among the possibilities given in Theorem 3.2).

3.4. The conjugate loci.

Let us consider a generic ¥ = (F, G), in the sense of our previous Theorem 3.2.

3.4.1. Case 1. Generic points of the curve C.
(Points on C with simple roots for P, and such that P and T have no common root.
({4%) of Theorem 3.2)).

We already know, by lemma 3.1 , that self-intersections can appear only ei-
ther close to cusp points or to points of A-Self; (simple roots of P or P). These
two distinct parts of the self intersection set Self, we denote by Self. and Self;
respectively.

Characterization of Self;.

We have to solve the equation :

filo + 7+ 68) + fs(p + 7+ 8) h = fa(p) + h f5() + O(h?),
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for ¢ close to zero, where zero is a simple root of P(p), § and h small.
. . . .y d
This equation rewrites (denoting ’ for %) :

0=26f4(¢) + O(6%) — h fs(p + 6) — h fs(p) + O(R?)

0=106f4(p) —2h f5(9) —h(fs(p+6) — fs(p)) + O(h?) + O(6?)

=6 £4(0) + 6 f4 (0) + O(6p?) — 2k f5(0) — 2k f5(0) + O(h?) + O(82)

+0(hg?) + O(hé), rewritten, 0= Ty .
(3.4)
An important fact is the following, easy to check from formula (3.2).1

d
% A Wf“ = 36005 72 sin®(3 ¢ + ws).

f4 & fy

Since b is nonzero by Theorem 3.2 (), and wy, is nonzero by (i),
dyp?

(0) —=(0) #0.

As a consequence, it is equivalent to solve :

Trv =0 or to solve Try A dL(;(O) =0, Tiv A

d2
a0 -

0= Trv A L5 (0) = 8 £3(0) A f3 (0) = 2k £5(0) A £ (0) + O(h2) + O(8%) + O(¢ h)
+O(h8) + 05 p).
Also, f5(0) A £, (0) is nonzero because :

%(ﬂi Nfs) =i A fst Fun fi.

By equation (3.2).3, f; A f5 = 0. Since zero is not a double root of P and wj is
nonzero, zero is not a double root of f4 A fs.

Therefore, we can solve the equation Tjy = 0, to get :

5 — of5(0) A f4(0)
EHOINAC)

Replacing in (3.4), we can divide by h (h > 0). After this, we rewrite the equation
dfs
T =0:
v A do (0)

h+hOY g, h)=Ah+hO (p, h), A#0 (3.5)

A f1(0) A £4(0) — 2 £5(0) A £4(0) + O(h) + O(¢?) =
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But, f5(0) A f,(0) = 0. Hence, we can solve in ¢, to get :
¢ = p(h)
(3.6)
6=Ah+hO(h)

This gives the equation of the self-intersection (with h > 0). It is a smooth curve
starting from 0.

Let us show that this self-intersection is now transversal.

To prove this, it is sufficient to show that the following expression 7 (¢, h, §) is
nonzero on the self-intersection.

T(p,h,8) = (f4(0 + 8) + h fo(p + 6 + 7)) A (£1(9) + h f5(0) + O(R?)).

T(p,h,8) = (f4() —h fo(9) +8 f1 () +O(82) +O(S R)) A(f4() +h fs(0) + O(h?)).

But § = Ah+ O(h?), fo A fs =0,
T(p,h,8) =6 f1(9) A fal0) + O(R%) = Af, (9) A f1(9) R+ O(R?).  (3.7)

This quantity is nonzero for 0 < h, h small, ¢ close to zero.
Characterization of Self..

We assume now that wp = 0. We are looking again for solutions close to zero of
the equation :

fa(o+6) = falp) +h (fslp+6+m) = fs(p+m) +h (fs(o+m) = f5() + O(h?) = 0,
but now, f,(0) = 0 (cusp points).

0 = 6/3(0) + Ef1(0) + &1 (0) — h6 fo() — 2h f5(p) + O(6*) + O(h 82)
+O(h2) =Trve.

Now, the point is that f; (0) A f, (0) = —64800 5> 72, Hence, to solve Try. = 0, it

is equivalent to solve :
{ Trve A fy (0)=0

Trve A f;,(o) =0
Trve = 8 £1(0) + 8¢ f5 (0) + $02 £, (0) + O(6¢%) + & f5 (0)

+&0 f1'(0) + O(8%%) + & £1"(0) + O(8%0)hé f4(0)

+0(hép) — 2hf5(0) — 2h ¢ f5(0) + O(he?) + O(6*) + O(h6%) + O(h?) = 0.
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£4(0) = 0, hence : '
Trve A S (0) = (5o + & £1(0) A £7(0) + &0 £ (0) A £5 (0) — 2 £5(0) A £4(0)
+O(hé) + O(h @) + O(6¢°%) + O(6*) + O(83p)O(¢? 62) + O(h?) = 0.
(3.8)

11 111 1 17

Trve A fy (0) =8¢ f1(0) A f1'(0) + & £1(0) A f5 (0) — 2hf5(0) A £ (0)+

O(hy) + O(6¢%) + O(6*) + O(h?) + O(h8) + +O(6%p) + O(8%¢*) = 0.
(3.9)
It follows from the implicit function theorem applied to (3.8) that :

_ S OAL©) (6, 8 &
h= 2‘}5(0)/\&'(0) (2‘P2+ e T 3‘P) +6°0%(5, ) +0(6¢%).  (3.10)

(Again, f5(0) A f, (0) has to be nonzero :

%(f; A £5)(0) = £, (0) A £5(0),

and zero is not a root of P(yp) by Theorem (3.2), i), b).
We can replace (3.10) in (3.8), (3.9) to get :

Y= _% + 0(62)7

i

(3.11)

_ f4 (OAF (0 <3 4
h= Y ACINAG) o + 0(8%).

Note : Since h has to be positive, we see that one half only of this curve works :
either § > 0 or 6 < 0.

We have now to show the transversality of the self-intersection in that case.
For this, again, the following expression 7 (¢, h,8) has to be nonzero on the self-
intersection.

T(p,h,6) = (filp+8) + h fslp + 6+ m) A (fale) + h f5(p) + O(h?).  (3.12)
Again, expanding this expression and taking into account (3.11), we obtain, after
some straightforward computations :

63 e
8

T(p,h,6) = ——f; (0) A f{ (0) + O(6*) (3.13)

This shows that this self-intersection is always transversal.

It follows now from standard arguments of singularity theory that, since the
conjugate locus CL is now “in general position”, the map h* f4(p)+h5 fs(0)+O(h%)
is R.L-equivalent, for h > 0, small enough, to its jet h* fa(o) + h® fs(). Therefore,
we can now state our first result (in a neighbourhood of the singular locus “at the
source” S) :
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THEOREM 3.3. There is an open dense subset E of SubR (in the Whitney topol-
ogy), for which :

On the smooth curve C where the fundamental invariant Q2 vanishes, there is
an open dense set O (complement of a discrete subset ) on which :

Self = Self. U Sel f,

Self. is the union of three curves, each of them satisfying equation (3.11).

Sel f, is the union of 2 curves or 4 curves, each of them satisfying equation (3.6).
All self-intersections are transversal. Self, can be different from Self_ (among the
above possibilities), and there is a neighbourhood U of SN{0 < h = VEE <a,e=
+1}, (a sufficiently small), such that the restriction of the exponential mapping €|y
is 5-determined in h. (It is also determined by the 5-jet of the metric).

We show now the 2 pictures : figure (3.1), figure 3.2, showing the generic con-
Jjugate locus on an open dense set of C.

Figure 3.1: 5 self-intersection lines, S5 = (0,1,1,1,1,1).

3.4.2, Case 2. Isolated points on C, corresponding to double roots of P
or common simple roots of P and T (collision between Self. and

Selfl).

Points of Self, corresponding to double roots of ﬁ(z).(The most compli-
cated case).
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Figure 3.2: 7 self-intersection lines, Sz = (2,1,1,1,1,1).

We already know that the two other roots are simple and on the unit circle. No
root coincides with a cusp point.
The equation for the self-intersections is :

0= fa(p+6) — falp) + h(fs(p+8+m) = fslp+ 7)) = 2h fs(#)
+h2(folp + 7+ 8) = fo(0)) + +R* (fr(p + 7+ ) (3.14)
—fr(p + 1) + B3 (fr(p +7) = f1(0)) + h* R(g, 8, h).
But now, by (3.2).2 section 3.1, we also know that fe(p + ) = fe(p) (this is the
reason why this term will be unefficient , and that we have to consider a high order
jet) and fr(¢ +7) = —fr(p). Using this, (3.14) can be rewritten :
0 = falp +6) — falp) — h(fs(w +6) — f(p)) — 2h f5(p) + h* (fo(p + 6) — fo())~
13 (fr(p + 8) — F2(9)) — 21° fa(i0) + O(RY).
(3.15)
Expanding in 6 gives :

0=6fi(9) + & fi(0) + & 1 () + O(6*) — b f3(9) — by £ (#) + O(hE%)—

21 f5(p) + B2 6 f5() + O(h?62) + O(h%6) — 2R3 f1(p) + O(h*) = Erv.
(3.16)




SUB-RIEMANNIAN METRICS ON R? 55

Now, as consequences of the fact that ¢ = 0 is a double root of P(y) (not triple
by Theorem 3.2, i), a.1), we get :

f5(0) =0, (3.17)
(because f;(0)A f5(0) = 0 and 0 = 7 (0)Afs(0) = %(fi/\fs)(o) and f(0)Af (0) #
0).

{ 1. f4(0) A f5(0) #0,
(3.18)

2. f4(0) A f2(0) #0, (Theorem 3.2, iii), a.2).
(See also conditions 3.2 5-6, and definition of 56, 6 in section 3.3.3).

By (3.18).1, to solve equation (3.16) : Ery =0, it is equivalent to solve :

{ 1. E Af(0)=0,
(3.19)

2. Epv A fs(0)=0.
Let us consider (3.19).1. It gives, using f5(0) =0 (3.17) :
0=5f(0)Af; (0)=2hyp f5(0)A £, (0)+O(h*)+0(6%)+0(8%)+O(h6)+O(h ¢*).
Because ¢ = 0 is not a triple root of f; A f5(p), it follows that :

FL(0) A £ (0) £0: %(ﬁi A F)() = fi A o),
(because (fy A fs)(¢) is identically zero),
2 7 Xz 1 ’
d%m AF)(O) = (Fy A J5)(0) + (fi A £3)(0) #0,

f5(0) = 0 (by (3.17)), hence :
(fa A £5)(0) #0. (3.20)

Then, the implicit function theorem implies that :

_ o L20AL(0) 2 2
§ 2f;(0)Af;'(0) ho+ O(h?) + O(h?), .21

§=xhp +O0(h?) + O(hp?).
Hence, let us set :
§=xho+Eh*+h(ap?+bh®+chy)+hO3h, ¢) (3.22)
Let us plug this in (3.16) and divide by h (using f5(0) =0) :
0= (x@+£h) falp) + (ap® + bh2 + ch ) £3(0) — x hp f5(0) - 20 £5(0)—

h? € £5(0) — ¢ f5 (0) — 2h? f7(0) + O%(p, h) = Epy
(3.23)
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Epy A f4(0) =0 gives :

ERFi(#) A FL(0) + (ag? +bh? + chp) £,(0) A £ (0) - 200 O p o

h2 € f5(0) A £y (0) — 0 f5 (0) A £4 (0) — 2R f7(0) A £4 (0) + O3(¢p, h).

As a consequence,

P {OLS AC R SO NY ARG AORY AU P
ROAFO) ™ LOALO) " (fL0)Af0)

Now Ejy A fz (0) = 0 gives :
X @ F1(0) A f5 (0) + @ (x f5 (0) A f5 (0) + a f5(0) A f5 (0)) + h2(b £4(0) A £5 (0)
~2 f7(0) A fy (0)) + hp (c f5(0) A f5 (0) — x f5(0) A f5 (0)) — 2 £5(0) A f5 (0)

+03(p, h) = 0.

£=0,b

Let us now use the two following facts :
1. f3(¢) =r(p) faly), and
{2-ﬁwwwaw=ﬁwwwﬂw=rwnﬂwAﬂw>

This gives : x = 27(0) in (3.21), and

©? (27(0) f1 (0) A f5(0) + ar(0)£4(0) A f4 (0)) + k2 (b7(0) f4(0) A f4 (0)—
2f2(0) A f5 (0)) + hp (c7(0) £4(0) A f4 (0) — 27° (0) £,(0) A £4(0)) + O3(p, h) = 0.
Also, ¢ = 272(0), therefore

©® 7(0) f4 (0) A f5 (0) + 2% (f2(0) A f4 (0)7(0) — f7(0) A f5 (0)) + O%(s, h) = 0.
Finally,

©* 7(0) £, (0) A f5 (0) = 2h2 £2(0) A (f5 (0) = r(0) £, (0)) + O*(¢p, ) = 0. (3.25)

INAOISAC
JACIYAC)

f5 (9) = () f1 (0) + 7 () falp).

Also, r(0)
Also,

. By (3.20), r(0) # 0.

7' (0) is nonzero :
f5 (0) A £, (0) =7 (0) £4(0) A f4 (0),
and we know, by (3.18).1 that

5 (0) A £1(0) #0.




SUB-RIEMANNIAN METRICS ON R®

Therefore, our equation is

— 2 r(0)7 (0) £1(0) A £y (0) — 2k 7 (0) f2(0) A £4(0) + O°(h, ¥) =0,

or
Alp, h) = 2 1(0) £1(0) A f1 (0) + 2h2 f7(0) A £4(0) + O%(h, ¢) = 0.

£2(0) A £4(0) is also nonzero by (3.18).2.

We can apply the Malgrange preparation theorem to this equation :
A(p, h) = U(p, h) (¢* + ao(h) @ + a1 (h)),
where U is a unit, ag(0) = a1(0) =0

A oU

o = S (P +ao(h) - ar(h) + U (ao(h) o+ ay(h):

But g—‘:(o, 0) = 0. Hence a;(0) = 0.

02A ,
02A
But ———(0,0) = 0. This implies that ag(0) = 0. Hence,
Bhdyp
ao(h) =h? Eo(h).
%A

o2 (0.0 = U(0,0) a; (0). But,

0%A

2(0,0) = 15:(0) A £,0).

Hence, U(0,0) a; (0) = 4 f7(0) A £4(0).

0A oU
B = 35 (e p (b)) + U 2o+ aolh),
and
9?A

3,7(0,0) =20(0,0)=27(0 0) £4(0) A £ (0).
Therefore, as a conclusion :

ao(h) = h?ao(h),

ar(h) =2 ——A—(Of;fzg)ﬁ (G h? + O(h) = 012 + O(h).

57

(3.26)

(3.27)
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It follows that the solutions of our equation are given by :

(—h2ay(h) £ 1/ht@3(h) — 40 h2 + O(h3)),

=

QY=
¢ = 1(—=h?ao(h) £ h/—48 + O(h)).

Therefore, if § > 0 there is no solution, and if § < 0,

L hVTB+ O, =2 JHONAO)
p=2hV=0+0(h"), 6=2 Grmirs, (3.28)

§ = +27(0) V=012 + O(h®).

REMARK 4. Since, if there is a double root for 15, the two other roots are on the
unit circle (see F'5, section 3.2), this shows that, in this case, the number of self-
intersection lines of C'L is again 5 or 7 (cannot be 3).

To check transversality of the self-intersection, we have again to show that the
following 7 (h) is nonzero, for small A :

T = (filp +6) + h fslp + 7 +6) + h2fo(0 + 8) + B f(0 + 7+ 8) + O(h*)A
(fa(9) + h f5(9) + W2 fs(9) + h* F1(#))-
A straightforward computation shows that (taking 3.28 into account),

T =6 fy A f1 (0) + O(h®).

(The most strange case) Collision between Self. and Self;.

In that case, we already know that, generically, all the other roots of P are
simple. (There are 1 or 3 other roots on the unit circle). Moreover, (generically)

there is one collision at most between roots of P and cusp points (Theorem 3.2,
i11), b).

The equation of the self-intersection is given by :
filo+8) — fa(@) + h (fs(p + 6 +m) = fs(p + ) + h (fslo + ) — f5(p))+

h? (fo(yp +8) — fo(p)) + O(h®) =0,

63 1"

Frv =68 () + 5 f1(0) + £ £1' (9) + O(8*) — k6 f3(9) — hE; £y () + O(h 6%)—

2h f5(ip) + h26 fo(p) + O(h®) + O(h? 6) = 0.
(3.29)
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Now, ¢ = 0 is a cusp point and a root of P(yp). f:l(((,),) = 0. Also, 0 is not a
double root of P(y) (by Theorem 3.2, 7ii, b). Therefore, f, A ,f5(0),+ fa N f5(0) #0,
but, fs A f5() = 0, fy A f5(®) + fa A f5 () = 0, hence, f; A f5(0) = 0. Hence,
f1 A fs(0) #0. As a conclusion:

{ £1(0) =0, fi Af5(0) =0, f; A f5(0) =0,
(3.30)

"

fa N f5(0) #0.
In particular f5(0) # 0.

Again, it is easily seen that f; (0) A fy (0) # 0.
Hence, it is equivalent to solve :

{ Fiv A f4 (0) =0,

Fiv A f; (0) =0.

0=Frv A S (0)= B+ 5) £ (0) A f1' () = hé £5(0) A 11 (0)

—2h f5(0) A fy (0) = 2h o f5(0) A £y (0) + O(h26) + O(R®) + O(h6¢)

+O(60%) + O(6%) + O(h 6%) + O(h¢?).

But, since fy (0) A f5(0) = 0 and f5(0) # 0, then for some real A # 0, f5(0) =
A3 (0):

0=(8¢+% —2\h) £ (0) A f1 (0) = 2£5(0) A £ () h (9 + §)+
O(R%6) + O(h®) + O(h ép) + O(6¢p?) + O(6%) + O(h8?) + O(h p?).

We can solve this last equation in & :

- 1 N o 8 o
h= oo AT Wt O (0-2R (p43) (0NSs (0+80°+ROT).
h= %er g)+602(¢, 8) =6 F(p, 6), F(0,0) =0. (3.31)

Let us replace this last expression in Fry A f;’ (0) =0.

11t

0=6f1(@) AL O+ S fi (@A FLO)+E £ (p) A F1(0)

—62 F(p, 6) f5() A f1 (0) — 26 F(p,6) f5() A f3 (0) + 8 O(e, ).

6 factors out, to give :

117 11

0= 2 £ (0) A £3 (0) + 5211 (0) A 1 (0) + £ 51 (0) A £ (0)-

§F(ip, ) f5(0) A £4(0) = 2F(0,8) ¢ f5(0) A £4 (0) + O%(gp, 6).
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and since f5(0) A f; (0) =0,
0=2(¢?+80+ &) 51 (0) A £5 (0) + 03(¢, 8)
= L0+ 52+ &) £1'(0) A £1(0) + O%(p, 6)

2

Dividing by (¢ + g)z + f—Q shows that f; (0) A f, (0) = 0, which is not true.

Hence, there is no self-intersection.

THEOREM 3.4. Under the notations of Theorem 3.3, there are two types of isolated
points on the curve C : ~

1. Points at which 1 root of P is double, the two others being simple (and on
the unit circle). Then : :

— Sel f. is again the union of 3 curves, each of them meeting equation (3.11).
—Sel fy is the union of 4 curves or 2 curves, two of them satisfy equation (3.6),

2 of them satisfy equation (3.28) (if @ > 0, they vanish).

All self-intersections are transversal. This can happen either for Self. or for
Self— and one of them only. There is a neighbourhood U of SN{a > h = /eZ > 0},
a small, such that the restriction of the exponential mapping €|y Is 7-determined
in h. (It is also determined by the 7-jet of the metric).

2. Other points are such that Self, or Self_ (one only among them) are as
follows :

— Self. is the union of 2 curves, each of them meeting the equation (3.11).

—Sel f, is the union of 3 or 1 curve, each of them meeting the equation (3.6).

All self-intersections are transversal, €|y is 5-determined in h (It is also deter-
mined by the 5" jet of the metric).

The corresponding pictures are shown below, figure 3.3-7, showing the generic
conjugate loci at isolated points of C.

e Double roots of P.
- Figure (3.3), figure (3.4) : 7** jet in h of the conjugate locus.
As already noticed, the symbol S5 = S> =(2,1,1,1,1,1).
The pictures (3.2}, (3.3) are smoothly equivalent. But they are not equivalent
in a metric sense.
— Figure (3.5) : 6" jet in h of the conjugate locus. The 6" jet in h of the
metric does not determine £y, one checks that self-intersections are not “in
general position”.

e Collision between cusps and roots of P.
— Figure (3.6) : 5 self-intersection lines.
— Figure (3.7) : 3 self-intersection lines.
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Figure 3.3: 7 self-intersection lines, S5 = S2 = (2,1,1,1,1,1).

Figure 3.4: 7 self-intersection lines.

61



62 A.A. AGRACHEV, EL-H. CHAKIR & J.P. GAUTHIER

Figure 3.5:

,1,1,1).

11
Figure 3.6: 5 self-intersection lines, S5 = (1, 35
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1
Figure 3.7: 3 self-intersection lines, Sy = (=, 3 1,0,0,1).

N =

3.5. Possible symbols for “semi conjugate loci”.
3.5.1. Preliminaries.

We know, from section 3.4, that generically, there are two types of cusp points:

e Regular cusp points: they are adherent to the connected component of infinity
of the complement of CLE (see the introduction for the definition of CLZ),

e Interior cusp points: they are not adherent to this connected component.

Moreover, there is one interior cusp point at most.

CLAIM 3.5. a- The number of the self-intersections between two successive regular
cusp points is even,

b- Let a1, as be the two preimages of a point d € Self.. Let ¢1, ¢, be the two
preimages of the corresponding cusp points. «; and ag belong to the same half
circle defined by ¢, and ca.

Proor. (b) follows from formulas (3.2).2 and 3.11.
(a) is obvious. O
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In the two next sections 3.5.2, 3.5.3, we will show that the distributions of roots
of the polynomials P between cusp points are not arbitrary. We will give a list of
all possible distributions.

A simple reasonning (left to the reader) using claim 3.5, shows that it corresponds
a unique symbol to each of these possible distributions of roots.

3.5.2. Codimension 2 cases (complement of a discrete subset of C).

P has two roots on the unit circle.

CLAIM 3.6. If P has only two roots by, by on the unit circle, then |by — by| > 2—371

PROOF. ¢q(z) =e'¥ (2 — Xet®) (2 — ;eio‘) (z —e'%) (z — etb2). For ¢(2) be of the

form p2* + v 23 + c2? + Uz + [, it is necessary and sufficient that

w=a+ + km (trivial computations).

by + by
2

Now, ¢ = 0 if and only if

Ao cos(ox — Big) (trivial tati in)
=T rivial computations again).
A cos(21552) P g

2 1
Assume that |b; — bo| < ?ﬂ', then 1 < cos(élg—bl) <1and X+ 3 < 2. This is

2
impossible for A > 0. O
Hence, the only possible symbol is S5 is that case. Actually, it is the case of
figure 3.1.

P has 4 roots on the unit circle.

CraM 3.7. If P has four roots a1, as, a3, a4, then for any o € Sy (the circle) :
a) {1, a3, a3, as}¢ |, o+ %],
b) {1, a2} Cla, e+ & and {3, ay} C [a+ &, a + 4|, is impossible.

T T
PROOF. a) Assume that ~3 <ol <ar <oy <ag< 3 et k=1,...,4

are roots of P. In that case, a direct computation as in claim 3.6 shows that a4 is
determined by the relation :

. et l@1+a2) | gilentas) | pilazias) N
104 . e
€ - et + etaz + etas - D (332)

Clearly, D never vanishes.

Let us leave a1, as fixed and decrease continuously a3. Then a4 moves con-
tinuously. A collision happens producing a double root. We can now perturb this
double root into two roots out of the unit circle. The two other roots remain in the

interval | — %, §[ But this is impossible by our claim 3.6.
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. 27
b) Assume now that the four roots are e***, Y <o <ar <0<y <az<

2 2k
—W Again, in 3.32, D cannot vanish (D vanishes only for ay, as, a3 = ag+ _7r)

First, let us leave aj, as fixed and decrease a3 up to the moment when : either
o3 meets ay or ay = 0. In the first case, proceeding exactly as in (a) above shows
that this cannot happen. Now, on the same way, let us leave as, oy = 0 fixed and
increase a. For the same reason as in (a), it is impossible that ay meets o or agz.
Then a; reaches ay and as, az € [0, %’r[ This is impossible. O

This shows that the two only possible symbols in that case are Sy, Sz. Actually,
Ss corresponds to figure 3.2. It is easily seen that S; can be obtained by a small
perturbation of the polynomial

i i
Pz)==-2t+22 42— .
0(z) g% T&+ 3

Even by computer, it is not easy to draw it.

3.5.3. Codimension 3 cases (Isolated points on C).

Double roots of P. In that case, clearly, it cannot happen that the two other
roots are between the same two cusps, because, by small perturbation, we go to a
situation forbidden by claim 3.6. Hence the only possibilities are :

Sr=8, 8i=S5,.

S2 corresponds to figures 3.3, 3.4, 3.5. S also can be obtained by considering a
small perturbation of Py(z).

Collision between cusps and roots of P. a) P has four roots . In that
case, the distribution of roots could be as follows (assuming that the cusp point is
o] = O)

1r47r

1.0(26] 3,0[ g, (4 € 30

2 2 4
2. a3 E]O, %[, a3, 4 € Tﬂ, ?ﬂ- .

But this is impossible by claim 3.7 because (a1, @) €] — & + €, €[, (a3, o) €
125 + €, 4F — €[ for a small e.

2
3. an €]0, [ a3, ag €] — ?ﬂ, 0[.
Again, by claim 3.7, this is impossible, considering, for a small ¢, the intervals
=% —¢ —el,]—¢ F ~el
2 2
4. as, 03, a4 €] — —3—77, 0 or a2, as, as €]0, ?77[

By small perturbation of the interval, the 4 roots are between the same two cusps.
This is impossible by claim 3.7.

2 4w 2
?, ?[, (87} E] - o 0[

2
5. az €0, ?”[, as €] 3
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This is the case corresponding to symbol S5 and to figure 3.6.

2 Axw 27 2w
6. (6%)] E]?, ?[, a3, Qg E] - ?, O[ or ]0, ?[
It corresponds to symbol S, and again can be obtained by mean of a small pertur-
bation of the polynomial Py(z).

27 4dnm
7. ag, a3, Oy E]?, ?[

It corresponds to the symbol S7 and can be obtained in the same way as Se.

b) P has two roots. If the cusp point is a; = 0, then, as belongs to %", %”[
If not, perturbing the interval contradicts claim 3.6. Therefore, the only possible
symbol is Sy, and it corresponds to figure 3.7.

Theorem 1.1 is proved.

3.6. Possible full conjugate loci : CLTUCL™.

The position of the cusp points is determined by the equation
sin(3 ¢ + wp) =0, (3.33)

ws is related to V3 = 73 3 and has been defined in section 2.5. Hence, the position
of the cusp points is the same for CLt and CL~.
Otherwise, N
Pt)=pt+vt 22 +v 2+ 7,

P (2)=pzt+v- 22 +0 240,

where Re(p), Im (u) and Re(v™), Im(vt), Re(v™), Im(v~) are independent linear
combinations of the coefficients of 7§, v3.

So, the problem of classification of possible full conjugate loci reduces to the

problem of describing all possible couples of distribution of (unit length) roots of
~ o~ 2 2r 4 2

the polynomials P*, P~ in the 3 sectors ]O, ?’” [, ]?ﬂ, ?ﬂ [, ]—%, O[.

We don’t adress this problem in its full generality.

What is clear, anyway, is that the full conjugate loci CL will be such that CL*
is any among the codimension 2 possibilities (S1, Sz, S3), and CL~ is any among
the codimension 2 and codimension 3 possibilities.
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4. Appendices.

4.1. Appendix A;: Computing the exponential mapping.

For details, we refer to our previous papers [9], [4].

Geodesics are trajectories of the Hamiltonian vector field H associated to the
Hamiltonian H(v) on T*X (7x : T*X — X)

H@) = = (W(F)* +9(G)?).

N =

The metric (F, G) is in normal form (coordinates in X : § = (z, y, w) = (2, w))
F=(1+y8)& -zyB& +51+7 &,
G=(1+2BE -2yBL - 51+7) o5
B(0,w) = 7(0,w) = §2(0,w) = 0.

Coordinates in the cotangent bundle are (p, g, r) = (Z, r). (z, y, w, P, q,7r) have
weight 1, 1, 2, —1, —1, —2 respectively.

B () N (0) = (7(0) +2(0) = 1}

1 P _q
r(0)’ pP=r9=0

¢ = (p, q). s denotes the arclength and ¢ the new time : dt = r(s)ds. p, q have
weight 1.

We set p(0) = cos, g(0) = sing. For r(0) # 0, we set p =

One has, for 7(0) # 0 and s small :

dz __,  OH d ¢, OH ¢ OH
F r(s) oz |r=1, and ds(r) = —r(s) 52 lr=1 + 7(5) - 0 lrz1- (4.1)
Or,
dz = %—?h:h &=+ (E . (4.2)

For all k, (4.2) can be rewritten :

d(z, ¢)
dt

k
= Az, Q)+ Y _ Fi(z ¢, w) + 0" (2, ¢, w), (4.3)

=3

where F; is homogeneous of degree i, where A is a linear operator (corresponding to
the Heisenberg sub-Riemannian metric), and where O**(z, ¢, w) has order (k+1)
with respect to the gradation :

degz = degy = degp =degg =1, degw = 2.
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dw OH OH
AISO, Eg = 57—: = 7"(3) WIT:l?
dw OH
@& " o (4.4)
This can be rewritten :
dw k+1
= 4.
i +;G w) + 0 1(z, ¢, w),, (45)

where G; are homogeneous of degree ¢, where G2 corresponds to the Heisenberg sub-
Riemannian metric, and where O**1(z, ¢, w) has order (k+1) w.r.t. the gradation.
Initial conditions are ‘

2(0) =0, w(0) = 0, C(0) = (p cos, p sin). (4.6)
Therefore,
(2, C) = p(alt, 9), it 9)) + é o (z1(t, @), Gt 9) + O(P+Y),
4.7)

k .
w = p?wy(t, ) + _E_%p’ wi(t, @) + O(p**1).

(zh <1)(ta 90) = eAt (Z(O)a C(O))a w?(ta 90) = A G2(zl(Ta ‘P)a Cl (T7 90)) dr. (48)

These last expressions can be easily computed. They give the exponential mapping
for the Heisenberg metric :

21(t, @) = 2 sin(}) (cos(p — 5), sin(p ~ $)).
i(t, ) = cos(4) (cos(p — £), sin(p — 1)) (4.9)
wy(t) = 3(t —sint).
Also F3 and G4 don’t depend on w, hence, setting A = (z, (),
{ As(t, ) = (23,C3)(t, ) = [y €27 Fy(As(7,)) dr,

a(t0) = [2 (%82 (A1(7,9)) . As(7, @) + Ga(As(7, 0))) dr

The following terms are easily computed, in the same way. We give the expressions
that we shall need. Fy, G5 don’t depend on w,

{ Aa(t,9) = (20, Ca)(t,0) = [y €A Fy(Ai(r,0)) dr,

= [E (852 (A (7, 9)) Aa(T, @) + G5(A1(7,9))) dr.

(4.10)

(4.11)
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As(t,0) = [y e (Fs(Ar(7,9), wa(r)) + L2 (A1(r, 9)) As(T, ) dr,
= [y 155 . (As(7, 9), As(7, ©)) + Gs(Ar (T, 0), wa(T))+

G (A1(7,9)) - As(7, 0) + T34 (AL(7,9)) - As(r, 9))dr.

(4.12)
([ Ao(t, ) = fy e (Fs(Ar(7, ), wa (7)) + 252 (Ar (7, ) Aa(r, ¥)
@(Al(’r 90)) A3(Ta (p)) dT7
A7(t’ 90) = fot eA (=) (F7(A1(7-7 30)7 wQ(T)) + %&(Al (Ta 90)) AS(T’ 90)
(4.13)

+ 5 (A1 (7,9)) AalT, 0)+

547 (M (7,90)) (As(7, ), As(7,0)) + G (A1 (7, 0), wa (7)) As(7, 0)

% (Al (T (P)) ’LU4(7', 50)) dTa

As we shall see, we will need to compute these values for ¢ = 27 only.

4.2. Appendix A, : The exponential mapping in suspended form, the
conjugate locus :

7 .
z(t,p, 0) = pa(t, @) + ,_231’1 zi(t, ) + 0(p®),
Et, p,p): .
w(t, p, ) = p*wa(t) + ; prwi(t, @) + O(p").

Integral expressions of z;, w; were computed in our appendix 4.1.

Let us consider the variable e = +1, according to w > 0 or w < 0. Let us set
t = 2me+7 (the conjugate new time has an expansion t. = 2w e+ O(p?), as is shown
in our previous papers [9], [4] and this will appear again here in). Therefore, 7., the
conjugate time 7, has order p?.

wa(t) = %(t —sint). wo(r) =wi(7) =7me+ %(T —sinT),

hence, w}(0) = me, wj (0) = 0, wj (0) = 0. Therefore, we obtain the following
important fact :

wa(7) = me + O(T) = wj(0) + 73 (1), (4.14)

for some smooth function .
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Let us set :
ew

h=,/—. (4.15)

iy
1
w(r, p, p) =mep*(L+0(T%) + E(ﬁ wy (T, ) + p w5 (1, 90) + p* we (7, ) + O(p°)).

h=p(1+0(r%) + L (PP walr,0) + p° ws(7, 0) + p* we (T, 0) + O(p%)))%.

Using the implicit function theorem, we can solve this last equation in p. After
straightforward computations, we get :

w” T T 2 T ! T
p=h(1= R - W2 4 RS - 2 - uf 05+

(4.16)
O(13) + O(R®) + O(h?7?) + O(h®7)).

Let us set now
T=0h%>+0h3 (4.17)

for some constant 6.

o 2.wi0) 5 wi(0) L, Twi(0)®  wi(0) €0 5
p=nh(1-h% h’e + h( a2 €~ wy (0) 7T)-}-O(h)).

2r 27
(4.18)
On the other hand,
7 .
(7, p, ) = pai(r, 0) + Y p 2i(7, ) + O(p%). (4.19)
=3
We set
z(k) _ dkzi w(k) _ dkﬂh‘
tT drk? Y T drk
We also denote z; for zgl) etc. . ..

Replacing (4.17), (4.18), in this expression (4.19), we get, after tedious compu-
tations :

7
2o, h,p) =Y Aih'+O(R®), (4.20)
1=3

( A3 = (0 z/l + z3)|t:27r67 A4 = (U le + z4)|t:21rey
’ 2 ’
As = (55 (0ws 2y + 3wy 23) + %zl + 025 + 25)|t=2r e

’ ’ 1" !
A = 5-(—€owyz; — €Ows 2; + 200z — Jewszz + 2 T023—

dewy 24 +27r€z; + 27 26)|1=2r e = 0 AL + AQ,

A7 =02 A2 + 0 AL + A9,

A9 = 2z7|t=2xc + terms not depending on z7;. A}, A2 do not depend on z7.
(4.21)
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As we know from our previous papers, the conjugate time 7. is obtained for
0=—6metry(v3) (4.22)

(where 42 is our quadratic invariant defined in section 2.5) : to see this it is sufficient
to compute 8 for

Bzrl 0, 8z3 (0,
0= 21 (0,0) A (B%55 2 + 254502))

= zi/(27re, ©)A (4962I gge’w + 323(;;““’)),
D2t (2me, ) 02 (2me, )
Op Op

Also, we assume that 7%72 = 0 (on the curve C, by definition, this invariant
vanishes). In that case,

but, 2zt (27e, ©) A =1, 2 (2me, @) A = 67!’6‘1‘/7‘5](’7%).

—6metry(v?) 2L (2me, @) + 24(2me, ) = 0,

as it is easily checked.

Therefore, at points of C, we have the expression of the exponential mapping, in
suspended form, in a certain neighbourhood U of the conjugate locus at the source,
for h (or p) small enough

7
20, hy ) =D A;h' + O(R), (4.23)

=4

where A; are given in (4.21).
We have to compute the expression of the conjugate o. in terms of A and ¢. For
this, we have to solve the following equation in o :

0z Oz
5;(0, h, @) A %(U, h,)=0 (4.24)

Solving this equation in ¢, with the implicit function theorem gives :
’ ’ ’ dAJ z
0. = —(2,(2me) A %) — h(z,(2me)} A %’—?’E) + h%(—(21(2me) A b (AL A %—;(271’6))

/ 8z, ‘ 8A} / 8AY
+(z A %)(271’6) ((AEA 3’2 (2me)) + 2, (2me) A Ff)) + h3(—z,(2me) A B2t

terms not depending on A9) + O(h?).
(4.25)

It remains to replace this expression in the expression of z (4.23), to get the expan-
sion of the conjugate locus :

7

ze(h, @) = 2(06, hy @) = Y fi() b + O(B®).

=4
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fal@) = —z,(2me) (21 A g—f:)(st, )+ z4(2me, ¢). This expression we have already

computed in our previous papers :

Fa(p) = (—5macosw, + 15w b cos(2p + wy) + L7b cos(dy + ws),
(4.26)

—57 @ sinw, — 157 b sin(2p + wp) + 27b sin(de + wy))

The other expressions can be computed in the same way, just replacing (4.25) in
(4.23). This has been done with Mathematica.

For fs, we get the expressions below (appendix 4.3), for e = £1. It is not that
complicated and it can be obtained also by the hand.
It requires to compute only

z1(t), wa(t), we(2me), %(2#6), z3(2me), %(27‘(6), 2z3(2me), %(27‘(6), 25(2me)

and %z; (27e).

For fg, we compute the expression, but this is not necessary. The only thing we
need is to know that

fe(o +m) = fo(p)- (4.27)
But, actually, this holds by proposition 3.1. and its corollary in [2].

For f; the term z; appears in A9 (formula (4.21)), but also, it comes through
the term A4 h* of z(o, h, @) in (4.21) : Ay = (02, + 24) (27€).
Then,the expression (4.25) produces also the term
0

’ aA ’
T=—(z(27¢A a—;)zl(Qﬂ'e) .

This term will not play any role : the only thing that we need is property (3.2).5
0
in section 3.1 for Ofa A fr ().

Oy
Ofa . 5 . . ' _ .
B —10b7 sin(3 ¢ + wp) (cos, sinp), 2z;(2we) = (cos g, sin @),
therefore, %f(pi A T = 0. Hence, f4 A f2(p) = % A z7(2m€)+ other terms that

do not depend on the invariants ﬂ“ and 'yJ

Also, by the expression (4.13) of our appendix 4.1,

8f4 af4

2me A(t—r)
EX B9 Ao Fr(Ay(7, ), wa(T)) dr+

ANzz(2me) =
(4.28)

terms not depending on 8 and ~?¢.
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This last expression only has been computed by Mathematica, it is given in the
next appendix, which shows that it is a general polynomial Q(y), in e2¢¥, of degree
3, the coefficients of which are linear independent combinations of the components

of 5.

4.3. Appendix Ajz: The program.

It does compute the expansion of the conjugate locus in terms of h, ; following
the method explained in our appendices A;, A,.

It gives f1(), f5(p), fo(o+m)—fo(p) and
2, (2, <,0)/\f027rE eAt=) By (Ay (7, @), wa(r)) dr.

*x* Expressions of functions BBeta and GGamma of our normal form
(case Q2=0 and wb = 0)#*%¥x%

GGamma = Gamma2 + Gamma3 +Gamma4 +Gamma5 +Gamma6;BBeta = Betal + Beta2 + Beta3
Betad;Gamma4 =Gamma44+w Gamma4?2;Gamma$S = Gammab5 + w Gammab53; Gamma6 = Gamma66
v Gamma64 + w"2 Gamma62;Gamma2 = to/2 (x"2 + y“2 );Gamma3 = -b y"3 + 3 b x"2 y
(x"2 + y°2) (- vvl x + vv2 y);Gamma44 =L44 (x"2+y~2)"2+add (x"4+y"4-6 x"2 y~2)
4 bd4 x y (x72-y"2)+ cdd (x"4-y~4)-2 d44 x y (x"2+y~2);Gammad2= L42 (x"2+y~2)
ad2 (x"2 - y™2) -2 b42 x y ; Gamma63=g531 x"3+g532 y~3+g5h33 x y"2 + g534 x"2 y
Gamma55 = g551 x75 + gb52 y"5 + gbb3 x y~4+ghb4 x"4 y+gbb55 x~2 y~3+g556 x"3 y"2
Gamma66 = g661 x"6 + g662 x"5 y + g663 x4 y~2 + g664 x"3 y"3 + g665 x"2 y"4 +
g666 x y~b + g667 y~6; Gamma64 = g641 x"4+g642 x"3 y+ g643 x"2 y 2+ gb44 x y~3
g645 y~4; Gamma62 = g621 x"2 + g622 x y + g623 y~2; Betal = 11 x + 12 y; Beta2
L22 (x"2 + y72) + a22 (x"2 - y™2) - 2 b22 x y; Beta3 = w (b311 x + b312 y) +
b331 x73 + b332 y"3 + b333 x y~2 + b334 x72 y; Betad4 = b441 x"4 + b442 x"3 y +
b443 x72 y™2 + b444 x y73 + b445 y"4 + v (b421 x72 + b422 x y + b423 y~2);

FRrokokkokkorobkobkok ook kokkookokk Hamiltonian Hosokskoksoksokokokskokokok ok ok kokokok ok ok ok & kokok 3ok Kok ok

H=(p (1+y~2 BBeta)-q x y BBetat+y/2 r(1+GGamma))"2/2+(-p x y BBeta+q(1+x~2 BBeta
x/2 r (1+GGamma))~2/2; rll = {r -> 1}; weight = {x ->h x, y->h y, p—>h p,q ->h
w->h"2 w}; suppr=Flatten[Table[h~i->0,{i,8,30}]1];Hx=D[H,p] /. rli;Hy = D[H, q]
rli;Hp =(- D[H, x] + p D[H, w] ) /. rll; Hq = (- D[H,y] + q D[H, w]) /. rll; Hw
D[H, r] /. rll; F = Collect[({Hx, Hy, Hp, Hq} /. weight) /. suppr , h] /. supp
G = Collect[(Hw /. weight) /. suppr , h) /. suppr; G1 = D[G, h]; G2 = D[G1, hl/
G3 = D[G2, h]/3;G4 = D[G3, hl/4; G5 = D{G4, h]l/5; G6 = D[G5, hl/6;{G1l, G2,G3, G
G5, 66} = {G1, G2, G3, G4, G5, G6} /. h -> 0; F1 = D[F, h]; F2 = D[F1, h]/2; F3
D[F2, h]l/3; F4 = D{F3, h)/4; FS5 = D[F4, h]l/5 ; F6 = D[F5, hl/6; F7 = D[F6, hl/7
{F1, F2, F3, F4, F5, F6, F7} = {F1, F2, F3, F4, F5, F6, F7} /. h -> 0;
matrixA = rb {{0, 1/2, 1, 0}, {-1/2, 0, O, 1},{-1/4, 0, 0,1/2},{0,-1/4,-1/2, 0}
expA = {{Cos[rb/2]1°2, Sin[rbl/2, Sin[rb]l, 2#Sinl[rb/2]°2},{-Sin[rbl/2,Cos[rb/2]"
-2%3in(rb/2]-2, Sin[rbl}, {-Sin[rbl/4, - Sin[rb/2]1°2/2, Cosl[rb/2]1-2, Sinl[rbl/2
{8in{rb/2]1°2/2, -Sinlrb}/4, -Sin[rbl/2,Cos[rb/2]"2}};condinit ={0,0,rho Cos[phi
rho Sin(phil}; rl12 = {t -> s}; r13 = {t -> 2 Pi};
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*kkkdkkk exp. mapping in Heisenberg case #kkkikkkikkkikdikikiiomiiokkkkkikokk

{x1, y1, p1, q1} = ((expA /. rb -> t) . condinit ) // Simplify;heis = {x—> x1,
y-> y1, p-> pt, q-> q1},w2=Simplify[Integrate[({G2 /. heis) /. rl12),{s, 0, t}]];
heis = {x-> x1, y-> y1, p-> p1, q-> q1, w-> w2};

*xkx*xk*k Approximations of order 3 (in tho) of x, ¥y, P, q **kkkkdkikkikikkkikkkik

F3s=Simplify[((F3 /. heis) /. r12)]; {x3,y3, p3,q3}=Simplify[Integratel[(expA /.
rb-> t_s) . FBS,{S,O,t}]];

*xkkkkk Approximations of order 4 (im rho) of X, y, W, P, q *kekkkrkikkkkkkkisk

F4s = ((F4 /. heis) /. rl2)// Simplify;{x4,y4,p4,q4}=Simplify[Integrate[(expA /.
rb->t-s) . F4s,{s,0,t}1];wdls = ((D[G2, x] /. heis) x3 + (D[G2, y] /. heis) y3 +
(D(G2,p) /. heis) p3 + (D[G2,q] /. heis) q3) /. rl2; w42s = (G4 /. heis) /. rl2;
w4 = Simplify[Integrate[w4ls + w42s, {s, 0, t}] 1;

*4kkkk*x Approximations of order 5 (in rho) of x, y, W, P, q *ekkkkkkkkkkkiikdkk

FS1s = ((F5 /. heis) /. rl2);F52s=(((Outer[D,F3,{x, y,p,q}]/. heis) . {x3, y3,
p3, q3})/. r12);{x5,y5,p5,q95} = Simplify[Integrate[(expA /. rb ->t-s) . (F51s +
F52s), {s, 0, t})];w51s=((G5/. heis)/. rl2);w52s=((D[G2,x] /. heis) x4 + (D[G2,
yl/. beis) y4+(D[G2, p]/. heis) p4+(D[G2,q] /. beis) q4) /. rl2; wb = Simplify(
Integrate[ w51s + w52s, {s, 0, t}]]

#kkkxk% Approximations of order 6 (in rho) of x, y, w, p, q (for t = + 2 pi) *#:

F61s=((F6/. heis)/. rl2);F62s=(((Outer(D, F3, {x, y, p, q}] /. heis) . {x4, y4,
p4,q4})/. rl2);F63s=(((Outer [D,F4,{x, y, p, q}] /. heis) . {x3, y3, p3, q3}) /.
r12 );{x6, y6, p6, q6}=Simplify[Integrate[(expA/. rb->-s).(F61s + F62s + F63s),
{s,0,2 Pi}]);w62s=((D[G4,x] /. heis) x3 + (D[G4,yl/. heis) y3+(D[G4,p] /. heis)
p3 +(D[G4, ql /. heis) q3) /. rl2; w63s= ((P[G2,x]/. heis) x5+(D[G2,y]/. heis)
y5+(D(G2,p]/. heis) pS5+(D[G2,q]/. heis) g5)/. rl2; mat ={{D[G2, x, x], D[G2, x,
yl,p0[G62, x, pl, D[G2,x,q1},{ DIG2,x,y),D(G2,y,y], D[G2,y,p],D[G2,y,q)},{D(G2,x,
pl, DIG2, p, yJ,DIG2,p,p),D[G2,p,ql},{D[G2,x,q], DIG2, q, y], DIG2, q, p],DI[G2,
q,q]}};we4s=(1/2{x3,y3,p3,q3} . mat . {x3, y3, p3, q3} ) /. rl2; wéls = ((G6 /.
heis) /. rl2);w62pi=Simplify[Integrate[w61s+w62s + w63s + w6ds, {s, 0, 2 Pi}]];

*kxkkkk Approximations of order 7 (in rho) of x, y, p, q (for t = + 2 pi)

F71s = ((F7 /. heis) /. rl2);F72s=(((Quter(D,F3,{x,y,p,q}] /. heis) . {x5, y5,
pS, q5}) /. rl2); F73s = (((Outer(D, F4,{x,y,p,q}]/. heis) . {x4,y4,p4,q94}) /.
rl2) // Expand; For[i=1, i<=4, i++,tmp=F3([[i]];mat[i]={{D[tmp,x, x], D[tmp, x,
yl, Dltmp, x,pl], D[tmp, x, ql}, {b(tmp,x,y],D[tmp,y,y),D[tmp,y,p],D[tmp,y,ql},
{p[tmp, x,p],D[(tmp,p,yl,D[twp,p,pl,D{tmp, p, ql}, {D[tmp, x, q], DItmp, q, y],
D[tmp, q,p]l,D[tmp,q,q)}};F74s[i]l=(({x3,y3,p3,q3} . mat[i]) . {x3, y3, p3, q3})
/2] ;F74s =({F74s[1],F74s[2] ,F74s[3],F74s[4]}/.r12) ;F75s=(((Outer [D,F5,{x,y,p,
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q}]/ .heis).{x3,y3,p3,q3})/. rl2); F76s = (((D[F5, w] /. heis) w4 )/.r12);
{x72pi,y72pi,p72pi,q72pi}=Simplify[Integrate[(expA/.rb->-8).(F71s+F72s+F73s+
F74s+F75s+F76s), {s,0,2 Pi}]]

*kkkkkkkkkkkkkkkkk Suspended exp. mapping Zh (in a neighbourhood of +2 Pi)#¥*x*

tet0 = -6 Pi to; rho = 1; z42pi = ({x4, y4)} /. rl3); zlp2pi = (D[{x1, y1}, t]
/. rl3);w42pi = (w4 /. rl3); w4p2pi = (D[w4, t] /. rl3); zis2pi = (D[{x1,y1},
{t, 2}] /. r13);z1t2pi = (D[{x1, y1}, {t, 3}] /. rl3); =z32pi =({x3,y3}/.r13);
z3p2pi = (D[{x3, y3},t] /.rl3); z3s2pi = (D[{x3, y3}, {t, 2}] /. rl3); =z42pi=
({x4,y4} /. r13); z4p2pi = (D[{x4, y4},t] /. rl3); z52pi = ({x5, y5} /. rl3);
w52pi = w5 /. rl3; z5p2pi = (D[{x5,y5}, t] /. rl3); z62pi = {x6, y6}; AA3 = -
w42pi/(2 Pi); AA4 = - w52pi/(2 Pi); AA5 = 7/8 w42pi~2/Pi"2 - w62pi/(2 Pi) -~
tetO wdp2pi/(2 Pi); 272pi = {x72pi, y72pi}; A4 = rr zlp2pi+ z42pi; A5 =-tetO
/(2 Pi) w42pi z1p2pi+tet0~2 z1s2pi/2+tet0 z3p2pi+z52pi- 3/(2 Pi) w42pi z32pi;
A60 = - tet0/(2 Pi) wbt2pi z1p2pi+ 262pi + tetO z4p2pi- 2/Pi wd2pi z42pi-3/(2
Pi) w5St2pi z32pi;A61=-1/(2 Pi) w42pi zlp2pi+tet0 z1s2pi+z3p2pi;A6 = A60 + rr
A61; A70 = tet0"3/6 z1t2pi + AA3 tet07°2/2 z1s2pi + AA5 tet0 zlp2pi + tet072/2
23s2pi +3 AA3 tetO z3p2pi + 3 AA372 z32pi + 3 AAS z32pi + 4 AA4 z42pi + tet0
z5p2pi+h AA3 z52pi+ z72pi; A71 = AA4 zlp2pi + 24p2pi ; A72 = z1s2pi/2; A7 =
A70 + A71 rr + A72 rr"2; Zh = A4 h™4 + A5 h"5 + A6 h™6 + A7 h"7;

okooockiokokkkokk Conjugate time ITrc  krkkkmokkkikkdkokiokikorokkkiop ok iokkokkokk

DD1 = Det[{z1p2pi, D[z42pi, phil}]; DD2 = Det[{z1p2pi, D[AS, phil}]; DD3 = Det
[{A61,D[z1p2pi, phil}]; DD4 = Det[{z1p2pi, D[A61, phil}];DD5=Det [{A61,D[z42pi,
phil}]1;DD6 = Det [{z1p2pi, D[A60, phil}]; DD7 = Det([{zip2pi, D[A70, phil}]; DD8
= Det[{A61, D[A5, phil}]; DD9 = Det[{A71,D[z42pi, phil}]; DD10 = Det[{z1p2pi,
D[z42pi, phil}])~2( Det{{2 A72, D[z1p2pi, phil}] + Det[{zip2pi, D[A72, phil}]);
DD11= Det[{z1p2pi, DI[AS, phil}] (Det[{A61, D[z1p2pi, phil}]+Det [{z1p2pi,D[A61,
phil}]) ;DD12=Det [{z1p2pi,D[z42pi,phil}] (Det([{A71,D(z1p2pi,phil}]1+Det({z1p2pi,
D[A71,phi]}]+Det [{2 A72,D[z42pi,phil}]); rrcO = - DD1; rrcl = - DD2; rrc2 =
Expand[- (- DD1 (DD3 + DD4)+ DD5 + DD6)]; rrc3 = Expand[(- DD7 - DD8 - DD9 -
DD10 + DD11 + DD12)]; rrc = rrcO + h rrcl + h™2 rrc2 + h"3 rrc3;

*x%*% Conjugate locus Zhcp (resp. Zhcm) in a neighbourhood of +2 Pi(resp.-2 Pi)

f4p = rrcO z1p2pi + z42pi; f5p = AS + z1p2pi rrcil;f6p=A60+A61 rrcO+z1p2pi rrc2;
f7p = A70 + A7T1 rrcO + A72 rrc0”2 + A61 rrcl + zlp2pi rrc3;
Zhcp = f4p h™4 + f5p h"5 + £6p h™6 + £7p h"7

£4p ={(5%Pi*(-2*xvv2 + 6%b*Cos([2*phil+ 3*b*Cos[4#phil))/2, (-5*Pi*(2*vvi+ 6*b*
Sin[2%phi] - 3*b#*Sin[4*phil))/2};

£5p = {(Pi*(-105%b42*Cos[phi] - 540%c44#Cos[phi] - 72*a42+Pi*Cos[phil+ 720%ad4
*Cos [3*phi] -35%¥b42*Cos [3#phi]l -180*c44*Cos [3+phi] - 24*a42*Pi*Cos[3*phi] + 432+
a44xCos [5+phil- 105%a42#Sin{phi] + 540%d444#Sin[phi] + 72%b42+Pi*Sin[phi] - 35%
a42xSin[3*phi]l + 720%b44*Sin[3*phi] + 180%d44#Sin[3%phi]+24%b42+Pi*Sin[3+phil+
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432%b44#*3in [5+phi]) ) /24, (Pi*(-105%a42*Cos [phi]+ 540%d44#*Cos[phi] + 72*b42*Pix
Cos[phi] + 35%a42#Cos[3*phi] + 720%b44+*Cos([3*phi] - 180*d44#Cos[3*phi]~ 24¥b42+
Pi*Cos[3#phi] - 432#%b44*Cos[5*phi] + 105%b42+Sin[phi] + 540%c44+Sin[phil+72%
ad42+Pi*Sin[phi] - 720%a44#Sin(3*phi] - 35+b42+Sin[3+phi] - 180*c44*Sin[3*phi]-
24%a42*Pi*Sin[3*phi] + 432%a44*Sin(5%phi]))/24};

Simplify[(£6p /. phi -> phi + Pi) - £6p];

cond = {to->0,b->0,vv1->0,vv2->0,L44->0,244->0,b44->0,c44->0,d44->0,L42->0,

a42->0,b42->0, g5651->0, g552->0, g553->0,g554->0, g555->0, g556->0, g531->0, g532->0,
g533->0,g534->0,11->0,12->0,L22->0,a22->0,b22->0,b311->0,b312->0,b331->0,b332
->0,b333->0,b334->0}; 2z72pin={x72pi,y72pi}/. cond;f4phi=D[f4p,phil//Simplify;

expr = Det[{f4phi, z72pin}] // Simplify

expr = -60*b*Pi*Sin[3*phil*(Pi*(1645%g622*Cos[2*phi] - 5670*g641*Cos[2*phi]+
5670%g645+Cos [2*phi] - 12600*g662+Cos [2#phi] - 7560%g664*Cos [2*phi] - 12600%
g666+Cos [2+phi] - 2100*g621*Pi*Cos[2*phi] + 2100%g623*Pi*Cos[2*phi] - 2700%
g642*Pi*Cos [24phi]~ 2700%g644+Pi*Cos [2+phi] -960+g622+P1i~2+Cos [2+phi]+2646*
g641%Cos [4+phi] -2646%g643%Cos[4+phi] + 2646*g645%Cos[4*phi] + 10080*g662+
Cos[4*phi] - 10080*g666+Cos[4*phi] + 1080%g642+Pi*Cos [4+phi]-1080%g644+Pix*
Cos[4%phi] - 1080*g662+Cos[6*phi] + 1080*g664*Cos[6%phi] - 1080%g666+Cos[6*
phi] - 1645*g621+Sin[2+phi] + 1645%g623*Sin[2*phi) - 2835%g642*Sin[2*phi] -
2835*%g6444Sin[2+phi] + 37800%g661+Sin[2+phi] + 2520%g663*Sin[2#phi] - 2520%
g665+Sin [2*phi] -37800%g667+Sin[2*phi] -2100%g622*%Pi*Sin[2+phi] + 5400%g641%
Pi*Sin[2+phi] - 5400%g645%Pi*Sin[2+phil + 960*g621*Pi~2*5in[2*phi] - 960*
g623%Pi"24Sin[2*phi] + 2646%g642+Sin[4+phi] - 2646%g644+Sin[4+phi] - 15120%
g661%Sin[4*phi] + 5040%g663*Sin[4+phi] + 5040%g665*Sin{4+phi]-15120+g667*
Sin[4*phil- 1080*g641#Pi*Sin[4%phi] + 1080%g643+Pi*Sin[4*phi]-1080*g645+Pi*
Sin[4*phi]+1080%g661*Sin [6+phil-1080*g663*Sin[6%phi]+1080*%g665+Sin[6*phi] -
1080*g667*Sin[6*phi]))/720;

Zhcm = f4m h™4 + f5m h™5 + f6m h"6 + f7m h~7

f4m = - f4p; Simplify[(f6m /. phi -> phi + Pi) - fém];

£5m = {(Pi*(105%b42*Cos [phi] +540%c44*Cos [phi]-72*a42*Pi*Cos[phi] -720*a44*
Cos[3*phi] + 35%b42*Cos[3*phi]+180%c44*Cos [3*phi]-24+a42+Pi*Cos [3+phi]-432%
a44*Cos[5+phi] + 105*%a42*Sin[phi] - 540%d44+Sin[phi] + 72%b42+Pi*Sin[phi] +
35%a42+Sin[3*phi]l - 720%b44*Sin[3+phi]l -180%d44+*Sin[3*phil + 24+b42*Pix*
Sin[3*phi] - 432%b44+Sin[5%phil))/24, (Pix(105%a42+Cos[phi]-540%d44+Cos[phil
+ 72%b42+Pi*Cos[phi] - 35%a42+Cos[3*phi] -720#%b44%Cos[3*phil+ 180*d44*Cos[3*
phil - 24*b42*Pi*Cos[3*phi] + 432%b44*Cos[5*phi] - 105%b42*Sin[phi]-540%c44*
Sin[phil+72*a42+*Pi*Sin[phi] + 720%a44*Sin(3*phi] +35%b42%Sin[3*phi] +180*c44d*
Sin[3#phi] - 24+a42+#Pi*Sin[3*phi] - 432*a44*Sin[5+phi]))/24};
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